blob: d41a595de857132b06781d7a084e87dfb5192348 [file] [log] [blame] [edit]
//===- lli.cpp - LLVM Interpreter / Dynamic compiler ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This utility provides a simple wrapper around the LLVM Execution Engines,
// which allow the direct execution of LLVM programs through a Just-In-Time
// compiler, or through an interpreter if no JIT is available for this platform.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lli"
#include "RecordingMemoryManager.h"
#include "RemoteTarget.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/Type.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/CodeGen/LinkAllCodegenComponents.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/Interpreter.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/IRReader.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MathExtras.h"
#include <cerrno>
#ifdef __linux__
// These includes used by LLIMCJITMemoryManager::getPointerToNamedFunction()
// for Glibc trickery. Look comments in this function for more information.
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#include <fcntl.h>
#include <unistd.h>
#endif
#ifdef __CYGWIN__
#include <cygwin/version.h>
#if defined(CYGWIN_VERSION_DLL_MAJOR) && CYGWIN_VERSION_DLL_MAJOR<1007
#define DO_NOTHING_ATEXIT 1
#endif
#endif
using namespace llvm;
namespace {
cl::opt<std::string>
InputFile(cl::desc("<input bitcode>"), cl::Positional, cl::init("-"));
cl::list<std::string>
InputArgv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
cl::opt<bool> ForceInterpreter("force-interpreter",
cl::desc("Force interpretation: disable JIT"),
cl::init(false));
cl::opt<bool> UseMCJIT(
"use-mcjit", cl::desc("Enable use of the MC-based JIT (if available)"),
cl::init(false));
// The MCJIT supports building for a target address space separate from
// the JIT compilation process. Use a forked process and a copying
// memory manager with IPC to execute using this functionality.
cl::opt<bool> RemoteMCJIT("remote-mcjit",
cl::desc("Execute MCJIT'ed code in a separate process."),
cl::init(false));
// Determine optimization level.
cl::opt<char>
OptLevel("O",
cl::desc("Optimization level. [-O0, -O1, -O2, or -O3] "
"(default = '-O2')"),
cl::Prefix,
cl::ZeroOrMore,
cl::init(' '));
cl::opt<std::string>
TargetTriple("mtriple", cl::desc("Override target triple for module"));
cl::opt<std::string>
MArch("march",
cl::desc("Architecture to generate assembly for (see --version)"));
cl::opt<std::string>
MCPU("mcpu",
cl::desc("Target a specific cpu type (-mcpu=help for details)"),
cl::value_desc("cpu-name"),
cl::init(""));
cl::list<std::string>
MAttrs("mattr",
cl::CommaSeparated,
cl::desc("Target specific attributes (-mattr=help for details)"),
cl::value_desc("a1,+a2,-a3,..."));
cl::opt<std::string>
EntryFunc("entry-function",
cl::desc("Specify the entry function (default = 'main') "
"of the executable"),
cl::value_desc("function"),
cl::init("main"));
cl::opt<std::string>
FakeArgv0("fake-argv0",
cl::desc("Override the 'argv[0]' value passed into the executing"
" program"), cl::value_desc("executable"));
cl::opt<bool>
DisableCoreFiles("disable-core-files", cl::Hidden,
cl::desc("Disable emission of core files if possible"));
cl::opt<bool>
NoLazyCompilation("disable-lazy-compilation",
cl::desc("Disable JIT lazy compilation"),
cl::init(false));
cl::opt<Reloc::Model>
RelocModel("relocation-model",
cl::desc("Choose relocation model"),
cl::init(Reloc::Default),
cl::values(
clEnumValN(Reloc::Default, "default",
"Target default relocation model"),
clEnumValN(Reloc::Static, "static",
"Non-relocatable code"),
clEnumValN(Reloc::PIC_, "pic",
"Fully relocatable, position independent code"),
clEnumValN(Reloc::DynamicNoPIC, "dynamic-no-pic",
"Relocatable external references, non-relocatable code"),
clEnumValEnd));
cl::opt<llvm::CodeModel::Model>
CMModel("code-model",
cl::desc("Choose code model"),
cl::init(CodeModel::JITDefault),
cl::values(clEnumValN(CodeModel::JITDefault, "default",
"Target default JIT code model"),
clEnumValN(CodeModel::Small, "small",
"Small code model"),
clEnumValN(CodeModel::Kernel, "kernel",
"Kernel code model"),
clEnumValN(CodeModel::Medium, "medium",
"Medium code model"),
clEnumValN(CodeModel::Large, "large",
"Large code model"),
clEnumValEnd));
cl::opt<bool>
EnableJITExceptionHandling("jit-enable-eh",
cl::desc("Emit exception handling information"),
cl::init(false));
cl::opt<bool>
GenerateSoftFloatCalls("soft-float",
cl::desc("Generate software floating point library calls"),
cl::init(false));
cl::opt<llvm::FloatABI::ABIType>
FloatABIForCalls("float-abi",
cl::desc("Choose float ABI type"),
cl::init(FloatABI::Default),
cl::values(
clEnumValN(FloatABI::Default, "default",
"Target default float ABI type"),
clEnumValN(FloatABI::Soft, "soft",
"Soft float ABI (implied by -soft-float)"),
clEnumValN(FloatABI::Hard, "hard",
"Hard float ABI (uses FP registers)"),
clEnumValEnd));
cl::opt<bool>
// In debug builds, make this default to true.
#ifdef NDEBUG
#define EMIT_DEBUG false
#else
#define EMIT_DEBUG true
#endif
EmitJitDebugInfo("jit-emit-debug",
cl::desc("Emit debug information to debugger"),
cl::init(EMIT_DEBUG));
#undef EMIT_DEBUG
static cl::opt<bool>
EmitJitDebugInfoToDisk("jit-emit-debug-to-disk",
cl::Hidden,
cl::desc("Emit debug info objfiles to disk"),
cl::init(false));
}
static ExecutionEngine *EE = 0;
static void do_shutdown() {
// Cygwin-1.5 invokes DLL's dtors before atexit handler.
#ifndef DO_NOTHING_ATEXIT
delete EE;
llvm_shutdown();
#endif
}
// Memory manager for MCJIT
class LLIMCJITMemoryManager : public JITMemoryManager {
public:
SmallVector<sys::MemoryBlock, 16> AllocatedDataMem;
SmallVector<sys::MemoryBlock, 16> AllocatedCodeMem;
SmallVector<sys::MemoryBlock, 16> FreeCodeMem;
LLIMCJITMemoryManager() { }
~LLIMCJITMemoryManager();
virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID);
virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID);
virtual void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true);
// Invalidate instruction cache for code sections. Some platforms with
// separate data cache and instruction cache require explicit cache flush,
// otherwise JIT code manipulations (like resolved relocations) will get to
// the data cache but not to the instruction cache.
virtual void invalidateInstructionCache();
// The RTDyldMemoryManager doesn't use the following functions, so we don't
// need implement them.
virtual void setMemoryWritable() {
llvm_unreachable("Unexpected call!");
}
virtual void setMemoryExecutable() {
llvm_unreachable("Unexpected call!");
}
virtual void setPoisonMemory(bool poison) {
llvm_unreachable("Unexpected call!");
}
virtual void AllocateGOT() {
llvm_unreachable("Unexpected call!");
}
virtual uint8_t *getGOTBase() const {
llvm_unreachable("Unexpected call!");
return 0;
}
virtual uint8_t *startFunctionBody(const Function *F,
uintptr_t &ActualSize){
llvm_unreachable("Unexpected call!");
return 0;
}
virtual uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
unsigned Alignment) {
llvm_unreachable("Unexpected call!");
return 0;
}
virtual void endFunctionBody(const Function *F, uint8_t *FunctionStart,
uint8_t *FunctionEnd) {
llvm_unreachable("Unexpected call!");
}
virtual uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
llvm_unreachable("Unexpected call!");
return 0;
}
virtual uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
llvm_unreachable("Unexpected call!");
return 0;
}
virtual void deallocateFunctionBody(void *Body) {
llvm_unreachable("Unexpected call!");
}
virtual uint8_t* startExceptionTable(const Function* F,
uintptr_t &ActualSize) {
llvm_unreachable("Unexpected call!");
return 0;
}
virtual void endExceptionTable(const Function *F, uint8_t *TableStart,
uint8_t *TableEnd, uint8_t* FrameRegister) {
llvm_unreachable("Unexpected call!");
}
virtual void deallocateExceptionTable(void *ET) {
llvm_unreachable("Unexpected call!");
}
};
uint8_t *LLIMCJITMemoryManager::allocateDataSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID) {
if (!Alignment)
Alignment = 16;
// Ensure that enough memory is requested to allow aligning.
size_t NumElementsAligned = 1 + (Size + Alignment - 1)/Alignment;
uint8_t *Addr = (uint8_t*)calloc(NumElementsAligned, Alignment);
// Honour the alignment requirement.
uint8_t *AlignedAddr = (uint8_t*)RoundUpToAlignment((uint64_t)Addr, Alignment);
// Store the original address from calloc so we can free it later.
AllocatedDataMem.push_back(sys::MemoryBlock(Addr, NumElementsAligned*Alignment));
return AlignedAddr;
}
uint8_t *LLIMCJITMemoryManager::allocateCodeSection(uintptr_t Size,
unsigned Alignment,
unsigned SectionID) {
if (!Alignment)
Alignment = 16;
unsigned NeedAllocate = Alignment * ((Size + Alignment - 1)/Alignment + 1);
uintptr_t Addr = 0;
// Look in the list of free code memory regions and use a block there if one
// is available.
for (int i = 0, e = FreeCodeMem.size(); i != e; ++i) {
sys::MemoryBlock &MB = FreeCodeMem[i];
if (MB.size() >= NeedAllocate) {
Addr = (uintptr_t)MB.base();
uintptr_t EndOfBlock = Addr + MB.size();
// Align the address.
Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
// Store cutted free memory block.
FreeCodeMem[i] = sys::MemoryBlock((void*)(Addr + Size),
EndOfBlock - Addr - Size);
return (uint8_t*)Addr;
}
}
// No pre-allocated free block was large enough. Allocate a new memory region.
sys::MemoryBlock MB = sys::Memory::AllocateRWX(NeedAllocate, 0, 0);
AllocatedCodeMem.push_back(MB);
Addr = (uintptr_t)MB.base();
uintptr_t EndOfBlock = Addr + MB.size();
// Align the address.
Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1);
// The AllocateRWX may allocate much more memory than we need. In this case,
// we store the unused memory as a free memory block.
unsigned FreeSize = EndOfBlock-Addr-Size;
if (FreeSize > 16)
FreeCodeMem.push_back(sys::MemoryBlock((void*)(Addr + Size), FreeSize));
// Return aligned address
return (uint8_t*)Addr;
}
void LLIMCJITMemoryManager::invalidateInstructionCache() {
for (int i = 0, e = AllocatedCodeMem.size(); i != e; ++i)
sys::Memory::InvalidateInstructionCache(AllocatedCodeMem[i].base(),
AllocatedCodeMem[i].size());
}
static int jit_noop() {
return 0;
}
void *LLIMCJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure) {
#if defined(__linux__)
//===--------------------------------------------------------------------===//
// Function stubs that are invoked instead of certain library calls
//
// Force the following functions to be linked in to anything that uses the
// JIT. This is a hack designed to work around the all-too-clever Glibc
// strategy of making these functions work differently when inlined vs. when
// not inlined, and hiding their real definitions in a separate archive file
// that the dynamic linker can't see. For more info, search for
// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
if (Name == "stat") return (void*)(intptr_t)&stat;
if (Name == "fstat") return (void*)(intptr_t)&fstat;
if (Name == "lstat") return (void*)(intptr_t)&lstat;
if (Name == "stat64") return (void*)(intptr_t)&stat64;
if (Name == "fstat64") return (void*)(intptr_t)&fstat64;
if (Name == "lstat64") return (void*)(intptr_t)&lstat64;
if (Name == "atexit") return (void*)(intptr_t)&atexit;
if (Name == "mknod") return (void*)(intptr_t)&mknod;
#endif // __linux__
// We should not invoke parent's ctors/dtors from generated main()!
// On Mingw and Cygwin, the symbol __main is resolved to
// callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
// (and register wrong callee's dtors with atexit(3)).
// We expect ExecutionEngine::runStaticConstructorsDestructors()
// is called before ExecutionEngine::runFunctionAsMain() is called.
if (Name == "__main") return (void*)(intptr_t)&jit_noop;
const char *NameStr = Name.c_str();
void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
if (Ptr) return Ptr;
// If it wasn't found and if it starts with an underscore ('_') character,
// try again without the underscore.
if (NameStr[0] == '_') {
Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
if (Ptr) return Ptr;
}
if (AbortOnFailure)
report_fatal_error("Program used external function '" + Name +
"' which could not be resolved!");
return 0;
}
LLIMCJITMemoryManager::~LLIMCJITMemoryManager() {
for (unsigned i = 0, e = AllocatedCodeMem.size(); i != e; ++i)
sys::Memory::ReleaseRWX(AllocatedCodeMem[i]);
for (unsigned i = 0, e = AllocatedDataMem.size(); i != e; ++i)
free(AllocatedDataMem[i].base());
}
void layoutRemoteTargetMemory(RemoteTarget *T, RecordingMemoryManager *JMM) {
// Lay out our sections in order, with all the code sections first, then
// all the data sections.
uint64_t CurOffset = 0;
unsigned MaxAlign = T->getPageAlignment();
SmallVector<std::pair<const void*, uint64_t>, 16> Offsets;
SmallVector<unsigned, 16> Sizes;
for (RecordingMemoryManager::const_code_iterator I = JMM->code_begin(),
E = JMM->code_end();
I != E; ++I) {
DEBUG(dbgs() << "code region: size " << I->first.size()
<< ", alignment " << I->second << "\n");
// Align the current offset up to whatever is needed for the next
// section.
unsigned Align = I->second;
CurOffset = (CurOffset + Align - 1) / Align * Align;
// Save off the address of the new section and allocate its space.
Offsets.push_back(std::pair<const void*,uint64_t>(I->first.base(), CurOffset));
Sizes.push_back(I->first.size());
CurOffset += I->first.size();
}
// Adjust to keep code and data aligned on seperate pages.
CurOffset = (CurOffset + MaxAlign - 1) / MaxAlign * MaxAlign;
unsigned FirstDataIndex = Offsets.size();
for (RecordingMemoryManager::const_data_iterator I = JMM->data_begin(),
E = JMM->data_end();
I != E; ++I) {
DEBUG(dbgs() << "data region: size " << I->first.size()
<< ", alignment " << I->second << "\n");
// Align the current offset up to whatever is needed for the next
// section.
unsigned Align = I->second;
CurOffset = (CurOffset + Align - 1) / Align * Align;
// Save off the address of the new section and allocate its space.
Offsets.push_back(std::pair<const void*,uint64_t>(I->first.base(), CurOffset));
Sizes.push_back(I->first.size());
CurOffset += I->first.size();
}
// Allocate space in the remote target.
uint64_t RemoteAddr;
if (T->allocateSpace(CurOffset, MaxAlign, RemoteAddr))
report_fatal_error(T->getErrorMsg());
// Map the section addresses so relocations will get updated in the local
// copies of the sections.
for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
uint64_t Addr = RemoteAddr + Offsets[i].second;
EE->mapSectionAddress(const_cast<void*>(Offsets[i].first), Addr);
DEBUG(dbgs() << " Mapping local: " << Offsets[i].first
<< " to remote: " << format("%p", Addr) << "\n");
}
// Trigger application of relocations
EE->finalizeObject();
// Now load it all to the target.
for (unsigned i = 0, e = Offsets.size(); i != e; ++i) {
uint64_t Addr = RemoteAddr + Offsets[i].second;
if (i < FirstDataIndex) {
T->loadCode(Addr, Offsets[i].first, Sizes[i]);
DEBUG(dbgs() << " loading code: " << Offsets[i].first
<< " to remote: " << format("%p", Addr) << "\n");
} else {
T->loadData(Addr, Offsets[i].first, Sizes[i]);
DEBUG(dbgs() << " loading data: " << Offsets[i].first
<< " to remote: " << format("%p", Addr) << "\n");
}
}
}
//===----------------------------------------------------------------------===//
// main Driver function
//
int main(int argc, char **argv, char * const *envp) {
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
LLVMContext &Context = getGlobalContext();
atexit(do_shutdown); // Call llvm_shutdown() on exit.
// If we have a native target, initialize it to ensure it is linked in and
// usable by the JIT.
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
InitializeNativeTargetAsmParser();
cl::ParseCommandLineOptions(argc, argv,
"llvm interpreter & dynamic compiler\n");
// If the user doesn't want core files, disable them.
if (DisableCoreFiles)
sys::Process::PreventCoreFiles();
// Load the bitcode...
SMDiagnostic Err;
Module *Mod = ParseIRFile(InputFile, Err, Context);
if (!Mod) {
Err.print(argv[0], errs());
return 1;
}
// If not jitting lazily, load the whole bitcode file eagerly too.
std::string ErrorMsg;
if (NoLazyCompilation) {
if (Mod->MaterializeAllPermanently(&ErrorMsg)) {
errs() << argv[0] << ": bitcode didn't read correctly.\n";
errs() << "Reason: " << ErrorMsg << "\n";
exit(1);
}
}
EngineBuilder builder(Mod);
builder.setMArch(MArch);
builder.setMCPU(MCPU);
builder.setMAttrs(MAttrs);
builder.setRelocationModel(RelocModel);
builder.setCodeModel(CMModel);
builder.setErrorStr(&ErrorMsg);
builder.setEngineKind(ForceInterpreter
? EngineKind::Interpreter
: EngineKind::JIT);
// If we are supposed to override the target triple, do so now.
if (!TargetTriple.empty())
Mod->setTargetTriple(Triple::normalize(TargetTriple));
// Enable MCJIT if desired.
JITMemoryManager *JMM = 0;
if (UseMCJIT && !ForceInterpreter) {
builder.setUseMCJIT(true);
if (RemoteMCJIT)
JMM = new RecordingMemoryManager();
else
JMM = new LLIMCJITMemoryManager();
builder.setJITMemoryManager(JMM);
} else {
if (RemoteMCJIT) {
errs() << "error: Remote process execution requires -use-mcjit\n";
exit(1);
}
builder.setJITMemoryManager(ForceInterpreter ? 0 :
JITMemoryManager::CreateDefaultMemManager());
}
CodeGenOpt::Level OLvl = CodeGenOpt::Default;
switch (OptLevel) {
default:
errs() << argv[0] << ": invalid optimization level.\n";
return 1;
case ' ': break;
case '0': OLvl = CodeGenOpt::None; break;
case '1': OLvl = CodeGenOpt::Less; break;
case '2': OLvl = CodeGenOpt::Default; break;
case '3': OLvl = CodeGenOpt::Aggressive; break;
}
builder.setOptLevel(OLvl);
TargetOptions Options;
Options.UseSoftFloat = GenerateSoftFloatCalls;
if (FloatABIForCalls != FloatABI::Default)
Options.FloatABIType = FloatABIForCalls;
if (GenerateSoftFloatCalls)
FloatABIForCalls = FloatABI::Soft;
// Remote target execution doesn't handle EH or debug registration.
if (!RemoteMCJIT) {
Options.JITExceptionHandling = EnableJITExceptionHandling;
Options.JITEmitDebugInfo = EmitJitDebugInfo;
Options.JITEmitDebugInfoToDisk = EmitJitDebugInfoToDisk;
}
builder.setTargetOptions(Options);
EE = builder.create();
if (!EE) {
if (!ErrorMsg.empty())
errs() << argv[0] << ": error creating EE: " << ErrorMsg << "\n";
else
errs() << argv[0] << ": unknown error creating EE!\n";
exit(1);
}
// The following functions have no effect if their respective profiling
// support wasn't enabled in the build configuration.
EE->RegisterJITEventListener(
JITEventListener::createOProfileJITEventListener());
EE->RegisterJITEventListener(
JITEventListener::createIntelJITEventListener());
if (!NoLazyCompilation && RemoteMCJIT) {
errs() << "warning: remote mcjit does not support lazy compilation\n";
NoLazyCompilation = true;
}
EE->DisableLazyCompilation(NoLazyCompilation);
// If the user specifically requested an argv[0] to pass into the program,
// do it now.
if (!FakeArgv0.empty()) {
InputFile = FakeArgv0;
} else {
// Otherwise, if there is a .bc suffix on the executable strip it off, it
// might confuse the program.
if (StringRef(InputFile).endswith(".bc"))
InputFile.erase(InputFile.length() - 3);
}
// Add the module's name to the start of the vector of arguments to main().
InputArgv.insert(InputArgv.begin(), InputFile);
// Call the main function from M as if its signature were:
// int main (int argc, char **argv, const char **envp)
// using the contents of Args to determine argc & argv, and the contents of
// EnvVars to determine envp.
//
Function *EntryFn = Mod->getFunction(EntryFunc);
if (!EntryFn) {
errs() << '\'' << EntryFunc << "\' function not found in module.\n";
return -1;
}
// If the program doesn't explicitly call exit, we will need the Exit
// function later on to make an explicit call, so get the function now.
Constant *Exit = Mod->getOrInsertFunction("exit", Type::getVoidTy(Context),
Type::getInt32Ty(Context),
NULL);
// Reset errno to zero on entry to main.
errno = 0;
// Remote target MCJIT doesn't (yet) support static constructors. No reason
// it couldn't. This is a limitation of the LLI implemantation, not the
// MCJIT itself. FIXME.
//
// Run static constructors.
if (!RemoteMCJIT)
EE->runStaticConstructorsDestructors(false);
if (NoLazyCompilation) {
for (Module::iterator I = Mod->begin(), E = Mod->end(); I != E; ++I) {
Function *Fn = &*I;
if (Fn != EntryFn && !Fn->isDeclaration())
EE->getPointerToFunction(Fn);
}
}
int Result;
if (RemoteMCJIT) {
RecordingMemoryManager *MM = static_cast<RecordingMemoryManager*>(JMM);
// Everything is prepared now, so lay out our program for the target
// address space, assign the section addresses to resolve any relocations,
// and send it to the target.
RemoteTarget Target;
Target.create();
// Ask for a pointer to the entry function. This triggers the actual
// compilation.
(void)EE->getPointerToFunction(EntryFn);
// Enough has been compiled to execute the entry function now, so
// layout the target memory.
layoutRemoteTargetMemory(&Target, MM);
// Since we're executing in a (at least simulated) remote address space,
// we can't use the ExecutionEngine::runFunctionAsMain(). We have to
// grab the function address directly here and tell the remote target
// to execute the function.
// FIXME: argv and envp handling.
uint64_t Entry = (uint64_t)EE->getPointerToFunction(EntryFn);
DEBUG(dbgs() << "Executing '" << EntryFn->getName() << "' at "
<< format("%p", Entry) << "\n");
if (Target.executeCode(Entry, Result))
errs() << "ERROR: " << Target.getErrorMsg() << "\n";
Target.stop();
} else {
// Trigger compilation separately so code regions that need to be
// invalidated will be known.
(void)EE->getPointerToFunction(EntryFn);
// Clear instruction cache before code will be executed.
if (JMM)
static_cast<LLIMCJITMemoryManager*>(JMM)->invalidateInstructionCache();
// Run main.
Result = EE->runFunctionAsMain(EntryFn, InputArgv, envp);
}
// Like static constructors, the remote target MCJIT support doesn't handle
// this yet. It could. FIXME.
if (!RemoteMCJIT) {
// Run static destructors.
EE->runStaticConstructorsDestructors(true);
// If the program didn't call exit explicitly, we should call it now.
// This ensures that any atexit handlers get called correctly.
if (Function *ExitF = dyn_cast<Function>(Exit)) {
std::vector<GenericValue> Args;
GenericValue ResultGV;
ResultGV.IntVal = APInt(32, Result);
Args.push_back(ResultGV);
EE->runFunction(ExitF, Args);
errs() << "ERROR: exit(" << Result << ") returned!\n";
abort();
} else {
errs() << "ERROR: exit defined with wrong prototype!\n";
abort();
}
}
return Result;
}