| //===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This utility provides a simple wrapper around the LLVM Execution Engines, |
| // which allow the direct execution of LLVM programs through a Just-In-Time |
| // compiler, or through an interpreter if no JIT is available for this platform. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "lli" |
| #include "RecordingMemoryManager.h" |
| #include "RemoteTarget.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Module.h" |
| #include "llvm/Type.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Bitcode/ReaderWriter.h" |
| #include "llvm/CodeGen/LinkAllCodegenComponents.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/ExecutionEngine/Interpreter.h" |
| #include "llvm/ExecutionEngine/JIT.h" |
| #include "llvm/ExecutionEngine/JITEventListener.h" |
| #include "llvm/ExecutionEngine/JITMemoryManager.h" |
| #include "llvm/ExecutionEngine/MCJIT.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/IRReader.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/PluginLoader.h" |
| #include "llvm/Support/PrettyStackTrace.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/Process.h" |
| #include "llvm/Support/Signals.h" |
| #include "llvm/Support/TargetSelect.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/DynamicLibrary.h" |
| #include "llvm/Support/Memory.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cerrno> |
| |
| #ifdef __linux__ |
| // These includes used by LLIMCJITMemoryManager::getPointerToNamedFunction() |
| // for Glibc trickery. Look comments in this function for more information. |
| #ifdef HAVE_SYS_STAT_H |
| #include <sys/stat.h> |
| #endif |
| #include <fcntl.h> |
| #include <unistd.h> |
| #endif |
| |
| #ifdef __CYGWIN__ |
| #include <cygwin/version.h> |
| #if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007 |
| #define DO_NOTHING_ATEXIT 1 |
| #endif |
| #endif |
| |
| using namespace llvm; |
| |
| namespace { |
| cl::opt<std::string> |
| InputFile(cl::desc("<input bitcode>"), cl::Positional, cl::init("-")); |
| |
| cl::list<std::string> |
| InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>...")); |
| |
| cl::opt<bool> ForceInterpreter("force-interpreter", |
| cl::desc("Force interpretation: disable JIT"), |
| cl::init(false)); |
| |
| cl::opt<bool> UseMCJIT( |
| "use-mcjit", cl::desc("Enable use of the MC-based JIT (if available)"), |
| cl::init(false)); |
| |
| // The MCJIT supports building for a target address space separate from |
| // the JIT compilation process. Use a forked process and a copying |
| // memory manager with IPC to execute using this functionality. |
| cl::opt<bool> RemoteMCJIT("remote-mcjit", |
| cl::desc("Execute MCJIT'ed code in a separate process."), |
| cl::init(false)); |
| |
| // Determine optimization level. |
| cl::opt<char> |
| OptLevel("O", |
| cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] " |
| "(default = '-O2')"), |
| cl::Prefix, |
| cl::ZeroOrMore, |
| cl::init(' ')); |
| |
| cl::opt<std::string> |
| TargetTriple("mtriple", cl::desc("Override target triple for module")); |
| |
| cl::opt<std::string> |
| MArch("march", |
| cl::desc("Architecture to generate assembly for (see --version)")); |
| |
| cl::opt<std::string> |
| MCPU("mcpu", |
| cl::desc("Target a specific cpu type (-mcpu=help for details)"), |
| cl::value_desc("cpu-name"), |
| cl::init("")); |
| |
| cl::list<std::string> |
| MAttrs("mattr", |
| cl::CommaSeparated, |
| cl::desc("Target specific attributes (-mattr=help for details)"), |
| cl::value_desc("a1,+a2,-a3,...")); |
| |
| cl::opt<std::string> |
| EntryFunc("entry-function", |
| cl::desc("Specify the entry function (default = 'main') " |
| "of the executable"), |
| cl::value_desc("function"), |
| cl::init("main")); |
| |
| cl::opt<std::string> |
| FakeArgv0("fake-argv0", |
| cl::desc("Override the 'argv[0]' value passed into the executing" |
| " program"), cl::value_desc("executable")); |
| |
| cl::opt<bool> |
| DisableCoreFiles("disable-core-files", cl::Hidden, |
| cl::desc("Disable emission of core files if possible")); |
| |
| cl::opt<bool> |
| NoLazyCompilation("disable-lazy-compilation", |
| cl::desc("Disable JIT lazy compilation"), |
| cl::init(false)); |
| |
| cl::opt<Reloc::Model> |
| RelocModel("relocation-model", |
| cl::desc("Choose relocation model"), |
| cl::init(Reloc::Default), |
| cl::values( |
| clEnumValN(Reloc::Default, "default", |
| "Target default relocation model"), |
| clEnumValN(Reloc::Static, "static", |
| "Non-relocatable code"), |
| clEnumValN(Reloc::PIC_, "pic", |
| "Fully relocatable, position independent code"), |
| clEnumValN(Reloc::DynamicNoPIC, "dynamic-no-pic", |
| "Relocatable external references, non-relocatable code"), |
| clEnumValEnd)); |
| |
| cl::opt<llvm::CodeModel::Model> |
| CMModel("code-model", |
| cl::desc("Choose code model"), |
| cl::init(CodeModel::JITDefault), |
| cl::values(clEnumValN(CodeModel::JITDefault, "default", |
| "Target default JIT code model"), |
| clEnumValN(CodeModel::Small, "small", |
| "Small code model"), |
| clEnumValN(CodeModel::Kernel, "kernel", |
| "Kernel code model"), |
| clEnumValN(CodeModel::Medium, "medium", |
| "Medium code model"), |
| clEnumValN(CodeModel::Large, "large", |
| "Large code model"), |
| clEnumValEnd)); |
| |
| cl::opt<bool> |
| EnableJITExceptionHandling("jit-enable-eh", |
| cl::desc("Emit exception handling information"), |
| cl::init(false)); |
| |
| cl::opt<bool> |
| GenerateSoftFloatCalls("soft-float", |
| cl::desc("Generate software floating point library calls"), |
| cl::init(false)); |
| |
| cl::opt<llvm::FloatABI::ABIType> |
| FloatABIForCalls("float-abi", |
| cl::desc("Choose float ABI type"), |
| cl::init(FloatABI::Default), |
| cl::values( |
| clEnumValN(FloatABI::Default, "default", |
| "Target default float ABI type"), |
| clEnumValN(FloatABI::Soft, "soft", |
| "Soft float ABI (implied by -soft-float)"), |
| clEnumValN(FloatABI::Hard, "hard", |
| "Hard float ABI (uses FP registers)"), |
| clEnumValEnd)); |
| cl::opt<bool> |
| // In debug builds, make this default to true. |
| #ifdef NDEBUG |
| #define EMIT_DEBUG false |
| #else |
| #define EMIT_DEBUG true |
| #endif |
| EmitJitDebugInfo("jit-emit-debug", |
| cl::desc("Emit debug information to debugger"), |
| cl::init(EMIT_DEBUG)); |
| #undef EMIT_DEBUG |
| |
| static cl::opt<bool> |
| EmitJitDebugInfoToDisk("jit-emit-debug-to-disk", |
| cl::Hidden, |
| cl::desc("Emit debug info objfiles to disk"), |
| cl::init(false)); |
| } |
| |
| static ExecutionEngine *EE = 0; |
| |
| static void do_shutdown() { |
| // Cygwin-1.5 invokes DLL's dtors before atexit handler. |
| #ifndef DO_NOTHING_ATEXIT |
| delete EE; |
| llvm_shutdown(); |
| #endif |
| } |
| |
| // Memory manager for MCJIT |
| class LLIMCJITMemoryManager : public JITMemoryManager { |
| public: |
| SmallVector<sys::MemoryBlock, 16> AllocatedDataMem; |
| SmallVector<sys::MemoryBlock, 16> AllocatedCodeMem; |
| SmallVector<sys::MemoryBlock, 16> FreeCodeMem; |
| |
| LLIMCJITMemoryManager() { } |
| ~LLIMCJITMemoryManager(); |
| |
| virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment, |
| unsigned SectionID); |
| |
| virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment, |
| unsigned SectionID); |
| |
| virtual void *getPointerToNamedFunction(const std::string &Name, |
| bool AbortOnFailure = true); |
| |
| // Invalidate instruction cache for code sections. Some platforms with |
| // separate data cache and instruction cache require explicit cache flush, |
| // otherwise JIT code manipulations (like resolved relocations) will get to |
| // the data cache but not to the instruction cache. |
| virtual void invalidateInstructionCache(); |
| |
| // The RTDyldMemoryManager doesn't use the following functions, so we don't |
| // need implement them. |
| virtual void setMemoryWritable() { |
| llvm_unreachable("Unexpected call!"); |
| } |
| virtual void setMemoryExecutable() { |
| llvm_unreachable("Unexpected call!"); |
| } |
| virtual void setPoisonMemory(bool poison) { |
| llvm_unreachable("Unexpected call!"); |
| } |
| virtual void AllocateGOT() { |
| llvm_unreachable("Unexpected call!"); |
| } |
| virtual uint8_t *getGOTBase() const { |
| llvm_unreachable("Unexpected call!"); |
| return 0; |
| } |
| virtual uint8_t *startFunctionBody(const Function *F, |
| uintptr_t &ActualSize){ |
| llvm_unreachable("Unexpected call!"); |
| return 0; |
| } |
| virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize, |
| unsigned Alignment) { |
| llvm_unreachable("Unexpected call!"); |
| return 0; |
| } |
| virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart, |
| uint8_t *FunctionEnd) { |
| llvm_unreachable("Unexpected call!"); |
| } |
| virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) { |
| llvm_unreachable("Unexpected call!"); |
| return 0; |
| } |
| virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) { |
| llvm_unreachable("Unexpected call!"); |
| return 0; |
| } |
| virtual void deallocateFunctionBody(void *Body) { |
| llvm_unreachable("Unexpected call!"); |
| } |
| virtual uint8_t* startExceptionTable(const Function* F, |
| uintptr_t &ActualSize) { |
| llvm_unreachable("Unexpected call!"); |
| return 0; |
| } |
| virtual void endExceptionTable(const Function *F, uint8_t *TableStart, |
| uint8_t *TableEnd, uint8_t* FrameRegister) { |
| llvm_unreachable("Unexpected call!"); |
| } |
| virtual void deallocateExceptionTable(void *ET) { |
| llvm_unreachable("Unexpected call!"); |
| } |
| }; |
| |
| uint8_t *LLIMCJITMemoryManager::allocateDataSection(uintptr_t Size, |
| unsigned Alignment, |
| unsigned SectionID) { |
| if (!Alignment) |
| Alignment = 16; |
| // Ensure that enough memory is requested to allow aligning. |
| size_t NumElementsAligned = 1 + (Size + Alignment - 1)/Alignment; |
| uint8_t *Addr = (uint8_t*)calloc(NumElementsAligned, Alignment); |
| |
| // Honour the alignment requirement. |
| uint8_t *AlignedAddr = (uint8_t*)RoundUpToAlignment((uint64_t)Addr, Alignment); |
| |
| // Store the original address from calloc so we can free it later. |
| AllocatedDataMem.push_back(sys::MemoryBlock(Addr, NumElementsAligned*Alignment)); |
| return AlignedAddr; |
| } |
| |
| uint8_t *LLIMCJITMemoryManager::allocateCodeSection(uintptr_t Size, |
| unsigned Alignment, |
| unsigned SectionID) { |
| if (!Alignment) |
| Alignment = 16; |
| unsigned NeedAllocate = Alignment * ((Size + Alignment - 1)/Alignment + 1); |
| uintptr_t Addr = 0; |
| // Look in the list of free code memory regions and use a block there if one |
| // is available. |
| for (int i = 0, e = FreeCodeMem.size(); i != e; ++i) { |
| sys::MemoryBlock &MB = FreeCodeMem[i]; |
| if (MB.size() >= NeedAllocate) { |
| Addr = (uintptr_t)MB.base(); |
| uintptr_t EndOfBlock = Addr + MB.size(); |
| // Align the address. |
| Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); |
| // Store cutted free memory block. |
| FreeCodeMem[i] = sys::MemoryBlock((void*)(Addr + Size), |
| EndOfBlock - Addr - Size); |
| return (uint8_t*)Addr; |
| } |
| } |
| |
| // No pre-allocated free block was large enough. Allocate a new memory region. |
| sys::MemoryBlock MB = sys::Memory::AllocateRWX(NeedAllocate, 0, 0); |
| |
| AllocatedCodeMem.push_back(MB); |
| Addr = (uintptr_t)MB.base(); |
| uintptr_t EndOfBlock = Addr + MB.size(); |
| // Align the address. |
| Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); |
| // The AllocateRWX may allocate much more memory than we need. In this case, |
| // we store the unused memory as a free memory block. |
| unsigned FreeSize = EndOfBlock-Addr-Size; |
| if (FreeSize > 16) |
| FreeCodeMem.push_back(sys::MemoryBlock((void*)(Addr + Size), FreeSize)); |
| |
| // Return aligned address |
| return (uint8_t*)Addr; |
| } |
| |
| void LLIMCJITMemoryManager::invalidateInstructionCache() { |
| for (int i = 0, e = AllocatedCodeMem.size(); i != e; ++i) |
| sys::Memory::InvalidateInstructionCache(AllocatedCodeMem[i].base(), |
| AllocatedCodeMem[i].size()); |
| } |
| |
| static int jit_noop() { |
| return 0; |
| } |
| |
| void *LLIMCJITMemoryManager::getPointerToNamedFunction(const std::string &Name, |
| bool AbortOnFailure) { |
| #if defined(__linux__) |
| //===--------------------------------------------------------------------===// |
| // Function stubs that are invoked instead of certain library calls |
| // |
| // Force the following functions to be linked in to anything that uses the |
| // JIT. This is a hack designed to work around the all-too-clever Glibc |
| // strategy of making these functions work differently when inlined vs. when |
| // not inlined, and hiding their real definitions in a separate archive file |
| // that the dynamic linker can't see. For more info, search for |
| // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274. |
| if (Name == "stat") return (void*)(intptr_t)&stat; |
| if (Name == "fstat") return (void*)(intptr_t)&fstat; |
| if (Name == "lstat") return (void*)(intptr_t)&lstat; |
| if (Name == "stat64") return (void*)(intptr_t)&stat64; |
| if (Name == "fstat64") return (void*)(intptr_t)&fstat64; |
| if (Name == "lstat64") return (void*)(intptr_t)&lstat64; |
| if (Name == "atexit") return (void*)(intptr_t)&atexit; |
| if (Name == "mknod") return (void*)(intptr_t)&mknod; |
| #endif // __linux__ |
| |
| // We should not invoke parent's ctors/dtors from generated main()! |
| // On Mingw and Cygwin, the symbol __main is resolved to |
| // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors |
| // (and register wrong callee's dtors with atexit(3)). |
| // We expect ExecutionEngine::runStaticConstructorsDestructors() |
| // is called before ExecutionEngine::runFunctionAsMain() is called. |
| if (Name == "__main") return (void*)(intptr_t)&jit_noop; |
| |
| const char *NameStr = Name.c_str(); |
| void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr); |
| if (Ptr) return Ptr; |
| |
| // If it wasn't found and if it starts with an underscore ('_') character, |
| // try again without the underscore. |
| if (NameStr[0] == '_') { |
| Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1); |
| if (Ptr) return Ptr; |
| } |
| |
| if (AbortOnFailure) |
| report_fatal_error("Program used external function '" + Name + |
| "' which could not be resolved!"); |
| return 0; |
| } |
| |
| LLIMCJITMemoryManager::~LLIMCJITMemoryManager() { |
| for (unsigned i = 0, e = AllocatedCodeMem.size(); i != e; ++i) |
| sys::Memory::ReleaseRWX(AllocatedCodeMem[i]); |
| for (unsigned i = 0, e = AllocatedDataMem.size(); i != e; ++i) |
| free(AllocatedDataMem[i].base()); |
| } |
| |
| |
| void layoutRemoteTargetMemory(RemoteTarget *T, RecordingMemoryManager *JMM) { |
| // Lay out our sections in order, with all the code sections first, then |
| // all the data sections. |
| uint64_t CurOffset = 0; |
| unsigned MaxAlign = T->getPageAlignment(); |
| SmallVector<std::pair<const void*, uint64_t>, 16> Offsets; |
| SmallVector<unsigned, 16> Sizes; |
| for (RecordingMemoryManager::const_code_iterator I = JMM->code_begin(), |
| E = JMM->code_end(); |
| I != E; ++I) { |
| DEBUG(dbgs() << "code region: size " << I->first.size() |
| << ", alignment " << I->second << "\n"); |
| // Align the current offset up to whatever is needed for the next |
| // section. |
| unsigned Align = I->second; |
| CurOffset = (CurOffset + Align - 1) / Align * Align; |
| // Save off the address of the new section and allocate its space. |
| Offsets.push_back(std::pair<const void*,uint64_t>(I->first.base(), CurOffset)); |
| Sizes.push_back(I->first.size()); |
| CurOffset += I->first.size(); |
| } |
| // Adjust to keep code and data aligned on seperate pages. |
| CurOffset = (CurOffset + MaxAlign - 1) / MaxAlign * MaxAlign; |
| unsigned FirstDataIndex = Offsets.size(); |
| for (RecordingMemoryManager::const_data_iterator I = JMM->data_begin(), |
| E = JMM->data_end(); |
| I != E; ++I) { |
| DEBUG(dbgs() << "data region: size " << I->first.size() |
| << ", alignment " << I->second << "\n"); |
| // Align the current offset up to whatever is needed for the next |
| // section. |
| unsigned Align = I->second; |
| CurOffset = (CurOffset + Align - 1) / Align * Align; |
| // Save off the address of the new section and allocate its space. |
| Offsets.push_back(std::pair<const void*,uint64_t>(I->first.base(), CurOffset)); |
| Sizes.push_back(I->first.size()); |
| CurOffset += I->first.size(); |
| } |
| |
| // Allocate space in the remote target. |
| uint64_t RemoteAddr; |
| if (T->allocateSpace(CurOffset, MaxAlign, RemoteAddr)) |
| report_fatal_error(T->getErrorMsg()); |
| // Map the section addresses so relocations will get updated in the local |
| // copies of the sections. |
| for (unsigned i = 0, e = Offsets.size(); i != e; ++i) { |
| uint64_t Addr = RemoteAddr + Offsets[i].second; |
| EE->mapSectionAddress(const_cast<void*>(Offsets[i].first), Addr); |
| |
| DEBUG(dbgs() << " Mapping local: " << Offsets[i].first |
| << " to remote: " << format("%p", Addr) << "\n"); |
| |
| } |
| |
| // Trigger application of relocations |
| EE->finalizeObject(); |
| |
| // Now load it all to the target. |
| for (unsigned i = 0, e = Offsets.size(); i != e; ++i) { |
| uint64_t Addr = RemoteAddr + Offsets[i].second; |
| |
| if (i < FirstDataIndex) { |
| T->loadCode(Addr, Offsets[i].first, Sizes[i]); |
| |
| DEBUG(dbgs() << " loading code: " << Offsets[i].first |
| << " to remote: " << format("%p", Addr) << "\n"); |
| } else { |
| T->loadData(Addr, Offsets[i].first, Sizes[i]); |
| |
| DEBUG(dbgs() << " loading data: " << Offsets[i].first |
| << " to remote: " << format("%p", Addr) << "\n"); |
| } |
| |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // main Driver function |
| // |
| int main(int argc, char **argv, char * const *envp) { |
| sys::PrintStackTraceOnErrorSignal(); |
| PrettyStackTraceProgram X(argc, argv); |
| |
| LLVMContext &Context = getGlobalContext(); |
| atexit(do_shutdown); // Call llvm_shutdown() on exit. |
| |
| // If we have a native target, initialize it to ensure it is linked in and |
| // usable by the JIT. |
| InitializeNativeTarget(); |
| InitializeNativeTargetAsmPrinter(); |
| InitializeNativeTargetAsmParser(); |
| |
| cl::ParseCommandLineOptions(argc, argv, |
| "llvm interpreter & dynamic compiler\n"); |
| |
| // If the user doesn't want core files, disable them. |
| if (DisableCoreFiles) |
| sys::Process::PreventCoreFiles(); |
| |
| // Load the bitcode... |
| SMDiagnostic Err; |
| Module *Mod = ParseIRFile(InputFile, Err, Context); |
| if (!Mod) { |
| Err.print(argv[0], errs()); |
| return 1; |
| } |
| |
| // If not jitting lazily, load the whole bitcode file eagerly too. |
| std::string ErrorMsg; |
| if (NoLazyCompilation) { |
| if (Mod->MaterializeAllPermanently(&ErrorMsg)) { |
| errs() << argv[0] << ": bitcode didn't read correctly.\n"; |
| errs() << "Reason: " << ErrorMsg << "\n"; |
| exit(1); |
| } |
| } |
| |
| EngineBuilder builder(Mod); |
| builder.setMArch(MArch); |
| builder.setMCPU(MCPU); |
| builder.setMAttrs(MAttrs); |
| builder.setRelocationModel(RelocModel); |
| builder.setCodeModel(CMModel); |
| builder.setErrorStr(&ErrorMsg); |
| builder.setEngineKind(ForceInterpreter |
| ? EngineKind::Interpreter |
| : EngineKind::JIT); |
| |
| // If we are supposed to override the target triple, do so now. |
| if (!TargetTriple.empty()) |
| Mod->setTargetTriple(Triple::normalize(TargetTriple)); |
| |
| // Enable MCJIT if desired. |
| JITMemoryManager *JMM = 0; |
| if (UseMCJIT && !ForceInterpreter) { |
| builder.setUseMCJIT(true); |
| if (RemoteMCJIT) |
| JMM = new RecordingMemoryManager(); |
| else |
| JMM = new LLIMCJITMemoryManager(); |
| builder.setJITMemoryManager(JMM); |
| } else { |
| if (RemoteMCJIT) { |
| errs() << "error: Remote process execution requires -use-mcjit\n"; |
| exit(1); |
| } |
| builder.setJITMemoryManager(ForceInterpreter ? 0 : |
| JITMemoryManager::CreateDefaultMemManager()); |
| } |
| |
| CodeGenOpt::Level OLvl = CodeGenOpt::Default; |
| switch (OptLevel) { |
| default: |
| errs() << argv[0] << ": invalid optimization level.\n"; |
| return 1; |
| case ' ': break; |
| case '0': OLvl = CodeGenOpt::None; break; |
| case '1': OLvl = CodeGenOpt::Less; break; |
| case '2': OLvl = CodeGenOpt::Default; break; |
| case '3': OLvl = CodeGenOpt::Aggressive; break; |
| } |
| builder.setOptLevel(OLvl); |
| |
| TargetOptions Options; |
| Options.UseSoftFloat = GenerateSoftFloatCalls; |
| if (FloatABIForCalls != FloatABI::Default) |
| Options.FloatABIType = FloatABIForCalls; |
| if (GenerateSoftFloatCalls) |
| FloatABIForCalls = FloatABI::Soft; |
| |
| // Remote target execution doesn't handle EH or debug registration. |
| if (!RemoteMCJIT) { |
| Options.JITExceptionHandling = EnableJITExceptionHandling; |
| Options.JITEmitDebugInfo = EmitJitDebugInfo; |
| Options.JITEmitDebugInfoToDisk = EmitJitDebugInfoToDisk; |
| } |
| |
| builder.setTargetOptions(Options); |
| |
| EE = builder.create(); |
| if (!EE) { |
| if (!ErrorMsg.empty()) |
| errs() << argv[0] << ": error creating EE: " << ErrorMsg << "\n"; |
| else |
| errs() << argv[0] << ": unknown error creating EE!\n"; |
| exit(1); |
| } |
| |
| // The following functions have no effect if their respective profiling |
| // support wasn't enabled in the build configuration. |
| EE->RegisterJITEventListener( |
| JITEventListener::createOProfileJITEventListener()); |
| EE->RegisterJITEventListener( |
| JITEventListener::createIntelJITEventListener()); |
| |
| if (!NoLazyCompilation && RemoteMCJIT) { |
| errs() << "warning: remote mcjit does not support lazy compilation\n"; |
| NoLazyCompilation = true; |
| } |
| EE->DisableLazyCompilation(NoLazyCompilation); |
| |
| // If the user specifically requested an argv[0] to pass into the program, |
| // do it now. |
| if (!FakeArgv0.empty()) { |
| InputFile = FakeArgv0; |
| } else { |
| // Otherwise, if there is a .bc suffix on the executable strip it off, it |
| // might confuse the program. |
| if (StringRef(InputFile).endswith(".bc")) |
| InputFile.erase(InputFile.length() - 3); |
| } |
| |
| // Add the module's name to the start of the vector of arguments to main(). |
| InputArgv.insert(InputArgv.begin(), InputFile); |
| |
| // Call the main function from M as if its signature were: |
| // int main (int argc, char **argv, const char **envp) |
| // using the contents of Args to determine argc & argv, and the contents of |
| // EnvVars to determine envp. |
| // |
| Function *EntryFn = Mod->getFunction(EntryFunc); |
| if (!EntryFn) { |
| errs() << '\'' << EntryFunc << "\' function not found in module.\n"; |
| return -1; |
| } |
| |
| // If the program doesn't explicitly call exit, we will need the Exit |
| // function later on to make an explicit call, so get the function now. |
| Constant *Exit = Mod->getOrInsertFunction("exit", Type::getVoidTy(Context), |
| Type::getInt32Ty(Context), |
| NULL); |
| |
| // Reset errno to zero on entry to main. |
| errno = 0; |
| |
| // Remote target MCJIT doesn't (yet) support static constructors. No reason |
| // it couldn't. This is a limitation of the LLI implemantation, not the |
| // MCJIT itself. FIXME. |
| // |
| // Run static constructors. |
| if (!RemoteMCJIT) |
| EE->runStaticConstructorsDestructors(false); |
| |
| if (NoLazyCompilation) { |
| for (Module::iterator I = Mod->begin(), E = Mod->end(); I != E; ++I) { |
| Function *Fn = &*I; |
| if (Fn != EntryFn && !Fn->isDeclaration()) |
| EE->getPointerToFunction(Fn); |
| } |
| } |
| |
| int Result; |
| if (RemoteMCJIT) { |
| RecordingMemoryManager *MM = static_cast<RecordingMemoryManager*>(JMM); |
| // Everything is prepared now, so lay out our program for the target |
| // address space, assign the section addresses to resolve any relocations, |
| // and send it to the target. |
| RemoteTarget Target; |
| Target.create(); |
| |
| // Ask for a pointer to the entry function. This triggers the actual |
| // compilation. |
| (void)EE->getPointerToFunction(EntryFn); |
| |
| // Enough has been compiled to execute the entry function now, so |
| // layout the target memory. |
| layoutRemoteTargetMemory(&Target, MM); |
| |
| // Since we're executing in a (at least simulated) remote address space, |
| // we can't use the ExecutionEngine::runFunctionAsMain(). We have to |
| // grab the function address directly here and tell the remote target |
| // to execute the function. |
| // FIXME: argv and envp handling. |
| uint64_t Entry = (uint64_t)EE->getPointerToFunction(EntryFn); |
| |
| DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at " |
| << format("%p", Entry) << "\n"); |
| |
| if (Target.executeCode(Entry, Result)) |
| errs() << "ERROR: " << Target.getErrorMsg() << "\n"; |
| |
| Target.stop(); |
| } else { |
| // Trigger compilation separately so code regions that need to be |
| // invalidated will be known. |
| (void)EE->getPointerToFunction(EntryFn); |
| // Clear instruction cache before code will be executed. |
| if (JMM) |
| static_cast<LLIMCJITMemoryManager*>(JMM)->invalidateInstructionCache(); |
| |
| // Run main. |
| Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp); |
| } |
| |
| // Like static constructors, the remote target MCJIT support doesn't handle |
| // this yet. It could. FIXME. |
| if (!RemoteMCJIT) { |
| // Run static destructors. |
| EE->runStaticConstructorsDestructors(true); |
| |
| // If the program didn't call exit explicitly, we should call it now. |
| // This ensures that any atexit handlers get called correctly. |
| if (Function *ExitF = dyn_cast<Function>(Exit)) { |
| std::vector<GenericValue> Args; |
| GenericValue ResultGV; |
| ResultGV.IntVal = APInt(32, Result); |
| Args.push_back(ResultGV); |
| EE->runFunction(ExitF, Args); |
| errs() << "ERROR: exit(" << Result << ") returned!\n"; |
| abort(); |
| } else { |
| errs() << "ERROR: exit defined with wrong prototype!\n"; |
| abort(); |
| } |
| } |
| return Result; |
| } |