| //=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // AArch64 Instruction definitions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Instruction Predicate Definitions. |
| // |
| |
| class AssemblerPredicateWithAll<dag cond, string name=""> |
| : AssemblerPredicate<(any_of FeatureAll, cond), name>; |
| |
| def HasV8_0a : Predicate<"Subtarget->hasV8_0aOps()">, |
| AssemblerPredicate<(all_of HasV8_0aOps), "armv8.0a">; |
| def HasV8_1a : Predicate<"Subtarget->hasV8_1aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV8_1aOps), "armv8.1a">; |
| def HasV8_2a : Predicate<"Subtarget->hasV8_2aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV8_2aOps), "armv8.2a">; |
| def HasV8_3a : Predicate<"Subtarget->hasV8_3aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV8_3aOps), "armv8.3a">; |
| def HasV8_4a : Predicate<"Subtarget->hasV8_4aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV8_4aOps), "armv8.4a">; |
| def HasV8_5a : Predicate<"Subtarget->hasV8_5aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV8_5aOps), "armv8.5a">; |
| def HasV8_6a : Predicate<"Subtarget->hasV8_6aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV8_6aOps), "armv8.6a">; |
| def HasV8_7a : Predicate<"Subtarget->hasV8_7aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV8_7aOps), "armv8.7a">; |
| def HasV8_8a : Predicate<"Subtarget->hasV8_8aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV8_8aOps), "armv8.8a">; |
| def HasV8_9a : Predicate<"Subtarget->hasV8_9aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV8_9aOps), "armv8.9a">; |
| def HasV9_0a : Predicate<"Subtarget->hasV9_0aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV9_0aOps), "armv9-a">; |
| def HasV9_1a : Predicate<"Subtarget->hasV9_1aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV9_1aOps), "armv9.1a">; |
| def HasV9_2a : Predicate<"Subtarget->hasV9_2aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV9_2aOps), "armv9.2a">; |
| def HasV9_3a : Predicate<"Subtarget->hasV9_3aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV9_3aOps), "armv9.3a">; |
| def HasV9_4a : Predicate<"Subtarget->hasV9_4aOps()">, |
| AssemblerPredicateWithAll<(all_of HasV9_4aOps), "armv9.4a">; |
| def HasV8_0r : Predicate<"Subtarget->hasV8_0rOps()">, |
| AssemblerPredicateWithAll<(all_of HasV8_0rOps), "armv8-r">; |
| |
| def HasEL2VMSA : Predicate<"Subtarget->hasEL2VMSA()">, |
| AssemblerPredicateWithAll<(all_of FeatureEL2VMSA), "el2vmsa">; |
| |
| def HasEL3 : Predicate<"Subtarget->hasEL3()">, |
| AssemblerPredicateWithAll<(all_of FeatureEL3), "el3">; |
| |
| def HasVH : Predicate<"Subtarget->hasVH()">, |
| AssemblerPredicateWithAll<(all_of FeatureVH), "vh">; |
| |
| def HasLOR : Predicate<"Subtarget->hasLOR()">, |
| AssemblerPredicateWithAll<(all_of FeatureLOR), "lor">; |
| |
| def HasPAuth : Predicate<"Subtarget->hasPAuth()">, |
| AssemblerPredicateWithAll<(all_of FeaturePAuth), "pauth">; |
| |
| def HasPAuthLR : Predicate<"Subtarget->hasPAuthLR()">, |
| AssemblerPredicateWithAll<(all_of FeaturePAuthLR), "pauth-lr">; |
| |
| def HasJS : Predicate<"Subtarget->hasJS()">, |
| AssemblerPredicateWithAll<(all_of FeatureJS), "jsconv">; |
| |
| def HasCCIDX : Predicate<"Subtarget->hasCCIDX()">, |
| AssemblerPredicateWithAll<(all_of FeatureCCIDX), "ccidx">; |
| |
| def HasComplxNum : Predicate<"Subtarget->hasComplxNum()">, |
| AssemblerPredicateWithAll<(all_of FeatureComplxNum), "complxnum">; |
| |
| def HasNV : Predicate<"Subtarget->hasNV()">, |
| AssemblerPredicateWithAll<(all_of FeatureNV), "nv">; |
| |
| def HasMPAM : Predicate<"Subtarget->hasMPAM()">, |
| AssemblerPredicateWithAll<(all_of FeatureMPAM), "mpam">; |
| |
| def HasDIT : Predicate<"Subtarget->hasDIT()">, |
| AssemblerPredicateWithAll<(all_of FeatureDIT), "dit">; |
| |
| def HasTRACEV8_4 : Predicate<"Subtarget->hasTRACEV8_4()">, |
| AssemblerPredicateWithAll<(all_of FeatureTRACEV8_4), "tracev8.4">; |
| |
| def HasAM : Predicate<"Subtarget->hasAM()">, |
| AssemblerPredicateWithAll<(all_of FeatureAM), "am">; |
| |
| def HasSEL2 : Predicate<"Subtarget->hasSEL2()">, |
| AssemblerPredicateWithAll<(all_of FeatureSEL2), "sel2">; |
| |
| def HasTLB_RMI : Predicate<"Subtarget->hasTLB_RMI()">, |
| AssemblerPredicateWithAll<(all_of FeatureTLB_RMI), "tlb-rmi">; |
| |
| def HasFlagM : Predicate<"Subtarget->hasFlagM()">, |
| AssemblerPredicateWithAll<(all_of FeatureFlagM), "flagm">; |
| |
| def HasRCPC_IMMO : Predicate<"Subtarget->hasRCPC_IMMO()">, |
| AssemblerPredicateWithAll<(all_of FeatureRCPC_IMMO), "rcpc-immo">; |
| |
| def HasFPARMv8 : Predicate<"Subtarget->hasFPARMv8()">, |
| AssemblerPredicateWithAll<(all_of FeatureFPARMv8), "fp-armv8">; |
| def HasNEON : Predicate<"Subtarget->isNeonAvailable()">, |
| AssemblerPredicateWithAll<(all_of FeatureNEON), "neon">; |
| def HasSM4 : Predicate<"Subtarget->hasSM4()">, |
| AssemblerPredicateWithAll<(all_of FeatureSM4), "sm4">; |
| def HasSHA3 : Predicate<"Subtarget->hasSHA3()">, |
| AssemblerPredicateWithAll<(all_of FeatureSHA3), "sha3">; |
| def HasSHA2 : Predicate<"Subtarget->hasSHA2()">, |
| AssemblerPredicateWithAll<(all_of FeatureSHA2), "sha2">; |
| def HasAES : Predicate<"Subtarget->hasAES()">, |
| AssemblerPredicateWithAll<(all_of FeatureAES), "aes">; |
| def HasDotProd : Predicate<"Subtarget->hasDotProd()">, |
| AssemblerPredicateWithAll<(all_of FeatureDotProd), "dotprod">; |
| def HasCRC : Predicate<"Subtarget->hasCRC()">, |
| AssemblerPredicateWithAll<(all_of FeatureCRC), "crc">; |
| def HasCSSC : Predicate<"Subtarget->hasCSSC()">, |
| AssemblerPredicateWithAll<(all_of FeatureCSSC), "cssc">; |
| def HasNoCSSC : Predicate<"!Subtarget->hasCSSC()">; |
| def HasLSE : Predicate<"Subtarget->hasLSE()">, |
| AssemblerPredicateWithAll<(all_of FeatureLSE), "lse">; |
| def HasNoLSE : Predicate<"!Subtarget->hasLSE()">; |
| def HasRAS : Predicate<"Subtarget->hasRAS()">, |
| AssemblerPredicateWithAll<(all_of FeatureRAS), "ras">; |
| def HasRDM : Predicate<"Subtarget->hasRDM()">, |
| AssemblerPredicateWithAll<(all_of FeatureRDM), "rdm">; |
| def HasFullFP16 : Predicate<"Subtarget->hasFullFP16()">, |
| AssemblerPredicateWithAll<(all_of FeatureFullFP16), "fullfp16">; |
| def HasNoFullFP16 : Predicate<"!Subtarget->hasFullFP16()">; |
| def HasFP16FML : Predicate<"Subtarget->hasFP16FML()">, |
| AssemblerPredicateWithAll<(all_of FeatureFP16FML), "fp16fml">; |
| def HasSPE : Predicate<"Subtarget->hasSPE()">, |
| AssemblerPredicateWithAll<(all_of FeatureSPE), "spe">; |
| def HasFuseAES : Predicate<"Subtarget->hasFuseAES()">, |
| AssemblerPredicateWithAll<(all_of FeatureFuseAES), |
| "fuse-aes">; |
| def HasSVE : Predicate<"Subtarget->isSVEAvailable()">, |
| AssemblerPredicateWithAll<(all_of FeatureSVE), "sve">; |
| def HasSVE2 : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2()">, |
| AssemblerPredicateWithAll<(all_of FeatureSVE2), "sve2">; |
| def HasSVE2p1 : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2p1()">, |
| AssemblerPredicateWithAll<(all_of FeatureSVE2p1), "sve2p1">; |
| def HasSVE2AES : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2AES()">, |
| AssemblerPredicateWithAll<(all_of FeatureSVE2AES), "sve2-aes">; |
| def HasSVE2SM4 : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2SM4()">, |
| AssemblerPredicateWithAll<(all_of FeatureSVE2SM4), "sve2-sm4">; |
| def HasSVE2SHA3 : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2SHA3()">, |
| AssemblerPredicateWithAll<(all_of FeatureSVE2SHA3), "sve2-sha3">; |
| def HasSVE2BitPerm : Predicate<"Subtarget->isSVEAvailable() && Subtarget->hasSVE2BitPerm()">, |
| AssemblerPredicateWithAll<(all_of FeatureSVE2BitPerm), "sve2-bitperm">; |
| def HasB16B16 : Predicate<"Subtarget->hasB16B16()">, |
| AssemblerPredicateWithAll<(all_of FeatureB16B16), "b16b16">; |
| def HasSMEandIsNonStreamingSafe |
| : Predicate<"Subtarget->hasSME()">, |
| AssemblerPredicateWithAll<(all_of FeatureSME), "sme">; |
| def HasSME : Predicate<"Subtarget->isStreaming() && Subtarget->hasSME()">, |
| AssemblerPredicateWithAll<(all_of FeatureSME), "sme">; |
| def HasSMEF64F64 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEF64F64()">, |
| AssemblerPredicateWithAll<(all_of FeatureSMEF64F64), "sme-f64f64">; |
| def HasSMEF16F16 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEF16F16()">, |
| AssemblerPredicateWithAll<(all_of FeatureSMEF16F16), "sme-f16f16">; |
| def HasSMEFA64 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEFA64()">, |
| AssemblerPredicateWithAll<(all_of FeatureSMEFA64), "sme-fa64">; |
| def HasSMEI16I64 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEI16I64()">, |
| AssemblerPredicateWithAll<(all_of FeatureSMEI16I64), "sme-i16i64">; |
| def HasSME2andIsNonStreamingSafe |
| : Predicate<"Subtarget->hasSME2()">, |
| AssemblerPredicateWithAll<(all_of FeatureSME2), "sme2">; |
| def HasSME2 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSME2()">, |
| AssemblerPredicateWithAll<(all_of FeatureSME2), "sme2">; |
| def HasSME2p1 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSME2p1()">, |
| AssemblerPredicateWithAll<(all_of FeatureSME2p1), "sme2p1">; |
| def HasFP8 : Predicate<"Subtarget->hasFP8()">, |
| AssemblerPredicateWithAll<(all_of FeatureFP8), "fp8">; |
| def HasFAMINMAX : Predicate<"Subtarget->hasFAMINMAX()">, |
| AssemblerPredicateWithAll<(all_of FeatureFAMINMAX), "faminmax">; |
| def HasFP8FMA : Predicate<"Subtarget->hasFP8FMA()">, |
| AssemblerPredicateWithAll<(all_of FeatureFP8FMA), "fp8fma">; |
| def HasSSVE_FP8FMA : Predicate<"Subtarget->hasSSVE_FP8FMA() || " |
| "(Subtarget->hasSVE2() && Subtarget->hasFP8FMA())">, |
| AssemblerPredicateWithAll<(any_of FeatureSSVE_FP8FMA, |
| (all_of FeatureSVE2, FeatureFP8FMA)), |
| "ssve-fp8fma or (sve2 and fp8fma)">; |
| def HasFP8DOT2 : Predicate<"Subtarget->hasFP8DOT2()">, |
| AssemblerPredicateWithAll<(all_of FeatureFP8DOT2), "fp8dot2">; |
| def HasSSVE_FP8DOT2 : Predicate<"Subtarget->hasSSVE_FP8DOT2() || " |
| "(Subtarget->hasSVE2() && Subtarget->hasFP8DOT2())">, |
| AssemblerPredicateWithAll<(any_of FeatureSSVE_FP8DOT2, |
| (all_of FeatureSVE2, FeatureFP8DOT2)), |
| "ssve-fp8dot2 or (sve2 and fp8dot2)">; |
| def HasFP8DOT4 : Predicate<"Subtarget->hasFP8DOT4()">, |
| AssemblerPredicateWithAll<(all_of FeatureFP8DOT4), "fp8dot4">; |
| def HasSSVE_FP8DOT4 : Predicate<"Subtarget->hasSSVE_FP8DOT4() || " |
| "(Subtarget->hasSVE2() && Subtarget->hasFP8DOT4())">, |
| AssemblerPredicateWithAll<(any_of FeatureSSVE_FP8DOT4, |
| (all_of FeatureSVE2, FeatureFP8DOT4)), |
| "ssve-fp8dot4 or (sve2 and fp8dot4)">; |
| def HasLUT : Predicate<"Subtarget->hasLUT()">, |
| AssemblerPredicateWithAll<(all_of FeatureLUT), "lut">; |
| def HasSME_LUTv2 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSME_LUTv2()">, |
| AssemblerPredicateWithAll<(all_of FeatureSME_LUTv2), "sme-lutv2">; |
| def HasSMEF8F16 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEF8F16()">, |
| AssemblerPredicateWithAll<(all_of FeatureSMEF8F16), "sme-f8f16">; |
| def HasSMEF8F32 : Predicate<"Subtarget->isStreaming() && Subtarget->hasSMEF8F32()">, |
| AssemblerPredicateWithAll<(all_of FeatureSMEF8F32), "sme-f8f32">; |
| |
| // A subset of SVE(2) instructions are legal in Streaming SVE execution mode, |
| // they should be enabled if either has been specified. |
| def HasSVEorSME |
| : Predicate<"Subtarget->hasSVE() || (Subtarget->isStreaming() && Subtarget->hasSME())">, |
| AssemblerPredicateWithAll<(any_of FeatureSVE, FeatureSME), |
| "sve or sme">; |
| def HasSVE2orSME |
| : Predicate<"Subtarget->hasSVE2() || (Subtarget->isStreaming() && Subtarget->hasSME())">, |
| AssemblerPredicateWithAll<(any_of FeatureSVE2, FeatureSME), |
| "sve2 or sme">; |
| def HasSVE2orSME2 |
| : Predicate<"Subtarget->hasSVE2() || (Subtarget->isStreaming() && Subtarget->hasSME2())">, |
| AssemblerPredicateWithAll<(any_of FeatureSVE2, FeatureSME2), |
| "sve2 or sme2">; |
| def HasSVE2p1_or_HasSME |
| : Predicate<"Subtarget->hasSVE2p1() || (Subtarget->isStreaming() && Subtarget->hasSME())">, |
| AssemblerPredicateWithAll<(any_of FeatureSME, FeatureSVE2p1), "sme or sve2p1">; |
| def HasSVE2p1_or_HasSME2 |
| : Predicate<"Subtarget->hasSVE2p1() || (Subtarget->isStreaming() && Subtarget->hasSME2())">, |
| AssemblerPredicateWithAll<(any_of FeatureSME2, FeatureSVE2p1), "sme2 or sve2p1">; |
| def HasSVE2p1_or_HasSME2p1 |
| : Predicate<"Subtarget->hasSVE2p1() || (Subtarget->isStreaming() && Subtarget->hasSME2p1())">, |
| AssemblerPredicateWithAll<(any_of FeatureSME2p1, FeatureSVE2p1), "sme2p1 or sve2p1">; |
| |
| def HasSMEF16F16orSMEF8F16 |
| : Predicate<"Subtarget->isStreaming() && (Subtarget->hasSMEF16F16() || Subtarget->hasSMEF8F16())">, |
| AssemblerPredicateWithAll<(any_of FeatureSMEF16F16, FeatureSMEF8F16), |
| "sme-f16f16 or sme-f8f16">; |
| |
| // A subset of NEON instructions are legal in Streaming SVE execution mode, |
| // so don't need the additional check for 'isNeonAvailable'. |
| def HasNEONandIsStreamingSafe |
| : Predicate<"Subtarget->hasNEON()">, |
| AssemblerPredicateWithAll<(any_of FeatureNEON), "neon">; |
| def HasRCPC : Predicate<"Subtarget->hasRCPC()">, |
| AssemblerPredicateWithAll<(all_of FeatureRCPC), "rcpc">; |
| def HasAltNZCV : Predicate<"Subtarget->hasAlternativeNZCV()">, |
| AssemblerPredicateWithAll<(all_of FeatureAltFPCmp), "altnzcv">; |
| def HasFRInt3264 : Predicate<"Subtarget->hasFRInt3264()">, |
| AssemblerPredicateWithAll<(all_of FeatureFRInt3264), "frint3264">; |
| def HasSB : Predicate<"Subtarget->hasSB()">, |
| AssemblerPredicateWithAll<(all_of FeatureSB), "sb">; |
| def HasPredRes : Predicate<"Subtarget->hasPredRes()">, |
| AssemblerPredicateWithAll<(all_of FeaturePredRes), "predres">; |
| def HasCCDP : Predicate<"Subtarget->hasCCDP()">, |
| AssemblerPredicateWithAll<(all_of FeatureCacheDeepPersist), "ccdp">; |
| def HasBTI : Predicate<"Subtarget->hasBTI()">, |
| AssemblerPredicateWithAll<(all_of FeatureBranchTargetId), "bti">; |
| def HasMTE : Predicate<"Subtarget->hasMTE()">, |
| AssemblerPredicateWithAll<(all_of FeatureMTE), "mte">; |
| def HasTME : Predicate<"Subtarget->hasTME()">, |
| AssemblerPredicateWithAll<(all_of FeatureTME), "tme">; |
| def HasETE : Predicate<"Subtarget->hasETE()">, |
| AssemblerPredicateWithAll<(all_of FeatureETE), "ete">; |
| def HasTRBE : Predicate<"Subtarget->hasTRBE()">, |
| AssemblerPredicateWithAll<(all_of FeatureTRBE), "trbe">; |
| def HasBF16 : Predicate<"Subtarget->hasBF16()">, |
| AssemblerPredicateWithAll<(all_of FeatureBF16), "bf16">; |
| def HasNoBF16 : Predicate<"!Subtarget->hasBF16()">; |
| def HasMatMulInt8 : Predicate<"Subtarget->hasMatMulInt8()">, |
| AssemblerPredicateWithAll<(all_of FeatureMatMulInt8), "i8mm">; |
| def HasMatMulFP32 : Predicate<"Subtarget->hasMatMulFP32()">, |
| AssemblerPredicateWithAll<(all_of FeatureMatMulFP32), "f32mm">; |
| def HasMatMulFP64 : Predicate<"Subtarget->hasMatMulFP64()">, |
| AssemblerPredicateWithAll<(all_of FeatureMatMulFP64), "f64mm">; |
| def HasFPAC : Predicate<"Subtarget->hasFPAC())">, |
| AssemblerPredicateWithAll<(all_of FeatureFPAC), "fpac">; |
| def HasXS : Predicate<"Subtarget->hasXS()">, |
| AssemblerPredicateWithAll<(all_of FeatureXS), "xs">; |
| def HasWFxT : Predicate<"Subtarget->hasWFxT()">, |
| AssemblerPredicateWithAll<(all_of FeatureWFxT), "wfxt">; |
| def HasLS64 : Predicate<"Subtarget->hasLS64()">, |
| AssemblerPredicateWithAll<(all_of FeatureLS64), "ls64">; |
| def HasBRBE : Predicate<"Subtarget->hasBRBE()">, |
| AssemblerPredicateWithAll<(all_of FeatureBRBE), "brbe">; |
| def HasSPE_EEF : Predicate<"Subtarget->hasSPE_EEF()">, |
| AssemblerPredicateWithAll<(all_of FeatureSPE_EEF), "spe-eef">; |
| def HasHBC : Predicate<"Subtarget->hasHBC()">, |
| AssemblerPredicateWithAll<(all_of FeatureHBC), "hbc">; |
| def HasMOPS : Predicate<"Subtarget->hasMOPS()">, |
| AssemblerPredicateWithAll<(all_of FeatureMOPS), "mops">; |
| def HasCLRBHB : Predicate<"Subtarget->hasCLRBHB()">, |
| AssemblerPredicateWithAll<(all_of FeatureCLRBHB), "clrbhb">; |
| def HasSPECRES2 : Predicate<"Subtarget->hasSPECRES2()">, |
| AssemblerPredicateWithAll<(all_of FeatureSPECRES2), "specres2">; |
| def HasITE : Predicate<"Subtarget->hasITE()">, |
| AssemblerPredicateWithAll<(all_of FeatureITE), "ite">; |
| def HasTHE : Predicate<"Subtarget->hasTHE()">, |
| AssemblerPredicateWithAll<(all_of FeatureTHE), "the">; |
| def HasRCPC3 : Predicate<"Subtarget->hasRCPC3()">, |
| AssemblerPredicateWithAll<(all_of FeatureRCPC3), "rcpc3">; |
| def HasLSE128 : Predicate<"Subtarget->hasLSE128()">, |
| AssemblerPredicateWithAll<(all_of FeatureLSE128), "lse128">; |
| def HasD128 : Predicate<"Subtarget->hasD128()">, |
| AssemblerPredicateWithAll<(all_of FeatureD128), "d128">; |
| def HasCHK : Predicate<"Subtarget->hasCHK()">, |
| AssemblerPredicateWithAll<(all_of FeatureCHK), "chk">; |
| def HasGCS : Predicate<"Subtarget->hasGCS()">, |
| AssemblerPredicateWithAll<(all_of FeatureGCS), "gcs">; |
| def HasCPA : Predicate<"Subtarget->hasCPA()">, |
| AssemblerPredicateWithAll<(all_of FeatureCPA), "cpa">; |
| def IsLE : Predicate<"Subtarget->isLittleEndian()">; |
| def IsBE : Predicate<"!Subtarget->isLittleEndian()">; |
| def IsWindows : Predicate<"Subtarget->isTargetWindows()">; |
| def UseExperimentalZeroingPseudos |
| : Predicate<"Subtarget->useExperimentalZeroingPseudos()">; |
| def UseAlternateSExtLoadCVTF32 |
| : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">; |
| |
| def UseNegativeImmediates |
| : Predicate<"false">, AssemblerPredicate<(all_of (not FeatureNoNegativeImmediates)), |
| "NegativeImmediates">; |
| |
| def UseScalarIncVL : Predicate<"Subtarget->useScalarIncVL()">; |
| |
| def NoUseScalarIncVL : Predicate<"!Subtarget->useScalarIncVL()">; |
| |
| def UseSVEFPLD1R : Predicate<"!Subtarget->noSVEFPLD1R()">; |
| |
| def AArch64LocalRecover : SDNode<"ISD::LOCAL_RECOVER", |
| SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, |
| SDTCisInt<1>]>>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // AArch64-specific DAG Nodes. |
| // |
| |
| // SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS |
| def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2, |
| [SDTCisSameAs<0, 2>, |
| SDTCisSameAs<0, 3>, |
| SDTCisInt<0>, SDTCisVT<1, i32>]>; |
| |
| // SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS |
| def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3, |
| [SDTCisSameAs<0, 1>, |
| SDTCisSameAs<0, 2>, |
| SDTCisInt<0>, |
| SDTCisVT<3, i32>]>; |
| |
| // SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS |
| def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3, |
| [SDTCisSameAs<0, 2>, |
| SDTCisSameAs<0, 3>, |
| SDTCisInt<0>, |
| SDTCisVT<1, i32>, |
| SDTCisVT<4, i32>]>; |
| |
| def SDT_AArch64Brcond : SDTypeProfile<0, 3, |
| [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>, |
| SDTCisVT<2, i32>]>; |
| def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>; |
| def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, |
| SDTCisVT<2, OtherVT>]>; |
| |
| |
| def SDT_AArch64CSel : SDTypeProfile<1, 4, |
| [SDTCisSameAs<0, 1>, |
| SDTCisSameAs<0, 2>, |
| SDTCisInt<3>, |
| SDTCisVT<4, i32>]>; |
| def SDT_AArch64CCMP : SDTypeProfile<1, 5, |
| [SDTCisVT<0, i32>, |
| SDTCisInt<1>, |
| SDTCisSameAs<1, 2>, |
| SDTCisInt<3>, |
| SDTCisInt<4>, |
| SDTCisVT<5, i32>]>; |
| def SDT_AArch64FCCMP : SDTypeProfile<1, 5, |
| [SDTCisVT<0, i32>, |
| SDTCisFP<1>, |
| SDTCisSameAs<1, 2>, |
| SDTCisInt<3>, |
| SDTCisInt<4>, |
| SDTCisVT<5, i32>]>; |
| def SDT_AArch64FCmp : SDTypeProfile<0, 2, |
| [SDTCisFP<0>, |
| SDTCisSameAs<0, 1>]>; |
| def SDT_AArch64Dup : SDTypeProfile<1, 1, [SDTCisVec<0>]>; |
| def SDT_AArch64DupLane : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>; |
| def SDT_AArch64Insr : SDTypeProfile<1, 2, [SDTCisVec<0>]>; |
| def SDT_AArch64Zip : SDTypeProfile<1, 2, [SDTCisVec<0>, |
| SDTCisSameAs<0, 1>, |
| SDTCisSameAs<0, 2>]>; |
| def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>; |
| def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>; |
| def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, |
| SDTCisInt<2>, SDTCisInt<3>]>; |
| def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>; |
| def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, |
| SDTCisSameAs<0,2>, SDTCisInt<3>]>; |
| def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>; |
| def SDT_AArch64Dot: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, |
| SDTCisVec<2>, SDTCisSameAs<2,3>]>; |
| |
| def SDT_AArch64vshiftinsert : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisInt<3>, |
| SDTCisSameAs<0,1>, |
| SDTCisSameAs<0,2>]>; |
| |
| def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>; |
| def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>; |
| def SDT_AArch64fcmp : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>; |
| def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>, |
| SDTCisSameAs<0,2>]>; |
| def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>, |
| SDTCisSameAs<0,2>, |
| SDTCisSameAs<0,3>]>; |
| def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>; |
| def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>; |
| |
| def SDT_AArch64ITOF : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>; |
| |
| def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>, |
| SDTCisPtrTy<1>]>; |
| |
| def SDT_AArch64uaddlp : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVec<1>]>; |
| |
| def SDT_AArch64ldp : SDTypeProfile<2, 1, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; |
| def SDT_AArch64ldiapp : SDTypeProfile<2, 1, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; |
| def SDT_AArch64ldnp : SDTypeProfile<2, 1, [SDTCisVT<0, v4i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; |
| def SDT_AArch64stp : SDTypeProfile<0, 3, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; |
| def SDT_AArch64stilp : SDTypeProfile<0, 3, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; |
| def SDT_AArch64stnp : SDTypeProfile<0, 3, [SDTCisVT<0, v4i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; |
| |
| // Generates the general dynamic sequences, i.e. |
| // adrp x0, :tlsdesc:var |
| // ldr x1, [x0, #:tlsdesc_lo12:var] |
| // add x0, x0, #:tlsdesc_lo12:var |
| // .tlsdesccall var |
| // blr x1 |
| |
| // (the TPIDR_EL0 offset is put directly in X0, hence no "result" here) |
| // number of operands (the variable) |
| def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1, |
| [SDTCisPtrTy<0>]>; |
| |
| def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4, |
| [SDTCisVT<0, i64>, SDTCisVT<1, i32>, |
| SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>, |
| SDTCisSameAs<1, 4>]>; |
| |
| def SDT_AArch64TBL : SDTypeProfile<1, 2, [ |
| SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisInt<2> |
| ]>; |
| |
| // non-extending masked load fragment. |
| def nonext_masked_load : |
| PatFrag<(ops node:$ptr, node:$pred, node:$def), |
| (masked_ld node:$ptr, undef, node:$pred, node:$def), [{ |
| return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD && |
| cast<MaskedLoadSDNode>(N)->isUnindexed() && |
| !cast<MaskedLoadSDNode>(N)->isNonTemporal(); |
| }]>; |
| // Any/Zero extending masked load fragments. |
| def azext_masked_load : |
| PatFrag<(ops node:$ptr, node:$pred, node:$def), |
| (masked_ld node:$ptr, undef, node:$pred, node:$def),[{ |
| return (cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD || |
| cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD) && |
| cast<MaskedLoadSDNode>(N)->isUnindexed(); |
| }]>; |
| def azext_masked_load_i8 : |
| PatFrag<(ops node:$ptr, node:$pred, node:$def), |
| (azext_masked_load node:$ptr, node:$pred, node:$def), [{ |
| return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; |
| }]>; |
| def azext_masked_load_i16 : |
| PatFrag<(ops node:$ptr, node:$pred, node:$def), |
| (azext_masked_load node:$ptr, node:$pred, node:$def), [{ |
| return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16; |
| }]>; |
| def azext_masked_load_i32 : |
| PatFrag<(ops node:$ptr, node:$pred, node:$def), |
| (azext_masked_load node:$ptr, node:$pred, node:$def), [{ |
| return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32; |
| }]>; |
| // Sign extending masked load fragments. |
| def sext_masked_load : |
| PatFrag<(ops node:$ptr, node:$pred, node:$def), |
| (masked_ld node:$ptr, undef, node:$pred, node:$def), [{ |
| return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD && |
| cast<MaskedLoadSDNode>(N)->isUnindexed(); |
| }]>; |
| def sext_masked_load_i8 : |
| PatFrag<(ops node:$ptr, node:$pred, node:$def), |
| (sext_masked_load node:$ptr, node:$pred, node:$def), [{ |
| return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; |
| }]>; |
| def sext_masked_load_i16 : |
| PatFrag<(ops node:$ptr, node:$pred, node:$def), |
| (sext_masked_load node:$ptr, node:$pred, node:$def), [{ |
| return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16; |
| }]>; |
| def sext_masked_load_i32 : |
| PatFrag<(ops node:$ptr, node:$pred, node:$def), |
| (sext_masked_load node:$ptr, node:$pred, node:$def), [{ |
| return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32; |
| }]>; |
| |
| def non_temporal_load : |
| PatFrag<(ops node:$ptr, node:$pred, node:$def), |
| (masked_ld node:$ptr, undef, node:$pred, node:$def), [{ |
| return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD && |
| cast<MaskedLoadSDNode>(N)->isUnindexed() && |
| cast<MaskedLoadSDNode>(N)->isNonTemporal(); |
| }]>; |
| |
| // non-truncating masked store fragment. |
| def nontrunc_masked_store : |
| PatFrag<(ops node:$val, node:$ptr, node:$pred), |
| (masked_st node:$val, node:$ptr, undef, node:$pred), [{ |
| return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() && |
| cast<MaskedStoreSDNode>(N)->isUnindexed() && |
| !cast<MaskedStoreSDNode>(N)->isNonTemporal(); |
| }]>; |
| // truncating masked store fragments. |
| def trunc_masked_store : |
| PatFrag<(ops node:$val, node:$ptr, node:$pred), |
| (masked_st node:$val, node:$ptr, undef, node:$pred), [{ |
| return cast<MaskedStoreSDNode>(N)->isTruncatingStore() && |
| cast<MaskedStoreSDNode>(N)->isUnindexed(); |
| }]>; |
| def trunc_masked_store_i8 : |
| PatFrag<(ops node:$val, node:$ptr, node:$pred), |
| (trunc_masked_store node:$val, node:$ptr, node:$pred), [{ |
| return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; |
| }]>; |
| def trunc_masked_store_i16 : |
| PatFrag<(ops node:$val, node:$ptr, node:$pred), |
| (trunc_masked_store node:$val, node:$ptr, node:$pred), [{ |
| return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16; |
| }]>; |
| def trunc_masked_store_i32 : |
| PatFrag<(ops node:$val, node:$ptr, node:$pred), |
| (trunc_masked_store node:$val, node:$ptr, node:$pred), [{ |
| return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32; |
| }]>; |
| |
| def non_temporal_store : |
| PatFrag<(ops node:$val, node:$ptr, node:$pred), |
| (masked_st node:$val, node:$ptr, undef, node:$pred), [{ |
| return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() && |
| cast<MaskedStoreSDNode>(N)->isUnindexed() && |
| cast<MaskedStoreSDNode>(N)->isNonTemporal(); |
| }]>; |
| |
| multiclass masked_gather_scatter<PatFrags GatherScatterOp> { |
| // offsets = (signed)Index << sizeof(elt) |
| def NAME#_signed_scaled : |
| PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), |
| (GatherScatterOp node:$val, node:$pred, node:$ptr, node:$idx),[{ |
| auto MGS = cast<MaskedGatherScatterSDNode>(N); |
| bool Signed = MGS->isIndexSigned() || |
| MGS->getIndex().getValueType().getVectorElementType() == MVT::i64; |
| return Signed && MGS->isIndexScaled(); |
| }]>; |
| // offsets = (signed)Index |
| def NAME#_signed_unscaled : |
| PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), |
| (GatherScatterOp node:$val, node:$pred, node:$ptr, node:$idx),[{ |
| auto MGS = cast<MaskedGatherScatterSDNode>(N); |
| bool Signed = MGS->isIndexSigned() || |
| MGS->getIndex().getValueType().getVectorElementType() == MVT::i64; |
| return Signed && !MGS->isIndexScaled(); |
| }]>; |
| // offsets = (unsigned)Index << sizeof(elt) |
| def NAME#_unsigned_scaled : |
| PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), |
| (GatherScatterOp node:$val, node:$pred, node:$ptr, node:$idx),[{ |
| auto MGS = cast<MaskedGatherScatterSDNode>(N); |
| bool Signed = MGS->isIndexSigned() || |
| MGS->getIndex().getValueType().getVectorElementType() == MVT::i64; |
| return !Signed && MGS->isIndexScaled(); |
| }]>; |
| // offsets = (unsigned)Index |
| def NAME#_unsigned_unscaled : |
| PatFrag<(ops node:$val, node:$pred, node:$ptr, node:$idx), |
| (GatherScatterOp node:$val, node:$pred, node:$ptr, node:$idx),[{ |
| auto MGS = cast<MaskedGatherScatterSDNode>(N); |
| bool Signed = MGS->isIndexSigned() || |
| MGS->getIndex().getValueType().getVectorElementType() == MVT::i64; |
| return !Signed && !MGS->isIndexScaled(); |
| }]>; |
| } |
| |
| defm nonext_masked_gather : masked_gather_scatter<nonext_masked_gather>; |
| defm azext_masked_gather_i8 : masked_gather_scatter<azext_masked_gather_i8>; |
| defm azext_masked_gather_i16 : masked_gather_scatter<azext_masked_gather_i16>; |
| defm azext_masked_gather_i32 : masked_gather_scatter<azext_masked_gather_i32>; |
| defm sext_masked_gather_i8 : masked_gather_scatter<sext_masked_gather_i8>; |
| defm sext_masked_gather_i16 : masked_gather_scatter<sext_masked_gather_i16>; |
| defm sext_masked_gather_i32 : masked_gather_scatter<sext_masked_gather_i32>; |
| |
| defm nontrunc_masked_scatter : masked_gather_scatter<nontrunc_masked_scatter>; |
| defm trunc_masked_scatter_i8 : masked_gather_scatter<trunc_masked_scatter_i8>; |
| defm trunc_masked_scatter_i16 : masked_gather_scatter<trunc_masked_scatter_i16>; |
| defm trunc_masked_scatter_i32 : masked_gather_scatter<trunc_masked_scatter_i32>; |
| |
| // top16Zero - answer true if the upper 16 bits of $src are 0, false otherwise |
| def top16Zero: PatLeaf<(i32 GPR32:$src), [{ |
| return SDValue(N,0)->getValueType(0) == MVT::i32 && |
| CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(32, 16)); |
| }]>; |
| |
| // top32Zero - answer true if the upper 32 bits of $src are 0, false otherwise |
| def top32Zero: PatLeaf<(i64 GPR64:$src), [{ |
| return SDValue(N,0)->getValueType(0) == MVT::i64 && |
| CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(64, 32)); |
| }]>; |
| |
| // topbitsallzero - Return true if all bits except the lowest bit are known zero |
| def topbitsallzero32: PatLeaf<(i32 GPR32:$src), [{ |
| return SDValue(N,0)->getValueType(0) == MVT::i32 && |
| CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(32, 31)); |
| }]>; |
| def topbitsallzero64: PatLeaf<(i64 GPR64:$src), [{ |
| return SDValue(N,0)->getValueType(0) == MVT::i64 && |
| CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(64, 63)); |
| }]>; |
| |
| // Node definitions. |
| def AArch64adrp : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>; |
| def AArch64adr : SDNode<"AArch64ISD::ADR", SDTIntUnaryOp, []>; |
| def AArch64addlow : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>; |
| def AArch64LOADgot : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>; |
| def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START", |
| SDCallSeqStart<[ SDTCisVT<0, i32>, |
| SDTCisVT<1, i32> ]>, |
| [SDNPHasChain, SDNPOutGlue]>; |
| def AArch64callseq_end : SDNode<"ISD::CALLSEQ_END", |
| SDCallSeqEnd<[ SDTCisVT<0, i32>, |
| SDTCisVT<1, i32> ]>, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; |
| def AArch64call : SDNode<"AArch64ISD::CALL", |
| SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPVariadic]>; |
| |
| def AArch64call_bti : SDNode<"AArch64ISD::CALL_BTI", |
| SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPVariadic]>; |
| |
| def AArch64call_rvmarker: SDNode<"AArch64ISD::CALL_RVMARKER", |
| SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPVariadic]>; |
| |
| def AArch64call_arm64ec_to_x64 : SDNode<"AArch64ISD::CALL_ARM64EC_TO_X64", |
| SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPVariadic]>; |
| |
| def AArch64authcall : SDNode<"AArch64ISD::AUTH_CALL", |
| SDTypeProfile<0, -1, [SDTCisPtrTy<0>, |
| SDTCisVT<1, i32>, |
| SDTCisVT<2, i64>, |
| SDTCisVT<3, i64>]>, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPVariadic]>; |
| |
| def AArch64authtcret: SDNode<"AArch64ISD::AUTH_TC_RETURN", |
| SDTypeProfile<0, 5, [SDTCisPtrTy<0>, |
| SDTCisVT<2, i32>, |
| SDTCisVT<3, i64>, |
| SDTCisVT<4, i64>]>, |
| [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; |
| |
| def AArch64authcall_rvmarker : SDNode<"AArch64ISD::AUTH_CALL_RVMARKER", |
| SDTypeProfile<0, -1, [SDTCisPtrTy<0>, |
| SDTCisPtrTy<1>, |
| SDTCisVT<2, i32>, |
| SDTCisVT<3, i64>, |
| SDTCisVT<4, i64>]>, |
| [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, |
| SDNPVariadic]>; |
| |
| def AArch64brcond : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond, |
| [SDNPHasChain]>; |
| def AArch64cbz : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz, |
| [SDNPHasChain]>; |
| def AArch64cbnz : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz, |
| [SDNPHasChain]>; |
| def AArch64tbz : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz, |
| [SDNPHasChain]>; |
| def AArch64tbnz : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz, |
| [SDNPHasChain]>; |
| |
| |
| def AArch64csel : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>; |
| def AArch64csinv : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>; |
| def AArch64csneg : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>; |
| def AArch64csinc : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>; |
| def AArch64retglue : SDNode<"AArch64ISD::RET_GLUE", SDTNone, |
| [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; |
| def AArch64adc : SDNode<"AArch64ISD::ADC", SDTBinaryArithWithFlagsIn >; |
| def AArch64sbc : SDNode<"AArch64ISD::SBC", SDTBinaryArithWithFlagsIn>; |
| def AArch64add_flag : SDNode<"AArch64ISD::ADDS", SDTBinaryArithWithFlagsOut, |
| [SDNPCommutative]>; |
| def AArch64sub_flag : SDNode<"AArch64ISD::SUBS", SDTBinaryArithWithFlagsOut>; |
| def AArch64and_flag : SDNode<"AArch64ISD::ANDS", SDTBinaryArithWithFlagsOut, |
| [SDNPCommutative]>; |
| def AArch64adc_flag : SDNode<"AArch64ISD::ADCS", SDTBinaryArithWithFlagsInOut>; |
| def AArch64sbc_flag : SDNode<"AArch64ISD::SBCS", SDTBinaryArithWithFlagsInOut>; |
| |
| def AArch64ccmp : SDNode<"AArch64ISD::CCMP", SDT_AArch64CCMP>; |
| def AArch64ccmn : SDNode<"AArch64ISD::CCMN", SDT_AArch64CCMP>; |
| def AArch64fccmp : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>; |
| |
| def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>; |
| |
| def AArch64fcmp : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>; |
| def AArch64strict_fcmp : SDNode<"AArch64ISD::STRICT_FCMP", SDT_AArch64FCmp, |
| [SDNPHasChain]>; |
| def AArch64strict_fcmpe : SDNode<"AArch64ISD::STRICT_FCMPE", SDT_AArch64FCmp, |
| [SDNPHasChain]>; |
| def AArch64any_fcmp : PatFrags<(ops node:$lhs, node:$rhs), |
| [(AArch64strict_fcmp node:$lhs, node:$rhs), |
| (AArch64fcmp node:$lhs, node:$rhs)]>; |
| |
| def AArch64dup : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>; |
| def AArch64duplane8 : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>; |
| def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>; |
| def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>; |
| def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>; |
| def AArch64duplane128 : SDNode<"AArch64ISD::DUPLANE128", SDT_AArch64DupLane>; |
| |
| def AArch64insr : SDNode<"AArch64ISD::INSR", SDT_AArch64Insr>; |
| |
| def AArch64zip1 : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>; |
| def AArch64zip2 : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>; |
| def AArch64uzp1 : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>; |
| def AArch64uzp2 : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>; |
| def AArch64trn1 : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>; |
| def AArch64trn2 : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>; |
| |
| def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>; |
| def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>; |
| def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>; |
| def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>; |
| def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>; |
| def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>; |
| def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>; |
| |
| def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>; |
| def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>; |
| def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>; |
| def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>; |
| |
| def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>; |
| |
| def AArch64vashr_exact : PatFrag<(ops node:$lhs, node:$rhs), |
| (AArch64vashr node:$lhs, node:$rhs), [{ |
| return N->getFlags().hasExact(); |
| }]>; |
| |
| def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>; |
| def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>; |
| def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>; |
| def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>; |
| def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>; |
| def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>; |
| def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>; |
| def AArch64vsli : SDNode<"AArch64ISD::VSLI", SDT_AArch64vshiftinsert>; |
| def AArch64vsri : SDNode<"AArch64ISD::VSRI", SDT_AArch64vshiftinsert>; |
| |
| def AArch64bsp: SDNode<"AArch64ISD::BSP", SDT_AArch64trivec>; |
| |
| def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>; |
| def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>; |
| def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>; |
| def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>; |
| def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>; |
| |
| def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>; |
| def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>; |
| def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>; |
| |
| def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>; |
| def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>; |
| def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>; |
| def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>; |
| def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>; |
| def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS), |
| (vnot (AArch64cmeqz (and node:$LHS, node:$RHS)))>; |
| |
| def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>; |
| def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>; |
| def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>; |
| def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>; |
| def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>; |
| |
| def AArch64fcvtxn_n: SDNode<"AArch64ISD::FCVTXN", SDTFPRoundOp>; |
| def AArch64fcvtxnsdr: PatFrags<(ops node:$Rn), |
| [(f32 (int_aarch64_sisd_fcvtxn (f64 node:$Rn))), |
| (f32 (AArch64fcvtxn_n (f64 node:$Rn)))]>; |
| def AArch64fcvtxnv: PatFrags<(ops node:$Rn), |
| [(int_aarch64_neon_fcvtxn node:$Rn), |
| (AArch64fcvtxn_n node:$Rn)]>; |
| |
| //def Aarch64softf32tobf16v8: SDNode<"AArch64ISD::", SDTFPRoundOp>; |
| |
| def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>; |
| def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>; |
| |
| def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET, |
| [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; |
| |
| def AArch64Prefetch : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH, |
| [SDNPHasChain, SDNPSideEffect]>; |
| |
| def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>; |
| def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>; |
| |
| def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ", |
| SDT_AArch64TLSDescCallSeq, |
| [SDNPInGlue, SDNPOutGlue, SDNPHasChain, |
| SDNPVariadic]>; |
| |
| |
| def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge", |
| SDT_AArch64WrapperLarge>; |
| |
| def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>; |
| |
| def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>, |
| SDTCisSameAs<1, 2>]>; |
| def AArch64pmull : SDNode<"AArch64ISD::PMULL", SDT_AArch64mull, |
| [SDNPCommutative]>; |
| def AArch64smull : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull, |
| [SDNPCommutative]>; |
| def AArch64umull : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull, |
| [SDNPCommutative]>; |
| |
| def AArch64frecpe : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>; |
| def AArch64frecps : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>; |
| def AArch64frsqrte : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>; |
| def AArch64frsqrts : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>; |
| |
| def AArch64sdot : SDNode<"AArch64ISD::SDOT", SDT_AArch64Dot>; |
| def AArch64udot : SDNode<"AArch64ISD::UDOT", SDT_AArch64Dot>; |
| |
| def AArch64saddv : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>; |
| def AArch64uaddv : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>; |
| def AArch64sminv : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>; |
| def AArch64uminv : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>; |
| def AArch64smaxv : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>; |
| def AArch64umaxv : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>; |
| def AArch64uaddlv : SDNode<"AArch64ISD::UADDLV", SDT_AArch64uaddlp>; |
| def AArch64saddlv : SDNode<"AArch64ISD::SADDLV", SDT_AArch64uaddlp>; |
| |
| def AArch64uabd : PatFrags<(ops node:$lhs, node:$rhs), |
| [(abdu node:$lhs, node:$rhs), |
| (int_aarch64_neon_uabd node:$lhs, node:$rhs)]>; |
| def AArch64sabd : PatFrags<(ops node:$lhs, node:$rhs), |
| [(abds node:$lhs, node:$rhs), |
| (int_aarch64_neon_sabd node:$lhs, node:$rhs)]>; |
| |
| def AArch64addp_n : SDNode<"AArch64ISD::ADDP", SDT_AArch64Zip>; |
| def AArch64uaddlp_n : SDNode<"AArch64ISD::UADDLP", SDT_AArch64uaddlp>; |
| def AArch64saddlp_n : SDNode<"AArch64ISD::SADDLP", SDT_AArch64uaddlp>; |
| def AArch64addp : PatFrags<(ops node:$Rn, node:$Rm), |
| [(AArch64addp_n node:$Rn, node:$Rm), |
| (int_aarch64_neon_addp node:$Rn, node:$Rm)]>; |
| def AArch64uaddlp : PatFrags<(ops node:$src), |
| [(AArch64uaddlp_n node:$src), |
| (int_aarch64_neon_uaddlp node:$src)]>; |
| def AArch64saddlp : PatFrags<(ops node:$src), |
| [(AArch64saddlp_n node:$src), |
| (int_aarch64_neon_saddlp node:$src)]>; |
| def AArch64faddp : PatFrags<(ops node:$Rn, node:$Rm), |
| [(AArch64addp_n node:$Rn, node:$Rm), |
| (int_aarch64_neon_faddp node:$Rn, node:$Rm)]>; |
| def AArch64roundingvlshr : ComplexPattern<vAny, 2, "SelectRoundingVLShr", [AArch64vlshr]>; |
| def AArch64rshrn : PatFrags<(ops node:$LHS, node:$RHS), |
| [(trunc (AArch64roundingvlshr node:$LHS, node:$RHS)), |
| (int_aarch64_neon_rshrn node:$LHS, node:$RHS)]>; |
| def AArch64facge : PatFrags<(ops node:$Rn, node:$Rm), |
| [(AArch64fcmge (fabs node:$Rn), (fabs node:$Rm)), |
| (int_aarch64_neon_facge node:$Rn, node:$Rm)]>; |
| def AArch64facgt : PatFrags<(ops node:$Rn, node:$Rm), |
| [(AArch64fcmgt (fabs node:$Rn), (fabs node:$Rm)), |
| (int_aarch64_neon_facgt node:$Rn, node:$Rm)]>; |
| |
| def AArch64fmaxnmv : PatFrags<(ops node:$Rn), |
| [(vecreduce_fmax node:$Rn), |
| (int_aarch64_neon_fmaxnmv node:$Rn)]>; |
| def AArch64fminnmv : PatFrags<(ops node:$Rn), |
| [(vecreduce_fmin node:$Rn), |
| (int_aarch64_neon_fminnmv node:$Rn)]>; |
| def AArch64fmaxv : PatFrags<(ops node:$Rn), |
| [(vecreduce_fmaximum node:$Rn), |
| (int_aarch64_neon_fmaxv node:$Rn)]>; |
| def AArch64fminv : PatFrags<(ops node:$Rn), |
| [(vecreduce_fminimum node:$Rn), |
| (int_aarch64_neon_fminv node:$Rn)]>; |
| |
| def SDT_AArch64SETTAG : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; |
| def AArch64stg : SDNode<"AArch64ISD::STG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; |
| def AArch64stzg : SDNode<"AArch64ISD::STZG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; |
| def AArch64st2g : SDNode<"AArch64ISD::ST2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; |
| def AArch64stz2g : SDNode<"AArch64ISD::STZ2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; |
| |
| def SDT_AArch64unpk : SDTypeProfile<1, 1, [ |
| SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0> |
| ]>; |
| def AArch64sunpkhi : SDNode<"AArch64ISD::SUNPKHI", SDT_AArch64unpk>; |
| def AArch64sunpklo : SDNode<"AArch64ISD::SUNPKLO", SDT_AArch64unpk>; |
| def AArch64uunpkhi : SDNode<"AArch64ISD::UUNPKHI", SDT_AArch64unpk>; |
| def AArch64uunpklo : SDNode<"AArch64ISD::UUNPKLO", SDT_AArch64unpk>; |
| |
| def AArch64ldp : SDNode<"AArch64ISD::LDP", SDT_AArch64ldp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; |
| def AArch64ldiapp : SDNode<"AArch64ISD::LDIAPP", SDT_AArch64ldiapp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; |
| def AArch64ldnp : SDNode<"AArch64ISD::LDNP", SDT_AArch64ldnp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; |
| def AArch64stp : SDNode<"AArch64ISD::STP", SDT_AArch64stp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; |
| def AArch64stilp : SDNode<"AArch64ISD::STILP", SDT_AArch64stilp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; |
| def AArch64stnp : SDNode<"AArch64ISD::STNP", SDT_AArch64stnp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; |
| |
| def AArch64tbl : SDNode<"AArch64ISD::TBL", SDT_AArch64TBL>; |
| |
| def AArch64probedalloca |
| : SDNode<"AArch64ISD::PROBED_ALLOCA", |
| SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>, |
| [SDNPHasChain, SDNPMayStore]>; |
| |
| def AArch64mrs : SDNode<"AArch64ISD::MRS", |
| SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, i32>]>, |
| [SDNPHasChain, SDNPOutGlue]>; |
| |
| def SD_AArch64rshrnb : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, SDTCisInt<2>]>; |
| def AArch64rshrnb : SDNode<"AArch64ISD::RSHRNB_I", SD_AArch64rshrnb>; |
| def AArch64rshrnb_pf : PatFrags<(ops node:$rs, node:$i), |
| [(AArch64rshrnb node:$rs, node:$i), |
| (int_aarch64_sve_rshrnb node:$rs, node:$i)]>; |
| |
| def AArch64CttzElts : SDNode<"AArch64ISD::CTTZ_ELTS", SDTypeProfile<1, 1, |
| [SDTCisInt<0>, SDTCisVec<1>]>, []>; |
| |
| // Match add node and also treat an 'or' node is as an 'add' if the or'ed operands |
| // have no common bits. |
| def add_and_or_is_add : PatFrags<(ops node:$lhs, node:$rhs), |
| [(add node:$lhs, node:$rhs), (or node:$lhs, node:$rhs)],[{ |
| if (N->getOpcode() == ISD::ADD) |
| return true; |
| return CurDAG->isADDLike(SDValue(N,0)); |
| }]> { |
| let GISelPredicateCode = [{ |
| // Only handle G_ADD for now. FIXME. build capability to compute whether |
| // operands of G_OR have common bits set or not. |
| return MI.getOpcode() == TargetOpcode::G_ADD; |
| }]; |
| } |
| |
| // Match mul with enough sign-bits. Can be reduced to a smaller mul operand. |
| def smullwithsignbits : PatFrag<(ops node:$l, node:$r), (mul node:$l, node:$r), [{ |
| return CurDAG->ComputeNumSignBits(N->getOperand(0)) > 32 && |
| CurDAG->ComputeNumSignBits(N->getOperand(1)) > 32; |
| }]>; |
| |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| |
| // AArch64 Instruction Predicate Definitions. |
| // We could compute these on a per-module basis but doing so requires accessing |
| // the Function object through the <Target>Subtarget and objections were raised |
| // to that (see post-commit review comments for r301750). |
| let RecomputePerFunction = 1 in { |
| def ForCodeSize : Predicate<"shouldOptForSize(MF)">; |
| def NotForCodeSize : Predicate<"!shouldOptForSize(MF)">; |
| // Avoid generating STRQro if it is slow, unless we're optimizing for code size. |
| def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || shouldOptForSize(MF)">; |
| |
| // Register restrictions for indirect tail-calls: |
| // - If branch target enforcement is enabled, indirect calls must use x16 or |
| // x17, because these are the only registers which can target the BTI C |
| // instruction. |
| // - If PAuthLR is enabled, x16 is used in the epilogue to hold the address |
| // of the signing instruction. This can't be changed because it is used by a |
| // HINT instruction which only accepts x16. We can't load anything from the |
| // stack after this because the authentication instruction checks that SP is |
| // the same as it was at function entry, so we can't have anything on the |
| // stack. |
| |
| // BTI on, PAuthLR off: x16 or x17 |
| def TailCallX16X17 : Predicate<[{ MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() && !MF->getInfo<AArch64FunctionInfo>()->branchProtectionPAuthLR() }]>; |
| // BTI on, PAuthLR on: x17 only |
| def TailCallX17 : Predicate<[{ MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() && MF->getInfo<AArch64FunctionInfo>()->branchProtectionPAuthLR() }]>; |
| // BTI off, PAuthLR on: Any non-callee-saved register except x16 |
| def TailCallNotX16 : Predicate<[{ !MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() && MF->getInfo<AArch64FunctionInfo>()->branchProtectionPAuthLR() }]>; |
| // BTI off, PAuthLR off: Any non-callee-saved register |
| def TailCallAny : Predicate<[{ !MF->getInfo<AArch64FunctionInfo>()->branchTargetEnforcement() && !MF->getInfo<AArch64FunctionInfo>()->branchProtectionPAuthLR() }]>; |
| |
| def SLSBLRMitigation : Predicate<[{ MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>; |
| def NoSLSBLRMitigation : Predicate<[{ !MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>; |
| // Toggles patterns which aren't beneficial in GlobalISel when we aren't |
| // optimizing. This allows us to selectively use patterns without impacting |
| // SelectionDAG's behaviour. |
| // FIXME: One day there will probably be a nicer way to check for this, but |
| // today is not that day. |
| def OptimizedGISelOrOtherSelector : Predicate<"!MF->getFunction().hasOptNone() || MF->getProperties().hasProperty(MachineFunctionProperties::Property::FailedISel) || !MF->getProperties().hasProperty(MachineFunctionProperties::Property::Legalized)">; |
| } |
| |
| include "AArch64InstrFormats.td" |
| include "SVEInstrFormats.td" |
| include "SMEInstrFormats.td" |
| |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Miscellaneous instructions. |
| //===----------------------------------------------------------------------===// |
| |
| let hasSideEffects = 1, isCodeGenOnly = 1 in { |
| let Defs = [SP], Uses = [SP] in { |
| // We set Sched to empty list because we expect these instructions to simply get |
| // removed in most cases. |
| def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), |
| [(AArch64callseq_start timm:$amt1, timm:$amt2)]>, |
| Sched<[]>; |
| def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), |
| [(AArch64callseq_end timm:$amt1, timm:$amt2)]>, |
| Sched<[]>; |
| |
| } |
| |
| let Defs = [SP, NZCV], Uses = [SP] in { |
| // Probed stack allocation of a constant size, used in function prologues when |
| // stack-clash protection is enabled. |
| def PROBED_STACKALLOC : Pseudo<(outs GPR64:$scratch), |
| (ins i64imm:$stacksize, i64imm:$fixed_offset, |
| i64imm:$scalable_offset), |
| []>, |
| Sched<[]>; |
| |
| // Probed stack allocation of a variable size, used in function prologues when |
| // stack-clash protection is enabled. |
| def PROBED_STACKALLOC_VAR : Pseudo<(outs), |
| (ins GPR64sp:$target), |
| []>, |
| Sched<[]>; |
| |
| // Probed stack allocations of a variable size, used for allocas of unknown size |
| // when stack-clash protection is enabled. |
| let usesCustomInserter = 1 in |
| def PROBED_STACKALLOC_DYN : Pseudo<(outs), |
| (ins GPR64common:$target), |
| [(AArch64probedalloca GPR64common:$target)]>, |
| Sched<[]>; |
| |
| } // Defs = [SP, NZCV], Uses = [SP] in |
| } // hasSideEffects = 1, isCodeGenOnly = 1 |
| |
| let isReMaterializable = 1, isCodeGenOnly = 1 in { |
| // FIXME: The following pseudo instructions are only needed because remat |
| // cannot handle multiple instructions. When that changes, they can be |
| // removed, along with the AArch64Wrapper node. |
| |
| let AddedComplexity = 10 in |
| def LOADgot : Pseudo<(outs GPR64common:$dst), (ins i64imm:$addr), |
| [(set GPR64common:$dst, (AArch64LOADgot tglobaladdr:$addr))]>, |
| Sched<[WriteLDAdr]>; |
| |
| // The MOVaddr instruction should match only when the add is not folded |
| // into a load or store address. |
| def MOVaddr |
| : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), |
| [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi), |
| tglobaladdr:$low))]>, |
| Sched<[WriteAdrAdr]>; |
| def MOVaddrJT |
| : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), |
| [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi), |
| tjumptable:$low))]>, |
| Sched<[WriteAdrAdr]>; |
| def MOVaddrCP |
| : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), |
| [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi), |
| tconstpool:$low))]>, |
| Sched<[WriteAdrAdr]>; |
| def MOVaddrBA |
| : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), |
| [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi), |
| tblockaddress:$low))]>, |
| Sched<[WriteAdrAdr]>; |
| def MOVaddrTLS |
| : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), |
| [(set GPR64common:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi), |
| tglobaltlsaddr:$low))]>, |
| Sched<[WriteAdrAdr]>; |
| def MOVaddrEXT |
| : Pseudo<(outs GPR64common:$dst), (ins i64imm:$hi, i64imm:$low), |
| [(set GPR64common:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi), |
| texternalsym:$low))]>, |
| Sched<[WriteAdrAdr]>; |
| // Normally AArch64addlow either gets folded into a following ldr/str, |
| // or together with an adrp into MOVaddr above. For cases with TLS, it |
| // might appear without either of them, so allow lowering it into a plain |
| // add. |
| def ADDlowTLS |
| : Pseudo<(outs GPR64sp:$dst), (ins GPR64sp:$src, i64imm:$low), |
| [(set GPR64sp:$dst, (AArch64addlow GPR64sp:$src, |
| tglobaltlsaddr:$low))]>, |
| Sched<[WriteAdr]>; |
| |
| } // isReMaterializable, isCodeGenOnly |
| |
| def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr), |
| (LOADgot tglobaltlsaddr:$addr)>; |
| |
| def : Pat<(AArch64LOADgot texternalsym:$addr), |
| (LOADgot texternalsym:$addr)>; |
| |
| def : Pat<(AArch64LOADgot tconstpool:$addr), |
| (LOADgot tconstpool:$addr)>; |
| |
| // In general these get lowered into a sequence of three 4-byte instructions. |
| // 32-bit jump table destination is actually only 2 instructions since we can |
| // use the table itself as a PC-relative base. But optimization occurs after |
| // branch relaxation so be pessimistic. |
| let Size = 12, Constraints = "@earlyclobber $dst,@earlyclobber $scratch", |
| isNotDuplicable = 1 in { |
| def JumpTableDest32 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch), |
| (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>, |
| Sched<[]>; |
| def JumpTableDest16 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch), |
| (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>, |
| Sched<[]>; |
| def JumpTableDest8 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch), |
| (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>, |
| Sched<[]>; |
| } |
| |
| // A hardened but more expensive version of jump-table dispatch. |
| // This combines the target address computation (otherwise done using the |
| // JumpTableDest pseudos above) with the branch itself (otherwise done using |
| // a plain BR) in a single non-attackable sequence. |
| // |
| // We take the final entry index as an operand to allow isel freedom. This does |
| // mean that the index can be attacker-controlled. To address that, we also do |
| // limited checking of the offset, mainly ensuring it still points within the |
| // jump-table array. When it doesn't, this branches to the first entry. |
| // We might want to trap instead. |
| // |
| // This is intended for use in conjunction with ptrauth for other code pointers, |
| // to avoid signing jump-table entries and turning them into pointers. |
| // |
| // Entry index is passed in x16. Clobbers x16/x17/nzcv. |
| let isNotDuplicable = 1 in |
| def BR_JumpTable : Pseudo<(outs), (ins i32imm:$jti), []>, Sched<[]> { |
| let isBranch = 1; |
| let isTerminator = 1; |
| let isIndirectBranch = 1; |
| let isBarrier = 1; |
| let isNotDuplicable = 1; |
| let Defs = [X16,X17,NZCV]; |
| let Uses = [X16]; |
| let Size = 44; // 28 fixed + 16 variable, for table size materialization |
| } |
| |
| // Space-consuming pseudo to aid testing of placement and reachability |
| // algorithms. Immediate operand is the number of bytes this "instruction" |
| // occupies; register operands can be used to enforce dependency and constrain |
| // the scheduler. |
| let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in |
| def SPACE : Pseudo<(outs GPR64:$Rd), (ins i32imm:$size, GPR64:$Rn), |
| [(set GPR64:$Rd, (int_aarch64_space imm:$size, GPR64:$Rn))]>, |
| Sched<[]>; |
| |
| let hasSideEffects = 1, isCodeGenOnly = 1 in { |
| def SpeculationSafeValueX |
| : Pseudo<(outs GPR64:$dst), (ins GPR64:$src), []>, Sched<[]>; |
| def SpeculationSafeValueW |
| : Pseudo<(outs GPR32:$dst), (ins GPR32:$src), []>, Sched<[]>; |
| } |
| |
| // SpeculationBarrierEndBB must only be used after an unconditional control |
| // flow, i.e. after a terminator for which isBarrier is True. |
| let hasSideEffects = 1, isCodeGenOnly = 1, isTerminator = 1, isBarrier = 1 in { |
| // This gets lowered to a pair of 4-byte instructions. |
| let Size = 8 in |
| def SpeculationBarrierISBDSBEndBB |
| : Pseudo<(outs), (ins), []>, Sched<[]>; |
| // This gets lowered to a 4-byte instruction. |
| let Size = 4 in |
| def SpeculationBarrierSBEndBB |
| : Pseudo<(outs), (ins), []>, Sched<[]>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // System instructions. |
| //===----------------------------------------------------------------------===// |
| |
| def HINT : HintI<"hint">; |
| def : InstAlias<"nop", (HINT 0b000)>; |
| def : InstAlias<"yield",(HINT 0b001)>; |
| def : InstAlias<"wfe", (HINT 0b010)>; |
| def : InstAlias<"wfi", (HINT 0b011)>; |
| def : InstAlias<"sev", (HINT 0b100)>; |
| def : InstAlias<"sevl", (HINT 0b101)>; |
| def : InstAlias<"dgh", (HINT 0b110)>; |
| def : InstAlias<"esb", (HINT 0b10000)>, Requires<[HasRAS]>; |
| def : InstAlias<"csdb", (HINT 20)>; |
| // In order to be able to write readable assembly, LLVM should accept assembly |
| // inputs that use Branch Target Indentification mnemonics, even with BTI disabled. |
| // However, in order to be compatible with other assemblers (e.g. GAS), LLVM |
| // should not emit these mnemonics unless BTI is enabled. |
| def : InstAlias<"bti", (HINT 32), 0>; |
| def : InstAlias<"bti $op", (HINT btihint_op:$op), 0>; |
| def : InstAlias<"bti", (HINT 32)>, Requires<[HasBTI]>; |
| def : InstAlias<"bti $op", (HINT btihint_op:$op)>, Requires<[HasBTI]>; |
| |
| // v8.2a Statistical Profiling extension |
| def : InstAlias<"psb $op", (HINT psbhint_op:$op)>, Requires<[HasSPE]>; |
| |
| // As far as LLVM is concerned this writes to the system's exclusive monitors. |
| let mayLoad = 1, mayStore = 1 in |
| def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">; |
| |
| // NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot |
| // model patterns with sufficiently fine granularity. |
| let mayLoad = ?, mayStore = ? in { |
| def DMB : CRmSystemI<barrier_op, 0b101, "dmb", |
| [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>; |
| |
| def DSB : CRmSystemI<barrier_op, 0b100, "dsb", |
| [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>; |
| |
| def ISB : CRmSystemI<barrier_op, 0b110, "isb", |
| [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>; |
| |
| def TSB : CRmSystemI<barrier_op, 0b010, "tsb", []> { |
| let CRm = 0b0010; |
| let Inst{12} = 0; |
| let Predicates = [HasTRACEV8_4]; |
| } |
| |
| def DSBnXS : CRmSystemI<barrier_nxs_op, 0b001, "dsb"> { |
| let CRm{1-0} = 0b11; |
| let Inst{9-8} = 0b10; |
| let Predicates = [HasXS]; |
| } |
| |
| let Predicates = [HasWFxT] in { |
| def WFET : RegInputSystemI<0b0000, 0b000, "wfet">; |
| def WFIT : RegInputSystemI<0b0000, 0b001, "wfit">; |
| } |
| |
| // Branch Record Buffer two-word mnemonic instructions |
| class BRBEI<bits<3> op2, string keyword> |
| : SimpleSystemI<0, (ins), "brb", keyword>, Sched<[WriteSys]> { |
| let Inst{31-8} = 0b110101010000100101110010; |
| let Inst{7-5} = op2; |
| let Predicates = [HasBRBE]; |
| } |
| def BRB_IALL: BRBEI<0b100, "\tiall">; |
| def BRB_INJ: BRBEI<0b101, "\tinj">; |
| |
| } |
| |
| // Allow uppercase and lowercase keyword arguments for BRB IALL and BRB INJ |
| def : TokenAlias<"INJ", "inj">; |
| def : TokenAlias<"IALL", "iall">; |
| |
| |
| // ARMv9.4-A Guarded Control Stack |
| class GCSNoOp<bits<3> op2, string mnemonic> |
| : SimpleSystemI<0, (ins), mnemonic, "">, Sched<[]> { |
| let Inst{20-8} = 0b0100001110111; |
| let Inst{7-5} = op2; |
| let Predicates = [HasGCS]; |
| } |
| def GCSPUSHX : GCSNoOp<0b100, "gcspushx">; |
| def GCSPOPCX : GCSNoOp<0b101, "gcspopcx">; |
| def GCSPOPX : GCSNoOp<0b110, "gcspopx">; |
| |
| class GCSRtIn<bits<3> op1, bits<3> op2, string mnemonic, |
| list<dag> pattern = []> |
| : RtSystemI<0, (outs), (ins GPR64:$Rt), mnemonic, "\t$Rt", pattern> { |
| let Inst{20-19} = 0b01; |
| let Inst{18-16} = op1; |
| let Inst{15-8} = 0b01110111; |
| let Inst{7-5} = op2; |
| let Predicates = [HasGCS]; |
| let hasSideEffects = 1; |
| } |
| |
| let mayStore = 1, mayLoad = 1 in |
| def GCSSS1 : GCSRtIn<0b011, 0b010, "gcsss1">; |
| let mayStore = 1 in |
| def GCSPUSHM : GCSRtIn<0b011, 0b000, "gcspushm">; |
| |
| class GCSRtOut<bits<3> op1, bits<3> op2, string mnemonic, |
| list<dag> pattern = []> |
| : RtSystemI<1, (outs GPR64:$Rt), (ins GPR64:$src), mnemonic, "\t$Rt", pattern> { |
| let Inst{20-19} = 0b01; |
| let Inst{18-16} = op1; |
| let Inst{15-8} = 0b01110111; |
| let Inst{7-5} = op2; |
| let Predicates = [HasGCS]; |
| let hasSideEffects = 1; |
| // The input register is unchanged when GCS is disabled, so we need it as |
| // both an input and output operand. |
| let Constraints = "$src = $Rt"; |
| } |
| |
| let mayStore = 1, mayLoad = 1 in |
| def GCSSS2 : GCSRtOut<0b011, 0b011, "gcsss2">; |
| // FIXME: mayStore = 1 only needed to match the intrinsic definition |
| let mayStore = 1, mayLoad = 1 in |
| def GCSPOPM : GCSRtOut<0b011, 0b001, "gcspopm", |
| [(set GPR64:$Rt, (int_aarch64_gcspopm GPR64:$src))]>; |
| def GCSPOPM_NoOp : InstAlias<"gcspopm", (GCSPOPM XZR)>, Requires<[HasGCS]>; // Rt defaults to XZR if absent |
| |
| def GCSB_DSYNC_disable : InstAlias<"gcsb\tdsync", (HINT 19), 0>; |
| def GCSB_DSYNC : InstAlias<"gcsb\tdsync", (HINT 19), 1>, Requires<[HasGCS]>; |
| |
| def : TokenAlias<"DSYNC", "dsync">; |
| |
| let Uses = [X16], Defs = [X16], CRm = 0b0101 in { |
| def CHKFEAT : SystemNoOperands<0b000, "hint\t#40", |
| [(set X16, (int_aarch64_chkfeat X16))]>; |
| } |
| def : InstAlias<"chkfeat\tx16", (CHKFEAT), 0>; |
| def : InstAlias<"chkfeat\tx16", (CHKFEAT), 1>, Requires<[HasCHK]>; |
| |
| class GCSSt<string mnemonic, bits<3> op> |
| : I<(outs), (ins GPR64:$Rt, GPR64sp:$Rn), mnemonic, "\t$Rt, [$Rn]", "", []>, Sched<[]> { |
| bits<5> Rt; |
| bits<5> Rn; |
| let Inst{31-15} = 0b11011001000111110; |
| let Inst{14-12} = op; |
| let Inst{11-10} = 0b11; |
| let Inst{9-5} = Rn; |
| let Inst{4-0} = Rt; |
| let Predicates = [HasGCS]; |
| } |
| def GCSSTR : GCSSt<"gcsstr", 0b000>; |
| def GCSSTTR : GCSSt<"gcssttr", 0b001>; |
| |
| // ARMv8.2-A Dot Product |
| let Predicates = [HasDotProd] in { |
| defm SDOT : SIMDThreeSameVectorDot<0, 0, "sdot", AArch64sdot>; |
| defm UDOT : SIMDThreeSameVectorDot<1, 0, "udot", AArch64udot>; |
| defm SDOTlane : SIMDThreeSameVectorDotIndex<0, 0, 0b10, "sdot", AArch64sdot>; |
| defm UDOTlane : SIMDThreeSameVectorDotIndex<1, 0, 0b10, "udot", AArch64udot>; |
| } |
| |
| // ARMv8.6-A BFloat |
| let Predicates = [HasNEON, HasBF16] in { |
| defm BFDOT : SIMDThreeSameVectorBFDot<1, "bfdot">; |
| defm BF16DOTlane : SIMDThreeSameVectorBF16DotI<0, "bfdot">; |
| def BFMMLA : SIMDThreeSameVectorBF16MatrixMul<"bfmmla">; |
| def BFMLALB : SIMDBF16MLAL<0, "bfmlalb", int_aarch64_neon_bfmlalb>; |
| def BFMLALT : SIMDBF16MLAL<1, "bfmlalt", int_aarch64_neon_bfmlalt>; |
| def BFMLALBIdx : SIMDBF16MLALIndex<0, "bfmlalb", int_aarch64_neon_bfmlalb>; |
| def BFMLALTIdx : SIMDBF16MLALIndex<1, "bfmlalt", int_aarch64_neon_bfmlalt>; |
| def BFCVTN : SIMD_BFCVTN; |
| def BFCVTN2 : SIMD_BFCVTN2; |
| |
| def : Pat<(v4bf16 (any_fpround (v4f32 V128:$Rn))), |
| (EXTRACT_SUBREG (BFCVTN V128:$Rn), dsub)>; |
| |
| // Vector-scalar BFDOT: |
| // The second source operand of the 64-bit variant of BF16DOTlane is a 128-bit |
| // register (the instruction uses a single 32-bit lane from it), so the pattern |
| // is a bit tricky. |
| def : Pat<(v2f32 (int_aarch64_neon_bfdot |
| (v2f32 V64:$Rd), (v4bf16 V64:$Rn), |
| (v4bf16 (bitconvert |
| (v2i32 (AArch64duplane32 |
| (v4i32 (bitconvert |
| (v8bf16 (insert_subvector undef, |
| (v4bf16 V64:$Rm), |
| (i64 0))))), |
| VectorIndexS:$idx)))))), |
| (BF16DOTlanev4bf16 (v2f32 V64:$Rd), (v4bf16 V64:$Rn), |
| (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), |
| VectorIndexS:$idx)>; |
| } |
| |
| let Predicates = [HasNEONandIsStreamingSafe, HasBF16] in { |
| def BFCVT : BF16ToSinglePrecision<"bfcvt">; |
| // Round FP32 to BF16. |
| def : Pat<(bf16 (any_fpround (f32 FPR32:$Rn))), (BFCVT $Rn)>; |
| } |
| |
| // ARMv8.6A AArch64 matrix multiplication |
| let Predicates = [HasMatMulInt8] in { |
| def SMMLA : SIMDThreeSameVectorMatMul<0, 0, "smmla", int_aarch64_neon_smmla>; |
| def UMMLA : SIMDThreeSameVectorMatMul<0, 1, "ummla", int_aarch64_neon_ummla>; |
| def USMMLA : SIMDThreeSameVectorMatMul<1, 0, "usmmla", int_aarch64_neon_usmmla>; |
| defm USDOT : SIMDThreeSameVectorDot<0, 1, "usdot", int_aarch64_neon_usdot>; |
| defm USDOTlane : SIMDThreeSameVectorDotIndex<0, 1, 0b10, "usdot", int_aarch64_neon_usdot>; |
| |
| // sudot lane has a pattern where usdot is expected (there is no sudot). |
| // The second operand is used in the dup operation to repeat the indexed |
| // element. |
| class BaseSIMDSUDOTIndex<bit Q, string dst_kind, string lhs_kind, |
| string rhs_kind, RegisterOperand RegType, |
| ValueType AccumType, ValueType InputType> |
| : BaseSIMDThreeSameVectorIndexS<Q, 0, 0b00, 0b1111, "sudot", dst_kind, |
| lhs_kind, rhs_kind, RegType, AccumType, |
| InputType, null_frag> { |
| let Pattern = [(set (AccumType RegType:$dst), |
| (AccumType (int_aarch64_neon_usdot (AccumType RegType:$Rd), |
| (InputType (bitconvert (AccumType |
| (AArch64duplane32 (v4i32 V128:$Rm), |
| VectorIndexS:$idx)))), |
| (InputType RegType:$Rn))))]; |
| } |
| |
| multiclass SIMDSUDOTIndex { |
| def v8i8 : BaseSIMDSUDOTIndex<0, ".2s", ".8b", ".4b", V64, v2i32, v8i8>; |
| def v16i8 : BaseSIMDSUDOTIndex<1, ".4s", ".16b", ".4b", V128, v4i32, v16i8>; |
| } |
| |
| defm SUDOTlane : SIMDSUDOTIndex; |
| |
| } |
| |
| // ARMv8.2-A FP16 Fused Multiply-Add Long |
| let Predicates = [HasNEON, HasFP16FML] in { |
| defm FMLAL : SIMDThreeSameVectorFML<0, 1, 0b001, "fmlal", int_aarch64_neon_fmlal>; |
| defm FMLSL : SIMDThreeSameVectorFML<0, 1, 0b101, "fmlsl", int_aarch64_neon_fmlsl>; |
| defm FMLAL2 : SIMDThreeSameVectorFML<1, 0, 0b001, "fmlal2", int_aarch64_neon_fmlal2>; |
| defm FMLSL2 : SIMDThreeSameVectorFML<1, 0, 0b101, "fmlsl2", int_aarch64_neon_fmlsl2>; |
| defm FMLALlane : SIMDThreeSameVectorFMLIndex<0, 0b0000, "fmlal", int_aarch64_neon_fmlal>; |
| defm FMLSLlane : SIMDThreeSameVectorFMLIndex<0, 0b0100, "fmlsl", int_aarch64_neon_fmlsl>; |
| defm FMLAL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1000, "fmlal2", int_aarch64_neon_fmlal2>; |
| defm FMLSL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1100, "fmlsl2", int_aarch64_neon_fmlsl2>; |
| } |
| |
| // Armv8.2-A Crypto extensions |
| let Predicates = [HasSHA3] in { |
| def SHA512H : CryptoRRRTied<0b0, 0b00, "sha512h">; |
| def SHA512H2 : CryptoRRRTied<0b0, 0b01, "sha512h2">; |
| def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">; |
| def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">; |
| def RAX1 : CryptoRRR_2D<0b0,0b11, "rax1">; |
| def EOR3 : CryptoRRRR_16B<0b00, "eor3">; |
| def BCAX : CryptoRRRR_16B<0b01, "bcax">; |
| def XAR : CryptoRRRi6<"xar">; |
| |
| class SHA3_pattern<Instruction INST, Intrinsic OpNode, ValueType VecTy> |
| : Pat<(VecTy (OpNode (VecTy V128:$Vd), (VecTy V128:$Vn), (VecTy V128:$Vm))), |
| (INST (VecTy V128:$Vd), (VecTy V128:$Vn), (VecTy V128:$Vm))>; |
| |
| def : Pat<(v2i64 (int_aarch64_crypto_sha512su0 (v2i64 V128:$Vn), (v2i64 V128:$Vm))), |
| (SHA512SU0 (v2i64 V128:$Vn), (v2i64 V128:$Vm))>; |
| |
| def : SHA3_pattern<SHA512H, int_aarch64_crypto_sha512h, v2i64>; |
| def : SHA3_pattern<SHA512H2, int_aarch64_crypto_sha512h2, v2i64>; |
| def : SHA3_pattern<SHA512SU1, int_aarch64_crypto_sha512su1, v2i64>; |
| |
| def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v16i8>; |
| def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v8i16>; |
| def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v4i32>; |
| def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3u, v2i64>; |
| |
| class EOR3_pattern<ValueType VecTy> |
| : Pat<(xor (xor (VecTy V128:$Vn), (VecTy V128:$Vm)), (VecTy V128:$Va)), |
| (EOR3 (VecTy V128:$Vn), (VecTy V128:$Vm), (VecTy V128:$Va))>; |
| |
| def : EOR3_pattern<v16i8>; |
| def : EOR3_pattern<v8i16>; |
| def : EOR3_pattern<v4i32>; |
| def : EOR3_pattern<v2i64>; |
| |
| class BCAX_pattern<ValueType VecTy> |
| : Pat<(xor (VecTy V128:$Vn), (and (VecTy V128:$Vm), (vnot (VecTy V128:$Va)))), |
| (BCAX (VecTy V128:$Vn), (VecTy V128:$Vm), (VecTy V128:$Va))>; |
| |
| def : BCAX_pattern<v16i8>; |
| def : BCAX_pattern<v8i16>; |
| def : BCAX_pattern<v4i32>; |
| def : BCAX_pattern<v2i64>; |
| |
| def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v16i8>; |
| def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v8i16>; |
| def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v4i32>; |
| def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxu, v2i64>; |
| |
| def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v16i8>; |
| def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v8i16>; |
| def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v4i32>; |
| def : SHA3_pattern<EOR3, int_aarch64_crypto_eor3s, v2i64>; |
| |
| def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v16i8>; |
| def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v8i16>; |
| def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v4i32>; |
| def : SHA3_pattern<BCAX, int_aarch64_crypto_bcaxs, v2i64>; |
| |
| def : Pat<(v2i64 (int_aarch64_crypto_rax1 (v2i64 V128:$Vn), (v2i64 V128:$Vm))), |
| (RAX1 (v2i64 V128:$Vn), (v2i64 V128:$Vm))>; |
| |
| def : Pat<(v2i64 (int_aarch64_crypto_xar (v2i64 V128:$Vn), (v2i64 V128:$Vm), (i64 timm0_63:$imm))), |
| (XAR (v2i64 V128:$Vn), (v2i64 V128:$Vm), (timm0_63:$imm))>; |
| |
| def : Pat<(xor (v2i64 V128:$Vn), (or (AArch64vlshr (v2i64 V128:$Vm), (i32 63)), (AArch64vshl (v2i64 V128:$Vm), (i32 1)))), |
| (RAX1 (v2i64 V128:$Vn), (v2i64 V128:$Vm))>; |
| |
| } // HasSHA3 |
| |
| let Predicates = [HasSM4] in { |
| def SM3TT1A : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">; |
| def SM3TT1B : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">; |
| def SM3TT2A : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">; |
| def SM3TT2B : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">; |
| def SM3SS1 : CryptoRRRR_4S<0b10, "sm3ss1">; |
| def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">; |
| def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">; |
| def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">; |
| def SM4E : CryptoRRTied_4S<0b0, 0b01, "sm4e">; |
| |
| def : Pat<(v4i32 (int_aarch64_crypto_sm3ss1 (v4i32 V128:$Vn), (v4i32 V128:$Vm), (v4i32 V128:$Va))), |
| (SM3SS1 (v4i32 V128:$Vn), (v4i32 V128:$Vm), (v4i32 V128:$Va))>; |
| |
| class SM3PARTW_pattern<Instruction INST, Intrinsic OpNode> |
| : Pat<(v4i32 (OpNode (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm))), |
| (INST (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm))>; |
| |
| class SM3TT_pattern<Instruction INST, Intrinsic OpNode> |
| : Pat<(v4i32 (OpNode (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm), (i64 VectorIndexS_timm:$imm) )), |
| (INST (v4i32 V128:$Vd), (v4i32 V128:$Vn), (v4i32 V128:$Vm), (VectorIndexS_timm:$imm))>; |
| |
| class SM4_pattern<Instruction INST, Intrinsic OpNode> |
| : Pat<(v4i32 (OpNode (v4i32 V128:$Vn), (v4i32 V128:$Vm))), |
| (INST (v4i32 V128:$Vn), (v4i32 V128:$Vm))>; |
| |
| def : SM3PARTW_pattern<SM3PARTW1, int_aarch64_crypto_sm3partw1>; |
| def : SM3PARTW_pattern<SM3PARTW2, int_aarch64_crypto_sm3partw2>; |
| |
| def : SM3TT_pattern<SM3TT1A, int_aarch64_crypto_sm3tt1a>; |
| def : SM3TT_pattern<SM3TT1B, int_aarch64_crypto_sm3tt1b>; |
| def : SM3TT_pattern<SM3TT2A, int_aarch64_crypto_sm3tt2a>; |
| def : SM3TT_pattern<SM3TT2B, int_aarch64_crypto_sm3tt2b>; |
| |
| def : SM4_pattern<SM4ENCKEY, int_aarch64_crypto_sm4ekey>; |
| def : SM4_pattern<SM4E, int_aarch64_crypto_sm4e>; |
| } // HasSM4 |
| |
| let Predicates = [HasRCPC] in { |
| // v8.3 Release Consistent Processor Consistent support, optional in v8.2. |
| def LDAPRB : RCPCLoad<0b00, "ldaprb", GPR32>; |
| def LDAPRH : RCPCLoad<0b01, "ldaprh", GPR32>; |
| def LDAPRW : RCPCLoad<0b10, "ldapr", GPR32>; |
| def LDAPRX : RCPCLoad<0b11, "ldapr", GPR64>; |
| } |
| |
| // v8.3a complex add and multiply-accumulate. No predicate here, that is done |
| // inside the multiclass as the FP16 versions need different predicates. |
| defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop, |
| "fcmla", null_frag>; |
| defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd, |
| "fcadd", null_frag>; |
| defm FCMLA : SIMDIndexedTiedComplexHSD<0, 1, complexrotateop, "fcmla">; |
| |
| let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in { |
| def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot90 (v4f16 V64:$Rn), (v4f16 V64:$Rm))), |
| (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 0))>; |
| def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot270 (v4f16 V64:$Rn), (v4f16 V64:$Rm))), |
| (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 1))>; |
| def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot90 (v8f16 V128:$Rn), (v8f16 V128:$Rm))), |
| (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 0))>; |
| def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot270 (v8f16 V128:$Rn), (v8f16 V128:$Rm))), |
| (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 1))>; |
| } |
| |
| let Predicates = [HasComplxNum, HasNEON] in { |
| def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot90 (v2f32 V64:$Rn), (v2f32 V64:$Rm))), |
| (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 0))>; |
| def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot270 (v2f32 V64:$Rn), (v2f32 V64:$Rm))), |
| (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 1))>; |
| foreach Ty = [v4f32, v2f64] in { |
| def : Pat<(Ty (int_aarch64_neon_vcadd_rot90 (Ty V128:$Rn), (Ty V128:$Rm))), |
| (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 0))>; |
| def : Pat<(Ty (int_aarch64_neon_vcadd_rot270 (Ty V128:$Rn), (Ty V128:$Rm))), |
| (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 1))>; |
| } |
| } |
| |
| multiclass FCMLA_PATS<ValueType ty, DAGOperand Reg> { |
| def : Pat<(ty (int_aarch64_neon_vcmla_rot0 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), |
| (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 0)>; |
| def : Pat<(ty (int_aarch64_neon_vcmla_rot90 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), |
| (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 1)>; |
| def : Pat<(ty (int_aarch64_neon_vcmla_rot180 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), |
| (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 2)>; |
| def : Pat<(ty (int_aarch64_neon_vcmla_rot270 (ty Reg:$Rd), (ty Reg:$Rn), (ty Reg:$Rm))), |
| (!cast<Instruction>("FCMLA" # ty) $Rd, $Rn, $Rm, 3)>; |
| } |
| |
| multiclass FCMLA_LANE_PATS<ValueType ty, DAGOperand Reg, dag RHSDup> { |
| def : Pat<(ty (int_aarch64_neon_vcmla_rot0 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), |
| (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 0)>; |
| def : Pat<(ty (int_aarch64_neon_vcmla_rot90 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), |
| (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 1)>; |
| def : Pat<(ty (int_aarch64_neon_vcmla_rot180 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), |
| (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 2)>; |
| def : Pat<(ty (int_aarch64_neon_vcmla_rot270 (ty Reg:$Rd), (ty Reg:$Rn), RHSDup)), |
| (!cast<Instruction>("FCMLA" # ty # "_indexed") $Rd, $Rn, $Rm, VectorIndexS:$idx, 3)>; |
| } |
| |
| |
| let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in { |
| defm : FCMLA_PATS<v4f16, V64>; |
| defm : FCMLA_PATS<v8f16, V128>; |
| |
| defm : FCMLA_LANE_PATS<v4f16, V64, |
| (v4f16 (bitconvert (v2i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexD:$idx))))>; |
| defm : FCMLA_LANE_PATS<v8f16, V128, |
| (v8f16 (bitconvert (v4i32 (AArch64duplane32 (v4i32 V128:$Rm), VectorIndexS:$idx))))>; |
| } |
| let Predicates = [HasComplxNum, HasNEON] in { |
| defm : FCMLA_PATS<v2f32, V64>; |
| defm : FCMLA_PATS<v4f32, V128>; |
| defm : FCMLA_PATS<v2f64, V128>; |
| |
| defm : FCMLA_LANE_PATS<v4f32, V128, |
| (v4f32 (bitconvert (v2i64 (AArch64duplane64 (v2i64 V128:$Rm), VectorIndexD:$idx))))>; |
| } |
| |
| // v8.3a Pointer Authentication |
| // These instructions inhabit part of the hint space and so can be used for |
| // armv8 targets. Keeping the old HINT mnemonic when compiling without PA is |
| // important for compatibility with other assemblers (e.g. GAS) when building |
| // software compatible with both CPUs that do or don't implement PA. |
| let Uses = [LR], Defs = [LR] in { |
| def PACIAZ : SystemNoOperands<0b000, "hint\t#24">; |
| def PACIBZ : SystemNoOperands<0b010, "hint\t#26">; |
| let isAuthenticated = 1 in { |
| def AUTIAZ : SystemNoOperands<0b100, "hint\t#28">; |
| def AUTIBZ : SystemNoOperands<0b110, "hint\t#30">; |
| } |
| } |
| let Uses = [LR, SP], Defs = [LR] in { |
| def PACIASP : SystemNoOperands<0b001, "hint\t#25">; |
| def PACIBSP : SystemNoOperands<0b011, "hint\t#27">; |
| let isAuthenticated = 1 in { |
| def AUTIASP : SystemNoOperands<0b101, "hint\t#29">; |
| def AUTIBSP : SystemNoOperands<0b111, "hint\t#31">; |
| } |
| } |
| let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in { |
| def PACIA1716 : SystemNoOperands<0b000, "hint\t#8">; |
| def PACIB1716 : SystemNoOperands<0b010, "hint\t#10">; |
| let isAuthenticated = 1 in { |
| def AUTIA1716 : SystemNoOperands<0b100, "hint\t#12">; |
| def AUTIB1716 : SystemNoOperands<0b110, "hint\t#14">; |
| } |
| } |
| |
| let Uses = [LR], Defs = [LR], CRm = 0b0000 in { |
| def XPACLRI : SystemNoOperands<0b111, "hint\t#7">; |
| } |
| |
| // In order to be able to write readable assembly, LLVM should accept assembly |
| // inputs that use pointer authentication mnemonics, even with PA disabled. |
| // However, in order to be compatible with other assemblers (e.g. GAS), LLVM |
| // should not emit these mnemonics unless PA is enabled. |
| def : InstAlias<"paciaz", (PACIAZ), 0>; |
| def : InstAlias<"pacibz", (PACIBZ), 0>; |
| def : InstAlias<"autiaz", (AUTIAZ), 0>; |
| def : InstAlias<"autibz", (AUTIBZ), 0>; |
| def : InstAlias<"paciasp", (PACIASP), 0>; |
| def : InstAlias<"pacibsp", (PACIBSP), 0>; |
| def : InstAlias<"autiasp", (AUTIASP), 0>; |
| def : InstAlias<"autibsp", (AUTIBSP), 0>; |
| def : InstAlias<"pacia1716", (PACIA1716), 0>; |
| def : InstAlias<"pacib1716", (PACIB1716), 0>; |
| def : InstAlias<"autia1716", (AUTIA1716), 0>; |
| def : InstAlias<"autib1716", (AUTIB1716), 0>; |
| def : InstAlias<"xpaclri", (XPACLRI), 0>; |
| |
| // Pseudos |
| |
| let Uses = [LR, SP], Defs = [LR] in { |
| // Insertion point of LR signing code. |
| def PAUTH_PROLOGUE : Pseudo<(outs), (ins), []>, Sched<[]>; |
| // Insertion point of LR authentication code. |
| // The RET terminator of the containing machine basic block may be replaced |
| // with a combined RETA(A|B) instruction when rewriting this Pseudo. |
| def PAUTH_EPILOGUE : Pseudo<(outs), (ins), []>, Sched<[]>; |
| } |
| |
| def PAUTH_BLEND : Pseudo<(outs GPR64:$disc), |
| (ins GPR64:$addr_disc, i32imm:$int_disc), []>, Sched<[]>; |
| |
| // These pointer authentication instructions require armv8.3a |
| let Predicates = [HasPAuth] in { |
| |
| // When PA is enabled, a better mnemonic should be emitted. |
| def : InstAlias<"paciaz", (PACIAZ), 1>; |
| def : InstAlias<"pacibz", (PACIBZ), 1>; |
| def : InstAlias<"autiaz", (AUTIAZ), 1>; |
| def : InstAlias<"autibz", (AUTIBZ), 1>; |
| def : InstAlias<"paciasp", (PACIASP), 1>; |
| def : InstAlias<"pacibsp", (PACIBSP), 1>; |
| def : InstAlias<"autiasp", (AUTIASP), 1>; |
| def : InstAlias<"autibsp", (AUTIBSP), 1>; |
| def : InstAlias<"pacia1716", (PACIA1716), 1>; |
| def : InstAlias<"pacib1716", (PACIB1716), 1>; |
| def : InstAlias<"autia1716", (AUTIA1716), 1>; |
| def : InstAlias<"autib1716", (AUTIB1716), 1>; |
| def : InstAlias<"xpaclri", (XPACLRI), 1>; |
| |
| multiclass SignAuth<bits<3> prefix, bits<3> prefix_z, string asm, |
| SDPatternOperator op> { |
| def IA : SignAuthOneData<prefix, 0b00, !strconcat(asm, "ia"), op>; |
| def IB : SignAuthOneData<prefix, 0b01, !strconcat(asm, "ib"), op>; |
| def DA : SignAuthOneData<prefix, 0b10, !strconcat(asm, "da"), op>; |
| def DB : SignAuthOneData<prefix, 0b11, !strconcat(asm, "db"), op>; |
| def IZA : SignAuthZero<prefix_z, 0b00, !strconcat(asm, "iza"), op>; |
| def DZA : SignAuthZero<prefix_z, 0b10, !strconcat(asm, "dza"), op>; |
| def IZB : SignAuthZero<prefix_z, 0b01, !strconcat(asm, "izb"), op>; |
| def DZB : SignAuthZero<prefix_z, 0b11, !strconcat(asm, "dzb"), op>; |
| } |
| |
| defm PAC : SignAuth<0b000, 0b010, "pac", int_ptrauth_sign>; |
| defm AUT : SignAuth<0b001, 0b011, "aut", null_frag>; |
| |
| def XPACI : ClearAuth<0, "xpaci">; |
| def : Pat<(int_ptrauth_strip GPR64:$Rd, 0), (XPACI GPR64:$Rd)>; |
| def : Pat<(int_ptrauth_strip GPR64:$Rd, 1), (XPACI GPR64:$Rd)>; |
| |
| def XPACD : ClearAuth<1, "xpacd">; |
| def : Pat<(int_ptrauth_strip GPR64:$Rd, 2), (XPACD GPR64:$Rd)>; |
| def : Pat<(int_ptrauth_strip GPR64:$Rd, 3), (XPACD GPR64:$Rd)>; |
| |
| def PACGA : SignAuthTwoOperand<0b1100, "pacga", int_ptrauth_sign_generic>; |
| |
| // Combined Instructions |
| let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { |
| def BRAA : AuthBranchTwoOperands<0, 0, "braa">; |
| def BRAB : AuthBranchTwoOperands<0, 1, "brab">; |
| } |
| let isCall = 1, Defs = [LR], Uses = [SP] in { |
| def BLRAA : AuthBranchTwoOperands<1, 0, "blraa">; |
| def BLRAB : AuthBranchTwoOperands<1, 1, "blrab">; |
| } |
| |
| let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { |
| def BRAAZ : AuthOneOperand<0b000, 0, "braaz">; |
| def BRABZ : AuthOneOperand<0b000, 1, "brabz">; |
| } |
| let isCall = 1, Defs = [LR], Uses = [SP] in { |
| def BLRAAZ : AuthOneOperand<0b001, 0, "blraaz">; |
| def BLRABZ : AuthOneOperand<0b001, 1, "blrabz">; |
| } |
| |
| // BLRA pseudo, a generalized version of BLRAA/BLRAB/Z. |
| // This directly manipulates x16/x17 to materialize the discriminator. |
| // x16/x17 are generally used as the safe registers for sensitive ptrauth |
| // operations (such as raw address manipulation or discriminator |
| // materialization here), in part because they're handled in a safer way by |
| // the kernel, notably on Darwin. |
| def BLRA : Pseudo<(outs), (ins GPR64noip:$Rn, i32imm:$Key, i64imm:$Disc, |
| GPR64noip:$AddrDisc), |
| [(AArch64authcall GPR64noip:$Rn, timm:$Key, timm:$Disc, |
| GPR64noip:$AddrDisc)]>, Sched<[]> { |
| let isCodeGenOnly = 1; |
| let hasSideEffects = 1; |
| let mayStore = 0; |
| let mayLoad = 0; |
| let isCall = 1; |
| let Size = 12; // 4 fixed + 8 variable, to compute discriminator. |
| let Defs = [X17,LR]; |
| let Uses = [SP]; |
| } |
| |
| def BLRA_RVMARKER : Pseudo< |
| (outs), (ins i64imm:$rvfunc, GPR64noip:$Rn, i32imm:$Key, i64imm:$Disc, |
| GPR64noip:$AddrDisc), |
| [(AArch64authcall_rvmarker tglobaladdr:$rvfunc, |
| GPR64noip:$Rn, timm:$Key, timm:$Disc, |
| GPR64noip:$AddrDisc)]>, Sched<[]> { |
| let isCodeGenOnly = 1; |
| let isCall = 1; |
| let Defs = [X17,LR]; |
| let Uses = [SP]; |
| } |
| |
| // BRA pseudo, generalized version of BRAA/BRAB/Z. |
| // This directly manipulates x16/x17, which are the only registers the OS |
| // guarantees are safe to use for sensitive operations. |
| def BRA : Pseudo<(outs), (ins GPR64noip:$Rn, i32imm:$Key, i64imm:$Disc, |
| GPR64noip:$AddrDisc), []>, Sched<[]> { |
| let isCodeGenOnly = 1; |
| let hasNoSchedulingInfo = 1; |
| let hasSideEffects = 1; |
| let mayStore = 0; |
| let mayLoad = 0; |
| let isBranch = 1; |
| let isTerminator = 1; |
| let isBarrier = 1; |
| let isIndirectBranch = 1; |
| let Size = 12; // 4 fixed + 8 variable, to compute discriminator. |
| let Defs = [X17]; |
| } |
| |
| let isReturn = 1, isTerminator = 1, isBarrier = 1 in { |
| def RETAA : AuthReturn<0b010, 0, "retaa">; |
| def RETAB : AuthReturn<0b010, 1, "retab">; |
| def ERETAA : AuthReturn<0b100, 0, "eretaa">; |
| def ERETAB : AuthReturn<0b100, 1, "eretab">; |
| } |
| |
| defm LDRAA : AuthLoad<0, "ldraa", simm10Scaled>; |
| defm LDRAB : AuthLoad<1, "ldrab", simm10Scaled>; |
| |
| // AUT pseudo. |
| // This directly manipulates x16/x17, which are the only registers the OS |
| // guarantees are safe to use for sensitive operations. |
| def AUT : Pseudo<(outs), (ins i32imm:$Key, i64imm:$Disc, GPR64noip:$AddrDisc), |
| []>, Sched<[WriteI, ReadI]> { |
| let isCodeGenOnly = 1; |
| let hasSideEffects = 1; |
| let mayStore = 0; |
| let mayLoad = 0; |
| let Size = 32; |
| let Defs = [X16,X17,NZCV]; |
| let Uses = [X16]; |
| } |
| |
| // AUT and re-PAC a value, using different keys/data. |
| // This directly manipulates x16/x17, which are the only registers the OS |
| // guarantees are safe to use for sensitive operations. |
| def AUTPAC |
| : Pseudo<(outs), |
| (ins i32imm:$AUTKey, i64imm:$AUTDisc, GPR64noip:$AUTAddrDisc, |
| i32imm:$PACKey, i64imm:$PACDisc, GPR64noip:$PACAddrDisc), |
| []>, Sched<[WriteI, ReadI]> { |
| let isCodeGenOnly = 1; |
| let hasSideEffects = 1; |
| let mayStore = 0; |
| let mayLoad = 0; |
| let Size = 48; |
| let Defs = [X16,X17,NZCV]; |
| let Uses = [X16]; |
| } |
| |
| // Materialize a signed global address, with adrp+add and PAC. |
| def MOVaddrPAC : Pseudo<(outs), |
| (ins i64imm:$Addr, i32imm:$Key, |
| GPR64noip:$AddrDisc, i64imm:$Disc), []>, |
| Sched<[WriteI, ReadI]> { |
| let isReMaterializable = 1; |
| let isCodeGenOnly = 1; |
| let Size = 40; // 12 fixed + 28 variable, for pointer offset, and discriminator |
| let Defs = [X16,X17]; |
| } |
| |
| // Materialize a signed global address, using a GOT load and PAC. |
| def LOADgotPAC : Pseudo<(outs), |
| (ins i64imm:$Addr, i32imm:$Key, |
| GPR64noip:$AddrDisc, i64imm:$Disc), []>, |
| Sched<[WriteI, ReadI]> { |
| let isReMaterializable = 1; |
| let isCodeGenOnly = 1; |
| let Size = 40; // 12 fixed + 28 variable, for pointer offset, and discriminator |
| let Defs = [X16,X17]; |
| } |
| |
| // Load a signed global address from a special $auth_ptr$ stub slot. |
| def LOADauthptrstatic : Pseudo<(outs GPR64:$dst), |
| (ins i64imm:$Addr, i32imm:$Key, |
| i64imm:$Disc), []>, |
| Sched<[WriteI, ReadI]> { |
| let isReMaterializable = 1; |
| let isCodeGenOnly = 1; |
| let Size = 8; |
| } |
| |
| // Size 16: 4 fixed + 8 variable, to compute discriminator. |
| let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Size = 16, |
| Uses = [SP] in { |
| def AUTH_TCRETURN |
| : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff, i32imm:$Key, |
| i64imm:$Disc, tcGPR64:$AddrDisc), |
| []>, Sched<[WriteBrReg]>; |
| def AUTH_TCRETURN_BTI |
| : Pseudo<(outs), (ins tcGPRx16x17:$dst, i32imm:$FPDiff, i32imm:$Key, |
| i64imm:$Disc, tcGPR64:$AddrDisc), |
| []>, Sched<[WriteBrReg]>; |
| } |
| |
| let Predicates = [TailCallAny] in |
| def : Pat<(AArch64authtcret tcGPR64:$dst, (i32 timm:$FPDiff), (i32 timm:$Key), |
| (i64 timm:$Disc), tcGPR64:$AddrDisc), |
| (AUTH_TCRETURN tcGPR64:$dst, imm:$FPDiff, imm:$Key, imm:$Disc, |
| tcGPR64:$AddrDisc)>; |
| |
| let Predicates = [TailCallX16X17] in |
| def : Pat<(AArch64authtcret tcGPRx16x17:$dst, (i32 timm:$FPDiff), |
| (i32 timm:$Key), (i64 timm:$Disc), |
| tcGPR64:$AddrDisc), |
| (AUTH_TCRETURN_BTI tcGPRx16x17:$dst, imm:$FPDiff, imm:$Key, |
| imm:$Disc, tcGPR64:$AddrDisc)>; |
| } |
| |
| // v9.5-A pointer authentication extensions |
| |
| // Always accept "pacm" as an alias for "hint #39", but don't emit it when |
| // disassembling if we don't have the pauth-lr feature. |
| let CRm = 0b0100 in { |
| def PACM : SystemNoOperands<0b111, "hint\t#39">; |
| } |
| def : InstAlias<"pacm", (PACM), 0>; |
| |
| let Predicates = [HasPAuthLR] in { |
| let Defs = [LR], Uses = [LR, SP] in { |
| // opcode2, opcode, asm |
| def PACIASPPC : SignAuthFixedRegs<0b00001, 0b101000, "paciasppc">; |
| def PACIBSPPC : SignAuthFixedRegs<0b00001, 0b101001, "pacibsppc">; |
| def PACNBIASPPC : SignAuthFixedRegs<0b00001, 0b100000, "pacnbiasppc">; |
| def PACNBIBSPPC : SignAuthFixedRegs<0b00001, 0b100001, "pacnbibsppc">; |
| // opc, asm |
| def AUTIASPPCi : SignAuthPCRel<0b00, "autiasppc">; |
| def AUTIBSPPCi : SignAuthPCRel<0b01, "autibsppc">; |
| // opcode2, opcode, asm |
| def AUTIASPPCr : SignAuthOneReg<0b00001, 0b100100, "autiasppcr">; |
| def AUTIBSPPCr : SignAuthOneReg<0b00001, 0b100101, "autibsppcr">; |
| // opcode2, opcode, asm |
| def PACIA171615 : SignAuthFixedRegs<0b00001, 0b100010, "pacia171615">; |
| def PACIB171615 : SignAuthFixedRegs<0b00001, 0b100011, "pacib171615">; |
| def AUTIA171615 : SignAuthFixedRegs<0b00001, 0b101110, "autia171615">; |
| def AUTIB171615 : SignAuthFixedRegs<0b00001, 0b101111, "autib171615">; |
| } |
| |
| let Uses = [LR, SP], isReturn = 1, isTerminator = 1, isBarrier = 1 in { |
| // opc, op2, asm |
| def RETAASPPCi : SignAuthReturnPCRel<0b000, 0b11111, "retaasppc">; |
| def RETABSPPCi : SignAuthReturnPCRel<0b001, 0b11111, "retabsppc">; |
| // op3, asm |
| def RETAASPPCr : SignAuthReturnReg<0b000010, "retaasppcr">; |
| def RETABSPPCr : SignAuthReturnReg<0b000011, "retabsppcr">; |
| } |
| def : InstAlias<"pacm", (PACM), 1>; |
| } |
| |
| |
| // v8.3a floating point conversion for javascript |
| let Predicates = [HasJS, HasFPARMv8], Defs = [NZCV] in |
| def FJCVTZS : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32, |
| "fjcvtzs", |
| [(set GPR32:$Rd, |
| (int_aarch64_fjcvtzs FPR64:$Rn))]> { |
| let Inst{31} = 0; |
| } // HasJS, HasFPARMv8 |
| |
| // v8.4 Flag manipulation instructions |
| let Predicates = [HasFlagM], Defs = [NZCV], Uses = [NZCV] in { |
| def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> { |
| let Inst{20-5} = 0b0000001000000000; |
| } |
| def SETF8 : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">; |
| def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">; |
| def RMIF : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif", |
| "{\t$Rn, $imm, $mask}">; |
| } // HasFlagM |
| |
| // v8.5 flag manipulation instructions |
| let Predicates = [HasAltNZCV], Uses = [NZCV], Defs = [NZCV] in { |
| |
| def XAFLAG : PstateWriteSimple<(ins), "xaflag", "">, Sched<[WriteSys]> { |
| let Inst{18-16} = 0b000; |
| let Inst{11-8} = 0b0000; |
| let Unpredictable{11-8} = 0b1111; |
| let Inst{7-5} = 0b001; |
| } |
| |
| def AXFLAG : PstateWriteSimple<(ins), "axflag", "">, Sched<[WriteSys]> { |
| let Inst{18-16} = 0b000; |
| let Inst{11-8} = 0b0000; |
| let Unpredictable{11-8} = 0b1111; |
| let Inst{7-5} = 0b010; |
| } |
| } // HasAltNZCV |
| |
| |
| // Armv8.5-A speculation barrier |
| def SB : SimpleSystemI<0, (ins), "sb", "">, Sched<[]> { |
| let Inst{20-5} = 0b0001100110000111; |
| let Unpredictable{11-8} = 0b1111; |
| let Predicates = [HasSB]; |
| let hasSideEffects = 1; |
| } |
| |
| def : InstAlias<"clrex", (CLREX 0xf)>; |
| def : InstAlias<"isb", (ISB 0xf)>; |
| def : InstAlias<"ssbb", (DSB 0)>; |
| def : InstAlias<"pssbb", (DSB 4)>; |
| def : InstAlias<"dfb", (DSB 0b1100)>, Requires<[HasV8_0r]>; |
| |
| def MRS : MRSI; |
| def MSR : MSRI; |
| def MSRpstateImm1 : MSRpstateImm0_1; |
| def MSRpstateImm4 : MSRpstateImm0_15; |
| |
| def : Pat<(AArch64mrs imm:$id), |
| (MRS imm:$id)>; |
| |
| // The thread pointer (on Linux, at least, where this has been implemented) is |
| // TPIDR_EL0. |
| def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins), |
| [(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>; |
| |
| // This gets lowered into a 24-byte instruction sequence |
| let Defs = [ X9, X16, X17, NZCV ], Size = 24 in { |
| def KCFI_CHECK : Pseudo< |
| (outs), (ins GPR64:$ptr, i32imm:$type), []>, Sched<[]>; |
| } |
| |
| let Uses = [ X9 ], Defs = [ X16, X17, LR, NZCV ] in { |
| def HWASAN_CHECK_MEMACCESS : Pseudo< |
| (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo), |
| [(int_hwasan_check_memaccess X9, GPR64noip:$ptr, (i32 timm:$accessinfo))]>, |
| Sched<[]>; |
| } |
| |
| let Uses = [ X20 ], Defs = [ X16, X17, LR, NZCV ] in { |
| def HWASAN_CHECK_MEMACCESS_SHORTGRANULES : Pseudo< |
| (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo), |
| [(int_hwasan_check_memaccess_shortgranules X20, GPR64noip:$ptr, (i32 timm:$accessinfo))]>, |
| Sched<[]>; |
| } |
| |
| let Defs = [ X16, X17, LR, NZCV ] in { |
| def HWASAN_CHECK_MEMACCESS_FIXEDSHADOW : Pseudo< |
| (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo, i64imm:$fixed_shadow), |
| [(int_hwasan_check_memaccess_fixedshadow GPR64noip:$ptr, (i32 timm:$accessinfo), (i64 timm:$fixed_shadow))]>, |
| Sched<[]>; |
| } |
| |
| let Defs = [ X16, X17, LR, NZCV ] in { |
| def HWASAN_CHECK_MEMACCESS_SHORTGRANULES_FIXEDSHADOW : Pseudo< |
| (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo, i64imm:$fixed_shadow), |
| [(int_hwasan_check_memaccess_shortgranules_fixedshadow GPR64noip:$ptr, (i32 timm:$accessinfo), (i64 timm:$fixed_shadow))]>, |
| Sched<[]>; |
| } |
| |
| // The virtual cycle counter register is CNTVCT_EL0. |
| def : Pat<(readcyclecounter), (MRS 0xdf02)>; |
| |
| // FPCR and FPSR registers. |
| let Uses = [FPCR] in |
| def MRS_FPCR : Pseudo<(outs GPR64:$dst), (ins), |
| [(set GPR64:$dst, (int_aarch64_get_fpcr))]>, |
| PseudoInstExpansion<(MRS GPR64:$dst, 0xda20)>, |
| Sched<[WriteSys]>; |
| let Defs = [FPCR] in |
| def MSR_FPCR : Pseudo<(outs), (ins GPR64:$val), |
| [(int_aarch64_set_fpcr i64:$val)]>, |
| PseudoInstExpansion<(MSR 0xda20, GPR64:$val)>, |
| Sched<[WriteSys]>; |
| |
| let Uses = [FPSR] in |
| def MRS_FPSR : Pseudo<(outs GPR64:$dst), (ins), |
| [(set GPR64:$dst, (int_aarch64_get_fpsr))]>, |
| PseudoInstExpansion<(MRS GPR64:$dst, 0xda21)>, |
| Sched<[WriteSys]>; |
| let Defs = [FPSR] in |
| def MSR_FPSR : Pseudo<(outs), (ins GPR64:$val), |
| [(int_aarch64_set_fpsr i64:$val)]>, |
| PseudoInstExpansion<(MSR 0xda21, GPR64:$val)>, |
| Sched<[WriteSys]>; |
| |
| // Generic system instructions |
| def SYSxt : SystemXtI<0, "sys">; |
| def SYSLxt : SystemLXtI<1, "sysl">; |
| |
| def : InstAlias<"sys $op1, $Cn, $Cm, $op2", |
| (SYSxt imm0_7:$op1, sys_cr_op:$Cn, |
| sys_cr_op:$Cm, imm0_7:$op2, XZR)>; |
| |
| |
| let Predicates = [HasTME] in { |
| |
| def TSTART : TMSystemI<0b0000, "tstart", |
| [(set GPR64:$Rt, (int_aarch64_tstart))]>; |
| |
| def TCOMMIT : TMSystemINoOperand<0b0000, "tcommit", [(int_aarch64_tcommit)]>; |
| |
| def TCANCEL : TMSystemException<0b011, "tcancel", |
| [(int_aarch64_tcancel timm64_0_65535:$imm)]>; |
| |
| def TTEST : TMSystemI<0b0001, "ttest", [(set GPR64:$Rt, (int_aarch64_ttest))]> { |
| let mayLoad = 0; |
| let mayStore = 0; |
| } |
| } // HasTME |
| |
| //===----------------------------------------------------------------------===// |
| // Move immediate instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm MOVK : InsertImmediate<0b11, "movk">; |
| defm MOVN : MoveImmediate<0b00, "movn">; |
| |
| let PostEncoderMethod = "fixMOVZ" in |
| defm MOVZ : MoveImmediate<0b10, "movz">; |
| |
| // First group of aliases covers an implicit "lsl #0". |
| def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, timm32_0_65535:$imm, 0), 0>; |
| def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, timm32_0_65535:$imm, 0), 0>; |
| def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, timm32_0_65535:$imm, 0)>; |
| def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, timm32_0_65535:$imm, 0)>; |
| def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, timm32_0_65535:$imm, 0)>; |
| def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, timm32_0_65535:$imm, 0)>; |
| |
| // Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax. |
| def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>; |
| def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>; |
| def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>; |
| def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>; |
| |
| def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>; |
| def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>; |
| def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>; |
| def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>; |
| |
| def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g3:$sym, 48), 0>; |
| def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g2:$sym, 32), 0>; |
| def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g1:$sym, 16), 0>; |
| def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g0:$sym, 0), 0>; |
| |
| def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>; |
| def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>; |
| |
| def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>; |
| def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>; |
| |
| def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g1:$sym, 16), 0>; |
| def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g0:$sym, 0), 0>; |
| |
| // Final group of aliases covers true "mov $Rd, $imm" cases. |
| multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR, |
| int width, int shift> { |
| def _asmoperand : AsmOperandClass { |
| let Name = basename # width # "_lsl" # shift # "MovAlias"; |
| let PredicateMethod = "is" # basename # "MovAlias<" # width # ", " |
| # shift # ">"; |
| let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">"; |
| } |
| |
| def _movimm : Operand<i32> { |
| let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand"); |
| } |
| |
| def : InstAlias<"mov $Rd, $imm", |
| (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>; |
| } |
| |
| defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>; |
| defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>; |
| |
| defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>; |
| defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>; |
| defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>; |
| defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>; |
| |
| defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>; |
| defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>; |
| |
| defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>; |
| defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>; |
| defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>; |
| defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>; |
| |
| let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1, |
| isAsCheapAsAMove = 1 in { |
| // FIXME: The following pseudo instructions are only needed because remat |
| // cannot handle multiple instructions. When that changes, we can select |
| // directly to the real instructions and get rid of these pseudos. |
| |
| def MOVi32imm |
| : Pseudo<(outs GPR32:$dst), (ins i32imm:$src), |
| [(set GPR32:$dst, imm:$src)]>, |
| Sched<[WriteImm]>; |
| def MOVi64imm |
| : Pseudo<(outs GPR64:$dst), (ins i64imm:$src), |
| [(set GPR64:$dst, imm:$src)]>, |
| Sched<[WriteImm]>; |
| } // isReMaterializable, isCodeGenOnly |
| |
| // If possible, we want to use MOVi32imm even for 64-bit moves. This gives the |
| // eventual expansion code fewer bits to worry about getting right. Marshalling |
| // the types is a little tricky though: |
| def i64imm_32bit : ImmLeaf<i64, [{ |
| return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm); |
| }]>; |
| |
| def s64imm_32bit : ImmLeaf<i64, [{ |
| int64_t Imm64 = static_cast<int64_t>(Imm); |
| return Imm64 >= std::numeric_limits<int32_t>::min() && |
| Imm64 <= std::numeric_limits<int32_t>::max(); |
| }]>; |
| |
| def trunc_imm : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32); |
| }]>; |
| |
| def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">, |
| GISDNodeXFormEquiv<trunc_imm>; |
| |
| let Predicates = [OptimizedGISelOrOtherSelector] in { |
| // The SUBREG_TO_REG isn't eliminated at -O0, which can result in pointless |
| // copies. |
| def : Pat<(i64 i64imm_32bit:$src), |
| (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>; |
| } |
| |
| // Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model). |
| def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{ |
| return CurDAG->getTargetConstant( |
| N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32); |
| }]>; |
| |
| def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{ |
| return CurDAG->getTargetConstant( |
| N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64); |
| }]>; |
| |
| |
| def : Pat<(f32 fpimm:$in), |
| (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>; |
| def : Pat<(f64 fpimm:$in), |
| (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>; |
| |
| |
| // Deal with the various forms of (ELF) large addressing with MOVZ/MOVK |
| // sequences. |
| def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2, |
| tglobaladdr:$g1, tglobaladdr:$g0), |
| (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0), |
| tglobaladdr:$g1, 16), |
| tglobaladdr:$g2, 32), |
| tglobaladdr:$g3, 48)>; |
| |
| def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2, |
| tblockaddress:$g1, tblockaddress:$g0), |
| (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0), |
| tblockaddress:$g1, 16), |
| tblockaddress:$g2, 32), |
| tblockaddress:$g3, 48)>; |
| |
| def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2, |
| tconstpool:$g1, tconstpool:$g0), |
| (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0), |
| tconstpool:$g1, 16), |
| tconstpool:$g2, 32), |
| tconstpool:$g3, 48)>; |
| |
| def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2, |
| tjumptable:$g1, tjumptable:$g0), |
| (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0), |
| tjumptable:$g1, 16), |
| tjumptable:$g2, 32), |
| tjumptable:$g3, 48)>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Arithmetic instructions. |
| //===----------------------------------------------------------------------===// |
| |
| // Add/subtract with carry. |
| defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>; |
| defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>; |
| |
| def : InstAlias<"ngc $dst, $src", (SBCWr GPR32:$dst, WZR, GPR32:$src)>; |
| def : InstAlias<"ngc $dst, $src", (SBCXr GPR64:$dst, XZR, GPR64:$src)>; |
| def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>; |
| def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>; |
| |
| // Add/subtract |
| defm ADD : AddSub<0, "add", "sub", add>; |
| defm SUB : AddSub<1, "sub", "add">; |
| |
| def : InstAlias<"mov $dst, $src", |
| (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>; |
| def : InstAlias<"mov $dst, $src", |
| (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>; |
| def : InstAlias<"mov $dst, $src", |
| (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>; |
| def : InstAlias<"mov $dst, $src", |
| (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>; |
| |
| defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">; |
| defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">; |
| |
| def copyFromSP: PatLeaf<(i64 GPR64:$src), [{ |
| return N->getOpcode() == ISD::CopyFromReg && |
| cast<RegisterSDNode>(N->getOperand(1))->getReg() == AArch64::SP; |
| }]>; |
| |
| // Use SUBS instead of SUB to enable CSE between SUBS and SUB. |
| def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm), |
| (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>; |
| def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm), |
| (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>; |
| def : Pat<(sub GPR32:$Rn, GPR32:$Rm), |
| (SUBSWrr GPR32:$Rn, GPR32:$Rm)>; |
| def : Pat<(sub GPR64:$Rn, GPR64:$Rm), |
| (SUBSXrr GPR64:$Rn, GPR64:$Rm)>; |
| def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm), |
| (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>; |
| def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm), |
| (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>; |
| let AddedComplexity = 1 in { |
| def : Pat<(sub GPR32sp:$R2, arith_extended_reg32_i32:$R3), |
| (SUBSWrx GPR32sp:$R2, arith_extended_reg32_i32:$R3)>; |
| def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64_i64:$R3), |
| (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64_i64:$R3)>; |
| def : Pat<(sub copyFromSP:$R2, (arith_uxtx GPR64:$R3, arith_extendlsl64:$imm)), |
| (SUBXrx64 GPR64sp:$R2, GPR64:$R3, arith_extendlsl64:$imm)>; |
| } |
| |
| // Because of the immediate format for add/sub-imm instructions, the |
| // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1). |
| // These patterns capture that transformation. |
| let AddedComplexity = 1 in { |
| def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm), |
| (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; |
| def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm), |
| (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; |
| def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm), |
| (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; |
| def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm), |
| (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; |
| } |
| |
| // Because of the immediate format for add/sub-imm instructions, the |
| // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1). |
| // These patterns capture that transformation. |
| let AddedComplexity = 1 in { |
| def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm), |
| (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; |
| def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm), |
| (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; |
| def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm), |
| (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>; |
| def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm), |
| (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>; |
| } |
| |
| def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>; |
| def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>; |
| def : InstAlias<"neg $dst, $src$shift", |
| (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>; |
| def : InstAlias<"neg $dst, $src$shift", |
| (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>; |
| |
| def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>; |
| def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>; |
| def : InstAlias<"negs $dst, $src$shift", |
| (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>; |
| def : InstAlias<"negs $dst, $src$shift", |
| (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>; |
| |
| |
| // Unsigned/Signed divide |
| defm UDIV : Div<0, "udiv", udiv>; |
| defm SDIV : Div<1, "sdiv", sdiv>; |
| |
| def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>; |
| def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>; |
| def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>; |
| def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>; |
| |
| // Variable shift |
| defm ASRV : Shift<0b10, "asr", sra>; |
| defm LSLV : Shift<0b00, "lsl", shl>; |
| defm LSRV : Shift<0b01, "lsr", srl>; |
| defm RORV : Shift<0b11, "ror", rotr>; |
| |
| def : ShiftAlias<"asrv", ASRVWr, GPR32>; |
| def : ShiftAlias<"asrv", ASRVXr, GPR64>; |
| def : ShiftAlias<"lslv", LSLVWr, GPR32>; |
| def : ShiftAlias<"lslv", LSLVXr, GPR64>; |
| def : ShiftAlias<"lsrv", LSRVWr, GPR32>; |
| def : ShiftAlias<"lsrv", LSRVXr, GPR64>; |
| def : ShiftAlias<"rorv", RORVWr, GPR32>; |
| def : ShiftAlias<"rorv", RORVXr, GPR64>; |
| |
| // Multiply-add |
| let AddedComplexity = 5 in { |
| defm MADD : MulAccum<0, "madd">; |
| defm MSUB : MulAccum<1, "msub">; |
| |
| def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)), |
| (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; |
| def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)), |
| (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; |
| |
| def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))), |
| (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; |
| def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))), |
| (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; |
| def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)), |
| (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>; |
| def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)), |
| (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>; |
| } // AddedComplexity = 5 |
| |
| let AddedComplexity = 5 in { |
| def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>; |
| def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>; |
| def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>; |
| def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>; |
| |
| def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (sext_inreg GPR64:$Rm, i32))), |
| (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; |
| def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (sext GPR32:$Rm))), |
| (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; |
| def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))), |
| (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; |
| def : Pat<(i64 (mul (and GPR64:$Rn, 0xFFFFFFFF), (and GPR64:$Rm, 0xFFFFFFFF))), |
| (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; |
| def : Pat<(i64 (mul (and GPR64:$Rn, 0xFFFFFFFF), (zext GPR32:$Rm))), |
| (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; |
| def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))), |
| (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; |
| |
| def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))), |
| (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; |
| def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))), |
| (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>; |
| |
| def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))), |
| (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; |
| def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))), |
| (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; |
| def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))), |
| (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), |
| (MOVi32imm (trunc_imm imm:$C)), XZR)>; |
| |
| def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))), |
| (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; |
| def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))), |
| (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>; |
| def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))), |
| (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), |
| (MOVi32imm (trunc_imm imm:$C)), XZR)>; |
| |
| def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)), |
| (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; |
| def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)), |
| (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; |
| def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)), |
| GPR64:$Ra)), |
| (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), |
| (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; |
| |
| def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))), |
| (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; |
| def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))), |
| (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; |
| def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32), |
| (s64imm_32bit:$C)))), |
| (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)), |
| (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>; |
| |
| def : Pat<(i64 (smullwithsignbits GPR64:$Rn, GPR64:$Rm)), |
| (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; |
| def : Pat<(i64 (smullwithsignbits GPR64:$Rn, (sext GPR32:$Rm))), |
| (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; |
| |
| def : Pat<(i64 (add (smullwithsignbits GPR64:$Rn, GPR64:$Rm), GPR64:$Ra)), |
| (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), GPR64:$Ra)>; |
| def : Pat<(i64 (add (smullwithsignbits GPR64:$Rn, (sext GPR32:$Rm)), GPR64:$Ra)), |
| (SMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, GPR64:$Ra)>; |
| |
| def : Pat<(i64 (ineg (smullwithsignbits GPR64:$Rn, GPR64:$Rm))), |
| (SMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; |
| def : Pat<(i64 (ineg (smullwithsignbits GPR64:$Rn, (sext GPR32:$Rm)))), |
| (SMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; |
| |
| def : Pat<(i64 (sub GPR64:$Ra, (smullwithsignbits GPR64:$Rn, GPR64:$Rm))), |
| (SMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), GPR64:$Ra)>; |
| def : Pat<(i64 (sub GPR64:$Ra, (smullwithsignbits GPR64:$Rn, (sext GPR32:$Rm)))), |
| (SMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, GPR64:$Ra)>; |
| |
| def : Pat<(i64 (mul top32Zero:$Rn, top32Zero:$Rm)), |
| (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; |
| def : Pat<(i64 (mul top32Zero:$Rn, (zext GPR32:$Rm))), |
| (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; |
| |
| def : Pat<(i64 (add (mul top32Zero:$Rn, top32Zero:$Rm), GPR64:$Ra)), |
| (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), GPR64:$Ra)>; |
| def : Pat<(i64 (add (mul top32Zero:$Rn, (zext GPR32:$Rm)), GPR64:$Ra)), |
| (UMADDLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, GPR64:$Ra)>; |
| |
| def : Pat<(i64 (ineg (mul top32Zero:$Rn, top32Zero:$Rm))), |
| (UMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), XZR)>; |
| def : Pat<(i64 (ineg (mul top32Zero:$Rn, (zext GPR32:$Rm)))), |
| (UMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, XZR)>; |
| |
| def : Pat<(i64 (sub GPR64:$Ra, (mul top32Zero:$Rn, top32Zero:$Rm))), |
| (UMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), (EXTRACT_SUBREG $Rm, sub_32), GPR64:$Ra)>; |
| def : Pat<(i64 (sub GPR64:$Ra, (mul top32Zero:$Rn, (zext GPR32:$Rm)))), |
| (UMSUBLrrr (EXTRACT_SUBREG $Rn, sub_32), $Rm, GPR64:$Ra)>; |
| } // AddedComplexity = 5 |
| |
| def : MulAccumWAlias<"mul", MADDWrrr>; |
| def : MulAccumXAlias<"mul", MADDXrrr>; |
| def : MulAccumWAlias<"mneg", MSUBWrrr>; |
| def : MulAccumXAlias<"mneg", MSUBXrrr>; |
| def : WideMulAccumAlias<"smull", SMADDLrrr>; |
| def : WideMulAccumAlias<"smnegl", SMSUBLrrr>; |
| def : WideMulAccumAlias<"umull", UMADDLrrr>; |
| def : WideMulAccumAlias<"umnegl", UMSUBLrrr>; |
| |
| // Multiply-high |
| def SMULHrr : MulHi<0b010, "smulh", mulhs>; |
| def UMULHrr : MulHi<0b110, "umulh", mulhu>; |
| |
| // CRC32 |
| def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">; |
| def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">; |
| def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">; |
| def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">; |
| |
| def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">; |
| def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">; |
| def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">; |
| def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">; |
| |
| // v8.1 atomic CAS |
| defm CAS : CompareAndSwap<0, 0, "">; |
| defm CASA : CompareAndSwap<1, 0, "a">; |
| defm CASL : CompareAndSwap<0, 1, "l">; |
| defm CASAL : CompareAndSwap<1, 1, "al">; |
| |
| // v8.1 atomic CASP |
| defm CASP : CompareAndSwapPair<0, 0, "">; |
| defm CASPA : CompareAndSwapPair<1, 0, "a">; |
| defm CASPL : CompareAndSwapPair<0, 1, "l">; |
| defm CASPAL : CompareAndSwapPair<1, 1, "al">; |
| |
| // v8.1 atomic SWP |
| defm SWP : Swap<0, 0, "">; |
| defm SWPA : Swap<1, 0, "a">; |
| defm SWPL : Swap<0, 1, "l">; |
| defm SWPAL : Swap<1, 1, "al">; |
| |
| // v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register) |
| defm LDADD : LDOPregister<0b000, "add", 0, 0, "">; |
| defm LDADDA : LDOPregister<0b000, "add", 1, 0, "a">; |
| defm LDADDL : LDOPregister<0b000, "add", 0, 1, "l">; |
| defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">; |
| |
| defm LDCLR : LDOPregister<0b001, "clr", 0, 0, "">; |
| defm LDCLRA : LDOPregister<0b001, "clr", 1, 0, "a">; |
| defm LDCLRL : LDOPregister<0b001, "clr", 0, 1, "l">; |
| defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">; |
| |
| defm LDEOR : LDOPregister<0b010, "eor", 0, 0, "">; |
| defm LDEORA : LDOPregister<0b010, "eor", 1, 0, "a">; |
| defm LDEORL : LDOPregister<0b010, "eor", 0, 1, "l">; |
| defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">; |
| |
| defm LDSET : LDOPregister<0b011, "set", 0, 0, "">; |
| defm LDSETA : LDOPregister<0b011, "set", 1, 0, "a">; |
| defm LDSETL : LDOPregister<0b011, "set", 0, 1, "l">; |
| defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">; |
| |
| defm LDSMAX : LDOPregister<0b100, "smax", 0, 0, "">; |
| defm LDSMAXA : LDOPregister<0b100, "smax", 1, 0, "a">; |
| defm LDSMAXL : LDOPregister<0b100, "smax", 0, 1, "l">; |
| defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">; |
| |
| defm LDSMIN : LDOPregister<0b101, "smin", 0, 0, "">; |
| defm LDSMINA : LDOPregister<0b101, "smin", 1, 0, "a">; |
| defm LDSMINL : LDOPregister<0b101, "smin", 0, 1, "l">; |
| defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">; |
| |
| defm LDUMAX : LDOPregister<0b110, "umax", 0, 0, "">; |
| defm LDUMAXA : LDOPregister<0b110, "umax", 1, 0, "a">; |
| defm LDUMAXL : LDOPregister<0b110, "umax", 0, 1, "l">; |
| defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">; |
| |
| defm LDUMIN : LDOPregister<0b111, "umin", 0, 0, "">; |
| defm LDUMINA : LDOPregister<0b111, "umin", 1, 0, "a">; |
| defm LDUMINL : LDOPregister<0b111, "umin", 0, 1, "l">; |
| defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">; |
| |
| // v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR" |
| defm : STOPregister<"stadd","LDADD">; // STADDx |
| defm : STOPregister<"stclr","LDCLR">; // STCLRx |
| defm : STOPregister<"steor","LDEOR">; // STEORx |
| defm : STOPregister<"stset","LDSET">; // STSETx |
| defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx |
| defm : STOPregister<"stsmin","LDSMIN">;// STSMINx |
| defm : STOPregister<"stumax","LDUMAX">;// STUMAXx |
| defm : STOPregister<"stumin","LDUMIN">;// STUMINx |
| |
| // v8.5 Memory Tagging Extension |
| let Predicates = [HasMTE] in { |
| |
| def IRG : BaseTwoOperandRegReg<0b1, 0b0, 0b000100, GPR64sp, "irg", |
| int_aarch64_irg, GPR64sp, GPR64>, Sched<[]>; |
| |
| def GMI : BaseTwoOperandRegReg<0b1, 0b0, 0b000101, GPR64, "gmi", |
| int_aarch64_gmi, GPR64sp>, Sched<[]> { |
| let isNotDuplicable = 1; |
| } |
| def ADDG : AddSubG<0, "addg", null_frag>; |
| def SUBG : AddSubG<1, "subg", null_frag>; |
| |
| def : InstAlias<"irg $dst, $src", (IRG GPR64sp:$dst, GPR64sp:$src, XZR), 1>; |
| |
| def SUBP : SUBP<0, "subp", int_aarch64_subp>, Sched<[]>; |
| def SUBPS : SUBP<1, "subps", null_frag>, Sched<[]>{ |
| let Defs = [NZCV]; |
| } |
| |
| def : InstAlias<"cmpp $lhs, $rhs", (SUBPS XZR, GPR64sp:$lhs, GPR64sp:$rhs), 0>; |
| |
| def LDG : MemTagLoad<"ldg", "\t$Rt, [$Rn, $offset]">; |
| |
| def : Pat<(int_aarch64_addg (am_indexedu6s128 GPR64sp:$Rn, uimm6s16:$imm6), imm0_15:$imm4), |
| (ADDG GPR64sp:$Rn, imm0_63:$imm6, imm0_15:$imm4)>; |
| def : Pat<(int_aarch64_ldg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)), |
| (LDG GPR64:$Rt, GPR64sp:$Rn, simm9s16:$offset)>; |
| |
| def : InstAlias<"ldg $Rt, [$Rn]", (LDG GPR64:$Rt, GPR64sp:$Rn, 0), 1>; |
| |
| def LDGM : MemTagVector<1, "ldgm", "\t$Rt, [$Rn]", |
| (outs GPR64:$Rt), (ins GPR64sp:$Rn)>; |
| def STGM : MemTagVector<0, "stgm", "\t$Rt, [$Rn]", |
| (outs), (ins GPR64:$Rt, GPR64sp:$Rn)>; |
| def STZGM : MemTagVector<0, "stzgm", "\t$Rt, [$Rn]", |
| (outs), (ins GPR64:$Rt, GPR64sp:$Rn)> { |
| let Inst{23} = 0; |
| } |
| |
| defm STG : MemTagStore<0b00, "stg">; |
| defm STZG : MemTagStore<0b01, "stzg">; |
| defm ST2G : MemTagStore<0b10, "st2g">; |
| defm STZ2G : MemTagStore<0b11, "stz2g">; |
| |
| def : Pat<(AArch64stg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), |
| (STGi $Rn, $Rm, $imm)>; |
| def : Pat<(AArch64stzg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), |
| (STZGi $Rn, $Rm, $imm)>; |
| def : Pat<(AArch64st2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), |
| (ST2Gi $Rn, $Rm, $imm)>; |
| def : Pat<(AArch64stz2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)), |
| (STZ2Gi $Rn, $Rm, $imm)>; |
| |
| defm STGP : StorePairOffset <0b01, 0, GPR64z, simm7s16, "stgp">; |
| def STGPpre : StorePairPreIdx <0b01, 0, GPR64z, simm7s16, "stgp">; |
| def STGPpost : StorePairPostIdx<0b01, 0, GPR64z, simm7s16, "stgp">; |
| |
| def : Pat<(int_aarch64_stg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)), |
| (STGi GPR64:$Rt, GPR64sp:$Rn, simm9s16:$offset)>; |
| |
| def : Pat<(int_aarch64_stgp (am_indexed7s128 GPR64sp:$Rn, simm7s16:$imm), GPR64:$Rt, GPR64:$Rt2), |
| (STGPi $Rt, $Rt2, $Rn, $imm)>; |
| |
| def IRGstack |
| : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rsp, GPR64:$Rm), []>, |
| Sched<[]>; |
| def TAGPstack |
| : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rn, uimm6s16:$imm6, GPR64sp:$Rm, imm0_15:$imm4), []>, |
| Sched<[]>; |
| |
| // Explicit SP in the first operand prevents ShrinkWrap optimization |
| // from leaving this instruction out of the stack frame. When IRGstack |
| // is transformed into IRG, this operand is replaced with the actual |
| // register / expression for the tagged base pointer of the current function. |
| def : Pat<(int_aarch64_irg_sp i64:$Rm), (IRGstack SP, i64:$Rm)>; |
| |
| // Large STG to be expanded into a loop. $sz is the size, $Rn is start address. |
| // $Rn_wback is one past the end of the range. $Rm is the loop counter. |
| let isCodeGenOnly=1, mayStore=1, Defs=[NZCV] in { |
| def STGloop_wback |
| : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn), |
| [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >, |
| Sched<[WriteAdr, WriteST]>; |
| |
| def STZGloop_wback |
| : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn), |
| [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >, |
| Sched<[WriteAdr, WriteST]>; |
| |
| // A variant of the above where $Rn2 is an independent register not tied to the input register $Rn. |
| // Their purpose is to use a FrameIndex operand as $Rn (which of course can not be written back). |
| def STGloop |
| : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn), |
| [], "@earlyclobber $Rn2,@earlyclobber $Rm" >, |
| Sched<[WriteAdr, WriteST]>; |
| |
| def STZGloop |
| : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn), |
| [], "@earlyclobber $Rn2,@earlyclobber $Rm" >, |
| Sched<[WriteAdr, WriteST]>; |
| } |
| |
| } // Predicates = [HasMTE] |
| |
| //===----------------------------------------------------------------------===// |
| // Logical instructions. |
| //===----------------------------------------------------------------------===// |
| |
| // (immediate) |
| defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">; |
| defm AND : LogicalImm<0b00, "and", and, "bic">; |
| defm EOR : LogicalImm<0b10, "eor", xor, "eon">; |
| defm ORR : LogicalImm<0b01, "orr", or, "orn">; |
| |
| // FIXME: these aliases *are* canonical sometimes (when movz can't be |
| // used). Actually, it seems to be working right now, but putting logical_immXX |
| // here is a bit dodgy on the AsmParser side too. |
| def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR, |
| logical_imm32:$imm), 0>; |
| def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR, |
| logical_imm64:$imm), 0>; |
| |
| |
| // (register) |
| defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>; |
| defm BICS : LogicalRegS<0b11, 1, "bics", |
| BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>; |
| defm AND : LogicalReg<0b00, 0, "and", and>; |
| defm BIC : LogicalReg<0b00, 1, "bic", |
| BinOpFrag<(and node:$LHS, (not node:$RHS))>, 3>; |
| defm EON : LogicalReg<0b10, 1, "eon", |
| BinOpFrag<(not (xor node:$LHS, node:$RHS))>>; |
| defm EOR : LogicalReg<0b10, 0, "eor", xor>; |
| defm ORN : LogicalReg<0b01, 1, "orn", |
| BinOpFrag<(or node:$LHS, (not node:$RHS))>>; |
| defm ORR : LogicalReg<0b01, 0, "orr", or>; |
| |
| def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>; |
| def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>; |
| |
| def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>; |
| def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>; |
| |
| def : InstAlias<"mvn $Wd, $Wm$sh", |
| (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>; |
| def : InstAlias<"mvn $Xd, $Xm$sh", |
| (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>; |
| |
| def : InstAlias<"tst $src1, $src2", |
| (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>; |
| def : InstAlias<"tst $src1, $src2", |
| (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>; |
| |
| def : InstAlias<"tst $src1, $src2", |
| (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>; |
| def : InstAlias<"tst $src1, $src2", |
| (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>; |
| |
| def : InstAlias<"tst $src1, $src2$sh", |
| (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>; |
| def : InstAlias<"tst $src1, $src2$sh", |
| (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>; |
| |
| |
| def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>; |
| def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>; |
| |
| // Emit (and 0xFFFFFFFF) as a ORRWrr move which may be eliminated. |
| let AddedComplexity = 6 in |
| def : Pat<(i64 (and GPR64:$Rn, 0xffffffff)), |
| (SUBREG_TO_REG (i64 0), (ORRWrr WZR, (EXTRACT_SUBREG GPR64:$Rn, sub_32)), sub_32)>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // One operand data processing instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm CLS : OneOperandData<0b000101, "cls">; |
| defm CLZ : OneOperandData<0b000100, "clz", ctlz>; |
| defm RBIT : OneOperandData<0b000000, "rbit", bitreverse>; |
| |
| def REV16Wr : OneWRegData<0b000001, "rev16", |
| UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>; |
| def REV16Xr : OneXRegData<0b000001, "rev16", null_frag>; |
| |
| def : Pat<(cttz GPR32:$Rn), |
| (CLZWr (RBITWr GPR32:$Rn))>; |
| def : Pat<(cttz GPR64:$Rn), |
| (CLZXr (RBITXr GPR64:$Rn))>; |
| def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)), |
| (i32 1))), |
| (CLSWr GPR32:$Rn)>; |
| def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)), |
| (i64 1))), |
| (CLSXr GPR64:$Rn)>; |
| def : Pat<(int_aarch64_cls GPR32:$Rn), (CLSWr GPR32:$Rn)>; |
| def : Pat<(int_aarch64_cls64 GPR64:$Rm), (EXTRACT_SUBREG (CLSXr GPR64:$Rm), sub_32)>; |
| |
| // Unlike the other one operand instructions, the instructions with the "rev" |
| // mnemonic do *not* just different in the size bit, but actually use different |
| // opcode bits for the different sizes. |
| def REVWr : OneWRegData<0b000010, "rev", bswap>; |
| def REVXr : OneXRegData<0b000011, "rev", bswap>; |
| def REV32Xr : OneXRegData<0b000010, "rev32", |
| UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>; |
| |
| def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>; |
| |
| // The bswap commutes with the rotr so we want a pattern for both possible |
| // orders. |
| def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>; |
| def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>; |
| |
| // Match (srl (bswap x), C) -> revC if the upper bswap bits are known zero. |
| def : Pat<(srl (bswap top16Zero:$Rn), (i64 16)), (REV16Wr GPR32:$Rn)>; |
| def : Pat<(srl (bswap top32Zero:$Rn), (i64 32)), (REV32Xr GPR64:$Rn)>; |
| |
| def : Pat<(or (and (srl GPR64:$Rn, (i64 8)), (i64 0x00ff00ff00ff00ff)), |
| (and (shl GPR64:$Rn, (i64 8)), (i64 0xff00ff00ff00ff00))), |
| (REV16Xr GPR64:$Rn)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Bitfield immediate extraction instruction. |
| //===----------------------------------------------------------------------===// |
| let hasSideEffects = 0 in |
| defm EXTR : ExtractImm<"extr">; |
| def : InstAlias<"ror $dst, $src, $shift", |
| (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>; |
| def : InstAlias<"ror $dst, $src, $shift", |
| (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>; |
| |
| def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)), |
| (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>; |
| def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)), |
| (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Other bitfield immediate instructions. |
| //===----------------------------------------------------------------------===// |
| let hasSideEffects = 0 in { |
| defm BFM : BitfieldImmWith2RegArgs<0b01, "bfm">; |
| defm SBFM : BitfieldImm<0b00, "sbfm">; |
| defm UBFM : BitfieldImm<0b10, "ubfm">; |
| } |
| |
| def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{ |
| uint64_t enc = (32 - N->getZExtValue()) & 0x1f; |
| return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); |
| }]>; |
| |
| def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{ |
| uint64_t enc = 31 - N->getZExtValue(); |
| return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); |
| }]>; |
| |
| // min(7, 31 - shift_amt) |
| def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{ |
| uint64_t enc = 31 - N->getZExtValue(); |
| enc = enc > 7 ? 7 : enc; |
| return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); |
| }]>; |
| |
| // min(15, 31 - shift_amt) |
| def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{ |
| uint64_t enc = 31 - N->getZExtValue(); |
| enc = enc > 15 ? 15 : enc; |
| return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); |
| }]>; |
| |
| def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{ |
| uint64_t enc = (64 - N->getZExtValue()) & 0x3f; |
| return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); |
| }]>; |
| |
| def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{ |
| uint64_t enc = 63 - N->getZExtValue(); |
| return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); |
| }]>; |
| |
| // min(7, 63 - shift_amt) |
| def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{ |
| uint64_t enc = 63 - N->getZExtValue(); |
| enc = enc > 7 ? 7 : enc; |
| return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); |
| }]>; |
| |
| // min(15, 63 - shift_amt) |
| def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{ |
| uint64_t enc = 63 - N->getZExtValue(); |
| enc = enc > 15 ? 15 : enc; |
| return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); |
| }]>; |
| |
| // min(31, 63 - shift_amt) |
| def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{ |
| uint64_t enc = 63 - N->getZExtValue(); |
| enc = enc > 31 ? 31 : enc; |
| return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64); |
| }]>; |
| |
| def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)), |
| (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), |
| (i64 (i32shift_b imm0_31:$imm)))>; |
| def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)), |
| (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), |
| (i64 (i64shift_b imm0_63:$imm)))>; |
| |
| let AddedComplexity = 10 in { |
| def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)), |
| (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>; |
| def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)), |
| (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>; |
| } |
| |
| def : InstAlias<"asr $dst, $src, $shift", |
| (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>; |
| def : InstAlias<"asr $dst, $src, $shift", |
| (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>; |
| def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>; |
| def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>; |
| def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>; |
| def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>; |
| def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>; |
| |
| def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)), |
| (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>; |
| def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)), |
| (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>; |
| |
| def : InstAlias<"lsr $dst, $src, $shift", |
| (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>; |
| def : InstAlias<"lsr $dst, $src, $shift", |
| (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>; |
| def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>; |
| def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>; |
| def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>; |
| def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>; |
| def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Conditional comparison instructions. |
| //===----------------------------------------------------------------------===// |
| defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>; |
| defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>; |
| |
| //===----------------------------------------------------------------------===// |
| // Conditional select instructions. |
| //===----------------------------------------------------------------------===// |
| defm CSEL : CondSelect<0, 0b00, "csel">; |
| |
| def inc : PatFrag<(ops node:$in), (add_and_or_is_add node:$in, 1)>; |
| defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>; |
| defm CSINV : CondSelectOp<1, 0b00, "csinv", not>; |
| defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>; |
| |
| def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), |
| (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; |
| def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), |
| (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; |
| def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), |
| (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; |
| def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), |
| (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; |
| def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV), |
| (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>; |
| def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV), |
| (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>; |
| |
| def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV), |
| (CSINCWr WZR, WZR, (i32 imm:$cc))>; |
| def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV), |
| (CSINCXr XZR, XZR, (i32 imm:$cc))>; |
| def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV), |
| (CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>; |
| def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV), |
| (CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>; |
| def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV), |
| (CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>; |
| def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV), |
| (CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>; |
| def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV), |
| (CSINVWr WZR, WZR, (i32 imm:$cc))>; |
| def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV), |
| (CSINVXr XZR, XZR, (i32 imm:$cc))>; |
| def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV), |
| (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>; |
| def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV), |
| (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>; |
| def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV), |
| (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>; |
| def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV), |
| (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>; |
| |
| def : Pat<(add_and_or_is_add GPR32:$val, (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV)), |
| (CSINCWr GPR32:$val, GPR32:$val, (i32 imm:$cc))>; |
| def : Pat<(add_and_or_is_add GPR64:$val, (zext (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV))), |
| (CSINCXr GPR64:$val, GPR64:$val, (i32 imm:$cc))>; |
| |
| def : Pat<(or (topbitsallzero32:$val), (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV)), |
| (CSINCWr GPR32:$val, WZR, imm:$cc)>; |
| def : Pat<(or (topbitsallzero64:$val), (AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV)), |
| (CSINCXr GPR64:$val, XZR, imm:$cc)>; |
| def : Pat<(or (topbitsallzero64:$val), (zext (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV))), |
| (CSINCXr GPR64:$val, XZR, imm:$cc)>; |
| |
| def : Pat<(and (topbitsallzero32:$val), (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV)), |
| (CSELWr WZR, GPR32:$val, imm:$cc)>; |
| def : Pat<(and (topbitsallzero64:$val), (AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV)), |
| (CSELXr XZR, GPR64:$val, imm:$cc)>; |
| def : Pat<(and (topbitsallzero64:$val), (zext (AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV))), |
| (CSELXr XZR, GPR64:$val, imm:$cc)>; |
| |
| // The inverse of the condition code from the alias instruction is what is used |
| // in the aliased instruction. The parser all ready inverts the condition code |
| // for these aliases. |
| def : InstAlias<"cset $dst, $cc", |
| (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>; |
| def : InstAlias<"cset $dst, $cc", |
| (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>; |
| |
| def : InstAlias<"csetm $dst, $cc", |
| (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>; |
| def : InstAlias<"csetm $dst, $cc", |
| (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>; |
| |
| def : InstAlias<"cinc $dst, $src, $cc", |
| (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; |
| def : InstAlias<"cinc $dst, $src, $cc", |
| (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; |
| |
| def : InstAlias<"cinv $dst, $src, $cc", |
| (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; |
| def : InstAlias<"cinv $dst, $src, $cc", |
| (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; |
| |
| def : InstAlias<"cneg $dst, $src, $cc", |
| (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>; |
| def : InstAlias<"cneg $dst, $src, $cc", |
| (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>; |
| |
| //===----------------------------------------------------------------------===// |
| // PC-relative instructions. |
| //===----------------------------------------------------------------------===// |
| let isReMaterializable = 1 in { |
| let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in { |
| def ADR : ADRI<0, "adr", adrlabel, |
| [(set GPR64:$Xd, (AArch64adr tglobaladdr:$label))]>; |
| } // hasSideEffects = 0 |
| |
| def ADRP : ADRI<1, "adrp", adrplabel, |
| [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>; |
| } // isReMaterializable = 1 |
| |
| // page address of a constant pool entry, block address |
| def : Pat<(AArch64adr tconstpool:$cp), (ADR tconstpool:$cp)>; |
| def : Pat<(AArch64adr tblockaddress:$cp), (ADR tblockaddress:$cp)>; |
| def : Pat<(AArch64adr texternalsym:$sym), (ADR texternalsym:$sym)>; |
| def : Pat<(AArch64adr tjumptable:$sym), (ADR tjumptable:$sym)>; |
| def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>; |
| def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>; |
| def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Unconditional branch (register) instructions. |
| //===----------------------------------------------------------------------===// |
| |
| let isReturn = 1, isTerminator = 1, isBarrier = 1 in { |
| def RET : BranchReg<0b0010, "ret", []>; |
| def DRPS : SpecialReturn<0b0101, "drps">; |
| def ERET : SpecialReturn<0b0100, "eret">; |
| } // isReturn = 1, isTerminator = 1, isBarrier = 1 |
| |
| // Default to the LR register. |
| def : InstAlias<"ret", (RET LR)>; |
| |
| let isCall = 1, Defs = [LR], Uses = [SP] in { |
| def BLR : BranchReg<0b0001, "blr", []>; |
| def BLRNoIP : Pseudo<(outs), (ins GPR64noip:$Rn), []>, |
| Sched<[WriteBrReg]>, |
| PseudoInstExpansion<(BLR GPR64:$Rn)>; |
| def BLR_RVMARKER : Pseudo<(outs), (ins variable_ops), []>, |
| Sched<[WriteBrReg]>; |
| def BLR_BTI : Pseudo<(outs), (ins variable_ops), []>, |
| Sched<[WriteBrReg]>; |
| let Uses = [X16, SP] in |
| def BLR_X16 : Pseudo<(outs), (ins), [(AArch64call_arm64ec_to_x64 X16)]>, |
| Sched<[WriteBrReg]>, |
| PseudoInstExpansion<(BLR X16)>; |
| } // isCall |
| |
| def : Pat<(AArch64call GPR64:$Rn), |
| (BLR GPR64:$Rn)>, |
| Requires<[NoSLSBLRMitigation]>; |
| def : Pat<(AArch64call GPR64noip:$Rn), |
| (BLRNoIP GPR64noip:$Rn)>, |
| Requires<[SLSBLRMitigation]>; |
| |
| def : Pat<(AArch64call_rvmarker (i64 tglobaladdr:$rvfunc), GPR64:$Rn), |
| (BLR_RVMARKER tglobaladdr:$rvfunc, GPR64:$Rn)>, |
| Requires<[NoSLSBLRMitigation]>; |
| |
| def : Pat<(AArch64call_bti GPR64:$Rn), |
| (BLR_BTI GPR64:$Rn)>, |
| Requires<[NoSLSBLRMitigation]>; |
| def : Pat<(AArch64call_bti GPR64noip:$Rn), |
| (BLR_BTI GPR64noip:$Rn)>, |
| Requires<[SLSBLRMitigation]>; |
| |
| let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { |
| def BR : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>; |
| } // isBranch, isTerminator, isBarrier, isIndirectBranch |
| |
| // Create a separate pseudo-instruction for codegen to use so that we don't |
| // flag lr as used in every function. It'll be restored before the RET by the |
| // epilogue if it's legitimately used. |
| def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retglue)]>, |
| Sched<[WriteBrReg]> { |
| let isTerminator = 1; |
| let isBarrier = 1; |
| let isReturn = 1; |
| } |
| |
| // This is a directive-like pseudo-instruction. The purpose is to insert an |
| // R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction |
| // (which in the usual case is a BLR). |
| let hasSideEffects = 1 in |
| def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> { |
| let AsmString = ".tlsdesccall $sym"; |
| } |
| |
| // Pseudo instruction to tell the streamer to emit a 'B' character into the |
| // augmentation string. |
| def EMITBKEY : Pseudo<(outs), (ins), []>, Sched<[]> {} |
| |
| // Pseudo instruction to tell the streamer to emit a 'G' character into the |
| // augmentation string. |
| def EMITMTETAGGED : Pseudo<(outs), (ins), []>, Sched<[]> {} |
| |
| // FIXME: maybe the scratch register used shouldn't be fixed to X1? |
| // FIXME: can "hasSideEffects be dropped? |
| // This gets lowered to an instruction sequence which takes 16 bytes |
| let isCall = 1, Defs = [NZCV, LR, X0, X1], hasSideEffects = 1, Size = 16, |
| isCodeGenOnly = 1 in |
| def TLSDESC_CALLSEQ |
| : Pseudo<(outs), (ins i64imm:$sym), |
| [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>, |
| Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>; |
| def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym), |
| (TLSDESC_CALLSEQ texternalsym:$sym)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Conditional branch (immediate) instruction. |
| //===----------------------------------------------------------------------===// |
| def Bcc : BranchCond<0, "b">; |
| |
| // Armv8.8-A variant form which hints to the branch predictor that |
| // this branch is very likely to go the same way nearly all the time |
| // (even though it is not known at compile time _which_ way that is). |
| def BCcc : BranchCond<1, "bc">, Requires<[HasHBC]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Compare-and-branch instructions. |
| //===----------------------------------------------------------------------===// |
| defm CBZ : CmpBranch<0, "cbz", AArch64cbz>; |
| defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>; |
| |
| //===----------------------------------------------------------------------===// |
| // Test-bit-and-branch instructions. |
| //===----------------------------------------------------------------------===// |
| defm TBZ : TestBranch<0, "tbz", AArch64tbz>; |
| defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>; |
| |
| //===----------------------------------------------------------------------===// |
| // Unconditional branch (immediate) instructions. |
| //===----------------------------------------------------------------------===// |
| let isBranch = 1, isTerminator = 1, isBarrier = 1 in { |
| def B : BranchImm<0, "b", [(br bb:$addr)]>; |
| } // isBranch, isTerminator, isBarrier |
| |
| let isCall = 1, Defs = [LR], Uses = [SP] in { |
| def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>; |
| } // isCall |
| def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Exception generation instructions. |
| //===----------------------------------------------------------------------===// |
| let isTrap = 1 in { |
| def BRK : ExceptionGeneration<0b001, 0b00, "brk", |
| [(int_aarch64_break timm32_0_65535:$imm)]>; |
| } |
| def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">; |
| def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">; |
| def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">, Requires<[HasEL3]>; |
| def HLT : ExceptionGeneration<0b010, 0b00, "hlt", |
| [(int_aarch64_hlt timm32_0_65535:$imm)]>; |
| def HVC : ExceptionGeneration<0b000, 0b10, "hvc">; |
| def SMC : ExceptionGeneration<0b000, 0b11, "smc">, Requires<[HasEL3]>; |
| def SVC : ExceptionGeneration<0b000, 0b01, "svc">; |
| |
| // DCPSn defaults to an immediate operand of zero if unspecified. |
| def : InstAlias<"dcps1", (DCPS1 0)>; |
| def : InstAlias<"dcps2", (DCPS2 0)>; |
| def : InstAlias<"dcps3", (DCPS3 0)>, Requires<[HasEL3]>; |
| |
| def UDF : UDFType<0, "udf">; |
| |
| //===----------------------------------------------------------------------===// |
| // Load instructions. |
| //===----------------------------------------------------------------------===// |
| |
| // Pair (indexed, offset) |
| defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">; |
| defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">; |
| let Predicates = [HasFPARMv8] in { |
| defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">; |
| defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">; |
| defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">; |
| } |
| |
| defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">; |
| |
| // Pair (pre-indexed) |
| def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">; |
| def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">; |
| let Predicates = [HasFPARMv8] in { |
| def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">; |
| def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">; |
| def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">; |
| } |
| |
| def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">; |
| |
| // Pair (post-indexed) |
| def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">; |
| def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">; |
| let Predicates = [HasFPARMv8] in { |
| def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">; |
| def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">; |
| def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">; |
| } |
| |
| def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">; |
| |
| |
| // Pair (no allocate) |
| defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">; |
| defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">; |
| let Predicates = [HasFPARMv8] in { |
| defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">; |
| defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">; |
| defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">; |
| } |
| |
| def : Pat<(AArch64ldp (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)), |
| (LDPXi GPR64sp:$Rn, simm7s8:$offset)>; |
| |
| def : Pat<(AArch64ldnp (am_indexed7s128 GPR64sp:$Rn, simm7s16:$offset)), |
| (LDNPQi GPR64sp:$Rn, simm7s16:$offset)>; |
| //--- |
| // (register offset) |
| //--- |
| |
| // Integer |
| defm LDRBB : Load8RO<0b00, 0, 0b01, GPR32, "ldrb", i32, zextloadi8>; |
| defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>; |
| defm LDRW : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>; |
| defm LDRX : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>; |
| |
| // Floating-point |
| let Predicates = [HasFPARMv8] in { |
| defm LDRB : Load8RO<0b00, 1, 0b01, FPR8Op, "ldr", i8, load>; |
| defm LDRH : Load16RO<0b01, 1, 0b01, FPR16Op, "ldr", f16, load>; |
| defm LDRS : Load32RO<0b10, 1, 0b01, FPR32Op, "ldr", f32, load>; |
| defm LDRD : Load64RO<0b11, 1, 0b01, FPR64Op, "ldr", f64, load>; |
| defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>; |
| } |
| |
| // Load sign-extended half-word |
| defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>; |
| defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>; |
| |
| // Load sign-extended byte |
| defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>; |
| defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>; |
| |
| // Load sign-extended word |
| defm LDRSW : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>; |
| |
| // Pre-fetch. |
| defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">; |
| |
| // For regular load, we do not have any alignment requirement. |
| // Thus, it is safe to directly map the vector loads with interesting |
| // addressing modes. |
| // FIXME: We could do the same for bitconvert to floating point vectors. |
| multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop, |
| ValueType ScalTy, ValueType VecTy, |
| Instruction LOADW, Instruction LOADX, |
| SubRegIndex sub> { |
| def : Pat<(VecTy (scalar_to_vector (ScalTy |
| (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))), |
| (INSERT_SUBREG (VecTy (IMPLICIT_DEF)), |
| (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset), |
| sub)>; |
| |
| def : Pat<(VecTy (scalar_to_vector (ScalTy |
| (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))), |
| (INSERT_SUBREG (VecTy (IMPLICIT_DEF)), |
| (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset), |
| sub)>; |
| } |
| |
| let AddedComplexity = 10 in { |
| defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v8i8, LDRBroW, LDRBroX, bsub>; |
| defm : ScalToVecROLoadPat<ro8, extloadi8, i32, v16i8, LDRBroW, LDRBroX, bsub>; |
| |
| defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>; |
| defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>; |
| |
| defm : ScalToVecROLoadPat<ro16, load, i32, v4f16, LDRHroW, LDRHroX, hsub>; |
| defm : ScalToVecROLoadPat<ro16, load, i32, v8f16, LDRHroW, LDRHroX, hsub>; |
| |
| defm : ScalToVecROLoadPat<ro32, load, i32, v2i32, LDRSroW, LDRSroX, ssub>; |
| defm : ScalToVecROLoadPat<ro32, load, i32, v4i32, LDRSroW, LDRSroX, ssub>; |
| |
| defm : ScalToVecROLoadPat<ro32, load, f32, v2f32, LDRSroW, LDRSroX, ssub>; |
| defm : ScalToVecROLoadPat<ro32, load, f32, v4f32, LDRSroW, LDRSroX, ssub>; |
| |
| defm : ScalToVecROLoadPat<ro64, load, i64, v2i64, LDRDroW, LDRDroX, dsub>; |
| |
| defm : ScalToVecROLoadPat<ro64, load, f64, v2f64, LDRDroW, LDRDroX, dsub>; |
| |
| |
| def : Pat <(v1i64 (scalar_to_vector (i64 |
| (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm, |
| ro_Wextend64:$extend))))), |
| (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>; |
| |
| def : Pat <(v1i64 (scalar_to_vector (i64 |
| (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm, |
| ro_Xextend64:$extend))))), |
| (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>; |
| } |
| |
| // Match all load 64 bits width whose type is compatible with FPR64 |
| multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy, |
| Instruction LOADW, Instruction LOADX> { |
| |
| def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), |
| (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; |
| |
| def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), |
| (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; |
| } |
| |
| let AddedComplexity = 10 in { |
| let Predicates = [IsLE] in { |
| // We must do vector loads with LD1 in big-endian. |
| defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>; |
| defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>; |
| defm : VecROLoadPat<ro64, v8i8, LDRDroW, LDRDroX>; |
| defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>; |
| defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>; |
| defm : VecROLoadPat<ro64, v4bf16, LDRDroW, LDRDroX>; |
| } |
| |
| defm : VecROLoadPat<ro64, v1i64, LDRDroW, LDRDroX>; |
| defm : VecROLoadPat<ro64, v1f64, LDRDroW, LDRDroX>; |
| |
| // Match all load 128 bits width whose type is compatible with FPR128 |
| let Predicates = [IsLE] in { |
| // We must do vector loads with LD1 in big-endian. |
| defm : VecROLoadPat<ro128, v2i64, LDRQroW, LDRQroX>; |
| defm : VecROLoadPat<ro128, v2f64, LDRQroW, LDRQroX>; |
| defm : VecROLoadPat<ro128, v4i32, LDRQroW, LDRQroX>; |
| defm : VecROLoadPat<ro128, v4f32, LDRQroW, LDRQroX>; |
| defm : VecROLoadPat<ro128, v8i16, LDRQroW, LDRQroX>; |
| defm : VecROLoadPat<ro128, v8f16, LDRQroW, LDRQroX>; |
| defm : VecROLoadPat<ro128, v8bf16, LDRQroW, LDRQroX>; |
| defm : VecROLoadPat<ro128, v16i8, LDRQroW, LDRQroX>; |
| } |
| } // AddedComplexity = 10 |
| |
| // zextload -> i64 |
| multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop, |
| Instruction INSTW, Instruction INSTX> { |
| def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), |
| (SUBREG_TO_REG (i64 0), |
| (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend), |
| sub_32)>; |
| |
| def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), |
| (SUBREG_TO_REG (i64 0), |
| (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend), |
| sub_32)>; |
| } |
| |
| let AddedComplexity = 10 in { |
| defm : ExtLoadTo64ROPat<ro8, zextloadi8, LDRBBroW, LDRBBroX>; |
| defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>; |
| defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW, LDRWroX>; |
| |
| // zextloadi1 -> zextloadi8 |
| defm : ExtLoadTo64ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>; |
| |
| // extload -> zextload |
| defm : ExtLoadTo64ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>; |
| defm : ExtLoadTo64ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>; |
| defm : ExtLoadTo64ROPat<ro32, extloadi32, LDRWroW, LDRWroX>; |
| |
| // extloadi1 -> zextloadi8 |
| defm : ExtLoadTo64ROPat<ro8, extloadi1, LDRBBroW, LDRBBroX>; |
| } |
| |
| |
| // zextload -> i64 |
| multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop, |
| Instruction INSTW, Instruction INSTX> { |
| def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))), |
| (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; |
| |
| def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))), |
| (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; |
| |
| } |
| |
| let AddedComplexity = 10 in { |
| // extload -> zextload |
| defm : ExtLoadTo32ROPat<ro8, extloadi8, LDRBBroW, LDRBBroX>; |
| defm : ExtLoadTo32ROPat<ro16, extloadi16, LDRHHroW, LDRHHroX>; |
| defm : ExtLoadTo32ROPat<ro32, extloadi32, LDRWroW, LDRWroX>; |
| |
| // zextloadi1 -> zextloadi8 |
| defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>; |
| } |
| |
| //--- |
| // (unsigned immediate) |
| //--- |
| defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr", |
| [(set GPR64z:$Rt, |
| (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>; |
| defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr", |
| [(set GPR32z:$Rt, |
| (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>; |
| let Predicates = [HasFPARMv8] in { |
| defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr", |
| [(set FPR8Op:$Rt, |
| (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>; |
| defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr", |
| [(set (f16 FPR16Op:$Rt), |
| (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>; |
| defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr", |
| [(set (f32 FPR32Op:$Rt), |
| (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>; |
| defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr", |
| [(set (f64 FPR64Op:$Rt), |
| (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>; |
| defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr", |
| [(set (f128 FPR128Op:$Rt), |
| (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>; |
| } |
| |
| // bf16 load pattern |
| def : Pat <(bf16 (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), |
| (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>; |
| |
| // For regular load, we do not have any alignment requirement. |
| // Thus, it is safe to directly map the vector loads with interesting |
| // addressing modes. |
| // FIXME: We could do the same for bitconvert to floating point vectors. |
| def : Pat <(v8i8 (scalar_to_vector (i32 |
| (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), |
| (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), |
| (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>; |
| def : Pat <(v16i8 (scalar_to_vector (i32 |
| (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>; |
| def : Pat <(v4i16 (scalar_to_vector (i32 |
| (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), |
| (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), |
| (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>; |
| def : Pat <(v8i16 (scalar_to_vector (i32 |
| (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), |
| (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), |
| (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>; |
| def : Pat <(v2i32 (scalar_to_vector (i32 |
| (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), |
| (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), |
| (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>; |
| def : Pat <(v4i32 (scalar_to_vector (i32 |
| (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), |
| (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), |
| (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>; |
| def : Pat <(v1i64 (scalar_to_vector (i64 |
| (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))), |
| (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat <(v2i64 (scalar_to_vector (i64 |
| (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))), |
| (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), |
| (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>; |
| |
| // Match all load 64 bits width whose type is compatible with FPR64 |
| let Predicates = [IsLE] in { |
| // We must use LD1 to perform vector loads in big-endian. |
| def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), |
| (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), |
| (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), |
| (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), |
| (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), |
| (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(v4bf16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), |
| (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; |
| } |
| def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), |
| (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))), |
| (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>; |
| |
| // Match all load 128 bits width whose type is compatible with FPR128 |
| let Predicates = [IsLE] in { |
| // We must use LD1 to perform vector loads in big-endian. |
| def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), |
| (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), |
| (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), |
| (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), |
| (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), |
| (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), |
| (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), |
| (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(v8bf16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), |
| (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; |
| } |
| def : Pat<(f128 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))), |
| (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>; |
| |
| defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh", |
| [(set GPR32:$Rt, |
| (zextloadi16 (am_indexed16 GPR64sp:$Rn, |
| uimm12s2:$offset)))]>; |
| defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb", |
| [(set GPR32:$Rt, |
| (zextloadi8 (am_indexed8 GPR64sp:$Rn, |
| uimm12s1:$offset)))]>; |
| // zextload -> i64 |
| def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; |
| def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>; |
| |
| // zextloadi1 -> zextloadi8 |
| def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), |
| (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; |
| def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; |
| |
| // extload -> zextload |
| def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), |
| (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>; |
| def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), |
| (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; |
| def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), |
| (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>; |
| def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>; |
| def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>; |
| def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; |
| def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>; |
| |
| // load sign-extended half-word |
| defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh", |
| [(set GPR32:$Rt, |
| (sextloadi16 (am_indexed16 GPR64sp:$Rn, |
| uimm12s2:$offset)))]>; |
| defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh", |
| [(set GPR64:$Rt, |
| (sextloadi16 (am_indexed16 GPR64sp:$Rn, |
| uimm12s2:$offset)))]>; |
| |
| // load sign-extended byte |
| defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb", |
| [(set GPR32:$Rt, |
| (sextloadi8 (am_indexed8 GPR64sp:$Rn, |
| uimm12s1:$offset)))]>; |
| defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb", |
| [(set GPR64:$Rt, |
| (sextloadi8 (am_indexed8 GPR64sp:$Rn, |
| uimm12s1:$offset)))]>; |
| |
| // load sign-extended word |
| defm LDRSW : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw", |
| [(set GPR64:$Rt, |
| (sextloadi32 (am_indexed32 GPR64sp:$Rn, |
| uimm12s4:$offset)))]>; |
| |
| // load zero-extended word |
| def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>; |
| |
| // Pre-fetch. |
| def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm", |
| [(AArch64Prefetch timm:$Rt, |
| (am_indexed64 GPR64sp:$Rn, |
| uimm12s8:$offset))]>; |
| |
| def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>; |
| |
| //--- |
| // (literal) |
| |
| def alignedglobal : PatLeaf<(iPTR iPTR:$label), [{ |
| if (auto *G = dyn_cast<GlobalAddressSDNode>(N)) { |
| const DataLayout &DL = MF->getDataLayout(); |
| Align Align = G->getGlobal()->getPointerAlignment(DL); |
| return Align >= 4 && G->getOffset() % 4 == 0; |
| } |
| if (auto *C = dyn_cast<ConstantPoolSDNode>(N)) |
| return C->getAlign() >= 4 && C->getOffset() % 4 == 0; |
| return false; |
| }]>; |
| |
| def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr", |
| [(set GPR32z:$Rt, (load (AArch64adr alignedglobal:$label)))]>; |
| def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr", |
| [(set GPR64z:$Rt, (load (AArch64adr alignedglobal:$label)))]>; |
| let Predicates = [HasFPARMv8] in { |
| def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr", |
| [(set (f32 FPR32Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>; |
| def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr", |
| [(set (f64 FPR64Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>; |
| def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr", |
| [(set (f128 FPR128Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>; |
| } |
| |
| // load sign-extended word |
| def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw", |
| [(set GPR64z:$Rt, (sextloadi32 (AArch64adr alignedglobal:$label)))]>; |
| |
| let AddedComplexity = 20 in { |
| def : Pat<(i64 (zextloadi32 (AArch64adr alignedglobal:$label))), |
| (SUBREG_TO_REG (i64 0), (LDRWl $label), sub_32)>; |
| } |
| |
| // prefetch |
| def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>; |
| // [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>; |
| |
| //--- |
| // (unscaled immediate) |
| defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur", |
| [(set GPR64z:$Rt, |
| (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>; |
| defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur", |
| [(set GPR32z:$Rt, |
| (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; |
| let Predicates = [HasFPARMv8] in { |
| defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur", |
| [(set FPR8Op:$Rt, |
| (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; |
| defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur", |
| [(set (f16 FPR16Op:$Rt), |
| (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; |
| defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur", |
| [(set (f32 FPR32Op:$Rt), |
| (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; |
| defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur", |
| [(set (f64 FPR64Op:$Rt), |
| (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>; |
| defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur", |
| [(set (f128 FPR128Op:$Rt), |
| (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>; |
| } |
| |
| defm LDURHH |
| : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh", |
| [(set GPR32:$Rt, |
| (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; |
| defm LDURBB |
| : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb", |
| [(set GPR32:$Rt, |
| (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; |
| |
| // bf16 load pattern |
| def : Pat <(bf16 (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), |
| (LDURHi GPR64sp:$Rn, simm9:$offset)>; |
| |
| // Match all load 64 bits width whose type is compatible with FPR64 |
| let Predicates = [IsLE] in { |
| def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), |
| (LDURDi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), |
| (LDURDi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), |
| (LDURDi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), |
| (LDURDi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), |
| (LDURDi GPR64sp:$Rn, simm9:$offset)>; |
| } |
| def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), |
| (LDURDi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))), |
| (LDURDi GPR64sp:$Rn, simm9:$offset)>; |
| |
| // Match all load 128 bits width whose type is compatible with FPR128 |
| let Predicates = [IsLE] in { |
| def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), |
| (LDURQi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), |
| (LDURQi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), |
| (LDURQi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), |
| (LDURQi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), |
| (LDURQi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), |
| (LDURQi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))), |
| (LDURQi GPR64sp:$Rn, simm9:$offset)>; |
| } |
| |
| // anyext -> zext |
| def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), |
| (LDURHHi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), |
| (LDURBBi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), |
| (LDURBBi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>; |
| def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; |
| def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; |
| def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; |
| // unscaled zext |
| def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), |
| (LDURHHi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), |
| (LDURBBi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), |
| (LDURBBi GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>; |
| def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; |
| def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; |
| def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; |
| |
| |
| //--- |
| // LDR mnemonics fall back to LDUR for negative or unaligned offsets. |
| |
| // Define new assembler match classes as we want to only match these when |
| // the don't otherwise match the scaled addressing mode for LDR/STR. Don't |
| // associate a DiagnosticType either, as we want the diagnostic for the |
| // canonical form (the scaled operand) to take precedence. |
| class SImm9OffsetOperand<int Width> : AsmOperandClass { |
| let Name = "SImm9OffsetFB" # Width; |
| let PredicateMethod = "isSImm9OffsetFB<" # Width # ">"; |
| let RenderMethod = "addImmOperands"; |
| } |
| |
| def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>; |
| def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>; |
| def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>; |
| def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>; |
| def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>; |
| |
| def simm9_offset_fb8 : Operand<i64> { |
| let ParserMatchClass = SImm9OffsetFB8Operand; |
| } |
| def simm9_offset_fb16 : Operand<i64> { |
| let ParserMatchClass = SImm9OffsetFB16Operand; |
| } |
| def simm9_offset_fb32 : Operand<i64> { |
| let ParserMatchClass = SImm9OffsetFB32Operand; |
| } |
| def simm9_offset_fb64 : Operand<i64> { |
| let ParserMatchClass = SImm9OffsetFB64Operand; |
| } |
| def simm9_offset_fb128 : Operand<i64> { |
| let ParserMatchClass = SImm9OffsetFB128Operand; |
| } |
| |
| def : InstAlias<"ldr $Rt, [$Rn, $offset]", |
| (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; |
| def : InstAlias<"ldr $Rt, [$Rn, $offset]", |
| (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; |
| let Predicates = [HasFPARMv8] in { |
| def : InstAlias<"ldr $Rt, [$Rn, $offset]", |
| (LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; |
| def : InstAlias<"ldr $Rt, [$Rn, $offset]", |
| (LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; |
| def : InstAlias<"ldr $Rt, [$Rn, $offset]", |
| (LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; |
| def : InstAlias<"ldr $Rt, [$Rn, $offset]", |
| (LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; |
| def : InstAlias<"ldr $Rt, [$Rn, $offset]", |
| (LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>; |
| } |
| |
| // zextload -> i64 |
| def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>; |
| def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))), |
| (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>; |
| |
| // load sign-extended half-word |
| defm LDURSHW |
| : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh", |
| [(set GPR32:$Rt, |
| (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; |
| defm LDURSHX |
| : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh", |
| [(set GPR64:$Rt, |
| (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>; |
| |
| // load sign-extended byte |
| defm LDURSBW |
| : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb", |
| [(set GPR32:$Rt, |
| (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; |
| defm LDURSBX |
| : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb", |
| [(set GPR64:$Rt, |
| (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>; |
| |
| // load sign-extended word |
| defm LDURSW |
| : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw", |
| [(set GPR64:$Rt, |
| (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>; |
| |
| // zero and sign extending aliases from generic LDR* mnemonics to LDUR*. |
| def : InstAlias<"ldrb $Rt, [$Rn, $offset]", |
| (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; |
| def : InstAlias<"ldrh $Rt, [$Rn, $offset]", |
| (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; |
| def : InstAlias<"ldrsb $Rt, [$Rn, $offset]", |
| (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; |
| def : InstAlias<"ldrsb $Rt, [$Rn, $offset]", |
| (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; |
| def : InstAlias<"ldrsh $Rt, [$Rn, $offset]", |
| (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; |
| def : InstAlias<"ldrsh $Rt, [$Rn, $offset]", |
| (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; |
| def : InstAlias<"ldrsw $Rt, [$Rn, $offset]", |
| (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; |
| |
| // A LDR will implicitly zero the rest of the vector, so vector_insert(zeros, |
| // load, 0) can use a single load. |
| multiclass LoadInsertZeroPatterns<SDPatternOperator LoadOp, ValueType VT, ValueType HVT, ValueType SVT, |
| ValueType ScalarVT, Instruction LoadInst, Instruction UnscaledLoadInst, |
| ComplexPattern Addr, ComplexPattern UnscaledAddr, Operand AddrImm, |
| SubRegIndex SubReg> { |
| // Scaled |
| def : Pat <(vector_insert (VT immAllZerosV), |
| (ScalarVT (LoadOp (Addr GPR64sp:$Rn, AddrImm:$offset))), (i64 0)), |
| (SUBREG_TO_REG (i64 0), (LoadInst GPR64sp:$Rn, AddrImm:$offset), SubReg)>; |
| // Unscaled |
| def : Pat <(vector_insert (VT immAllZerosV), |
| (ScalarVT (LoadOp (UnscaledAddr GPR64sp:$Rn, simm9:$offset))), (i64 0)), |
| (SUBREG_TO_REG (i64 0), (UnscaledLoadInst GPR64sp:$Rn, simm9:$offset), SubReg)>; |
| |
| // Half-vector patterns |
| def : Pat <(vector_insert (HVT immAllZerosV), |
| (ScalarVT (LoadOp (Addr GPR64sp:$Rn, AddrImm:$offset))), (i64 0)), |
| (SUBREG_TO_REG (i64 0), (LoadInst GPR64sp:$Rn, AddrImm:$offset), SubReg)>; |
| // Unscaled |
| def : Pat <(vector_insert (HVT immAllZerosV), |
| (ScalarVT (LoadOp (UnscaledAddr GPR64sp:$Rn, simm9:$offset))), (i64 0)), |
| (SUBREG_TO_REG (i64 0), (UnscaledLoadInst GPR64sp:$Rn, simm9:$offset), SubReg)>; |
| |
| // SVE patterns |
| def : Pat <(vector_insert (SVT immAllZerosV), |
| (ScalarVT (LoadOp (Addr GPR64sp:$Rn, AddrImm:$offset))), (i64 0)), |
| (SUBREG_TO_REG (i64 0), (LoadInst GPR64sp:$Rn, AddrImm:$offset), SubReg)>; |
| // Unscaled |
| def : Pat <(vector_insert (SVT immAllZerosV), |
| (ScalarVT (LoadOp (UnscaledAddr GPR64sp:$Rn, simm9:$offset))), (i64 0)), |
| (SUBREG_TO_REG (i64 0), (UnscaledLoadInst GPR64sp:$Rn, simm9:$offset), SubReg)>; |
| } |
| |
| defm : LoadInsertZeroPatterns<extloadi8, v16i8, v8i8, nxv16i8, i32, LDRBui, LDURBi, |
| am_indexed8, am_unscaled8, uimm12s1, bsub>; |
| defm : LoadInsertZeroPatterns<extloadi16, v8i16, v4i16, nxv8i16, i32, LDRHui, LDURHi, |
| am_indexed16, am_unscaled16, uimm12s2, hsub>; |
| defm : LoadInsertZeroPatterns<load, v4i32, v2i32, nxv4i32, i32, LDRSui, LDURSi, |
| am_indexed32, am_unscaled32, uimm12s4, ssub>; |
| defm : LoadInsertZeroPatterns<load, v2i64, v1i64, nxv2i64, i64, LDRDui, LDURDi, |
| am_indexed64, am_unscaled64, uimm12s8, dsub>; |
| defm : LoadInsertZeroPatterns<load, v8f16, v4f16, nxv8f16, f16, LDRHui, LDURHi, |
| am_indexed16, am_unscaled16, uimm12s2, hsub>; |
| defm : LoadInsertZeroPatterns<load, v8bf16, v4bf16, nxv8bf16, bf16, LDRHui, LDURHi, |
| am_indexed16, am_unscaled16, uimm12s2, hsub>; |
| defm : LoadInsertZeroPatterns<load, v4f32, v2f32, nxv4f32, f32, LDRSui, LDURSi, |
| am_indexed32, am_unscaled32, uimm12s4, ssub>; |
| defm : LoadInsertZeroPatterns<load, v2f64, v1f64, nxv2f64, f64, LDRDui, LDURDi, |
| am_indexed64, am_unscaled64, uimm12s8, dsub>; |
| |
| // Pre-fetch. |
| defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum", |
| [(AArch64Prefetch timm:$Rt, |
| (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; |
| |
| //--- |
| // (unscaled immediate, unprivileged) |
| defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">; |
| defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">; |
| |
| defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">; |
| defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">; |
| |
| // load sign-extended half-word |
| defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">; |
| defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">; |
| |
| // load sign-extended byte |
| defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">; |
| defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">; |
| |
| // load sign-extended word |
| defm LDTRSW : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">; |
| |
| //--- |
| // (immediate pre-indexed) |
| def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">; |
| def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">; |
| let Predicates = [HasFPARMv8] in { |
| def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op, "ldr">; |
| def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">; |
| def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">; |
| def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">; |
| def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">; |
| } |
| |
| // load sign-extended half-word |
| def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">; |
| def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">; |
| |
| // load sign-extended byte |
| def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">; |
| def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">; |
| |
| // load zero-extended byte |
| def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">; |
| def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">; |
| |
| // load sign-extended word |
| def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">; |
| |
| //--- |
| // (immediate post-indexed) |
| def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">; |
| def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">; |
| let Predicates = [HasFPARMv8] in { |
| def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op, "ldr">; |
| def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">; |
| def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">; |
| def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">; |
| def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">; |
| } |
| |
| // load sign-extended half-word |
| def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">; |
| def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">; |
| |
| // load sign-extended byte |
| def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">; |
| def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">; |
| |
| // load zero-extended byte |
| def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">; |
| def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">; |
| |
| // load sign-extended word |
| def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">; |
| |
| //===----------------------------------------------------------------------===// |
| // Store instructions. |
| //===----------------------------------------------------------------------===// |
| |
| // Pair (indexed, offset) |
| // FIXME: Use dedicated range-checked addressing mode operand here. |
| defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">; |
| defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">; |
| let Predicates = [HasFPARMv8] in { |
| defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">; |
| defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">; |
| defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">; |
| } |
| |
| // Pair (pre-indexed) |
| def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">; |
| def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">; |
| let Predicates = [HasFPARMv8] in { |
| def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">; |
| def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">; |
| def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">; |
| } |
| |
| // Pair (post-indexed) |
| def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">; |
| def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">; |
| let Predicates = [HasFPARMv8] in { |
| def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">; |
| def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">; |
| def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">; |
| } |
| |
| // Pair (no allocate) |
| defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">; |
| defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">; |
| let Predicates = [HasFPARMv8] in { |
| defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">; |
| defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">; |
| defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">; |
| } |
| |
| def : Pat<(AArch64stp GPR64z:$Rt, GPR64z:$Rt2, (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)), |
| (STPXi GPR64z:$Rt, GPR64z:$Rt2, GPR64sp:$Rn, simm7s8:$offset)>; |
| |
| def : Pat<(AArch64stnp FPR128:$Rt, FPR128:$Rt2, (am_indexed7s128 GPR64sp:$Rn, simm7s16:$offset)), |
| (STNPQi FPR128:$Rt, FPR128:$Rt2, GPR64sp:$Rn, simm7s16:$offset)>; |
| |
| |
| //--- |
| // (Register offset) |
| |
| // Integer |
| defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>; |
| defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>; |
| defm STRW : Store32RO<0b10, 0, 0b00, GPR32, "str", i32, store>; |
| defm STRX : Store64RO<0b11, 0, 0b00, GPR64, "str", i64, store>; |
| |
| |
| // Floating-point |
| let Predicates = [HasFPARMv8] in { |
| defm STRB : Store8RO< 0b00, 1, 0b00, FPR8Op, "str", i8, store>; |
| defm STRH : Store16RO<0b01, 1, 0b00, FPR16Op, "str", f16, store>; |
| defm STRS : Store32RO<0b10, 1, 0b00, FPR32Op, "str", f32, store>; |
| defm STRD : Store64RO<0b11, 1, 0b00, FPR64Op, "str", f64, store>; |
| defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str">; |
| } |
| |
| let Predicates = [UseSTRQro], AddedComplexity = 10 in { |
| def : Pat<(store (f128 FPR128:$Rt), |
| (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm, |
| ro_Wextend128:$extend)), |
| (STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>; |
| def : Pat<(store (f128 FPR128:$Rt), |
| (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm, |
| ro_Xextend128:$extend)), |
| (STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>; |
| } |
| |
| multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop, |
| Instruction STRW, Instruction STRX> { |
| |
| def : Pat<(storeop GPR64:$Rt, |
| (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), |
| (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32), |
| GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; |
| |
| def : Pat<(storeop GPR64:$Rt, |
| (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), |
| (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32), |
| GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; |
| } |
| |
| let AddedComplexity = 10 in { |
| // truncstore i64 |
| defm : TruncStoreFrom64ROPat<ro8, truncstorei8, STRBBroW, STRBBroX>; |
| defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>; |
| defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW, STRWroX>; |
| } |
| |
| multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR, |
| Instruction STRW, Instruction STRX> { |
| def : Pat<(store (VecTy FPR:$Rt), |
| (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), |
| (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; |
| |
| def : Pat<(store (VecTy FPR:$Rt), |
| (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), |
| (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; |
| } |
| |
| let AddedComplexity = 10 in { |
| // Match all store 64 bits width whose type is compatible with FPR64 |
| let Predicates = [IsLE] in { |
| // We must use ST1 to store vectors in big-endian. |
| defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>; |
| defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>; |
| defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>; |
| defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>; |
| defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>; |
| defm : VecROStorePat<ro64, v4bf16, FPR64, STRDroW, STRDroX>; |
| } |
| |
| defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>; |
| defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>; |
| |
| // Match all store 128 bits width whose type is compatible with FPR128 |
| let Predicates = [IsLE, UseSTRQro] in { |
| // We must use ST1 to store vectors in big-endian. |
| defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>; |
| defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>; |
| defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>; |
| defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>; |
| defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>; |
| defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>; |
| defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>; |
| defm : VecROStorePat<ro128, v8bf16, FPR128, STRQroW, STRQroX>; |
| } |
| } // AddedComplexity = 10 |
| |
| // Match stores from lane 0 to the appropriate subreg's store. |
| multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop, |
| ValueType VecTy, ValueType STy, |
| ValueType SubRegTy, |
| SubRegIndex SubRegIdx, |
| Instruction STRW, Instruction STRX> { |
| |
| def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), (i64 0))), |
| (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)), |
| (STRW (SubRegTy (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx)), |
| GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>; |
| |
| def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), (i64 0))), |
| (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)), |
| (STRX (SubRegTy (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx)), |
| GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>; |
| } |
| |
| let AddedComplexity = 19 in { |
| defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, f16, hsub, STRHroW, STRHroX>; |
| defm : VecROStoreLane0Pat<ro16, store, v8f16, f16, f16, hsub, STRHroW, STRHroX>; |
| defm : VecROStoreLane0Pat<ro32, store, v4i32, i32, i32, ssub, STRSroW, STRSroX>; |
| defm : VecROStoreLane0Pat<ro32, store, v4f32, f32, i32, ssub, STRSroW, STRSroX>; |
| defm : VecROStoreLane0Pat<ro64, store, v2i64, i64, i64, dsub, STRDroW, STRDroX>; |
| defm : VecROStoreLane0Pat<ro64, store, v2f64, f64, i64, dsub, STRDroW, STRDroX>; |
| } |
| |
| //--- |
| // (unsigned immediate) |
| defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str", |
| [(store GPR64z:$Rt, |
| (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>; |
| defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str", |
| [(store GPR32z:$Rt, |
| (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>; |
| let Predicates = [HasFPARMv8] in { |
| defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str", |
| [(store FPR8Op:$Rt, |
| (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>; |
| defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str", |
| [(store (f16 FPR16Op:$Rt), |
| (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>; |
| defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str", |
| [(store (f32 FPR32Op:$Rt), |
| (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>; |
| defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str", |
| [(store (f64 FPR64Op:$Rt), |
| (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>; |
| defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>; |
| } |
| |
| defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh", |
| [(truncstorei16 GPR32z:$Rt, |
| (am_indexed16 GPR64sp:$Rn, |
| uimm12s2:$offset))]>; |
| defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1, "strb", |
| [(truncstorei8 GPR32z:$Rt, |
| (am_indexed8 GPR64sp:$Rn, |
| uimm12s1:$offset))]>; |
| |
| // bf16 store pattern |
| def : Pat<(store (bf16 FPR16Op:$Rt), |
| (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)), |
| (STRHui FPR16:$Rt, GPR64sp:$Rn, uimm12s2:$offset)>; |
| |
| let AddedComplexity = 10 in { |
| |
| // Match all store 64 bits width whose type is compatible with FPR64 |
| def : Pat<(store (v1i64 FPR64:$Rt), |
| (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), |
| (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(store (v1f64 FPR64:$Rt), |
| (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), |
| (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; |
| |
| let Predicates = [IsLE] in { |
| // We must use ST1 to store vectors in big-endian. |
| def : Pat<(store (v2f32 FPR64:$Rt), |
| (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), |
| (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(store (v8i8 FPR64:$Rt), |
| (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), |
| (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(store (v4i16 FPR64:$Rt), |
| (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), |
| (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(store (v2i32 FPR64:$Rt), |
| (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), |
| (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(store (v4f16 FPR64:$Rt), |
| (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), |
| (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; |
| def : Pat<(store (v4bf16 FPR64:$Rt), |
| (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)), |
| (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>; |
| } |
| |
| // Match all store 128 bits width whose type is compatible with FPR128 |
| def : Pat<(store (f128 FPR128:$Rt), |
| (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), |
| (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; |
| |
| let Predicates = [IsLE] in { |
| // We must use ST1 to store vectors in big-endian. |
| def : Pat<(store (v4f32 FPR128:$Rt), |
| (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), |
| (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(store (v2f64 FPR128:$Rt), |
| (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), |
| (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(store (v16i8 FPR128:$Rt), |
| (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), |
| (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(store (v8i16 FPR128:$Rt), |
| (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), |
| (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(store (v4i32 FPR128:$Rt), |
| (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), |
| (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(store (v2i64 FPR128:$Rt), |
| (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), |
| (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(store (v8f16 FPR128:$Rt), |
| (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), |
| (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; |
| def : Pat<(store (v8bf16 FPR128:$Rt), |
| (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)), |
| (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>; |
| } |
| |
| // truncstore i64 |
| def : Pat<(truncstorei32 GPR64:$Rt, |
| (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)), |
| (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>; |
| def : Pat<(truncstorei16 GPR64:$Rt, |
| (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)), |
| (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>; |
| def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)), |
| (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>; |
| |
| } // AddedComplexity = 10 |
| |
| // Match stores from lane 0 to the appropriate subreg's store. |
| multiclass VecStoreLane0Pat<ComplexPattern UIAddrMode, SDPatternOperator storeop, |
| ValueType VTy, ValueType STy, |
| ValueType SubRegTy, |
| SubRegIndex SubRegIdx, Operand IndexType, |
| Instruction STR> { |
| def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), (i64 0))), |
| (UIAddrMode GPR64sp:$Rn, IndexType:$offset)), |
| (STR (SubRegTy (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx)), |
| GPR64sp:$Rn, IndexType:$offset)>; |
| } |
| |
| let AddedComplexity = 19 in { |
| defm : VecStoreLane0Pat<am_indexed16, truncstorei16, v8i16, i32, f16, hsub, uimm12s2, STRHui>; |
| defm : VecStoreLane0Pat<am_indexed16, store, v8f16, f16, f16, hsub, uimm12s2, STRHui>; |
| defm : VecStoreLane0Pat<am_indexed32, store, v4i32, i32, i32, ssub, uimm12s4, STRSui>; |
| defm : VecStoreLane0Pat<am_indexed32, store, v4f32, f32, i32, ssub, uimm12s4, STRSui>; |
| defm : VecStoreLane0Pat<am_indexed64, store, v2i64, i64, i64, dsub, uimm12s8, STRDui>; |
| defm : VecStoreLane0Pat<am_indexed64, store, v2f64, f64, i64, dsub, uimm12s8, STRDui>; |
| } |
| |
| //--- |
| // (unscaled immediate) |
| defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur", |
| [(store GPR64z:$Rt, |
| (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; |
| defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur", |
| [(store GPR32z:$Rt, |
| (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>; |
| let Predicates = [HasFPARMv8] in { |
| defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur", |
| [(store FPR8Op:$Rt, |
| (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>; |
| defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur", |
| [(store (f16 FPR16Op:$Rt), |
| (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>; |
| defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur", |
| [(store (f32 FPR32Op:$Rt), |
| (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>; |
| defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur", |
| [(store (f64 FPR64Op:$Rt), |
| (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>; |
| defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur", |
| [(store (f128 FPR128Op:$Rt), |
| (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>; |
| } |
| defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh", |
| [(truncstorei16 GPR32z:$Rt, |
| (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>; |
| defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb", |
| [(truncstorei8 GPR32z:$Rt, |
| (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>; |
| |
| // bf16 store pattern |
| def : Pat<(store (bf16 FPR16Op:$Rt), |
| (am_unscaled16 GPR64sp:$Rn, simm9:$offset)), |
| (STURHi FPR16:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| |
| // Armv8.4 Weaker Release Consistency enhancements |
| // LDAPR & STLR with Immediate Offset instructions |
| let Predicates = [HasRCPC_IMMO] in { |
| defm STLURB : BaseStoreUnscaleV84<"stlurb", 0b00, 0b00, GPR32>; |
| defm STLURH : BaseStoreUnscaleV84<"stlurh", 0b01, 0b00, GPR32>; |
| defm STLURW : BaseStoreUnscaleV84<"stlur", 0b10, 0b00, GPR32>; |
| defm STLURX : BaseStoreUnscaleV84<"stlur", 0b11, 0b00, GPR64>; |
| defm LDAPURB : BaseLoadUnscaleV84<"ldapurb", 0b00, 0b01, GPR32>; |
| defm LDAPURSBW : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>; |
| defm LDAPURSBX : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>; |
| defm LDAPURH : BaseLoadUnscaleV84<"ldapurh", 0b01, 0b01, GPR32>; |
| defm LDAPURSHW : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>; |
| defm LDAPURSHX : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>; |
| defm LDAPUR : BaseLoadUnscaleV84<"ldapur", 0b10, 0b01, GPR32>; |
| defm LDAPURSW : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>; |
| defm LDAPURX : BaseLoadUnscaleV84<"ldapur", 0b11, 0b01, GPR64>; |
| } |
| |
| // Match all store 64 bits width whose type is compatible with FPR64 |
| def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), |
| (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), |
| (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| |
| let AddedComplexity = 10 in { |
| |
| let Predicates = [IsLE] in { |
| // We must use ST1 to store vectors in big-endian. |
| def : Pat<(store (v2f32 FPR64:$Rt), |
| (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), |
| (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v8i8 FPR64:$Rt), |
| (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), |
| (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v4i16 FPR64:$Rt), |
| (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), |
| (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v2i32 FPR64:$Rt), |
| (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), |
| (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v4f16 FPR64:$Rt), |
| (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), |
| (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v4bf16 FPR64:$Rt), |
| (am_unscaled64 GPR64sp:$Rn, simm9:$offset)), |
| (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| } |
| |
| // Match all store 128 bits width whose type is compatible with FPR128 |
| def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), |
| (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| |
| let Predicates = [IsLE] in { |
| // We must use ST1 to store vectors in big-endian. |
| def : Pat<(store (v4f32 FPR128:$Rt), |
| (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), |
| (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v2f64 FPR128:$Rt), |
| (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), |
| (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v16i8 FPR128:$Rt), |
| (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), |
| (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v8i16 FPR128:$Rt), |
| (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), |
| (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v4i32 FPR128:$Rt), |
| (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), |
| (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v2i64 FPR128:$Rt), |
| (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), |
| (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v2f64 FPR128:$Rt), |
| (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), |
| (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v8f16 FPR128:$Rt), |
| (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), |
| (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(store (v8bf16 FPR128:$Rt), |
| (am_unscaled128 GPR64sp:$Rn, simm9:$offset)), |
| (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>; |
| } |
| |
| } // AddedComplexity = 10 |
| |
| // unscaled i64 truncating stores |
| def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)), |
| (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)), |
| (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; |
| def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)), |
| (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>; |
| |
| // Match stores from lane 0 to the appropriate subreg's store. |
| multiclass VecStoreULane0Pat<SDPatternOperator StoreOp, |
| ValueType VTy, ValueType STy, |
| ValueType SubRegTy, |
| SubRegIndex SubRegIdx, Instruction STR> { |
| defm : VecStoreLane0Pat<am_unscaled128, StoreOp, VTy, STy, SubRegTy, SubRegIdx, simm9, STR>; |
| } |
| |
| let AddedComplexity = 19 in { |
| defm : VecStoreULane0Pat<truncstorei16, v8i16, i32, f16, hsub, STURHi>; |
| defm : VecStoreULane0Pat<store, v8f16, f16, f16, hsub, STURHi>; |
| defm : VecStoreULane0Pat<store, v4i32, i32, i32, ssub, STURSi>; |
| defm : VecStoreULane0Pat<store, v4f32, f32, i32, ssub, STURSi>; |
| defm : VecStoreULane0Pat<store, v2i64, i64, i64, dsub, STURDi>; |
| defm : VecStoreULane0Pat<store, v2f64, f64, i64, dsub, STURDi>; |
| } |
| |
| //--- |
| // STR mnemonics fall back to STUR for negative or unaligned offsets. |
| def : InstAlias<"str $Rt, [$Rn, $offset]", |
| (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; |
| def : InstAlias<"str $Rt, [$Rn, $offset]", |
| (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; |
| let Predicates = [HasFPARMv8] in { |
| def : InstAlias<"str $Rt, [$Rn, $offset]", |
| (STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; |
| def : InstAlias<"str $Rt, [$Rn, $offset]", |
| (STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; |
| def : InstAlias<"str $Rt, [$Rn, $offset]", |
| (STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>; |
| def : InstAlias<"str $Rt, [$Rn, $offset]", |
| (STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>; |
| def : InstAlias<"str $Rt, [$Rn, $offset]", |
| (STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>; |
| } |
| |
| def : InstAlias<"strb $Rt, [$Rn, $offset]", |
| (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>; |
| def : InstAlias<"strh $Rt, [$Rn, $offset]", |
| (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>; |
| |
| //--- |
| // (unscaled immediate, unprivileged) |
| defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">; |
| defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">; |
| |
| defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">; |
| defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">; |
| |
| //--- |
| // (immediate pre-indexed) |
| def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str", pre_store, i32>; |
| def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str", pre_store, i64>; |
| let Predicates = [HasFPARMv8] in { |
| def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op, "str", pre_store, i8>; |
| def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str", pre_store, f16>; |
| def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str", pre_store, f32>; |
| def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str", pre_store, f64>; |
| def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>; |
| } |
| |
| def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8, i32>; |
| def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>; |
| |
| // truncstore i64 |
| def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off), |
| (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, |
| simm9:$off)>; |
| def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off), |
| (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, |
| simm9:$off)>; |
| def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off), |
| (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, |
| simm9:$off)>; |
| |
| def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| |
| def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| |
| //--- |
| // (immediate post-indexed) |
| def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z, "str", post_store, i32>; |
| def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z, "str", post_store, i64>; |
| let Predicates = [HasFPARMv8] in { |
| def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op, "str", post_store, i8>; |
| def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op, "str", post_store, f16>; |
| def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op, "str", post_store, f32>; |
| def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op, "str", post_store, f64>; |
| def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>; |
| } |
| |
| def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>; |
| def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>; |
| |
| // truncstore i64 |
| def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off), |
| (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, |
| simm9:$off)>; |
| def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off), |
| (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, |
| simm9:$off)>; |
| def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off), |
| (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr, |
| simm9:$off)>; |
| |
| def : Pat<(post_store (bf16 FPR16:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRHpost FPR16:$Rt, GPR64sp:$addr, simm9:$off)>; |
| |
| def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v4bf16 FPR64:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>; |
| |
| def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| def : Pat<(post_store (v8bf16 FPR128:$Rt), GPR64sp:$addr, simm9:$off), |
| (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Load/store exclusive instructions. |
| //===----------------------------------------------------------------------===// |
| |
| def LDARW : LoadAcquire <0b10, 1, 1, 0, 1, GPR32, "ldar">; |
| def LDARX : LoadAcquire <0b11, 1, 1, 0, 1, GPR64, "ldar">; |
| def LDARB : LoadAcquire <0b00, 1, 1, 0, 1, GPR32, "ldarb">; |
| def LDARH : LoadAcquire <0b01, 1, 1, 0, 1, GPR32, "ldarh">; |
| |
| def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">; |
| def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">; |
| def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">; |
| def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">; |
| |
| def LDXRW : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">; |
| def LDXRX : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">; |
| def LDXRB : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">; |
| def LDXRH : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">; |
| |
| def STLRW : StoreRelease <0b10, 1, 0, 0, 1, GPR32, "stlr">; |
| def STLRX : StoreRelease <0b11, 1, 0, 0, 1, GPR64, "stlr">; |
| def STLRB : StoreRelease <0b00, 1, 0, 0, 1, GPR32, "stlrb">; |
| def STLRH : StoreRelease <0b01, 1, 0, 0, 1, GPR32, "stlrh">; |
| |
| /* |
| Aliases for when offset=0. Note that in contrast to LoadAcquire which has a $Rn |
| of type GPR64sp0, we deliberately choose to make $Rn of type GPR64sp and add an |
| alias for the case of immediate #0. This is because new STLR versions (from |
| LRCPC3 extension) do have a non-zero immediate value, so GPR64sp0 is not |
| appropriate anymore (it parses and discards the optional zero). This is not the |
| case for LoadAcquire because the new LRCPC3 LDAR instructions are post-indexed, |
| and the immediate values are not inside the [] brackets and thus not accepted |
| by GPR64sp0 parser. |
| */ |
| def STLRW0 : InstAlias<"stlr\t$Rt, [$Rn, #0]" , (STLRW GPR32: $Rt, GPR64sp:$Rn)>; |
| def STLRX0 : InstAlias<"stlr\t$Rt, [$Rn, #0]" , (STLRX GPR64: $Rt, GPR64sp:$Rn)>; |
| def STLRB0 : InstAlias<"stlrb\t$Rt, [$Rn, #0]", (STLRB GPR32: $Rt, GPR64sp:$Rn)>; |
| def STLRH0 : InstAlias<"stlrh\t$Rt, [$Rn, #0]", (STLRH GPR32: $Rt, GPR64sp:$Rn)>; |
| |
| def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">; |
| def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">; |
| def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">; |
| def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">; |
| |
| def STXRW : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">; |
| def STXRX : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">; |
| def STXRB : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">; |
| def STXRH : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">; |
| |
| def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">; |
| def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">; |
| |
| def LDXPW : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">; |
| def LDXPX : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">; |
| |
| def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">; |
| def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">; |
| |
| def STXPW : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">; |
| def STXPX : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">; |
| |
| let Predicates = [HasLOR] in { |
| // v8.1a "Limited Order Region" extension load-acquire instructions |
| def LDLARW : LoadAcquire <0b10, 1, 1, 0, 0, GPR32, "ldlar">; |
| def LDLARX : LoadAcquire <0b11, 1, 1, 0, 0, GPR64, "ldlar">; |
| def LDLARB : LoadAcquire <0b00, 1, 1, 0, 0, GPR32, "ldlarb">; |
| def LDLARH : LoadAcquire <0b01, 1, 1, 0, 0, GPR32, "ldlarh">; |
| |
| // v8.1a "Limited Order Region" extension store-release instructions |
| def STLLRW : StoreRelease <0b10, 1, 0, 0, 0, GPR32, "stllr">; |
| def STLLRX : StoreRelease <0b11, 1, 0, 0, 0, GPR64, "stllr">; |
| def STLLRB : StoreRelease <0b00, 1, 0, 0, 0, GPR32, "stllrb">; |
| def STLLRH : StoreRelease <0b01, 1, 0, 0, 0, GPR32, "stllrh">; |
| |
| // Aliases for when offset=0 |
| def STLLRW0 : InstAlias<"stllr\t$Rt, [$Rn, #0]", (STLLRW GPR32: $Rt, GPR64sp:$Rn)>; |
| def STLLRX0 : InstAlias<"stllr\t$Rt, [$Rn, #0]", (STLLRX GPR64: $Rt, GPR64sp:$Rn)>; |
| def STLLRB0 : InstAlias<"stllrb\t$Rt, [$Rn, #0]", (STLLRB GPR32: $Rt, GPR64sp:$Rn)>; |
| def STLLRH0 : InstAlias<"stllrh\t$Rt, [$Rn, #0]", (STLLRH GPR32: $Rt, GPR64sp:$Rn)>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Scaled floating point to integer conversion instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>; |
| defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>; |
| defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>; |
| defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>; |
| defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>; |
| defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>; |
| defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>; |
| defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>; |
| defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>; |
| defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>; |
| defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>; |
| defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>; |
| |
| // AArch64's FCVT instructions saturate when out of range. |
| multiclass FPToIntegerSatPats<SDNode to_int_sat, string INST> { |
| let Predicates = [HasFullFP16] in { |
| def : Pat<(i32 (to_int_sat f16:$Rn, i32)), |
| (!cast<Instruction>(INST # UWHr) f16:$Rn)>; |
| def : Pat<(i64 (to_int_sat f16:$Rn, i64)), |
| (!cast<Instruction>(INST # UXHr) f16:$Rn)>; |
| } |
| def : Pat<(i32 (to_int_sat f32:$Rn, i32)), |
| (!cast<Instruction>(INST # UWSr) f32:$Rn)>; |
| def : Pat<(i64 (to_int_sat f32:$Rn, i64)), |
| (!cast<Instruction>(INST # UXSr) f32:$Rn)>; |
| def : Pat<(i32 (to_int_sat f64:$Rn, i32)), |
| (!cast<Instruction>(INST # UWDr) f64:$Rn)>; |
| def : Pat<(i64 (to_int_sat f64:$Rn, i64)), |
| (!cast<Instruction>(INST # UXDr) f64:$Rn)>; |
| |
| let Predicates = [HasFullFP16] in { |
| def : Pat<(i32 (to_int_sat (fmul f16:$Rn, fixedpoint_f16_i32:$scale), i32)), |
| (!cast<Instruction>(INST # SWHri) $Rn, $scale)>; |
| def : Pat<(i64 (to_int_sat (fmul f16:$Rn, fixedpoint_f16_i64:$scale), i64)), |
| (!cast<Instruction>(INST # SXHri) $Rn, $scale)>; |
| } |
| def : Pat<(i32 (to_int_sat (fmul f32:$Rn, fixedpoint_f32_i32:$scale), i32)), |
| (!cast<Instruction>(INST # SWSri) $Rn, $scale)>; |
| def : Pat<(i64 (to_int_sat (fmul f32:$Rn, fixedpoint_f32_i64:$scale), i64)), |
| (!cast<Instruction>(INST # SXSri) $Rn, $scale)>; |
| def : Pat<(i32 (to_int_sat (fmul f64:$Rn, fixedpoint_f64_i32:$scale), i32)), |
| (!cast<Instruction>(INST # SWDri) $Rn, $scale)>; |
| def : Pat<(i64 (to_int_sat (fmul f64:$Rn, fixedpoint_f64_i64:$scale), i64)), |
| (!cast<Instruction>(INST # SXDri) $Rn, $scale)>; |
| } |
| |
| defm : FPToIntegerSatPats<fp_to_sint_sat, "FCVTZS">; |
| defm : FPToIntegerSatPats<fp_to_uint_sat, "FCVTZU">; |
| |
| multiclass FPToIntegerIntPats<Intrinsic round, string INST> { |
| let Predicates = [HasFullFP16] in { |
| def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>; |
| def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>; |
| } |
| def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>; |
| def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>; |
| def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>; |
| def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>; |
| |
| let Predicates = [HasFullFP16] in { |
| def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))), |
| (!cast<Instruction>(INST # SWHri) $Rn, $scale)>; |
| def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))), |
| (!cast<Instruction>(INST # SXHri) $Rn, $scale)>; |
| } |
| def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))), |
| (!cast<Instruction>(INST # SWSri) $Rn, $scale)>; |
| def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))), |
| (!cast<Instruction>(INST # SXSri) $Rn, $scale)>; |
| def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))), |
| (!cast<Instruction>(INST # SWDri) $Rn, $scale)>; |
| def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))), |
| (!cast<Instruction>(INST # SXDri) $Rn, $scale)>; |
| } |
| |
| defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">; |
| defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">; |
| |
| multiclass FPToIntegerPats<SDNode to_int, SDNode to_int_sat, SDNode round, string INST> { |
| def : Pat<(i32 (to_int (round f32:$Rn))), |
| (!cast<Instruction>(INST # UWSr) f32:$Rn)>; |
| def : Pat<(i64 (to_int (round f32:$Rn))), |
| (!cast<Instruction>(INST # UXSr) f32:$Rn)>; |
| def : Pat<(i32 (to_int (round f64:$Rn))), |
| (!cast<Instruction>(INST # UWDr) f64:$Rn)>; |
| def : Pat<(i64 (to_int (round f64:$Rn))), |
| (!cast<Instruction>(INST # UXDr) f64:$Rn)>; |
| |
| // These instructions saturate like fp_to_[su]int_sat. |
| let Predicates = [HasFullFP16] in { |
| def : Pat<(i32 (to_int_sat (round f16:$Rn), i32)), |
| (!cast<Instruction>(INST # UWHr) f16:$Rn)>; |
| def : Pat<(i64 (to_int_sat (round f16:$Rn), i64)), |
| (!cast<Instruction>(INST # UXHr) f16:$Rn)>; |
| } |
| def : Pat<(i32 (to_int_sat (round f32:$Rn), i32)), |
| (!cast<Instruction>(INST # UWSr) f32:$Rn)>; |
| def : Pat<(i64 (to_int_sat (round f32:$Rn), i64)), |
| (!cast<Instruction>(INST # UXSr) f32:$Rn)>; |
| def : Pat<(i32 (to_int_sat (round f64:$Rn), i32)), |
| (!cast<Instruction>(INST # UWDr) f64:$Rn)>; |
| def : Pat<(i64 (to_int_sat (round f64:$Rn), i64)), |
| (!cast<Instruction>(INST # UXDr) f64:$Rn)>; |
| } |
| |
| defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, fceil, "FCVTPS">; |
| defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, fceil, "FCVTPU">; |
| defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, ffloor, "FCVTMS">; |
| defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, ffloor, "FCVTMU">; |
| defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, ftrunc, "FCVTZS">; |
| defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, ftrunc, "FCVTZU">; |
| defm : FPToIntegerPats<fp_to_sint, fp_to_sint_sat, fround, "FCVTAS">; |
| defm : FPToIntegerPats<fp_to_uint, fp_to_uint_sat, fround, "FCVTAU">; |
| |
| |
| |
| let Predicates = [HasFullFP16] in { |
| def : Pat<(i32 (any_lround f16:$Rn)), |
| (FCVTASUWHr f16:$Rn)>; |
| def : Pat<(i64 (any_lround f16:$Rn)), |
| (FCVTASUXHr f16:$Rn)>; |
| def : Pat<(i64 (any_llround f16:$Rn)), |
| (FCVTASUXHr f16:$Rn)>; |
| } |
| def : Pat<(i32 (any_lround f32:$Rn)), |
| (FCVTASUWSr f32:$Rn)>; |
| def : Pat<(i32 (any_lround f64:$Rn)), |
| (FCVTASUWDr f64:$Rn)>; |
| def : Pat<(i64 (any_lround f32:$Rn)), |
| (FCVTASUXSr f32:$Rn)>; |
| def : Pat<(i64 (any_lround f64:$Rn)), |
| (FCVTASUXDr f64:$Rn)>; |
| def : Pat<(i64 (any_llround f32:$Rn)), |
| (FCVTASUXSr f32:$Rn)>; |
| def : Pat<(i64 (any_llround f64:$Rn)), |
| (FCVTASUXDr f64:$Rn)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Scaled integer to floating point conversion instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm SCVTF : IntegerToFP<0, "scvtf", any_sint_to_fp>; |
| defm UCVTF : IntegerToFP<1, "ucvtf", any_uint_to_fp>; |
| |
| def : Pat<(f16 (fdiv (f16 (any_sint_to_fp (i32 GPR32:$Rn))), fixedpoint_f16_i32:$scale)), |
| (SCVTFSWHri GPR32:$Rn, fixedpoint_f16_i32:$scale)>; |
| def : Pat<(f32 (fdiv (f32 (any_sint_to_fp (i32 GPR32:$Rn))), fixedpoint_f32_i32:$scale)), |
| (SCVTFSWSri GPR32:$Rn, fixedpoint_f32_i32:$scale)>; |
| def : Pat<(f64 (fdiv (f64 (any_sint_to_fp (i32 GPR32:$Rn))), fixedpoint_f64_i32:$scale)), |
| (SCVTFSWDri GPR32:$Rn, fixedpoint_f64_i32:$scale)>; |
| |
| def : Pat<(f16 (fdiv (f16 (any_sint_to_fp (i64 GPR64:$Rn))), fixedpoint_f16_i64:$scale)), |
| (SCVTFSXHri GPR64:$Rn, fixedpoint_f16_i64:$scale)>; |
| def : Pat<(f32 (fdiv (f32 (any_sint_to_fp (i64 GPR64:$Rn))), fixedpoint_f32_i64:$scale)), |
| (SCVTFSXSri GPR64:$Rn, fixedpoint_f32_i64:$scale)>; |
| def : Pat<(f64 (fdiv (f64 (any_sint_to_fp (i64 GPR64:$Rn))), fixedpoint_f64_i64:$scale)), |
| (SCVTFSXDri GPR64:$Rn, fixedpoint_f64_i64:$scale)>; |
| |
| def : Pat<(f16 (fdiv (f16 (any_uint_to_fp (i64 GPR64:$Rn))), fixedpoint_f16_i64:$scale)), |
| (UCVTFSXHri GPR64:$Rn, fixedpoint_f16_i64:$scale)>; |
| def : Pat<(f32 (fdiv (f32 (any_uint_to_fp (i64 GPR64:$Rn))), fixedpoint_f32_i64:$scale)), |
| (UCVTFSXSri GPR64:$Rn, fixedpoint_f32_i64:$scale)>; |
| def : Pat<(f64 (fdiv (f64 (any_uint_to_fp (i64 GPR64:$Rn))), fixedpoint_f64_i64:$scale)), |
| (UCVTFSXDri GPR64:$Rn, fixedpoint_f64_i64:$scale)>; |
| |
| def : Pat<(f16 (fdiv (f16 (any_uint_to_fp (i32 GPR32:$Rn))), fixedpoint_f16_i32:$scale)), |
| (UCVTFSWHri GPR32:$Rn, fixedpoint_f16_i32:$scale)>; |
| def : Pat<(f32 (fdiv (f32 (any_uint_to_fp (i32 GPR32:$Rn))), fixedpoint_f32_i32:$scale)), |
| (UCVTFSWSri GPR32:$Rn, fixedpoint_f32_i32:$scale)>; |
| def : Pat<(f64 (fdiv (f64 (any_uint_to_fp (i32 GPR32:$Rn))), fixedpoint_f64_i32:$scale)), |
| (UCVTFSWDri GPR32:$Rn, fixedpoint_f64_i32:$scale)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Unscaled integer to floating point conversion instruction. |
| //===----------------------------------------------------------------------===// |
| |
| defm FMOV : UnscaledConversion<"fmov">; |
| |
| // Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable |
| let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1, |
| Predicates = [HasFPARMv8] in { |
| def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>, |
| Sched<[WriteF]>; |
| def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>, |
| Sched<[WriteF]>; |
| def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>, |
| Sched<[WriteF]>; |
| } |
| |
| // Similarly add aliases |
| def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>, |
| Requires<[HasFullFP16]>; |
| let Predicates = [HasFPARMv8] in { |
| def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>; |
| def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>; |
| } |
| |
| def : Pat<(bf16 fpimm0), |
| (FMOVH0)>; |
| |
| // Pattern for FP16 and BF16 immediates |
| let Predicates = [HasFullFP16] in { |
| def : Pat<(f16 fpimm:$in), |
| (FMOVWHr (MOVi32imm (bitcast_fpimm_to_i32 f16:$in)))>; |
| |
| def : Pat<(bf16 fpimm:$in), |
| (FMOVWHr (MOVi32imm (bitcast_fpimm_to_i32 bf16:$in)))>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Floating point conversion instruction. |
| //===----------------------------------------------------------------------===// |
| |
| defm FCVT : FPConversion<"fcvt">; |
| // Helper to get bf16 into fp32. |
| def cvt_bf16_to_fp32 : |
| OutPatFrag<(ops node:$Rn), |
| (f32 (COPY_TO_REGCLASS |
| (i32 (UBFMWri |
| (i32 (COPY_TO_REGCLASS (INSERT_SUBREG (f32 (IMPLICIT_DEF)), |
| node:$Rn, hsub), GPR32)), |
| (i64 (i32shift_a (i64 16))), |
| (i64 (i32shift_b (i64 16))))), |
| FPR32))>; |
| // Pattern for bf16 -> fp32. |
| def : Pat<(f32 (any_fpextend (bf16 FPR16:$Rn))), |
| (cvt_bf16_to_fp32 FPR16:$Rn)>; |
| // Pattern for bf16 -> fp64. |
| def : Pat<(f64 (any_fpextend (bf16 FPR16:$Rn))), |
| (FCVTDSr (f32 (cvt_bf16_to_fp32 FPR16:$Rn)))>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating point single operand instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm FABS : SingleOperandFPDataNoException<0b0001, "fabs", fabs>; |
| defm FMOV : SingleOperandFPDataNoException<0b0000, "fmov">; |
| defm FNEG : SingleOperandFPDataNoException<0b0010, "fneg", fneg>; |
| defm FRINTA : SingleOperandFPData<0b1100, "frinta", any_fround>; |
| defm FRINTI : SingleOperandFPData<0b1111, "frinti", any_fnearbyint>; |
| defm FRINTM : SingleOperandFPData<0b1010, "frintm", any_ffloor>; |
| defm FRINTN : SingleOperandFPData<0b1000, "frintn", any_froundeven>; |
| defm FRINTP : SingleOperandFPData<0b1001, "frintp", any_fceil>; |
| |
| defm FRINTX : SingleOperandFPData<0b1110, "frintx", any_frint>; |
| defm FRINTZ : SingleOperandFPData<0b1011, "frintz", any_ftrunc>; |
| |
| let SchedRW = [WriteFDiv] in { |
| defm FSQRT : SingleOperandFPData<0b0011, "fsqrt", any_fsqrt>; |
| } |
| |
| let Predicates = [HasFRInt3264] in { |
| defm FRINT32Z : FRIntNNT<0b00, "frint32z", int_aarch64_frint32z>; |
| defm FRINT64Z : FRIntNNT<0b10, "frint64z", int_aarch64_frint64z>; |
| defm FRINT32X : FRIntNNT<0b01, "frint32x", int_aarch64_frint32x>; |
| defm FRINT64X : FRIntNNT<0b11, "frint64x", int_aarch64_frint64x>; |
| } // HasFRInt3264 |
| |
| // Pattern to convert 1x64 vector intrinsics to equivalent scalar instructions |
| def : Pat<(v1f64 (int_aarch64_neon_frint32z (v1f64 FPR64:$Rn))), |
| (FRINT32ZDr FPR64:$Rn)>; |
| def : Pat<(v1f64 (int_aarch64_neon_frint64z (v1f64 FPR64:$Rn))), |
| (FRINT64ZDr FPR64:$Rn)>; |
| def : Pat<(v1f64 (int_aarch64_neon_frint32x (v1f64 FPR64:$Rn))), |
| (FRINT32XDr FPR64:$Rn)>; |
| def : Pat<(v1f64 (int_aarch64_neon_frint64x (v1f64 FPR64:$Rn))), |
| (FRINT64XDr FPR64:$Rn)>; |
| |
| // Emitting strict_lrint as two instructions is valid as any exceptions that |
| // occur will happen in exactly one of the instructions (e.g. if the input is |
| // not an integer the inexact exception will happen in the FRINTX but not then |
| // in the FCVTZS as the output of FRINTX is an integer). |
| let Predicates = [HasFullFP16] in { |
| def : Pat<(i32 (any_lrint f16:$Rn)), |
| (FCVTZSUWHr (FRINTXHr f16:$Rn))>; |
| def : Pat<(i64 (any_lrint f16:$Rn)), |
| (FCVTZSUXHr (FRINTXHr f16:$Rn))>; |
| def : Pat<(i64 (any_llrint f16:$Rn)), |
| (FCVTZSUXHr (FRINTXHr f16:$Rn))>; |
| } |
| def : Pat<(i32 (any_lrint f32:$Rn)), |
| (FCVTZSUWSr (FRINTXSr f32:$Rn))>; |
| def : Pat<(i32 (any_lrint f64:$Rn)), |
| (FCVTZSUWDr (FRINTXDr f64:$Rn))>; |
| def : Pat<(i64 (any_lrint f32:$Rn)), |
| (FCVTZSUXSr (FRINTXSr f32:$Rn))>; |
| def : Pat<(i64 (any_lrint f64:$Rn)), |
| (FCVTZSUXDr (FRINTXDr f64:$Rn))>; |
| def : Pat<(i64 (any_llrint f32:$Rn)), |
| (FCVTZSUXSr (FRINTXSr f32:$Rn))>; |
| def : Pat<(i64 (any_llrint f64:$Rn)), |
| (FCVTZSUXDr (FRINTXDr f64:$Rn))>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating point two operand instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm FADD : TwoOperandFPData<0b0010, "fadd", any_fadd>; |
| let SchedRW = [WriteFDiv] in { |
| defm FDIV : TwoOperandFPData<0b0001, "fdiv", any_fdiv>; |
| } |
| defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", any_fmaxnum>; |
| defm FMAX : TwoOperandFPData<0b0100, "fmax", any_fmaximum>; |
| defm FMINNM : TwoOperandFPData<0b0111, "fminnm", any_fminnum>; |
| defm FMIN : TwoOperandFPData<0b0101, "fmin", any_fminimum>; |
| let SchedRW = [WriteFMul] in { |
| defm FMUL : TwoOperandFPData<0b0000, "fmul", any_fmul>; |
| defm FNMUL : TwoOperandFPDataNeg<0b1000, "fnmul", any_fmul>; |
| } |
| defm FSUB : TwoOperandFPData<0b0011, "fsub", any_fsub>; |
| |
| multiclass FMULScalarFromIndexedLane0Patterns<string inst, |
| string inst_f16_suffix, |
| string inst_f32_suffix, |
| string inst_f64_suffix, |
| SDPatternOperator OpNode, |
| list<Predicate> preds = []> { |
| let Predicates = !listconcat(preds, [HasFullFP16]) in { |
| def : Pat<(f16 (OpNode (f16 FPR16:$Rn), |
| (f16 (vector_extract (v8f16 V128:$Rm), (i64 0))))), |
| (!cast<Instruction>(inst # inst_f16_suffix) |
| FPR16:$Rn, (f16 (EXTRACT_SUBREG V128:$Rm, hsub)))>; |
| } |
| let Predicates = preds in { |
| def : Pat<(f32 (OpNode (f32 FPR32:$Rn), |
| (f32 (vector_extract (v4f32 V128:$Rm), (i64 0))))), |
| (!cast<Instruction>(inst # inst_f32_suffix) |
| FPR32:$Rn, (EXTRACT_SUBREG V128:$Rm, ssub))>; |
| def : Pat<(f64 (OpNode (f64 FPR64:$Rn), |
| (f64 (vector_extract (v2f64 V128:$Rm), (i64 0))))), |
| (!cast<Instruction>(inst # inst_f64_suffix) |
| FPR64:$Rn, (EXTRACT_SUBREG V128:$Rm, dsub))>; |
| } |
| } |
| |
| defm : FMULScalarFromIndexedLane0Patterns<"FMUL", "Hrr", "Srr", "Drr", |
| any_fmul>; |
| |
| // Match reassociated forms of FNMUL. |
| def : Pat<(fmul (fneg FPR16:$a), (f16 FPR16:$b)), |
| (FNMULHrr FPR16:$a, FPR16:$b)>, |
| Requires<[HasFullFP16]>; |
| def : Pat<(fmul (fneg FPR32:$a), (f32 FPR32:$b)), |
| (FNMULSrr FPR32:$a, FPR32:$b)>; |
| def : Pat<(fmul (fneg FPR64:$a), (f64 FPR64:$b)), |
| (FNMULDrr FPR64:$a, FPR64:$b)>; |
| |
| def : Pat<(v1f64 (fmaximum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), |
| (FMAXDrr FPR64:$Rn, FPR64:$Rm)>; |
| def : Pat<(v1f64 (fminimum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), |
| (FMINDrr FPR64:$Rn, FPR64:$Rm)>; |
| def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), |
| (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>; |
| def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), |
| (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating point three operand instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm FMADD : ThreeOperandFPData<0, 0, "fmadd", any_fma>; |
| defm FMSUB : ThreeOperandFPData<0, 1, "fmsub", |
| TriOpFrag<(any_fma node:$LHS, (fneg node:$MHS), node:$RHS)> >; |
| defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd", |
| TriOpFrag<(fneg (any_fma node:$LHS, node:$MHS, node:$RHS))> >; |
| defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub", |
| TriOpFrag<(any_fma node:$LHS, node:$MHS, (fneg node:$RHS))> >; |
| |
| // The following def pats catch the case where the LHS of an FMA is negated. |
| // The TriOpFrag above catches the case where the middle operand is negated. |
| |
| // N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike |
| // the NEON variant. |
| |
| // Here we handle first -(a + b*c) for FNMADD: |
| |
| let Predicates = [HasNEON, HasFullFP16] in |
| def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, FPR16:$Ra)), |
| (FMSUBHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>; |
| |
| def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)), |
| (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>; |
| |
| def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)), |
| (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>; |
| |
| // Now it's time for "(-a) + (-b)*c" |
| |
| let Predicates = [HasNEON, HasFullFP16] in |
| def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, (fneg FPR16:$Ra))), |
| (FNMADDHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>; |
| |
| def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))), |
| (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>; |
| |
| def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))), |
| (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating point comparison instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm FCMPE : FPComparison<1, "fcmpe", AArch64strict_fcmpe>; |
| defm FCMP : FPComparison<0, "fcmp", AArch64any_fcmp>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating point conditional comparison instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm FCCMPE : FPCondComparison<1, "fccmpe">; |
| defm FCCMP : FPCondComparison<0, "fccmp", AArch64fccmp>; |
| |
| //===----------------------------------------------------------------------===// |
| // Floating point conditional select instruction. |
| //===----------------------------------------------------------------------===// |
| |
| defm FCSEL : FPCondSelect<"fcsel">; |
| |
| let Predicates = [HasFullFP16] in |
| def : Pat<(bf16 (AArch64csel (bf16 FPR16:$Rn), (bf16 FPR16:$Rm), (i32 imm:$cond), NZCV)), |
| (FCSELHrrr FPR16:$Rn, FPR16:$Rm, imm:$cond)>; |
| |
| // CSEL instructions providing f128 types need to be handled by a |
| // pseudo-instruction since the eventual code will need to introduce basic |
| // blocks and control flow. |
| let Predicates = [HasFPARMv8] in |
| def F128CSEL : Pseudo<(outs FPR128:$Rd), |
| (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond), |
| [(set (f128 FPR128:$Rd), |
| (AArch64csel FPR128:$Rn, FPR128:$Rm, |
| (i32 imm:$cond), NZCV))]> { |
| let Uses = [NZCV]; |
| let usesCustomInserter = 1; |
| let hasNoSchedulingInfo = 1; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Instructions used for emitting unwind opcodes on ARM64 Windows. |
| //===----------------------------------------------------------------------===// |
| let isPseudo = 1 in { |
| def SEH_StackAlloc : Pseudo<(outs), (ins i32imm:$size), []>, Sched<[]>; |
| def SEH_SaveFPLR : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>; |
| def SEH_SaveFPLR_X : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>; |
| def SEH_SaveReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; |
| def SEH_SaveReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; |
| def SEH_SaveRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; |
| def SEH_SaveRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; |
| def SEH_SaveFReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; |
| def SEH_SaveFReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>; |
| def SEH_SaveFRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; |
| def SEH_SaveFRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; |
| def SEH_SetFP : Pseudo<(outs), (ins), []>, Sched<[]>; |
| def SEH_AddFP : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>; |
| def SEH_Nop : Pseudo<(outs), (ins), []>, Sched<[]>; |
| def SEH_PrologEnd : Pseudo<(outs), (ins), []>, Sched<[]>; |
| def SEH_EpilogStart : Pseudo<(outs), (ins), []>, Sched<[]>; |
| def SEH_EpilogEnd : Pseudo<(outs), (ins), []>, Sched<[]>; |
| def SEH_PACSignLR : Pseudo<(outs), (ins), []>, Sched<[]>; |
| def SEH_SaveAnyRegQP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; |
| def SEH_SaveAnyRegQPX : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>; |
| } |
| |
| // Pseudo instructions for Windows EH |
| //===----------------------------------------------------------------------===// |
| let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1, |
| isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1, isPseudo = 1 in { |
| def CLEANUPRET : Pseudo<(outs), (ins), [(cleanupret bb)]>, Sched<[]>; |
| let usesCustomInserter = 1 in |
| def CATCHRET : Pseudo<(outs), (ins am_brcond:$dst, am_brcond:$src), [(catchret bb:$dst, bb:$src)]>, |
| Sched<[]>; |
| } |
| |
| // Pseudo instructions for homogeneous prolog/epilog |
| let isPseudo = 1 in { |
| // Save CSRs in order, {FPOffset} |
| def HOM_Prolog : Pseudo<(outs), (ins variable_ops), []>, Sched<[]>; |
| // Restore CSRs in order |
| def HOM_Epilog : Pseudo<(outs), (ins variable_ops), []>, Sched<[]>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Floating point immediate move. |
| //===----------------------------------------------------------------------===// |
| |
| let isReMaterializable = 1, isAsCheapAsAMove = 1 in { |
| defm FMOV : FPMoveImmediate<"fmov">; |
| } |
| |
| let Predicates = [HasFullFP16] in { |
| def : Pat<(bf16 fpimmbf16:$in), |
| (FMOVHi (fpimm16XForm bf16:$in))>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Advanced SIMD two vector instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm UABDL : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl", |
| AArch64uabd>; |
| // Match UABDL in log2-shuffle patterns. |
| def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)), |
| (zext (v8i8 V64:$opB))))), |
| (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>; |
| def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 (v16i8 V128:$opA))), |
| (zext (extract_high_v16i8 (v16i8 V128:$opB)))))), |
| (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>; |
| def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)), |
| (zext (v4i16 V64:$opB))))), |
| (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>; |
| def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 (v8i16 V128:$opA))), |
| (zext (extract_high_v8i16 (v8i16 V128:$opB)))))), |
| (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>; |
| def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)), |
| (zext (v2i32 V64:$opB))))), |
| (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>; |
| def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 (v4i32 V128:$opA))), |
| (zext (extract_high_v4i32 (v4i32 V128:$opB)))))), |
| (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>; |
| |
| defm ABS : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>; |
| defm CLS : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>; |
| defm CLZ : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>; |
| defm CMEQ : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>; |
| defm CMGE : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>; |
| defm CMGT : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>; |
| defm CMLE : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>; |
| defm CMLT : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>; |
| defm CNT : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>; |
| defm FABS : SIMDTwoVectorFPNoException<0, 1, 0b01111, "fabs", fabs>; |
| |
| def : Pat<(v8i8 (AArch64vashr (v8i8 V64:$Rn), (i32 7))), |
| (CMLTv8i8rz V64:$Rn)>; |
| def : Pat<(v4i16 (AArch64vashr (v4i16 V64:$Rn), (i32 15))), |
| (CMLTv4i16rz V64:$Rn)>; |
| def : Pat<(v2i32 (AArch64vashr (v2i32 V64:$Rn), (i32 31))), |
| (CMLTv2i32rz V64:$Rn)>; |
| def : Pat<(v16i8 (AArch64vashr (v16i8 V128:$Rn), (i32 7))), |
| (CMLTv16i8rz V128:$Rn)>; |
| def : Pat<(v8i16 (AArch64vashr (v8i16 V128:$Rn), (i32 15))), |
| (CMLTv8i16rz V128:$Rn)>; |
| def : Pat<(v4i32 (AArch64vashr (v4i32 V128:$Rn), (i32 31))), |
| (CMLTv4i32rz V128:$Rn)>; |
| def : Pat<(v2i64 (AArch64vashr (v2i64 V128:$Rn), (i32 63))), |
| (CMLTv2i64rz V128:$Rn)>; |
| |
| defm FCMEQ : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>; |
| defm FCMGE : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>; |
| defm FCMGT : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>; |
| defm FCMLE : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>; |
| defm FCMLT : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>; |
| defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>; |
| defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>; |
| defm FCVTL : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">; |
| def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))), |
| (FCVTLv4i16 V64:$Rn)>; |
| def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn), |
| (i64 4)))), |
| (FCVTLv8i16 V128:$Rn)>; |
| def : Pat<(v2f64 (any_fpextend (v2f32 V64:$Rn))), |
| (FCVTLv2i32 V64:$Rn)>; |
| def : Pat<(v2f64 (any_fpextend (v2f32 (extract_high_v4f32 (v4f32 V128:$Rn))))), |
| (FCVTLv4i32 V128:$Rn)>; |
| def : Pat<(v4f32 (any_fpextend (v4f16 V64:$Rn))), |
| (FCVTLv4i16 V64:$Rn)>; |
| def : Pat<(v4f32 (any_fpextend (v4f16 (extract_high_v8f16 (v8f16 V128:$Rn))))), |
| (FCVTLv8i16 V128:$Rn)>; |
| |
| defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>; |
| defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>; |
| defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>; |
| defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>; |
| defm FCVTN : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">; |
| def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))), |
| (FCVTNv4i16 V128:$Rn)>; |
| def : Pat<(concat_vectors V64:$Rd, |
| (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))), |
| (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; |
| def : Pat<(v2f32 (any_fpround (v2f64 V128:$Rn))), |
| (FCVTNv2i32 V128:$Rn)>; |
| def : Pat<(v4f16 (any_fpround (v4f32 V128:$Rn))), |
| (FCVTNv4i16 V128:$Rn)>; |
| def : Pat<(concat_vectors V64:$Rd, (v2f32 (any_fpround (v2f64 V128:$Rn)))), |
| (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; |
| def : Pat<(concat_vectors V64:$Rd, (v4f16 (any_fpround (v4f32 V128:$Rn)))), |
| (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>; |
| defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>; |
| defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>; |
| defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn", |
| AArch64fcvtxnv>; |
| defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", any_fp_to_sint>; |
| defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", any_fp_to_uint>; |
| |
| // AArch64's FCVT instructions saturate when out of range. |
| multiclass SIMDTwoVectorFPToIntSatPats<SDNode to_int_sat, string INST> { |
| let Predicates = [HasFullFP16] in { |
| def : Pat<(v4i16 (to_int_sat v4f16:$Rn, i16)), |
| (!cast<Instruction>(INST # v4f16) v4f16:$Rn)>; |
| def : Pat<(v8i16 (to_int_sat v8f16:$Rn, i16)), |
| (!cast<Instruction>(INST # v8f16) v8f16:$Rn)>; |
| } |
| def : Pat<(v2i32 (to_int_sat v2f32:$Rn, i32)), |
| (!cast<Instruction>(INST # v2f32) v2f32:$Rn)>; |
| def : Pat<(v4i32 (to_int_sat v4f32:$Rn, i32)), |
| (!cast<Instruction>(INST # v4f32) v4f32:$Rn)>; |
| def : Pat<(v2i64 (to_int_sat v2f64:$Rn, i64)), |
| (!cast<Instruction>(INST # v2f64) v2f64:$Rn)>; |
| } |
| defm : SIMDTwoVectorFPToIntSatPats<fp_to_sint_sat, "FCVTZS">; |
| defm : SIMDTwoVectorFPToIntSatPats<fp_to_uint_sat, "FCVTZU">; |
| |
| def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>; |
| def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>; |
| def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>; |
| def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>; |
| def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>; |
| |
| def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>; |
| def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>; |
| def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>; |
| def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>; |
| def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>; |
| |
| defm FNEG : SIMDTwoVectorFPNoException<1, 1, 0b01111, "fneg", fneg>; |
| defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>; |
| defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", any_fround>; |
| defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", any_fnearbyint>; |
| defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", any_ffloor>; |
| defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", any_froundeven>; |
| defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", any_fceil>; |
| defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", any_frint>; |
| defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", any_ftrunc>; |
| |
| let Predicates = [HasFRInt3264] in { |
| defm FRINT32Z : FRIntNNTVector<0, 0, "frint32z", int_aarch64_neon_frint32z>; |
| defm FRINT64Z : FRIntNNTVector<0, 1, "frint64z", int_aarch64_neon_frint64z>; |
| defm FRINT32X : FRIntNNTVector<1, 0, "frint32x", int_aarch64_neon_frint32x>; |
| defm FRINT64X : FRIntNNTVector<1, 1, "frint64x", int_aarch64_neon_frint64x>; |
| } // HasFRInt3264 |
| |
| defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>; |
| defm FSQRT : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", any_fsqrt>; |
| defm NEG : SIMDTwoVectorBHSD<1, 0b01011, "neg", |
| UnOpFrag<(sub immAllZerosV, node:$LHS)> >; |
| defm NOT : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>; |
| // Aliases for MVN -> NOT. |
| let Predicates = [HasNEON] in { |
| def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}", |
| (NOTv8i8 V64:$Vd, V64:$Vn)>; |
| def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}", |
| (NOTv16i8 V128:$Vd, V128:$Vn)>; |
| } |
| |
| def : Pat<(vnot (v4i16 V64:$Rn)), (NOTv8i8 V64:$Rn)>; |
| def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>; |
| def : Pat<(vnot (v2i32 V64:$Rn)), (NOTv8i8 V64:$Rn)>; |
| def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>; |
| def : Pat<(vnot (v1i64 V64:$Rn)), (NOTv8i8 V64:$Rn)>; |
| def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>; |
| |
| defm RBIT : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", bitreverse>; |
| defm REV16 : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>; |
| defm REV32 : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>; |
| defm REV64 : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>; |
| defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp", |
| BinOpFrag<(add node:$LHS, (AArch64saddlp node:$RHS))> >; |
| defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", AArch64saddlp>; |
| defm SCVTF : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", any_sint_to_fp>; |
| defm SHLL : SIMDVectorLShiftLongBySizeBHS; |
| defm SQABS : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>; |
| defm SQNEG : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>; |
| defm SQXTN : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>; |
| defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>; |
| defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>; |
| defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp", |
| BinOpFrag<(add node:$LHS, (AArch64uaddlp node:$RHS))> >; |
| defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp", AArch64uaddlp>; |
| defm UCVTF : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", any_uint_to_fp>; |
| defm UQXTN : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>; |
| defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>; |
| defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>; |
| defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>; |
| defm XTN : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>; |
| |
| def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>; |
| def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>; |
| def : Pat<(v4bf16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>; |
| def : Pat<(v4bf16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>; |
| def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>; |
| def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>; |
| def : Pat<(v8bf16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>; |
| def : Pat<(v8bf16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>; |
| def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>; |
| def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>; |
| |
| // Patterns for vector long shift (by element width). These need to match all |
| // three of zext, sext and anyext so it's easier to pull the patterns out of the |
| // definition. |
| multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> { |
| def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)), |
| (SHLLv8i8 V64:$Rn)>; |
| def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 (v16i8 V128:$Rn)))), (i32 8)), |
| (SHLLv16i8 V128:$Rn)>; |
| def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)), |
| (SHLLv4i16 V64:$Rn)>; |
| def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 (v8i16 V128:$Rn)))), (i32 16)), |
| (SHLLv8i16 V128:$Rn)>; |
| def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)), |
| (SHLLv2i32 V64:$Rn)>; |
| def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 (v4i32 V128:$Rn)))), (i32 32)), |
| (SHLLv4i32 V128:$Rn)>; |
| } |
| |
| defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>; |
| defm : SIMDVectorLShiftLongBySizeBHSPats<zext>; |
| defm : SIMDVectorLShiftLongBySizeBHSPats<sext>; |
| |
| // Constant vector values, used in the S/UQXTN patterns below. |
| def VImmFF: PatLeaf<(AArch64NvCast (v2i64 (AArch64movi_edit (i32 85))))>; |
| def VImmFFFF: PatLeaf<(AArch64NvCast (v2i64 (AArch64movi_edit (i32 51))))>; |
| def VImm7F: PatLeaf<(AArch64movi_shift (i32 127), (i32 0))>; |
| def VImm80: PatLeaf<(AArch64mvni_shift (i32 127), (i32 0))>; |
| def VImm7FFF: PatLeaf<(AArch64movi_msl (i32 127), (i32 264))>; |
| def VImm8000: PatLeaf<(AArch64mvni_msl (i32 127), (i32 264))>; |
| |
| // trunc(umin(X, 255)) -> UQXTRN v8i8 |
| def : Pat<(v8i8 (trunc (umin (v8i16 V128:$Vn), (v8i16 VImmFF)))), |
| (UQXTNv8i8 V128:$Vn)>; |
| // trunc(umin(X, 65535)) -> UQXTRN v4i16 |
| def : Pat<(v4i16 (trunc (umin (v4i32 V128:$Vn), (v4i32 VImmFFFF)))), |
| (UQXTNv4i16 V128:$Vn)>; |
| // trunc(smin(smax(X, -128), 128)) -> SQXTRN |
| // with reversed min/max |
| def : Pat<(v8i8 (trunc (smin (smax (v8i16 V128:$Vn), (v8i16 VImm80)), |
| (v8i16 VImm7F)))), |
| (SQXTNv8i8 V128:$Vn)>; |
| def : Pat<(v8i8 (trunc (smax (smin (v8i16 V128:$Vn), (v8i16 VImm7F)), |
| (v8i16 VImm80)))), |
| (SQXTNv8i8 V128:$Vn)>; |
| // trunc(smin(smax(X, -32768), 32767)) -> SQXTRN |
| // with reversed min/max |
| def : Pat<(v4i16 (trunc (smin (smax (v4i32 V128:$Vn), (v4i32 VImm8000)), |
| (v4i32 VImm7FFF)))), |
| (SQXTNv4i16 V128:$Vn)>; |
| def : Pat<(v4i16 (trunc (smax (smin (v4i32 V128:$Vn), (v4i32 VImm7FFF)), |
| (v4i32 VImm8000)))), |
| (SQXTNv4i16 V128:$Vn)>; |
| |
| // concat_vectors(Vd, trunc(umin(X, 255))) -> UQXTRN(Vd, Vn) |
| def : Pat<(v16i8 (concat_vectors |
| (v8i8 V64:$Vd), |
| (v8i8 (trunc (umin (v8i16 V128:$Vn), (v8i16 VImmFF)))))), |
| (UQXTNv16i8 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; |
| // concat_vectors(Vd, trunc(umin(X, 65535))) -> UQXTRN(Vd, Vn) |
| def : Pat<(v8i16 (concat_vectors |
| (v4i16 V64:$Vd), |
| (v4i16 (trunc (umin (v4i32 V128:$Vn), (v4i32 VImmFFFF)))))), |
| (UQXTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; |
| |
| // concat_vectors(Vd, trunc(smin(smax Vm, -128), 127) ~> SQXTN2(Vd, Vn) |
| // with reversed min/max |
| def : Pat<(v16i8 (concat_vectors |
| (v8i8 V64:$Vd), |
| (v8i8 (trunc (smin (smax (v8i16 V128:$Vn), (v8i16 VImm80)), |
| (v8i16 VImm7F)))))), |
| (SQXTNv16i8 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; |
| def : Pat<(v16i8 (concat_vectors |
| (v8i8 V64:$Vd), |
| (v8i8 (trunc (smax (smin (v8i16 V128:$Vn), (v8i16 VImm7F)), |
| (v8i16 VImm80)))))), |
| (SQXTNv16i8 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; |
| |
| // concat_vectors(Vd, trunc(smin(smax Vm, -32768), 32767) ~> SQXTN2(Vd, Vn) |
| // with reversed min/max |
| def : Pat<(v8i16 (concat_vectors |
| (v4i16 V64:$Vd), |
| (v4i16 (trunc (smin (smax (v4i32 V128:$Vn), (v4i32 VImm8000)), |
| (v4i32 VImm7FFF)))))), |
| (SQXTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; |
| def : Pat<(v8i16 (concat_vectors |
| (v4i16 V64:$Vd), |
| (v4i16 (trunc (smax (smin (v4i32 V128:$Vn), (v4i32 VImm7FFF)), |
| (v4i32 VImm8000)))))), |
| (SQXTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn)>; |
| |
| // Select BSWAP vector instructions into REV instructions |
| def : Pat<(v4i16 (bswap (v4i16 V64:$Rn))), |
| (v4i16 (REV16v8i8 (v4i16 V64:$Rn)))>; |
| def : Pat<(v8i16 (bswap (v8i16 V128:$Rn))), |
| (v8i16 (REV16v16i8 (v8i16 V128:$Rn)))>; |
| def : Pat<(v2i32 (bswap (v2i32 V64:$Rn))), |
| (v2i32 (REV32v8i8 (v2i32 V64:$Rn)))>; |
| def : Pat<(v4i32 (bswap (v4i32 V128:$Rn))), |
| (v4i32 (REV32v16i8 (v4i32 V128:$Rn)))>; |
| def : Pat<(v2i64 (bswap (v2i64 V128:$Rn))), |
| (v2i64 (REV64v16i8 (v2i64 V128:$Rn)))>; |
| |
| //===----------------------------------------------------------------------===// |
| // Advanced SIMD three vector instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm ADD : SIMDThreeSameVector<0, 0b10000, "add", add>; |
| defm ADDP : SIMDThreeSameVector<0, 0b10111, "addp", AArch64addp>; |
| defm CMEQ : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>; |
| defm CMGE : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>; |
| defm CMGT : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>; |
| defm CMHI : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>; |
| defm CMHS : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>; |
| defm CMTST : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>; |
| foreach VT = [ v8i8, v16i8, v4i16, v8i16, v2i32, v4i32, v2i64 ] in { |
| def : Pat<(vnot (AArch64cmeqz VT:$Rn)), (!cast<Instruction>("CMTST"#VT) VT:$Rn, VT:$Rn)>; |
| } |
| defm FABD : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>; |
| let Predicates = [HasNEON] in { |
| foreach VT = [ v2f32, v4f32, v2f64 ] in |
| def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>; |
| } |
| let Predicates = [HasNEON, HasFullFP16] in { |
| foreach VT = [ v4f16, v8f16 ] in |
| def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>; |
| } |
| defm FACGE : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",AArch64facge>; |
| defm FACGT : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",AArch64facgt>; |
| defm FADDP : SIMDThreeSameVectorFP<1,0,0b010,"faddp", AArch64faddp>; |
| defm FADD : SIMDThreeSameVectorFP<0,0,0b010,"fadd", any_fadd>; |
| defm FCMEQ : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>; |
| defm FCMGE : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>; |
| defm FCMGT : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>; |
| defm FDIV : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", any_fdiv>; |
| defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>; |
| defm FMAXNM : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", any_fmaxnum>; |
| defm FMAXP : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>; |
| defm FMAX : SIMDThreeSameVectorFP<0,0,0b110,"fmax", any_fmaximum>; |
| defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>; |
| defm FMINNM : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", any_fminnum>; |
| defm FMINP : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>; |
| defm FMIN : SIMDThreeSameVectorFP<0,1,0b110,"fmin", any_fminimum>; |
| |
| // NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the |
| // instruction expects the addend first, while the fma intrinsic puts it last. |
| defm FMLA : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla", |
| TriOpFrag<(any_fma node:$RHS, node:$MHS, node:$LHS)> >; |
| defm FMLS : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls", |
| TriOpFrag<(any_fma node:$MHS, (fneg node:$RHS), node:$LHS)> >; |
| |
| defm FMULX : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>; |
| defm FMUL : SIMDThreeSameVectorFP<1,0,0b011,"fmul", any_fmul>; |
| defm FRECPS : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>; |
| defm FRSQRTS : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>; |
| defm FSUB : SIMDThreeSameVectorFP<0,1,0b010,"fsub", any_fsub>; |
| |
| // MLA and MLS are generated in MachineCombine |
| defm MLA : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla", null_frag>; |
| defm MLS : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls", null_frag>; |
| |
| defm MUL : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>; |
| defm PMUL : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>; |
| defm SABA : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba", |
| TriOpFrag<(add node:$LHS, (AArch64sabd node:$MHS, node:$RHS))> >; |
| defm SABD : SIMDThreeSameVectorBHS<0,0b01110,"sabd", AArch64sabd>; |
| defm SHADD : SIMDThreeSameVectorBHS<0,0b00000,"shadd", avgfloors>; |
| defm SHSUB : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>; |
| defm SMAXP : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>; |
| defm SMAX : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>; |
| defm SMINP : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>; |
| defm SMIN : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>; |
| defm SQADD : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>; |
| defm SQDMULH : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>; |
| defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>; |
| defm SQRSHL : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>; |
| defm SQSHL : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>; |
| defm SQSUB : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>; |
| defm SRHADD : SIMDThreeSameVectorBHS<0,0b00010,"srhadd", avgceils>; |
| defm SRSHL : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>; |
| defm SSHL : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>; |
| defm SUB : SIMDThreeSameVector<1,0b10000,"sub", sub>; |
| defm UABA : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba", |
| TriOpFrag<(add node:$LHS, (AArch64uabd node:$MHS, node:$RHS))> >; |
| defm UABD : SIMDThreeSameVectorBHS<1,0b01110,"uabd", AArch64uabd>; |
| defm UHADD : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", avgflooru>; |
| defm UHSUB : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>; |
| defm UMAXP : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>; |
| defm UMAX : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>; |
| defm UMINP : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>; |
| defm UMIN : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>; |
| defm UQADD : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>; |
| defm UQRSHL : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>; |
| defm UQSHL : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>; |
| defm UQSUB : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>; |
| defm URHADD : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", avgceilu>; |
| defm URSHL : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>; |
| defm USHL : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>; |
| defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah", |
| int_aarch64_neon_sqrdmlah>; |
| defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh", |
| int_aarch64_neon_sqrdmlsh>; |
| |
| // Extra saturate patterns, other than the intrinsics matches above |
| defm : SIMDThreeSameVectorExtraPatterns<"SQADD", saddsat>; |
| defm : SIMDThreeSameVectorExtraPatterns<"UQADD", uaddsat>; |
| defm : SIMDThreeSameVectorExtraPatterns<"SQSUB", ssubsat>; |
| defm : SIMDThreeSameVectorExtraPatterns<"UQSUB", usubsat>; |
| |
| defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>; |
| defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic", |
| BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >; |
| defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>; |
| defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn", |
| BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >; |
| defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>; |
| |
| // Pseudo bitwise select pattern BSP. |
| // It is expanded into BSL/BIT/BIF after register allocation. |
| defm BSP : SIMDLogicalThreeVectorPseudo<TriOpFrag<(or (and node:$LHS, node:$MHS), |
| (and (vnot node:$LHS), node:$RHS))>>; |
| defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl">; |
| defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit">; |
| defm BIF : SIMDLogicalThreeVectorTied<1, 0b11, "bif">; |
| |
| def : Pat<(AArch64bsp (v8i8 V64:$Rd), V64:$Rn, V64:$Rm), |
| (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; |
| def : Pat<(AArch64bsp (v4i16 V64:$Rd), V64:$Rn, V64:$Rm), |
| (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; |
| def : Pat<(AArch64bsp (v2i32 V64:$Rd), V64:$Rn, V64:$Rm), |
| (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; |
| def : Pat<(AArch64bsp (v1i64 V64:$Rd), V64:$Rn, V64:$Rm), |
| (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>; |
| |
| def : Pat<(AArch64bsp (v16i8 V128:$Rd), V128:$Rn, V128:$Rm), |
| (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; |
| def : Pat<(AArch64bsp (v8i16 V128:$Rd), V128:$Rn, V128:$Rm), |
| (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; |
| def : Pat<(AArch64bsp (v4i32 V128:$Rd), V128:$Rn, V128:$Rm), |
| (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; |
| def : Pat<(AArch64bsp (v2i64 V128:$Rd), V128:$Rn, V128:$Rm), |
| (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>; |
| |
| // The following SetCC patterns are used for GlobalISel only |
| multiclass SelectSetCC<PatFrags InFrag, string INST> { |
| def : Pat<(v8i8 (InFrag (v8i8 V64:$Rn), (v8i8 V64:$Rm))), |
| (v8i8 (!cast<Instruction>(INST # v8i8) (v8i8 V64:$Rn), (v8i8 V64:$Rm)))>; |
| def : Pat<(v16i8 (InFrag (v16i8 V128:$Rn), (v16i8 V128:$Rm))), |
| (v16i8 (!cast<Instruction>(INST # v16i8) (v16i8 V128:$Rn), (v16i8 V128:$Rm)))>; |
| def : Pat<(v4i16 (InFrag (v4i16 V64:$Rn), (v4i16 V64:$Rm))), |
| (v4i16 (!cast<Instruction>(INST # v4i16) (v4i16 V64:$Rn), (v4i16 V64:$Rm)))>; |
| def : Pat<(v8i16 (InFrag (v8i16 V128:$Rn), (v8i16 V128:$Rm))), |
| (v8i16 (!cast<Instruction>(INST # v8i16) (v8i16 V128:$Rn), (v8i16 V128:$Rm)))>; |
| def : Pat<(v2i32 (InFrag (v2i32 V64:$Rn), (v2i32 V64:$Rm))), |
| (v2i32 (!cast<Instruction>(INST # v2i32) (v2i32 V64:$Rn), (v2i32 V64:$Rm)))>; |
| def : Pat<(v4i32 (InFrag (v4i32 V128:$Rn), (v4i32 V128:$Rm))), |
| (v4i32 (!cast<Instruction>(INST # v4i32) (v4i32 V128:$Rn), (v4i32 V128:$Rm)))>; |
| def : Pat<(v2i64 (InFrag (v2i64 V128:$Rn), (v2i64 V128:$Rm))), |
| (v2i64 (!cast<Instruction>(INST # v2i64) (v2i64 V128:$Rn), (v2i64 V128:$Rm)))>; |
| } |
| |
| defm : SelectSetCC<seteq, "CMEQ">; |
| defm : SelectSetCC<setgt, "CMGT">; |
| defm : SelectSetCC<setge, "CMGE">; |
| defm : SelectSetCC<setugt, "CMHI">; |
| defm : SelectSetCC<setuge, "CMHS">; |
| |
| multiclass SelectSetCCSwapOperands<PatFrags InFrag, string INST> { |
| def : Pat<(v8i8 (InFrag (v8i8 V64:$Rn), (v8i8 V64:$Rm))), |
| (v8i8 (!cast<Instruction>(INST # v8i8) (v8i8 V64:$Rm), (v8i8 V64:$Rn)))>; |
| def : Pat<(v16i8 (InFrag (v16i8 V128:$Rn), (v16i8 V128:$Rm))), |
| (v16i8 (!cast<Instruction>(INST # v16i8) (v16i8 V128:$Rm), (v16i8 V128:$Rn)))>; |
| def : Pat<(v4i16 (InFrag (v4i16 V64:$Rn), (v4i16 V64:$Rm))), |
| (v4i16 (!cast<Instruction>(INST # v4i16) (v4i16 V64:$Rm), (v4i16 V64:$Rn)))>; |
| def : Pat<(v8i16 (InFrag (v8i16 V128:$Rn), (v8i16 V128:$Rm))), |
| (v8i16 (!cast<Instruction>(INST # v8i16) (v8i16 V128:$Rm), (v8i16 V128:$Rn)))>; |
| def : Pat<(v2i32 (InFrag (v2i32 V64:$Rn), (v2i32 V64:$Rm))), |
| (v2i32 (!cast<Instruction>(INST # v2i32) (v2i32 V64:$Rm), (v2i32 V64:$Rn)))>; |
| def : Pat<(v4i32 (InFrag (v4i32 V128:$Rn), (v4i32 V128:$Rm))), |
| (v4i32 (!cast<Instruction>(INST # v4i32) (v4i32 V128:$Rm), (v4i32 V128:$Rn)))>; |
| def : Pat<(v2i64 (InFrag (v2i64 V128:$Rn), (v2i64 V128:$Rm))), |
| (v2i64 (!cast<Instruction>(INST # v2i64) (v2i64 V128:$Rm), (v2i64 V128:$Rn)))>; |
| } |
| |
| defm : SelectSetCCSwapOperands<setlt, "CMGT">; |
| defm : SelectSetCCSwapOperands<setle, "CMGE">; |
| defm : SelectSetCCSwapOperands<setult, "CMHI">; |
| defm : SelectSetCCSwapOperands<setule, "CMHS">; |
| |
| multiclass SelectSetCCZeroRHS<PatFrags InFrag, string INST> { |
| def : Pat<(v8i8 (InFrag (v8i8 V64:$Rn), immAllZerosV)), |
| (v8i8 (!cast<Instruction>(INST # v8i8rz) (v8i8 V64:$Rn)))>; |
| def : Pat<(v16i8 (InFrag (v16i8 V128:$Rn), immAllZerosV)), |
| (v16i8 (!cast<Instruction>(INST # v16i8rz) (v16i8 V128:$Rn)))>; |
| def : Pat<(v4i16 (InFrag (v4i16 V64:$Rn), immAllZerosV)), |
| (v4i16 (!cast<Instruction>(INST # v4i16rz) (v4i16 V64:$Rn)))>; |
| def : Pat<(v8i16 (InFrag (v8i16 V128:$Rn), immAllZerosV)), |
| (v8i16 (!cast<Instruction>(INST # v8i16rz) (v8i16 V128:$Rn)))>; |
| def : Pat<(v2i32 (InFrag (v2i32 V64:$Rn), immAllZerosV)), |
| (v2i32 (!cast<Instruction>(INST # v2i32rz) (v2i32 V64:$Rn)))>; |
| def : Pat<(v4i32 (InFrag (v4i32 V128:$Rn), immAllZerosV)), |
| (v4i32 (!cast<Instruction>(INST # v4i32rz) (v4i32 V128:$Rn)))>; |
| def : Pat<(v2i64 (InFrag (v2i64 V128:$Rn), immAllZerosV)), |
| (v2i64 (!cast<Instruction>(INST # v2i64rz) (v2i64 V128:$Rn)))>; |
| } |
| |
| defm : SelectSetCCZeroRHS<seteq, "CMEQ">; |
| defm : SelectSetCCZeroRHS<setgt, "CMGT">; |
| defm : SelectSetCCZeroRHS<setge, "CMGE">; |
| defm : SelectSetCCZeroRHS<setlt, "CMLT">; |
| defm : SelectSetCCZeroRHS<setle, "CMLE">; |
| |
| multiclass SelectSetCCZeroLHS<PatFrags InFrag, string INST> { |
| def : Pat<(v8i8 (InFrag immAllZerosV, (v8i8 V64:$Rn))), |
| (v8i8 (!cast<Instruction>(INST # v8i8rz) (v8i8 V64:$Rn)))>; |
| def : Pat<(v16i8 (InFrag immAllZerosV, (v16i8 V128:$Rn))), |
| (v16i8 (!cast<Instruction>(INST # v16i8rz) (v16i8 V128:$Rn)))>; |
| def : Pat<(v4i16 (InFrag immAllZerosV, (v4i16 V64:$Rn))), |
| (v4i16 (!cast<Instruction>(INST # v4i16rz) (v4i16 V64:$Rn)))>; |
| def : Pat<(v8i16 (InFrag immAllZerosV, (v8i16 V128:$Rn))), |
| (v8i16 (!cast<Instruction>(INST # v8i16rz) (v8i16 V128:$Rn)))>; |
| def : Pat<(v2i32 (InFrag immAllZerosV, (v2i32 V64:$Rn))), |
| (v2i32 (!cast<Instruction>(INST # v2i32rz) (v2i32 V64:$Rn)))>; |
| def : Pat<(v4i32 (InFrag immAllZerosV, (v4i32 V128:$Rn))), |
| (v4i32 (!cast<Instruction>(INST # v4i32rz) (v4i32 V128:$Rn)))>; |
| def : Pat<(v2i64 (InFrag immAllZerosV, (v2i64 V128:$Rn))), |
| (v2i64 (!cast<Instruction>(INST # v2i64rz) (v2i64 V128:$Rn)))>; |
| } |
| |
| defm : SelectSetCCZeroLHS<seteq, "CMEQ">; |
| defm : SelectSetCCZeroLHS<setgt, "CMLT">; |
| defm : SelectSetCCZeroLHS<setge, "CMLE">; |
| defm : SelectSetCCZeroLHS<setlt, "CMGT">; |
| defm : SelectSetCCZeroLHS<setle, "CMGE">; |
| |
| let Predicates = [HasNEON] in { |
| def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}", |
| (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>; |
| def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}", |
| (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; |
| def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}", |
| (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; |
| def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}", |
| (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>; |
| |
| def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}", |
| (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>; |
| def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}", |
| (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; |
| def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}", |
| (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; |
| def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}", |
| (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>; |
| |
| def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" # |
| "|cmls.8b\t$dst, $src1, $src2}", |
| (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" # |
| "|cmls.16b\t$dst, $src1, $src2}", |
| (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" # |
| "|cmls.4h\t$dst, $src1, $src2}", |
| (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" # |
| "|cmls.8h\t$dst, $src1, $src2}", |
| (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" # |
| "|cmls.2s\t$dst, $src1, $src2}", |
| (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" # |
| "|cmls.4s\t$dst, $src1, $src2}", |
| (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" # |
| "|cmls.2d\t$dst, $src1, $src2}", |
| (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; |
| |
| def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" # |
| "|cmlo.8b\t$dst, $src1, $src2}", |
| (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" # |
| "|cmlo.16b\t$dst, $src1, $src2}", |
| (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" # |
| "|cmlo.4h\t$dst, $src1, $src2}", |
| (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" # |
| "|cmlo.8h\t$dst, $src1, $src2}", |
| (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" # |
| "|cmlo.2s\t$dst, $src1, $src2}", |
| (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" # |
| "|cmlo.4s\t$dst, $src1, $src2}", |
| (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" # |
| "|cmlo.2d\t$dst, $src1, $src2}", |
| (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; |
| |
| def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" # |
| "|cmle.8b\t$dst, $src1, $src2}", |
| (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" # |
| "|cmle.16b\t$dst, $src1, $src2}", |
| (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" # |
| "|cmle.4h\t$dst, $src1, $src2}", |
| (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" # |
| "|cmle.8h\t$dst, $src1, $src2}", |
| (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" # |
| "|cmle.2s\t$dst, $src1, $src2}", |
| (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" # |
| "|cmle.4s\t$dst, $src1, $src2}", |
| (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" # |
| "|cmle.2d\t$dst, $src1, $src2}", |
| (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; |
| |
| def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" # |
| "|cmlt.8b\t$dst, $src1, $src2}", |
| (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" # |
| "|cmlt.16b\t$dst, $src1, $src2}", |
| (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" # |
| "|cmlt.4h\t$dst, $src1, $src2}", |
| (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" # |
| "|cmlt.8h\t$dst, $src1, $src2}", |
| (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" # |
| "|cmlt.2s\t$dst, $src1, $src2}", |
| (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" # |
| "|cmlt.4s\t$dst, $src1, $src2}", |
| (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" # |
| "|cmlt.2d\t$dst, $src1, $src2}", |
| (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>; |
| |
| let Predicates = [HasNEON, HasFullFP16] in { |
| def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" # |
| "|fcmle.4h\t$dst, $src1, $src2}", |
| (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" # |
| "|fcmle.8h\t$dst, $src1, $src2}", |
| (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; |
| } |
| def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" # |
| "|fcmle.2s\t$dst, $src1, $src2}", |
| (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" # |
| "|fcmle.4s\t$dst, $src1, $src2}", |
| (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" # |
| "|fcmle.2d\t$dst, $src1, $src2}", |
| (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; |
| |
| let Predicates = [HasNEON, HasFullFP16] in { |
| def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" # |
| "|fcmlt.4h\t$dst, $src1, $src2}", |
| (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" # |
| "|fcmlt.8h\t$dst, $src1, $src2}", |
| (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; |
| } |
| def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" # |
| "|fcmlt.2s\t$dst, $src1, $src2}", |
| (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" # |
| "|fcmlt.4s\t$dst, $src1, $src2}", |
| (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" # |
| "|fcmlt.2d\t$dst, $src1, $src2}", |
| (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; |
| |
| let Predicates = [HasNEON, HasFullFP16] in { |
| def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" # |
| "|facle.4h\t$dst, $src1, $src2}", |
| (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" # |
| "|facle.8h\t$dst, $src1, $src2}", |
| (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; |
| } |
| def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" # |
| "|facle.2s\t$dst, $src1, $src2}", |
| (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" # |
| "|facle.4s\t$dst, $src1, $src2}", |
| (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" # |
| "|facle.2d\t$dst, $src1, $src2}", |
| (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; |
| |
| let Predicates = [HasNEON, HasFullFP16] in { |
| def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" # |
| "|faclt.4h\t$dst, $src1, $src2}", |
| (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" # |
| "|faclt.8h\t$dst, $src1, $src2}", |
| (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>; |
| } |
| def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" # |
| "|faclt.2s\t$dst, $src1, $src2}", |
| (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>; |
| def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" # |
| "|faclt.4s\t$dst, $src1, $src2}", |
| (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>; |
| def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" # |
| "|faclt.2d\t$dst, $src1, $src2}", |
| (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Advanced SIMD three scalar instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm ADD : SIMDThreeScalarD<0, 0b10000, "add", add>; |
| defm CMEQ : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>; |
| defm CMGE : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>; |
| defm CMGT : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>; |
| defm CMHI : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>; |
| defm CMHS : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>; |
| defm CMTST : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>; |
| defm FABD : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>; |
| def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))), |
| (FABD64 FPR64:$Rn, FPR64:$Rm)>; |
| let Predicates = [HasNEON, HasFullFP16] in { |
| def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>; |
| } |
| let Predicates = [HasNEON] in { |
| def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>; |
| def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>; |
| } |
| defm FACGE : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge", |
| int_aarch64_neon_facge>; |
| defm FACGT : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt", |
| int_aarch64_neon_facgt>; |
| defm FCMEQ : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>; |
| defm FCMGE : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>; |
| defm FCMGT : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>; |
| defm FMULX : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx, HasNEONandIsStreamingSafe>; |
| defm FRECPS : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps, HasNEONandIsStreamingSafe>; |
| defm FRSQRTS : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts, HasNEONandIsStreamingSafe>; |
| defm SQADD : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>; |
| defm SQDMULH : SIMDThreeScalarHS< 0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>; |
| defm SQRDMULH : SIMDThreeScalarHS< 1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>; |
| defm SQRSHL : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>; |
| defm SQSHL : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>; |
| defm SQSUB : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>; |
| defm SRSHL : SIMDThreeScalarD< 0, 0b01010, "srshl", int_aarch64_neon_srshl>; |
| defm SSHL : SIMDThreeScalarD< 0, 0b01000, "sshl", int_aarch64_neon_sshl>; |
| defm SUB : SIMDThreeScalarD< 1, 0b10000, "sub", sub>; |
| defm UQADD : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>; |
| defm UQRSHL : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>; |
| defm UQSHL : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>; |
| defm UQSUB : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>; |
| defm URSHL : SIMDThreeScalarD< 1, 0b01010, "urshl", int_aarch64_neon_urshl>; |
| defm USHL : SIMDThreeScalarD< 1, 0b01000, "ushl", int_aarch64_neon_ushl>; |
| let Predicates = [HasRDM] in { |
| defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">; |
| defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">; |
| def : Pat<(i32 (int_aarch64_neon_sqrdmlah (i32 FPR32:$Rd), (i32 FPR32:$Rn), |
| (i32 FPR32:$Rm))), |
| (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>; |
| def : Pat<(i32 (int_aarch64_neon_sqrdmlsh (i32 FPR32:$Rd), (i32 FPR32:$Rn), |
| (i32 FPR32:$Rm))), |
| (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>; |
| } |
| |
| defm : FMULScalarFromIndexedLane0Patterns<"FMULX", "16", "32", "64", |
| int_aarch64_neon_fmulx, |
| [HasNEONandIsStreamingSafe]>; |
| |
| let Predicates = [HasNEON] in { |
| def : InstAlias<"cmls $dst, $src1, $src2", |
| (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; |
| def : InstAlias<"cmle $dst, $src1, $src2", |
| (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; |
| def : InstAlias<"cmlo $dst, $src1, $src2", |
| (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; |
| def : InstAlias<"cmlt $dst, $src1, $src2", |
| (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; |
| } |
| let Predicates = [HasFPARMv8] in { |
| def : InstAlias<"fcmle $dst, $src1, $src2", |
| (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; |
| def : InstAlias<"fcmle $dst, $src1, $src2", |
| (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; |
| def : InstAlias<"fcmlt $dst, $src1, $src2", |
| (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; |
| def : InstAlias<"fcmlt $dst, $src1, $src2", |
| (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; |
| def : InstAlias<"facle $dst, $src1, $src2", |
| (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; |
| def : InstAlias<"facle $dst, $src1, $src2", |
| (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; |
| def : InstAlias<"faclt $dst, $src1, $src2", |
| (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>; |
| def : InstAlias<"faclt $dst, $src1, $src2", |
| (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Advanced SIMD three scalar instructions (mixed operands). |
| //===----------------------------------------------------------------------===// |
| defm SQDMULL : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull", |
| int_aarch64_neon_sqdmulls_scalar>; |
| defm SQDMLAL : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">; |
| defm SQDMLSL : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">; |
| |
| def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd), |
| (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), |
| (i32 FPR32:$Rm))))), |
| (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>; |
| def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd), |
| (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), |
| (i32 FPR32:$Rm))))), |
| (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Advanced SIMD two scalar instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm ABS : SIMDTwoScalarD< 0, 0b01011, "abs", abs, [HasNoCSSC]>; |
| defm CMEQ : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>; |
| defm CMGE : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>; |
| defm CMGT : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>; |
| defm CMLE : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>; |
| defm CMLT : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>; |
| defm FCMEQ : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>; |
| defm FCMGE : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>; |
| defm FCMGT : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>; |
| defm FCMLE : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>; |
| defm FCMLT : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>; |
| defm FCVTAS : SIMDFPTwoScalar< 0, 0, 0b11100, "fcvtas">; |
| defm FCVTAU : SIMDFPTwoScalar< 1, 0, 0b11100, "fcvtau">; |
| defm FCVTMS : SIMDFPTwoScalar< 0, 0, 0b11011, "fcvtms">; |
| defm FCVTMU : SIMDFPTwoScalar< 1, 0, 0b11011, "fcvtmu">; |
| defm FCVTNS : SIMDFPTwoScalar< 0, 0, 0b11010, "fcvtns">; |
| defm FCVTNU : SIMDFPTwoScalar< 1, 0, 0b11010, "fcvtnu">; |
| defm FCVTPS : SIMDFPTwoScalar< 0, 1, 0b11010, "fcvtps">; |
| defm FCVTPU : SIMDFPTwoScalar< 1, 1, 0b11010, "fcvtpu">; |
| def FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">; |
| defm FCVTZS : SIMDFPTwoScalar< 0, 1, 0b11011, "fcvtzs">; |
| defm FCVTZU : SIMDFPTwoScalar< 1, 1, 0b11011, "fcvtzu">; |
| defm FRECPE : SIMDFPTwoScalar< 0, 1, 0b11101, "frecpe">; |
| defm FRECPX : SIMDFPTwoScalar< 0, 1, 0b11111, "frecpx">; |
| defm FRSQRTE : SIMDFPTwoScalar< 1, 1, 0b11101, "frsqrte">; |
| defm NEG : SIMDTwoScalarD< 1, 0b01011, "neg", |
| UnOpFrag<(sub immAllZerosV, node:$LHS)> >; |
| defm SCVTF : SIMDFPTwoScalarCVT< 0, 0, 0b11101, "scvtf", AArch64sitof>; |
| defm SQABS : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>; |
| defm SQNEG : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>; |
| defm SQXTN : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>; |
| defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>; |
| defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd", |
| int_aarch64_neon_suqadd>; |
| defm UCVTF : SIMDFPTwoScalarCVT< 1, 0, 0b11101, "ucvtf", AArch64uitof>; |
| defm UQXTN : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>; |
| defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd", |
| int_aarch64_neon_usqadd>; |
| |
| def : Pat<(v1i64 (AArch64vashr (v1i64 V64:$Rn), (i32 63))), |
| (CMLTv1i64rz V64:$Rn)>; |
| |
| // Round FP64 to BF16. |
| let Predicates = [HasNEONandIsStreamingSafe, HasBF16] in |
| def : Pat<(bf16 (any_fpround (f64 FPR64:$Rn))), |
| (BFCVT (FCVTXNv1i64 $Rn))>; |
| |
| def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))), |
| (FCVTASv1i64 FPR64:$Rn)>; |
| def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))), |
| (FCVTAUv1i64 FPR64:$Rn)>; |
| def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))), |
| (FCVTMSv1i64 FPR64:$Rn)>; |
| def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))), |
| (FCVTMUv1i64 FPR64:$Rn)>; |
| def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))), |
| (FCVTNSv1i64 FPR64:$Rn)>; |
| def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))), |
| (FCVTNUv1i64 FPR64:$Rn)>; |
| def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))), |
| (FCVTPSv1i64 FPR64:$Rn)>; |
| def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))), |
| (FCVTPUv1i64 FPR64:$Rn)>; |
| def : Pat<(v1i64 (int_aarch64_neon_fcvtzs (v1f64 FPR64:$Rn))), |
| (FCVTZSv1i64 FPR64:$Rn)>; |
| def : Pat<(v1i64 (int_aarch64_neon_fcvtzu (v1f64 FPR64:$Rn))), |
| (FCVTZUv1i64 FPR64:$Rn)>; |
| |
| def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))), |
| (FRECPEv1f16 FPR16:$Rn)>; |
| def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))), |
| (FRECPEv1i32 FPR32:$Rn)>; |
| def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))), |
| (FRECPEv1i64 FPR64:$Rn)>; |
| def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))), |
| (FRECPEv1i64 FPR64:$Rn)>; |
| |
| def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))), |
| (FRECPEv1i32 FPR32:$Rn)>; |
| def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))), |
| (FRECPEv2f32 V64:$Rn)>; |
| def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))), |
| (FRECPEv4f32 FPR128:$Rn)>; |
| def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))), |
| (FRECPEv1i64 FPR64:$Rn)>; |
| def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))), |
| (FRECPEv1i64 FPR64:$Rn)>; |
| def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))), |
| (FRECPEv2f64 FPR128:$Rn)>; |
| |
| def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))), |
| (FRECPS32 FPR32:$Rn, FPR32:$Rm)>; |
| def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))), |
| (FRECPSv2f32 V64:$Rn, V64:$Rm)>; |
| def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))), |
| (FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>; |
| def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))), |
| (FRECPS64 FPR64:$Rn, FPR64:$Rm)>; |
| def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))), |
| (FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>; |
| |
| def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))), |
| (FRECPXv1f16 FPR16:$Rn)>; |
| def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))), |
| (FRECPXv1i32 FPR32:$Rn)>; |
| def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))), |
| (FRECPXv1i64 FPR64:$Rn)>; |
| |
| def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))), |
| (FRSQRTEv1f16 FPR16:$Rn)>; |
| def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))), |
| (FRSQRTEv1i32 FPR32:$Rn)>; |
| def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))), |
| (FRSQRTEv1i64 FPR64:$Rn)>; |
| def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))), |
| (FRSQRTEv1i64 FPR64:$Rn)>; |
| |
| def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))), |
| (FRSQRTEv1i32 FPR32:$Rn)>; |
| def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))), |
| (FRSQRTEv2f32 V64:$Rn)>; |
| def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))), |
| (FRSQRTEv4f32 FPR128:$Rn)>; |
| def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))), |
| (FRSQRTEv1i64 FPR64:$Rn)>; |
| def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))), |
| (FRSQRTEv1i64 FPR64:$Rn)>; |
| def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))), |
| (FRSQRTEv2f64 FPR128:$Rn)>; |
| |
| def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))), |
| (FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>; |
| def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))), |
| (FRSQRTSv2f32 V64:$Rn, V64:$Rm)>; |
| def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))), |
| (FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>; |
| def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))), |
| (FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>; |
| def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))), |
| (FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>; |
| |
| // Some float -> int -> float conversion patterns for which we want to keep the |
| // int values in FP registers using the corresponding NEON instructions to |
| // avoid more costly int <-> fp register transfers. |
| let Predicates = [HasNEONandIsStreamingSafe] in { |
| def : Pat<(f64 (any_sint_to_fp (i64 (any_fp_to_sint f64:$Rn)))), |
| (SCVTFv1i64 (i64 (FCVTZSv1i64 f64:$Rn)))>; |
| def : Pat<(f32 (any_sint_to_fp (i32 (any_fp_to_sint f32:$Rn)))), |
| (SCVTFv1i32 (i32 (FCVTZSv1i32 f32:$Rn)))>; |
| def : Pat<(f64 (any_uint_to_fp (i64 (any_fp_to_uint f64:$Rn)))), |
| (UCVTFv1i64 (i64 (FCVTZUv1i64 f64:$Rn)))>; |
| def : Pat<(f32 (any_uint_to_fp (i32 (any_fp_to_uint f32:$Rn)))), |
| (UCVTFv1i32 (i32 (FCVTZUv1i32 f32:$Rn)))>; |
| |
| let Predicates = [HasNEONandIsStreamingSafe, HasFullFP16] in { |
| def : Pat<(f16 (any_sint_to_fp (i32 (any_fp_to_sint f16:$Rn)))), |
| (SCVTFv1i16 (f16 (FCVTZSv1f16 f16:$Rn)))>; |
| def : Pat<(f16 (any_uint_to_fp (i32 (any_fp_to_uint f16:$Rn)))), |
| (UCVTFv1i16 (f16 (FCVTZUv1f16 f16:$Rn)))>; |
| } |
| |
| // int -> float conversion of value in lane 0 of simd vector should use |
| // correct cvtf variant to avoid costly fpr <-> gpr register transfers. |
| def : Pat<(f32 (sint_to_fp (i32 (vector_extract (v4i32 FPR128:$Rn), (i64 0))))), |
| (SCVTFv1i32 (i32 (EXTRACT_SUBREG (v4i32 FPR128:$Rn), ssub)))>; |
| |
| def : Pat<(f32 (uint_to_fp (i32 (vector_extract (v4i32 FPR128:$Rn), (i64 0))))), |
| (UCVTFv1i32 (i32 (EXTRACT_SUBREG (v4i32 FPR128:$Rn), ssub)))>; |
| |
| def : Pat<(f64 (sint_to_fp (i64 (vector_extract (v2i64 FPR128:$Rn), (i64 0))))), |
| (SCVTFv1i64 (i64 (EXTRACT_SUBREG (v2i64 FPR128:$Rn), dsub)))>; |
| |
| def : Pat<(f64 (uint_to_fp (i64 (vector_extract (v2i64 FPR128:$Rn), (i64 0))))), |
| (UCVTFv1i64 (i64 (EXTRACT_SUBREG (v2i64 FPR128:$Rn), dsub)))>; |
| |
| // fp16: integer extraction from vector must be at least 32-bits to be legal. |
| // Actual extraction result is then an in-reg sign-extension of lower 16-bits. |
| let Predicates = [HasNEONandIsStreamingSafe, HasFullFP16] in { |
| def : Pat<(f16 (sint_to_fp (i32 (sext_inreg (i32 (vector_extract |
| (v8i16 FPR128:$Rn), (i64 0))), i16)))), |
| (SCVTFv1i16 (f16 (EXTRACT_SUBREG (v8i16 FPR128:$Rn), hsub)))>; |
| |
| // unsigned 32-bit extracted element is truncated to 16-bits using AND |
| def : Pat<(f16 (uint_to_fp (i32 (and (i32 (vector_extract |
| (v8i16 FPR128:$Rn), (i64 0))), (i32 65535))))), |
| (UCVTFv1i16 (f16 (EXTRACT_SUBREG (v8i16 FPR128:$Rn), hsub)))>; |
| } |
| |
| // If an integer is about to be converted to a floating point value, |
| // just load it on the floating point unit. |
| // Here are the patterns for 8 and 16-bits to float. |
| // 8-bits -> float. |
| multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy, |
| SDPatternOperator loadop, Instruction UCVTF, |
| ROAddrMode ro, Instruction LDRW, Instruction LDRX, |
| SubRegIndex sub> { |
| def : Pat<(DstTy (uint_to_fp (SrcTy |
| (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, |
| ro.Wext:$extend))))), |
| (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)), |
| (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend), |
| sub))>; |
| |
| def : Pat<(DstTy (uint_to_fp (SrcTy |
| (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, |
| ro.Wext:$extend))))), |
| (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)), |
| (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend), |
| sub))>; |
| } |
| |
| defm : UIntToFPROLoadPat<f32, i32, zextloadi8, |
| UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>; |
| def : Pat <(f32 (uint_to_fp (i32 |
| (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), |
| (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), |
| (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>; |
| def : Pat <(f32 (uint_to_fp (i32 |
| (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))), |
| (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), |
| (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>; |
| // 16-bits -> float. |
| defm : UIntToFPROLoadPat<f32, i32, zextloadi16, |
| UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>; |
| def : Pat <(f32 (uint_to_fp (i32 |
| (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), |
| (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), |
| (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>; |
| def : Pat <(f32 (uint_to_fp (i32 |
| (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))), |
| (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)), |
| (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>; |
| // 32-bits are handled in target specific dag combine: |
| // performIntToFpCombine. |
| // 64-bits integer to 32-bits floating point, not possible with |
| // UCVTF on floating point registers (both source and destination |
| // must have the same size). |
| |
| // Here are the patterns for 8, 16, 32, and 64-bits to double. |
| // 8-bits -> double. |
| defm : UIntToFPROLoadPat<f64, i32, zextloadi8, |
| UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>; |
| def : Pat <(f64 (uint_to_fp (i32 |
| (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))), |
| (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), |
| (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>; |
| def : Pat <(f64 (uint_to_fp (i32 |
| (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))), |
| (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), |
| (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>; |
| // 16-bits -> double. |
| defm : UIntToFPROLoadPat<f64, i32, zextloadi16, |
| UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>; |
| def : Pat <(f64 (uint_to_fp (i32 |
| (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))), |
| (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), |
| (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>; |
| def : Pat <(f64 (uint_to_fp (i32 |
| (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))), |
| (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), |
| (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>; |
| // 32-bits -> double. |
| defm : UIntToFPROLoadPat<f64, i32, load, |
| UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>; |
| def : Pat <(f64 (uint_to_fp (i32 |
| (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))), |
| (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), |
| (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>; |
| def : Pat <(f64 (uint_to_fp (i32 |
| (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))), |
| (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)), |
| (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>; |
| // 64-bits -> double are handled in target specific dag combine: |
| // performIntToFpCombine. |
| } // let Predicates = [HasNEONandIsStreamingSafe] |
| |
| //===----------------------------------------------------------------------===// |
| // Advanced SIMD three different-sized vector instructions. |
| //===----------------------------------------------------------------------===// |
| |
| defm ADDHN : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>; |
| defm SUBHN : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>; |
| defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>; |
| defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>; |
| defm PMULL : SIMDDifferentThreeVectorBD<0,0b1110,"pmull", AArch64pmull>; |
| defm SABAL : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal", |
| AArch64sabd>; |
| defm SABDL : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl", |
| AArch64sabd>; |
| defm SADDL : SIMDLongThreeVectorBHS< 0, 0b0000, "saddl", |
| BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>; |
| defm SADDW : SIMDWideThreeVectorBHS< 0, 0b0001, "saddw", |
| BinOpFrag<(add node:$LHS, (sext node:$RHS))>>; |
| defm SMLAL : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal", |
| TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>>; |
| defm SMLSL : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl", |
| TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>>; |
| defm SMULL : SIMDLongThreeVectorBHS<0, 0b1100, "smull", AArch64smull>; |
| defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal", |
| int_aarch64_neon_sqadd>; |
| defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl", |
| int_aarch64_neon_sqsub>; |
| defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull", |
| int_aarch64_neon_sqdmull>; |
| defm SSUBL : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl", |
| BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>; |
| defm SSUBW : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw", |
| BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>; |
| defm UABAL : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal", |
| AArch64uabd>; |
| defm UADDL : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl", |
| BinOpFrag<(add (zanyext node:$LHS), (zanyext node:$RHS))>>; |
| defm UADDW : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw", |
| BinOpFrag<(add node:$LHS, (zanyext node:$RHS))>>; |
| defm UMLAL : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal", |
| TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>>; |
| defm UMLSL : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl", |
| TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>>; |
| defm UMULL : SIMDLongThreeVectorBHS<1, 0b1100, "umull", AArch64umull>; |
| defm USUBL : SIMDLongThreeVectorBHS<1, 0b0010, "usubl", |
| BinOpFrag<(sub (zanyext node:$LHS), (zanyext node:$RHS))>>; |
| defm USUBW : SIMDWideThreeVectorBHS< 1, 0b0011, "usubw", |
| BinOpFrag<(sub node:$LHS, (zanyext node:$RHS))>>; |
| |
| // Additional patterns for [SU]ML[AS]L |
| multiclass Neon_mul_acc_widen_patterns<SDPatternOperator opnode, SDPatternOperator vecopnode, |
| Instruction INST8B, Instruction INST4H, Instruction INST2S> { |
| def : Pat<(v4i16 (opnode |
| V64:$Ra, |
| (v4i16 (extract_subvector |
| (vecopnode (v8i8 V64:$Rn),(v8i8 V64:$Rm)), |
| (i64 0))))), |
| (EXTRACT_SUBREG (v8i16 (INST8B |
| (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), V64:$Ra, dsub), |
| V64:$Rn, V64:$Rm)), dsub)>; |
| def : Pat<(v2i32 (opnode |
| V64:$Ra, |
| (v2i32 (extract_subvector |
| (vecopnode (v4i16 V64:$Rn),(v4i16 V64:$Rm)), |
| (i64 0))))), |
| (EXTRACT_SUBREG (v4i32 (INST4H |
| (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), V64:$Ra, dsub), |
| V64:$Rn, V64:$Rm)), dsub)>; |
| def : Pat<(v1i64 (opnode |
| V64:$Ra, |
| (v1i64 (extract_subvector |
| (vecopnode (v2i32 V64:$Rn),(v2i32 V64:$Rm)), |
| (i64 0))))), |
| (EXTRACT_SUBREG (v2i64 (INST2S |
| (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), V64:$Ra, dsub), |
| V64:$Rn, V64:$Rm)), dsub)>; |
| } |
| |
| defm : Neon_mul_acc_widen_patterns<add, AArch64umull, |
| UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>; |
| defm : Neon_mul_acc_widen_patterns<add, AArch64smull, |
| SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>; |
| defm : Neon_mul_acc_widen_patterns<sub, AArch64umull, |
| UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>; |
| defm : Neon_mul_acc_widen_patterns<sub, AArch64smull, |
| SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>; |
| |
| |
| multiclass Neon_addl_extract_patterns<SDPatternOperator opnode, SDPatternOperator ext, string Inst> { |
| def : Pat<(v4i16 (opnode (extract_subvector (ext (v8i8 V64:$Rn)), (i64 0)), |
| (extract_subvector (ext (v8i8 V64:$Rm)), (i64 0)))), |
| (EXTRACT_SUBREG (v8i16 (!cast<Instruction>(Inst#"Lv8i8_v8i16") V64:$Rn, V64:$Rm)), dsub)>; |
| def : Pat<(v2i32 (opnode (extract_subvector (ext (v4i16 V64:$Rn)), (i64 0)), |
| (extract_subvector (ext (v4i16 V64:$Rm)), (i64 0)))), |
| (EXTRACT_SUBREG (v4i32 (!cast<Instruction>(Inst#"Lv4i16_v4i32") V64:$Rn, V64:$Rm)), dsub)>; |
| def : Pat<(v1i64 (opnode (extract_subvector (ext (v2i32 V64:$Rn)), (i64 0)), |
| (extract_subvector (ext (v2i32 V64:$Rm)), (i64 0)))), |
| (EXTRACT_SUBREG (v2i64 (!cast<Instruction>(Inst#"Lv2i32_v2i64") V64:$Rn, V64:$Rm)), dsub)>; |
| |
| def : Pat<(v4i16 (opnode (v4i16 V64:$Rn), |
| (extract_subvector (ext (v8i8 V64:$Rm)), (i64 0)))), |
| (EXTRACT_SUBREG (v8i16 (!cast<Instruction>(Inst#"Wv8i8_v8i16") (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), V64:$Rn, dsub), V64:$Rm)), dsub)>; |
| def : Pat<(v2i32 (opnode (v2i32 V64:$Rn), |
| (extract_subvector (ext (v4i16 V64:$Rm)), (i64 0)))), |
| (EXTRACT_SUBREG (v4i32 (!cast<Instruction>(Inst#"Wv4i16_v4i32") (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), V64:$Rn, dsub), V64:$Rm)), dsub)>; |
| def : Pat<(v1i64 (opnode (v1i64 V64:$Rn), |
| (extract_subvector (ext (v2i32 V64:$Rm)), (i64 0)))), |
| (EXTRACT_SUBREG (v2i64 (!cast<Instruction>(Inst#"Wv2i32_v2i64") (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), V64:$Rn, dsub), V64:$Rm)), dsub)>; |
| } |
| |
| defm : Neon_addl_extract_patterns<add, zanyext, "UADD">; |
| defm : Neon_addl_extract_patterns<add, sext, "SADD">; |
| defm : Neon_addl_extract_patterns<sub, zanyext, "USUB">; |
| defm : Neon_addl_extract_patterns<sub, sext, "SSUB">; |
| |
| // CodeGen patterns for addhn and subhn instructions, which can actually be |
| // written in LLVM IR without too much difficulty. |
| |
| // Prioritize ADDHN and SUBHN over UZP2. |
| let AddedComplexity = 10 in { |
| |
| // ADDHN |
| def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))), |
| (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>; |
| def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm), |
| (i32 16))))), |
| (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>; |
| def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm), |
| (i32 32))))), |
| (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>; |
| def : Pat<(concat_vectors (v8i8 V64:$Rd), |
| (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), |
| (i32 8))))), |
| (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), |
| V128:$Rn, V128:$Rm)>; |
| def : Pat<(concat_vectors (v4i16 V64:$Rd), |
| (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm), |
| (i32 16))))), |
| (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), |
| V128:$Rn, V128:$Rm)>; |
| def : Pat<(concat_vectors (v2i32 V64:$Rd), |
| (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm), |
| (i32 32))))), |
| (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), |
| V128:$Rn, V128:$Rm)>; |
| |
| // SUBHN |
| def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))), |
| (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>; |
| def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm), |
| (i32 16))))), |
| (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>; |
| def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm), |
| (i32 32))))), |
| (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>; |
| def : Pat<(concat_vectors (v8i8 V64:$Rd), |
| (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), |
| (i32 8))))), |
| (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), |
| V128:$Rn, V128:$Rm)>; |
| def : Pat<(concat_vectors (v4i16 V64:$Rd), |
| (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm), |
| (i32 16))))), |
| (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), |
| V128:$Rn, V128:$Rm)>; |
| def : Pat<(concat_vectors (v2i32 V64:$Rd), |
| (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm), |
| (i32 32))))), |
| (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub), |
| V128:$Rn, V128:$Rm)>; |
| |
| } // AddedComplexity = 10 |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD bitwise extract from vector instruction. |
| //---------------------------------------------------------------------------- |
| |
| defm EXT : SIMDBitwiseExtract<"ext">; |
| |
| def AdjustExtImm : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(8 + N->getZExtValue(), SDLoc(N), MVT::i32); |
| }]>; |
| multiclass ExtPat<ValueType VT64, ValueType VT128, int N> { |
| def : Pat<(VT64 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))), |
| (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>; |
| def : Pat<(VT128 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))), |
| (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>; |
| // We use EXT to handle extract_subvector to copy the upper 64-bits of a |
| // 128-bit vector. |
| def : Pat<(VT64 (extract_subvector V128:$Rn, (i64 N))), |
| (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>; |
| // A 64-bit EXT of two halves of the same 128-bit register can be done as a |
| // single 128-bit EXT. |
| def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 0)), |
| (extract_subvector V128:$Rn, (i64 N)), |
| (i32 imm:$imm))), |
| (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, imm:$imm), dsub)>; |
| // A 64-bit EXT of the high half of a 128-bit register can be done using a |
| // 128-bit EXT of the whole register with an adjustment to the immediate. The |
| // top half of the other operand will be unset, but that doesn't matter as it |
| // will not be used. |
| def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 N)), |
| V64:$Rm, |
| (i32 imm:$imm))), |
| (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, |
| (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), |
| (AdjustExtImm imm:$imm)), dsub)>; |
| } |
| |
| defm : ExtPat<v8i8, v16i8, 8>; |
| defm : ExtPat<v4i16, v8i16, 4>; |
| defm : ExtPat<v4f16, v8f16, 4>; |
| defm : ExtPat<v4bf16, v8bf16, 4>; |
| defm : ExtPat<v2i32, v4i32, 2>; |
| defm : ExtPat<v2f32, v4f32, 2>; |
| defm : ExtPat<v1i64, v2i64, 1>; |
| defm : ExtPat<v1f64, v2f64, 1>; |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD zip vector |
| //---------------------------------------------------------------------------- |
| |
| defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>; |
| defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>; |
| defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>; |
| defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>; |
| defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>; |
| defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>; |
| |
| def trunc_optional_assert_ext : PatFrags<(ops node:$op0), |
| [(trunc node:$op0), |
| (assertzext (trunc node:$op0)), |
| (assertsext (trunc node:$op0))]>; |
| |
| // concat_vectors(trunc(x), trunc(y)) -> uzp1(x, y) |
| // concat_vectors(assertzext(trunc(x)), assertzext(trunc(y))) -> uzp1(x, y) |
| // concat_vectors(assertsext(trunc(x)), assertsext(trunc(y))) -> uzp1(x, y) |
| class concat_trunc_to_uzp1_pat<ValueType SrcTy, ValueType TruncTy, ValueType ConcatTy> |
| : Pat<(ConcatTy (concat_vectors (TruncTy (trunc_optional_assert_ext (SrcTy V128:$Vn))), |
| (TruncTy (trunc_optional_assert_ext (SrcTy V128:$Vm))))), |
| (!cast<Instruction>("UZP1"#ConcatTy) V128:$Vn, V128:$Vm)>; |
| def : concat_trunc_to_uzp1_pat<v8i16, v8i8, v16i8>; |
| def : concat_trunc_to_uzp1_pat<v4i32, v4i16, v8i16>; |
| def : concat_trunc_to_uzp1_pat<v2i64, v2i32, v4i32>; |
| |
| // trunc(concat_vectors(trunc(x), trunc(y))) -> xtn(uzp1(x, y)) |
| // trunc(concat_vectors(assertzext(trunc(x)), assertzext(trunc(y)))) -> xtn(uzp1(x, y)) |
| // trunc(concat_vectors(assertsext(trunc(x)), assertsext(trunc(y)))) -> xtn(uzp1(x, y)) |
| class trunc_concat_trunc_to_xtn_uzp1_pat<ValueType SrcTy, ValueType TruncTy, ValueType ConcatTy, |
| ValueType Ty> |
| : Pat<(Ty (trunc_optional_assert_ext |
| (ConcatTy (concat_vectors |
| (TruncTy (trunc_optional_assert_ext (SrcTy V128:$Vn))), |
| (TruncTy (trunc_optional_assert_ext (SrcTy V128:$Vm))))))), |
| (!cast<Instruction>("XTN"#Ty) (!cast<Instruction>("UZP1"#ConcatTy) V128:$Vn, V128:$Vm))>; |
| def : trunc_concat_trunc_to_xtn_uzp1_pat<v4i32, v4i16, v8i16, v8i8>; |
| def : trunc_concat_trunc_to_xtn_uzp1_pat<v2i64, v2i32, v4i32, v4i16>; |
| |
| def : Pat<(v8i8 (trunc (concat_vectors (v4i16 V64:$Vn), (v4i16 V64:$Vm)))), |
| (UZP1v8i8 V64:$Vn, V64:$Vm)>; |
| def : Pat<(v4i16 (trunc (concat_vectors (v2i32 V64:$Vn), (v2i32 V64:$Vm)))), |
| (UZP1v4i16 V64:$Vn, V64:$Vm)>; |
| |
| def : Pat<(v16i8 (concat_vectors |
| (v8i8 (trunc (AArch64vlshr (v8i16 V128:$Vn), (i32 8)))), |
| (v8i8 (trunc (AArch64vlshr (v8i16 V128:$Vm), (i32 8)))))), |
| (UZP2v16i8 V128:$Vn, V128:$Vm)>; |
| def : Pat<(v8i16 (concat_vectors |
| (v4i16 (trunc (AArch64vlshr (v4i32 V128:$Vn), (i32 16)))), |
| (v4i16 (trunc (AArch64vlshr (v4i32 V128:$Vm), (i32 16)))))), |
| (UZP2v8i16 V128:$Vn, V128:$Vm)>; |
| def : Pat<(v4i32 (concat_vectors |
| (v2i32 (trunc (AArch64vlshr (v2i64 V128:$Vn), (i32 32)))), |
| (v2i32 (trunc (AArch64vlshr (v2i64 V128:$Vm), (i32 32)))))), |
| (UZP2v4i32 V128:$Vn, V128:$Vm)>; |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD TBL/TBX instructions |
| //---------------------------------------------------------------------------- |
| |
| defm TBL : SIMDTableLookup< 0, "tbl">; |
| defm TBX : SIMDTableLookupTied<1, "tbx">; |
| |
| def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))), |
| (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>; |
| def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))), |
| (TBLv16i8One V128:$Ri, V128:$Rn)>; |
| |
| def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd), |
| (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))), |
| (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>; |
| def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd), |
| (v16i8 V128:$Ri), (v16i8 V128:$Rn))), |
| (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>; |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD LUT instructions |
| //---------------------------------------------------------------------------- |
| let Predicates = [HasLUT] in { |
| defm LUT2 : BaseSIMDTableLookupIndexed2<"luti2">; |
| defm LUT4 : BaseSIMDTableLookupIndexed4<"luti4">; |
| } |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD scalar DUP instruction |
| //---------------------------------------------------------------------------- |
| |
| defm DUP : SIMDScalarDUP<"mov">; |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD scalar pairwise instructions |
| //---------------------------------------------------------------------------- |
| |
| defm ADDP : SIMDPairwiseScalarD<0, 0b11011, "addp">; |
| defm FADDP : SIMDFPPairwiseScalar<0, 0b01101, "faddp">; |
| defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">; |
| defm FMAXP : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">; |
| defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">; |
| defm FMINP : SIMDFPPairwiseScalar<1, 0b01111, "fminp">; |
| |
| // Only the lower half of the result of the inner FADDP is used in the patterns |
| // below, so the second operand does not matter. Re-use the first input |
| // operand, so no additional dependencies need to be introduced. |
| let Predicates = [HasFullFP16] in { |
| def : Pat<(f16 (vecreduce_fadd (v8f16 V128:$Rn))), |
| (FADDPv2i16p |
| (EXTRACT_SUBREG |
| (FADDPv8f16 (FADDPv8f16 V128:$Rn, V128:$Rn), V128:$Rn), |
| dsub))>; |
| def : Pat<(f16 (vecreduce_fadd (v4f16 V64:$Rn))), |
| (FADDPv2i16p (FADDPv4f16 V64:$Rn, V64:$Rn))>; |
| } |
| def : Pat<(f32 (vecreduce_fadd (v4f32 V128:$Rn))), |
| (FADDPv2i32p |
| (EXTRACT_SUBREG |
| (FADDPv4f32 V128:$Rn, V128:$Rn), |
| dsub))>; |
| def : Pat<(f32 (vecreduce_fadd (v2f32 V64:$Rn))), |
| (FADDPv2i32p V64:$Rn)>; |
| def : Pat<(f64 (vecreduce_fadd (v2f64 V128:$Rn))), |
| (FADDPv2i64p V128:$Rn)>; |
| |
| def : Pat<(v2i64 (AArch64saddv V128:$Rn)), |
| (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>; |
| def : Pat<(v2i64 (AArch64uaddv V128:$Rn)), |
| (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>; |
| def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))), |
| (FADDPv2i32p V64:$Rn)>; |
| def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))), |
| (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>; |
| def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))), |
| (FADDPv2i64p V128:$Rn)>; |
| def : Pat<(f32 (AArch64fmaxnmv (v2f32 V64:$Rn))), |
| (FMAXNMPv2i32p V64:$Rn)>; |
| def : Pat<(f64 (AArch64fmaxnmv (v2f64 V128:$Rn))), |
| (FMAXNMPv2i64p V128:$Rn)>; |
| def : Pat<(f32 (AArch64fmaxv (v2f32 V64:$Rn))), |
| (FMAXPv2i32p V64:$Rn)>; |
| def : Pat<(f64 (AArch64fmaxv (v2f64 V128:$Rn))), |
| (FMAXPv2i64p V128:$Rn)>; |
| def : Pat<(f32 (AArch64fminnmv (v2f32 V64:$Rn))), |
| (FMINNMPv2i32p V64:$Rn)>; |
| def : Pat<(f64 (AArch64fminnmv (v2f64 V128:$Rn))), |
| (FMINNMPv2i64p V128:$Rn)>; |
| def : Pat<(f32 (AArch64fminv (v2f32 V64:$Rn))), |
| (FMINPv2i32p V64:$Rn)>; |
| def : Pat<(f64 (AArch64fminv (v2f64 V128:$Rn))), |
| (FMINPv2i64p V128:$Rn)>; |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD INS/DUP instructions |
| //---------------------------------------------------------------------------- |
| |
| def DUPv8i8gpr : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>; |
| def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>; |
| def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>; |
| def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>; |
| def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>; |
| def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>; |
| def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>; |
| |
| def DUPv2i64lane : SIMDDup64FromElement; |
| def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>; |
| def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>; |
| def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>; |
| def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>; |
| def DUPv8i8lane : SIMDDup8FromElement <0, ".8b", v8i8, V64>; |
| def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>; |
| |
| // DUP from a 64-bit register to a 64-bit register is just a copy |
| def : Pat<(v1i64 (AArch64dup (i64 GPR64:$Rn))), |
| (COPY_TO_REGCLASS GPR64:$Rn, FPR64)>; |
| def : Pat<(v1f64 (AArch64dup (f64 FPR64:$Rn))), |
| (COPY_TO_REGCLASS FPR64:$Rn, FPR64)>; |
| |
| def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))), |
| (v2f32 (DUPv2i32lane |
| (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub), |
| (i64 0)))>; |
| def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))), |
| (v4f32 (DUPv4i32lane |
| (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub), |
| (i64 0)))>; |
| def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))), |
| (v2f64 (DUPv2i64lane |
| (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub), |
| (i64 0)))>; |
| def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))), |
| (v4f16 (DUPv4i16lane |
| (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), |
| (i64 0)))>; |
| def : Pat<(v4bf16 (AArch64dup (bf16 FPR16:$Rn))), |
| (v4bf16 (DUPv4i16lane |
| (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), |
| (i64 0)))>; |
| def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))), |
| (v8f16 (DUPv8i16lane |
| (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), |
| (i64 0)))>; |
| def : Pat<(v8bf16 (AArch64dup (bf16 FPR16:$Rn))), |
| (v8bf16 (DUPv8i16lane |
| (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub), |
| (i64 0)))>; |
| |
| def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)), |
| (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>; |
| def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)), |
| (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>; |
| |
| def : Pat<(v4bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)), |
| (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>; |
| def : Pat<(v8bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)), |
| (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>; |
| |
| def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)), |
| (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>; |
| def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)), |
| (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>; |
| def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)), |
| (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>; |
| |
| // If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane |
| // instruction even if the types don't match: we just have to remap the lane |
| // carefully. N.b. this trick only applies to truncations. |
| def VecIndex_x2 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64); |
| }]>; |
| def VecIndex_x4 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64); |
| }]>; |
| def VecIndex_x8 : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64); |
| }]>; |
| |
| multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT, |
| ValueType Src128VT, ValueType ScalVT, |
| Instruction DUP, SDNodeXForm IdxXFORM> { |
| def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn), |
| imm:$idx)))), |
| (DUP V128:$Rn, (IdxXFORM imm:$idx))>; |
| |
| def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn), |
| imm:$idx)))), |
| (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>; |
| } |
| |
| defm : DUPWithTruncPats<v8i8, v4i16, v8i16, i32, DUPv8i8lane, VecIndex_x2>; |
| defm : DUPWithTruncPats<v8i8, v2i32, v4i32, i32, DUPv8i8lane, VecIndex_x4>; |
| defm : DUPWithTruncPats<v4i16, v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>; |
| |
| defm : DUPWithTruncPats<v16i8, v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>; |
| defm : DUPWithTruncPats<v16i8, v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>; |
| defm : DUPWithTruncPats<v8i16, v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>; |
| |
| multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP, |
| SDNodeXForm IdxXFORM> { |
| def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn), |
| imm:$idx))))), |
| (DUP V128:$Rn, (IdxXFORM imm:$idx))>; |
| |
| def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn), |
| imm:$idx))))), |
| (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>; |
| } |
| |
| defm : DUPWithTrunci64Pats<v8i8, DUPv8i8lane, VecIndex_x8>; |
| defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane, VecIndex_x4>; |
| defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane, VecIndex_x2>; |
| |
| defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>; |
| defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>; |
| defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>; |
| |
| // SMOV and UMOV definitions, with some extra patterns for convenience |
| defm SMOV : SMov; |
| defm UMOV : UMov; |
| |
| def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8), |
| (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>; |
| def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8), |
| (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>; |
| def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), |
| (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>; |
| def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), |
| (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>; |
| def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16), |
| (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>; |
| def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))), |
| (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>; |
| |
| def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn), |
| VectorIndexB:$idx)))), i8), |
| (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>; |
| def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn), |
| VectorIndexH:$idx)))), i16), |
| (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>; |
| |
| // Extracting i8 or i16 elements will have the zero-extend transformed to |
| // an 'and' mask by type legalization since neither i8 nor i16 are legal types |
| // for AArch64. Match these patterns here since UMOV already zeroes out the high |
| // bits of the destination register. |
| def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), |
| (i32 0xff)), |
| (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>; |
| def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx), |
| (i32 0xffff)), |
| (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>; |
| |
| def : Pat<(i64 (and (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn), |
| VectorIndexB:$idx)))), (i64 0xff))), |
| (SUBREG_TO_REG (i64 0), (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx)), sub_32)>; |
| def : Pat<(i64 (and (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn), |
| VectorIndexH:$idx)))), (i64 0xffff))), |
| (SUBREG_TO_REG (i64 0), (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx)), sub_32)>; |
| |
| defm INS : SIMDIns; |
| |
| def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)), |
| (SUBREG_TO_REG (i32 0), |
| (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; |
| def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)), |
| (SUBREG_TO_REG (i32 0), |
| (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; |
| |
| // The top bits will be zero from the FMOVWSr |
| def : Pat<(v8i8 (bitconvert (i64 (zext GPR32:$Rn)))), |
| (SUBREG_TO_REG (i32 0), (f32 (FMOVWSr GPR32:$Rn)), ssub)>; |
| |
| def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)), |
| (SUBREG_TO_REG (i32 0), |
| (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; |
| def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)), |
| (SUBREG_TO_REG (i32 0), |
| (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>; |
| |
| def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))), |
| (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; |
| def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))), |
| (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; |
| |
| def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))), |
| (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; |
| def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))), |
| (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; |
| |
| def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))), |
| (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), |
| (i32 FPR32:$Rn), ssub))>; |
| def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))), |
| (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), |
| (i32 FPR32:$Rn), ssub))>; |
| |
| def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))), |
| (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), |
| (i64 FPR64:$Rn), dsub))>; |
| |
| def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))), |
| (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; |
| def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))), |
| (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; |
| |
| def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))), |
| (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; |
| def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))), |
| (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>; |
| |
| def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))), |
| (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>; |
| def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))), |
| (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>; |
| |
| def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))), |
| (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>; |
| |
| def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn), |
| (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))), |
| (EXTRACT_SUBREG |
| (INSvi16lane |
| (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)), |
| VectorIndexS:$imm, |
| (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), |
| (i64 0)), |
| dsub)>; |
| |
| def : Pat<(vector_insert (v8f16 V128:$Rn), (f16 fpimm0), (i64 VectorIndexH:$imm)), |
| (INSvi16gpr V128:$Rn, VectorIndexH:$imm, WZR)>; |
| def : Pat<(vector_insert (v4f16 V64:$Rn), (f16 fpimm0), (i64 VectorIndexH:$imm)), |
| (EXTRACT_SUBREG (INSvi16gpr (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)), VectorIndexH:$imm, WZR), dsub)>; |
| def : Pat<(vector_insert (v4f32 V128:$Rn), (f32 fpimm0), (i64 VectorIndexS:$imm)), |
| (INSvi32gpr V128:$Rn, VectorIndexS:$imm, WZR)>; |
| def : Pat<(vector_insert (v2f32 V64:$Rn), (f32 fpimm0), (i64 VectorIndexS:$imm)), |
| (EXTRACT_SUBREG (INSvi32gpr (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)), VectorIndexS:$imm, WZR), dsub)>; |
| def : Pat<(vector_insert v2f64:$Rn, (f64 fpimm0), (i64 VectorIndexD:$imm)), |
| (INSvi64gpr V128:$Rn, VectorIndexS:$imm, XZR)>; |
| |
| def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn), |
| (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))), |
| (INSvi16lane |
| V128:$Rn, VectorIndexH:$imm, |
| (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), |
| (i64 0))>; |
| |
| def : Pat<(v4bf16 (vector_insert (v4bf16 V64:$Rn), |
| (bf16 FPR16:$Rm), (i64 VectorIndexS:$imm))), |
| (EXTRACT_SUBREG |
| (INSvi16lane |
| (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), V64:$Rn, dsub)), |
| VectorIndexS:$imm, |
| (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), |
| (i64 0)), |
| dsub)>; |
| |
| def : Pat<(v8bf16 (vector_insert (v8bf16 V128:$Rn), |
| (bf16 FPR16:$Rm), (i64 VectorIndexH:$imm))), |
| (INSvi16lane |
| V128:$Rn, VectorIndexH:$imm, |
| (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)), |
| (i64 0))>; |
| |
| def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn), |
| (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))), |
| (EXTRACT_SUBREG |
| (INSvi32lane |
| (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)), |
| VectorIndexS:$imm, |
| (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)), |
| (i64 0)), |
| dsub)>; |
| def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn), |
| (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))), |
| (INSvi32lane |
| V128:$Rn, VectorIndexS:$imm, |
| (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)), |
| (i64 0))>; |
| def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn), |
| (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))), |
| (INSvi64lane |
| V128:$Rn, VectorIndexD:$imm, |
| (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)), |
| (i64 0))>; |
| |
| def : Pat<(v2i32 (vector_insert (v2i32 V64:$Rn), (i32 GPR32:$Rm), (i64 VectorIndexS:$imm))), |
| (EXTRACT_SUBREG |
| (INSvi32gpr (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), V64:$Rn, dsub)), |
| VectorIndexS:$imm, GPR32:$Rm), |
| dsub)>; |
| def : Pat<(v4i16 (vector_insert (v4i16 V64:$Rn), (i32 GPR32:$Rm), (i64 VectorIndexH:$imm))), |
| (EXTRACT_SUBREG |
| (INSvi16gpr (v8i16 (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), V64:$Rn, dsub)), |
| VectorIndexH:$imm, GPR32:$Rm), |
| dsub)>; |
| def : Pat<(v8i8 (vector_insert (v8i8 V64:$Rn), (i32 GPR32:$Rm), (i64 VectorIndexB:$imm))), |
| (EXTRACT_SUBREG |
| (INSvi8gpr (v16i8 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), V64:$Rn, dsub)), |
| VectorIndexB:$imm, GPR32:$Rm), |
| dsub)>; |
| |
| def : Pat<(v8i8 (vector_insert (v8i8 V64:$Rn), (i8 FPR8:$Rm), (i64 VectorIndexB:$imm))), |
| (EXTRACT_SUBREG |
| (INSvi8lane (v16i8 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), V64:$Rn, dsub)), |
| VectorIndexB:$imm, (v16i8 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR8:$Rm, bsub)), (i64 0)), |
| dsub)>; |
| def : Pat<(v16i8 (vector_insert (v16i8 V128:$Rn), (i8 FPR8:$Rm), (i64 VectorIndexB:$imm))), |
| (INSvi8lane V128:$Rn, VectorIndexB:$imm, |
| (v16i8 (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR8:$Rm, bsub)), (i64 0))>; |
| |
| // Copy an element at a constant index in one vector into a constant indexed |
| // element of another. |
| // FIXME refactor to a shared class/dev parameterized on vector type, vector |
| // index type and INS extension |
| def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane |
| (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs), |
| VectorIndexB:$idx2)), |
| (v16i8 (INSvi8lane |
| V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2) |
| )>; |
| def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane |
| (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs), |
| VectorIndexH:$idx2)), |
| (v8i16 (INSvi16lane |
| V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2) |
| )>; |
| def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane |
| (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs), |
| VectorIndexS:$idx2)), |
| (v4i32 (INSvi32lane |
| V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2) |
| )>; |
| def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane |
| (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs), |
| VectorIndexD:$idx2)), |
| (v2i64 (INSvi64lane |
| V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2) |
| )>; |
| |
| multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64, |
| ValueType VTScal, Instruction INS> { |
| def : Pat<(VT128 (vector_insert V128:$src, |
| (VTScal (vector_extract (VT128 V128:$Rn), (i64 imm:$Immn))), |
| (i64 imm:$Immd))), |
| (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>; |
| |
| def : Pat<(VT128 (vector_insert V128:$src, |
| (VTScal (vector_extract (VT64 V64:$Rn), (i64 imm:$Immn))), |
| (i64 imm:$Immd))), |
| (INS V128:$src, imm:$Immd, |
| (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>; |
| |
| def : Pat<(VT64 (vector_insert V64:$src, |
| (VTScal (vector_extract (VT128 V128:$Rn), (i64 imm:$Immn))), |
| (i64 imm:$Immd))), |
| (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), |
| imm:$Immd, V128:$Rn, imm:$Immn), |
| dsub)>; |
| |
| def : Pat<(VT64 (vector_insert V64:$src, |
| (VTScal (vector_extract (VT64 V64:$Rn), (i64 imm:$Immn))), |
| (i64 imm:$Immd))), |
| (EXTRACT_SUBREG |
| (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd, |
| (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn), |
| dsub)>; |
| } |
| |
| defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>; |
| defm : Neon_INS_elt_pattern<v8bf16, v4bf16, bf16, INSvi16lane>; |
| defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>; |
| defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>; |
| |
| defm : Neon_INS_elt_pattern<v16i8, v8i8, i32, INSvi8lane>; |
| defm : Neon_INS_elt_pattern<v8i16, v4i16, i32, INSvi16lane>; |
| defm : Neon_INS_elt_pattern<v4i32, v2i32, i32, INSvi32lane>; |
| defm : Neon_INS_elt_pattern<v2i64, v1i64, i64, INSvi64lane>; |
| |
| // Insert from bitcast |
| // vector_insert(bitcast(f32 src), n, lane) -> INSvi32lane(src, lane, INSERT_SUBREG(-, n), 0) |
| def : Pat<(v4i32 (vector_insert v4i32:$src, (i32 (bitconvert (f32 FPR32:$Sn))), (i64 imm:$Immd))), |
| (INSvi32lane V128:$src, imm:$Immd, (INSERT_SUBREG (IMPLICIT_DEF), FPR32:$Sn, ssub), 0)>; |
| def : Pat<(v2i32 (vector_insert v2i32:$src, (i32 (bitconvert (f32 FPR32:$Sn))), (i64 imm:$Immd))), |
| (EXTRACT_SUBREG |
| (INSvi32lane (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), V64:$src, dsub)), |
| imm:$Immd, (INSERT_SUBREG (IMPLICIT_DEF), FPR32:$Sn, ssub), 0), |
| dsub)>; |
| def : Pat<(v2i64 (vector_insert v2i64:$src, (i64 (bitconvert (f64 FPR64:$Sn))), (i64 imm:$Immd))), |
| (INSvi64lane V128:$src, imm:$Immd, (INSERT_SUBREG (IMPLICIT_DEF), FPR64:$Sn, dsub), 0)>; |
| |
| // bitcast of an extract |
| // f32 bitcast(vector_extract(v4i32 src, lane)) -> EXTRACT_SUBREG(INSvi32lane(-, 0, src, lane)) |
| def : Pat<(f32 (bitconvert (i32 (vector_extract v4i32:$src, imm:$Immd)))), |
| (EXTRACT_SUBREG (INSvi32lane (IMPLICIT_DEF), 0, V128:$src, imm:$Immd), ssub)>; |
| def : Pat<(f32 (bitconvert (i32 (vector_extract v4i32:$src, (i64 0))))), |
| (EXTRACT_SUBREG V128:$src, ssub)>; |
| def : Pat<(f64 (bitconvert (i64 (vector_extract v2i64:$src, imm:$Immd)))), |
| (EXTRACT_SUBREG (INSvi64lane (IMPLICIT_DEF), 0, V128:$src, imm:$Immd), dsub)>; |
| def : Pat<(f64 (bitconvert (i64 (vector_extract v2i64:$src, (i64 0))))), |
| (EXTRACT_SUBREG V128:$src, dsub)>; |
| |
| // Floating point vector extractions are codegen'd as either a sequence of |
| // subregister extractions, or a MOV (aka DUP here) if |
| // the lane number is anything other than zero. |
| def : Pat<(f64 (vector_extract (v2f64 V128:$Rn), (i64 0))), |
| (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>; |
| def : Pat<(f32 (vector_extract (v4f32 V128:$Rn), (i64 0))), |
| (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>; |
| def : Pat<(f16 (vector_extract (v8f16 V128:$Rn), (i64 0))), |
| (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>; |
| def : Pat<(bf16 (vector_extract (v8bf16 V128:$Rn), (i64 0))), |
| (bf16 (EXTRACT_SUBREG V128:$Rn, hsub))>; |
| |
| |
| def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx), |
| (f64 (DUPi64 V128:$Rn, VectorIndexD:$idx))>; |
| def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx), |
| (f32 (DUPi32 V128:$Rn, VectorIndexS:$idx))>; |
| def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx), |
| (f16 (DUPi16 V128:$Rn, VectorIndexH:$idx))>; |
| def : Pat<(vector_extract (v8bf16 V128:$Rn), VectorIndexH:$idx), |
| (bf16 (DUPi16 V128:$Rn, VectorIndexH:$idx))>; |
| |
| // All concat_vectors operations are canonicalised to act on i64 vectors for |
| // AArch64. In the general case we need an instruction, which had just as well be |
| // INS. |
| multiclass ConcatPat<ValueType DstTy, ValueType SrcTy> { |
| def : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)), |
| (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1, |
| (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>; |
| |
| // If the high lanes are zero we can instead emit a d->d register mov, which |
| // will implicitly clear the upper bits. |
| def : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), immAllZerosV)), |
| (SUBREG_TO_REG (i64 0), (FMOVDr V64:$Rn), dsub)>; |
| |
| // If the high lanes are undef we can just ignore them: |
| def : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)), |
| (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>; |
| } |
| |
| defm : ConcatPat<v2i64, v1i64>; |
| defm : ConcatPat<v2f64, v1f64>; |
| defm : ConcatPat<v4i32, v2i32>; |
| defm : ConcatPat<v4f32, v2f32>; |
| defm : ConcatPat<v8i16, v4i16>; |
| defm : ConcatPat<v8f16, v4f16>; |
| defm : ConcatPat<v8bf16, v4bf16>; |
| defm : ConcatPat<v16i8, v8i8>; |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD across lanes instructions |
| //---------------------------------------------------------------------------- |
| |
| defm ADDV : SIMDAcrossLanesBHS<0, 0b11011, "addv">; |
| defm SMAXV : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">; |
| defm SMINV : SIMDAcrossLanesBHS<0, 0b11010, "sminv">; |
| defm UMAXV : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">; |
| defm UMINV : SIMDAcrossLanesBHS<1, 0b11010, "uminv">; |
| defm SADDLV : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">; |
| defm UADDLV : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">; |
| defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", AArch64fmaxnmv>; |
| defm FMAXV : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", AArch64fmaxv>; |
| defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", AArch64fminnmv>; |
| defm FMINV : SIMDFPAcrossLanes<0b01111, 1, "fminv", AArch64fminv>; |
| |
| multiclass SIMDAcrossLaneLongPairIntrinsic<string Opc, SDPatternOperator addlp> { |
| // Patterns for addv(addlp(x)) ==> addlv |
| def : Pat<(i32 (vector_extract (v8i16 (insert_subvector undef, |
| (v4i16 (AArch64uaddv (v4i16 (addlp (v8i8 V64:$op))))), |
| (i64 0))), (i64 0))), |
| (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), |
| (!cast<Instruction>(Opc#"v8i8v") V64:$op), hsub), ssub)>; |
| def : Pat<(i32 (vector_extract (v8i16 (AArch64uaddv (v8i16 (addlp (v16i8 V128:$op))))), (i64 0))), |
| (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), |
| (!cast<Instruction>(Opc#"v16i8v") V128:$op), hsub), ssub)>; |
| def : Pat<(v4i32 (AArch64uaddv (v4i32 (addlp (v8i16 V128:$op))))), |
| (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), (!cast<Instruction>(Opc#"v8i16v") V128:$op), ssub)>; |
| |
| // Patterns for addp(addlp(x))) ==> addlv |
| def : Pat<(v2i32 (AArch64uaddv (v2i32 (addlp (v4i16 V64:$op))))), |
| (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (!cast<Instruction>(Opc#"v4i16v") V64:$op), ssub)>; |
| def : Pat<(v2i64 (AArch64uaddv (v2i64 (addlp (v4i32 V128:$op))))), |
| (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (!cast<Instruction>(Opc#"v4i32v") V128:$op), dsub)>; |
| } |
| |
| defm : SIMDAcrossLaneLongPairIntrinsic<"UADDLV", AArch64uaddlp>; |
| defm : SIMDAcrossLaneLongPairIntrinsic<"SADDLV", AArch64saddlp>; |
| |
| // Pattern is used for GlobalISel |
| multiclass SIMDAcrossLaneLongPairIntrinsicGISel<string Opc, SDPatternOperator addlp> { |
| // Patterns for addv(addlp(x)) ==> addlv |
| def : Pat<(i16 (vecreduce_add (v4i16 (addlp (v8i8 V64:$Rn))))), |
| (!cast<Instruction>(Opc#"v8i8v") V64:$Rn)>; |
| def : Pat<(i16 (vecreduce_add (v8i16 (addlp (v16i8 V128:$Rn))))), |
| (!cast<Instruction>(Opc#"v16i8v") V128:$Rn)>; |
| def : Pat<(i32 (vecreduce_add (v4i32 (addlp (v8i16 V128:$Rn))))), |
| (!cast<Instruction>(Opc#"v8i16v") V128:$Rn)>; |
| |
| // Patterns for addp(addlp(x))) ==> addlv |
| def : Pat<(i32 (vecreduce_add (v2i32 (addlp (v4i16 V64:$Rn))))), |
| (!cast<Instruction>(Opc#"v4i16v") V64:$Rn)>; |
| def : Pat<(i64 (vecreduce_add (v2i64 (addlp (v4i32 V128:$Rn))))), |
| (!cast<Instruction>(Opc#"v4i32v") V128:$Rn)>; |
| } |
| |
| defm : SIMDAcrossLaneLongPairIntrinsicGISel<"UADDLV", AArch64uaddlp>; |
| defm : SIMDAcrossLaneLongPairIntrinsicGISel<"SADDLV", AArch64saddlp>; |
| |
| // Patterns for uaddlv(uaddlp(x)) ==> uaddlv |
| def : Pat<(i64 (int_aarch64_neon_uaddlv (v4i32 (AArch64uaddlp (v8i16 V128:$op))))), |
| (i64 (EXTRACT_SUBREG |
| (v4i32 (SUBREG_TO_REG (i64 0), (UADDLVv8i16v V128:$op), ssub)), |
| dsub))>; |
| |
| def : Pat<(i32 (int_aarch64_neon_uaddlv (v8i16 (AArch64uaddlp (v16i8 V128:$op))))), |
| (i32 (EXTRACT_SUBREG |
| (v8i16 (SUBREG_TO_REG (i64 0), (UADDLVv16i8v V128:$op), hsub)), |
| ssub))>; |
| |
| def : Pat<(v2i64 (AArch64uaddlv (v4i32 (AArch64uaddlp (v8i16 V128:$op))))), |
| (v2i64 (SUBREG_TO_REG (i64 0), (UADDLVv8i16v V128:$op), ssub))>; |
| |
| def : Pat<(v4i32 (AArch64uaddlv (v8i16 (AArch64uaddlp (v16i8 V128:$op))))), |
| (v4i32 (SUBREG_TO_REG (i64 0), (UADDLVv16i8v V128:$op), hsub))>; |
| |
| def : Pat<(v4i32 (AArch64uaddlv (v4i16 (AArch64uaddlp (v8i8 V64:$op))))), |
| (v4i32 (SUBREG_TO_REG (i64 0), (UADDLVv8i8v V64:$op), hsub))>; |
| |
| multiclass SIMDAcrossLaneLongReductionIntrinsic<string Opc, SDPatternOperator addlv> { |
| def : Pat<(v4i32 (addlv (v8i8 V64:$Rn))), |
| (v4i32 (SUBREG_TO_REG (i64 0), (!cast<Instruction>(Opc#"v8i8v") V64:$Rn), hsub))>; |
| |
| def : Pat<(v4i32 (addlv (v4i16 V64:$Rn))), |
| (v4i32 (SUBREG_TO_REG (i64 0), (!cast<Instruction>(Opc#"v4i16v") V64:$Rn), ssub))>; |
| |
| def : Pat<(v4i32 (addlv (v16i8 V128:$Rn))), |
| (v4i32 (SUBREG_TO_REG (i64 0), (!cast<Instruction>(Opc#"v16i8v") V128:$Rn), hsub))>; |
| |
| def : Pat<(v4i32 (addlv (v8i16 V128:$Rn))), |
| (v4i32 (SUBREG_TO_REG (i64 0), (!cast<Instruction>(Opc#"v8i16v") V128:$Rn), ssub))>; |
| |
| def : Pat<(v2i64 (addlv (v4i32 V128:$Rn))), |
| (v2i64 (SUBREG_TO_REG (i64 0), (!cast<Instruction>(Opc#"v4i32v") V128:$Rn), dsub))>; |
| } |
| |
| defm : SIMDAcrossLaneLongReductionIntrinsic<"UADDLV", AArch64uaddlv>; |
| defm : SIMDAcrossLaneLongReductionIntrinsic<"SADDLV", AArch64saddlv>; |
| |
| // Patterns for across-vector intrinsics, that have a node equivalent, that |
| // returns a vector (with only the low lane defined) instead of a scalar. |
| // In effect, opNode is the same as (scalar_to_vector (IntNode)). |
| multiclass SIMDAcrossLanesIntrinsic<string baseOpc, |
| SDPatternOperator opNode> { |
| // If a lane instruction caught the vector_extract around opNode, we can |
| // directly match the latter to the instruction. |
| def : Pat<(v8i8 (opNode V64:$Rn)), |
| (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>; |
| def : Pat<(v16i8 (opNode V128:$Rn)), |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>; |
| def : Pat<(v4i16 (opNode V64:$Rn)), |
| (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>; |
| def : Pat<(v8i16 (opNode V128:$Rn)), |
| (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>; |
| def : Pat<(v4i32 (opNode V128:$Rn)), |
| (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>; |
| |
| |
| // If none did, fallback to the explicit patterns, consuming the vector_extract. |
| def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)), |
| (i64 0)), (i64 0))), |
| (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), |
| bsub), ssub)>; |
| def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))), |
| (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), |
| bsub), ssub)>; |
| def : Pat<(i32 (vector_extract (insert_subvector undef, |
| (v4i16 (opNode V64:$Rn)), (i64 0)), (i64 0))), |
| (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), |
| hsub), ssub)>; |
| def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))), |
| (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), |
| hsub), ssub)>; |
| def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))), |
| (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), |
| ssub), ssub)>; |
| |
| } |
| |
| multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc, |
| SDPatternOperator opNode> |
| : SIMDAcrossLanesIntrinsic<baseOpc, opNode> { |
| // If there is a sign extension after this intrinsic, consume it as smov already |
| // performed it |
| def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef, |
| (opNode (v8i8 V64:$Rn)), (i64 0)), (i64 0))), i8)), |
| (i32 (SMOVvi8to32 |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub), |
| (i64 0)))>; |
| def : Pat<(i32 (sext_inreg (i32 (vector_extract |
| (opNode (v16i8 V128:$Rn)), (i64 0))), i8)), |
| (i32 (SMOVvi8to32 |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub), |
| (i64 0)))>; |
| def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef, |
| (opNode (v4i16 V64:$Rn)), (i64 0)), (i64 0))), i16)), |
| (i32 (SMOVvi16to32 |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub), |
| (i64 0)))>; |
| def : Pat<(i32 (sext_inreg (i32 (vector_extract |
| (opNode (v8i16 V128:$Rn)), (i64 0))), i16)), |
| (i32 (SMOVvi16to32 |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub), |
| (i64 0)))>; |
| } |
| |
| multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc, |
| SDPatternOperator opNode> |
| : SIMDAcrossLanesIntrinsic<baseOpc, opNode> { |
| // If there is a masking operation keeping only what has been actually |
| // generated, consume it. |
| def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef, |
| (opNode (v8i8 V64:$Rn)), (i64 0)), (i64 0))), maski8_or_more)), |
| (i32 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub), |
| ssub))>; |
| def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))), |
| maski8_or_more)), |
| (i32 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub), |
| ssub))>; |
| def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef, |
| (opNode (v4i16 V64:$Rn)), (i64 0)), (i64 0))), maski16_or_more)), |
| (i32 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub), |
| ssub))>; |
| def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))), |
| maski16_or_more)), |
| (i32 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub), |
| ssub))>; |
| } |
| |
| // For vecreduce_add, used by GlobalISel not SDAG |
| def : Pat<(i8 (vecreduce_add (v8i8 V64:$Rn))), |
| (i8 (ADDVv8i8v V64:$Rn))>; |
| def : Pat<(i8 (vecreduce_add (v16i8 V128:$Rn))), |
| (i8 (ADDVv16i8v V128:$Rn))>; |
| def : Pat<(i16 (vecreduce_add (v4i16 V64:$Rn))), |
| (i16 (ADDVv4i16v V64:$Rn))>; |
| def : Pat<(i16 (vecreduce_add (v8i16 V128:$Rn))), |
| (i16 (ADDVv8i16v V128:$Rn))>; |
| def : Pat<(i32 (vecreduce_add (v2i32 V64:$Rn))), |
| (i32 (EXTRACT_SUBREG (ADDPv2i32 V64:$Rn, V64:$Rn), ssub))>; |
| def : Pat<(i32 (vecreduce_add (v4i32 V128:$Rn))), |
| (i32 (ADDVv4i32v V128:$Rn))>; |
| def : Pat<(i64 (vecreduce_add (v2i64 V128:$Rn))), |
| (i64 (ADDPv2i64p V128:$Rn))>; |
| |
| defm : SIMDAcrossLanesSignedIntrinsic<"ADDV", AArch64saddv>; |
| // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm |
| def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))), |
| (ADDPv2i32 V64:$Rn, V64:$Rn)>; |
| |
| defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>; |
| // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm |
| def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))), |
| (ADDPv2i32 V64:$Rn, V64:$Rn)>; |
| |
| defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>; |
| def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))), |
| (SMAXPv2i32 V64:$Rn, V64:$Rn)>; |
| |
| defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>; |
| def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))), |
| (SMINPv2i32 V64:$Rn, V64:$Rn)>; |
| |
| defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>; |
| def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))), |
| (UMAXPv2i32 V64:$Rn, V64:$Rn)>; |
| |
| defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>; |
| def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))), |
| (UMINPv2i32 V64:$Rn, V64:$Rn)>; |
| |
| // For vecreduce_{opc} used by GlobalISel, not SDAG at the moment |
| // because GlobalISel allows us to specify the return register to be a FPR |
| multiclass SIMDAcrossLanesVecReductionIntrinsic<string baseOpc, |
| SDPatternOperator opNode> { |
| def : Pat<(i8 (opNode (v8i8 FPR64:$Rn))), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) FPR64:$Rn)>; |
| |
| def : Pat<(i8 (opNode (v16i8 FPR128:$Rn))), |
| (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) FPR128:$Rn)>; |
| |
| def : Pat<(i16 (opNode (v4i16 FPR64:$Rn))), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) FPR64:$Rn)>; |
| |
| def : Pat<(i16 (opNode (v8i16 FPR128:$Rn))), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) FPR128:$Rn)>; |
| |
| def : Pat<(i32 (opNode (v4i32 V128:$Rn))), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn)>; |
| } |
| |
| // For v2i32 source type, the pairwise instruction can be used instead |
| defm : SIMDAcrossLanesVecReductionIntrinsic<"UMINV", vecreduce_umin>; |
| def : Pat<(i32 (vecreduce_umin (v2i32 V64:$Rn))), |
| (i32 (EXTRACT_SUBREG (UMINPv2i32 V64:$Rn, V64:$Rn), ssub))>; |
| |
| defm : SIMDAcrossLanesVecReductionIntrinsic<"UMAXV", vecreduce_umax>; |
| def : Pat<(i32 (vecreduce_umax (v2i32 V64:$Rn))), |
| (i32 (EXTRACT_SUBREG (UMAXPv2i32 V64:$Rn, V64:$Rn), ssub))>; |
| |
| defm : SIMDAcrossLanesVecReductionIntrinsic<"SMINV", vecreduce_smin>; |
| def : Pat<(i32 (vecreduce_smin (v2i32 V64:$Rn))), |
| (i32 (EXTRACT_SUBREG (SMINPv2i32 V64:$Rn, V64:$Rn), ssub))>; |
| |
| defm : SIMDAcrossLanesVecReductionIntrinsic<"SMAXV", vecreduce_smax>; |
| def : Pat<(i32 (vecreduce_smax (v2i32 V64:$Rn))), |
| (i32 (EXTRACT_SUBREG (SMAXPv2i32 V64:$Rn, V64:$Rn), ssub))>; |
| |
| multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> { |
| def : Pat<(i32 (intOp (v8i8 V64:$Rn))), |
| (i32 (SMOVvi16to32 |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub), |
| (i64 0)))>; |
| def : Pat<(i32 (intOp (v16i8 V128:$Rn))), |
| (i32 (SMOVvi16to32 |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub), |
| (i64 0)))>; |
| |
| def : Pat<(i32 (intOp (v4i16 V64:$Rn))), |
| (i32 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub), |
| ssub))>; |
| def : Pat<(i32 (intOp (v8i16 V128:$Rn))), |
| (i32 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub), |
| ssub))>; |
| |
| def : Pat<(i64 (intOp (v4i32 V128:$Rn))), |
| (i64 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub), |
| dsub))>; |
| } |
| |
| multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc, |
| Intrinsic intOp> { |
| def : Pat<(i32 (intOp (v8i8 V64:$Rn))), |
| (i32 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub), |
| ssub))>; |
| def : Pat<(i32 (intOp (v16i8 V128:$Rn))), |
| (i32 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub), |
| ssub))>; |
| |
| def : Pat<(i32 (intOp (v4i16 V64:$Rn))), |
| (i32 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub), |
| ssub))>; |
| def : Pat<(i32 (intOp (v8i16 V128:$Rn))), |
| (i32 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub), |
| ssub))>; |
| |
| def : Pat<(i64 (intOp (v4i32 V128:$Rn))), |
| (i64 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub), |
| dsub))>; |
| } |
| |
| defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>; |
| defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>; |
| |
| // The vaddlv_s32 intrinsic gets mapped to SADDLP. |
| def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))), |
| (i64 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (SADDLPv2i32_v1i64 V64:$Rn), dsub), |
| dsub))>; |
| // The vaddlv_u32 intrinsic gets mapped to UADDLP. |
| def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))), |
| (i64 (EXTRACT_SUBREG |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), |
| (UADDLPv2i32_v1i64 V64:$Rn), dsub), |
| dsub))>; |
| |
| //------------------------------------------------------------------------------ |
| // AdvSIMD modified immediate instructions |
| //------------------------------------------------------------------------------ |
| |
| // AdvSIMD BIC |
| defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>; |
| // AdvSIMD ORR |
| defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>; |
| |
| let Predicates = [HasNEON] in { |
| def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>; |
| |
| def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>; |
| |
| def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>; |
| |
| def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd, imm0_255:$imm, 0)>; |
| def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>; |
| } |
| |
| // AdvSIMD FMOV |
| def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8, |
| "fmov", ".2d", |
| [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; |
| def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64, fpimm8, |
| "fmov", ".2s", |
| [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>; |
| def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8, |
| "fmov", ".4s", |
| [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; |
| let Predicates = [HasNEON, HasFullFP16] in { |
| def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64, fpimm8, |
| "fmov", ".4h", |
| [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>; |
| def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8, |
| "fmov", ".8h", |
| [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>; |
| } // Predicates = [HasNEON, HasFullFP16] |
| |
| // AdvSIMD MOVI |
| |
| // EDIT byte mask: scalar |
| let isReMaterializable = 1, isAsCheapAsAMove = 1 in |
| def MOVID : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi", |
| [(set FPR64:$Rd, simdimmtype10:$imm8)]>; |
| // The movi_edit node has the immediate value already encoded, so we use |
| // a plain imm0_255 here. |
| def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)), |
| (MOVID imm0_255:$shift)>; |
| |
| // EDIT byte mask: 2d |
| |
| // The movi_edit node has the immediate value already encoded, so we use |
| // a plain imm0_255 in the pattern |
| let isReMaterializable = 1, isAsCheapAsAMove = 1 in |
| def MOVIv2d_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128, |
| simdimmtype10, |
| "movi", ".2d", |
| [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>; |
| |
| def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>; |
| def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>; |
| def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>; |
| def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>; |
| def : Pat<(v2f64 immAllZerosV), (MOVIv2d_ns (i32 0))>; |
| def : Pat<(v4f32 immAllZerosV), (MOVIv2d_ns (i32 0))>; |
| def : Pat<(v8f16 immAllZerosV), (MOVIv2d_ns (i32 0))>; |
| def : Pat<(v8bf16 immAllZerosV), (MOVIv2d_ns (i32 0))>; |
| |
| def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>; |
| def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>; |
| def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>; |
| def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>; |
| |
| // Set 64-bit vectors to all 0/1 by extracting from a 128-bit register as the |
| // extract is free and this gives better MachineCSE results. |
| def : Pat<(v1i64 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; |
| def : Pat<(v2i32 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; |
| def : Pat<(v4i16 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; |
| def : Pat<(v8i8 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>; |
| def : Pat<(v1f64 immAllZerosV), (MOVID (i32 0))>; |
| def : Pat<(v2f32 immAllZerosV), (MOVID (i32 0))>; |
| def : Pat<(v4f16 immAllZerosV), (MOVID (i32 0))>; |
| def : Pat<(v4bf16 immAllZerosV), (MOVID (i32 0))>; |
| |
| def : Pat<(v1i64 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; |
| def : Pat<(v2i32 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; |
| def : Pat<(v4i16 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; |
| def : Pat<(v8i8 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>; |
| |
| // EDIT per word & halfword: 2s, 4h, 4s, & 8h |
| let isReMaterializable = 1, isAsCheapAsAMove = 1 in |
| defm MOVI : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">; |
| |
| let Predicates = [HasNEON] in { |
| // Using the MOVI to materialize fp constants. |
| def : Pat<(f32 fpimm32SIMDModImmType4:$in), |
| (EXTRACT_SUBREG (MOVIv2i32 (fpimm32SIMDModImmType4XForm f32:$in), |
| (i32 24)), |
| ssub)>; |
| } |
| |
| let Predicates = [HasNEON] in { |
| def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; |
| |
| def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; |
| } |
| |
| def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), |
| (MOVIv2i32 imm0_255:$imm8, imm:$shift)>; |
| def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), |
| (MOVIv4i32 imm0_255:$imm8, imm:$shift)>; |
| def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), |
| (MOVIv4i16 imm0_255:$imm8, imm:$shift)>; |
| def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))), |
| (MOVIv8i16 imm0_255:$imm8, imm:$shift)>; |
| |
| let isReMaterializable = 1, isAsCheapAsAMove = 1 in { |
| // EDIT per word: 2s & 4s with MSL shifter |
| def MOVIv2s_msl : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s", |
| [(set (v2i32 V64:$Rd), |
| (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>; |
| def MOVIv4s_msl : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s", |
| [(set (v4i32 V128:$Rd), |
| (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>; |
| |
| // Per byte: 8b & 16b |
| def MOVIv8b_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64, imm0_255, |
| "movi", ".8b", |
| [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>; |
| |
| def MOVIv16b_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255, |
| "movi", ".16b", |
| [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>; |
| } |
| |
| // AdvSIMD MVNI |
| |
| // EDIT per word & halfword: 2s, 4h, 4s, & 8h |
| let isReMaterializable = 1, isAsCheapAsAMove = 1 in |
| defm MVNI : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">; |
| |
| let Predicates = [HasNEON] in { |
| def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; |
| |
| def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd, imm0_255:$imm, 0), 0>; |
| def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>; |
| } |
| |
| def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), |
| (MVNIv2i32 imm0_255:$imm8, imm:$shift)>; |
| def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), |
| (MVNIv4i32 imm0_255:$imm8, imm:$shift)>; |
| def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), |
| (MVNIv4i16 imm0_255:$imm8, imm:$shift)>; |
| def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))), |
| (MVNIv8i16 imm0_255:$imm8, imm:$shift)>; |
| |
| // EDIT per word: 2s & 4s with MSL shifter |
| let isReMaterializable = 1, isAsCheapAsAMove = 1 in { |
| def MVNIv2s_msl : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s", |
| [(set (v2i32 V64:$Rd), |
| (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>; |
| def MVNIv4s_msl : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s", |
| [(set (v4i32 V128:$Rd), |
| (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>; |
| } |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD indexed element |
| //---------------------------------------------------------------------------- |
| |
| let hasSideEffects = 0 in { |
| defm FMLA : SIMDFPIndexedTied<0, 0b0001, "fmla">; |
| defm FMLS : SIMDFPIndexedTied<0, 0b0101, "fmls">; |
| } |
| |
| // NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the |
| // instruction expects the addend first, while the intrinsic expects it last. |
| |
| // On the other hand, there are quite a few valid combinatorial options due to |
| // the commutativity of multiplication and the fact that (-x) * y = x * (-y). |
| defm : SIMDFPIndexedTiedPatterns<"FMLA", |
| TriOpFrag<(any_fma node:$RHS, node:$MHS, node:$LHS)>>; |
| defm : SIMDFPIndexedTiedPatterns<"FMLA", |
| TriOpFrag<(any_fma node:$MHS, node:$RHS, node:$LHS)>>; |
| |
| defm : SIMDFPIndexedTiedPatterns<"FMLS", |
| TriOpFrag<(any_fma node:$MHS, (fneg node:$RHS), node:$LHS)> >; |
| defm : SIMDFPIndexedTiedPatterns<"FMLS", |
| TriOpFrag<(any_fma node:$RHS, (fneg node:$MHS), node:$LHS)> >; |
| defm : SIMDFPIndexedTiedPatterns<"FMLS", |
| TriOpFrag<(any_fma (fneg node:$RHS), node:$MHS, node:$LHS)> >; |
| defm : SIMDFPIndexedTiedPatterns<"FMLS", |
| TriOpFrag<(any_fma (fneg node:$MHS), node:$RHS, node:$LHS)> >; |
| |
| multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> { |
| // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit |
| // and DUP scalar. |
| def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), |
| (AArch64duplane32 (v4f32 (fneg V128:$Rm)), |
| VectorIndexS:$idx))), |
| (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>; |
| def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), |
| (v2f32 (AArch64duplane32 |
| (v4f32 (insert_subvector undef, |
| (v2f32 (fneg V64:$Rm)), |
| (i64 0))), |
| VectorIndexS:$idx)))), |
| (FMLSv2i32_indexed V64:$Rd, V64:$Rn, |
| (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), |
| VectorIndexS:$idx)>; |
| def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn), |
| (AArch64dup (f32 (fneg FPR32Op:$Rm))))), |
| (FMLSv2i32_indexed V64:$Rd, V64:$Rn, |
| (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; |
| |
| // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit |
| // and DUP scalar. |
| def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), |
| (AArch64duplane32 (v4f32 (fneg V128:$Rm)), |
| VectorIndexS:$idx))), |
| (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm, |
| VectorIndexS:$idx)>; |
| def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), |
| (v4f32 (AArch64duplane32 |
| (v4f32 (insert_subvector undef, |
| (v2f32 (fneg V64:$Rm)), |
| (i64 0))), |
| VectorIndexS:$idx)))), |
| (FMLSv4i32_indexed V128:$Rd, V128:$Rn, |
| (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), |
| VectorIndexS:$idx)>; |
| def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn), |
| (AArch64dup (f32 (fneg FPR32Op:$Rm))))), |
| (FMLSv4i32_indexed V128:$Rd, V128:$Rn, |
| (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>; |
| |
| // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar |
| // (DUPLANE from 64-bit would be trivial). |
| def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), |
| (AArch64duplane64 (v2f64 (fneg V128:$Rm)), |
| VectorIndexD:$idx))), |
| (FMLSv2i64_indexed |
| V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>; |
| def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn), |
| (AArch64dup (f64 (fneg FPR64Op:$Rm))))), |
| (FMLSv2i64_indexed V128:$Rd, V128:$Rn, |
| (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>; |
| |
| // 2 variants for 32-bit scalar version: extract from .2s or from .4s |
| def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), |
| (vector_extract (v4f32 (fneg V128:$Rm)), |
| VectorIndexS:$idx))), |
| (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn, |
| V128:$Rm, VectorIndexS:$idx)>; |
| def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn), |
| (vector_extract (v4f32 (insert_subvector undef, |
| (v2f32 (fneg V64:$Rm)), |
| (i64 0))), |
| VectorIndexS:$idx))), |
| (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn, |
| (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>; |
| |
| // 1 variant for 64-bit scalar version: extract from .1d or from .2d |
| def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn), |
| (vector_extract (v2f64 (fneg V128:$Rm)), |
| VectorIndexS:$idx))), |
| (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn, |
| V128:$Rm, VectorIndexS:$idx)>; |
| } |
| |
| defm : FMLSIndexedAfterNegPatterns< |
| TriOpFrag<(any_fma node:$RHS, node:$MHS, node:$LHS)> >; |
| defm : FMLSIndexedAfterNegPatterns< |
| TriOpFrag<(any_fma node:$MHS, node:$RHS, node:$LHS)> >; |
| |
| defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>; |
| defm FMUL : SIMDFPIndexed<0, 0b1001, "fmul", any_fmul>; |
| |
| def : Pat<(v2f32 (any_fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))), |
| (FMULv2i32_indexed V64:$Rn, |
| (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub), |
| (i64 0))>; |
| def : Pat<(v4f32 (any_fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))), |
| (FMULv4i32_indexed V128:$Rn, |
| (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub), |
| (i64 0))>; |
| def : Pat<(v2f64 (any_fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))), |
| (FMULv2i64_indexed V128:$Rn, |
| (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub), |
| (i64 0))>; |
| |
| defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>; |
| defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>; |
| |
| defm SQDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqdmulh_lane, |
| int_aarch64_neon_sqdmulh_laneq>; |
| defm SQRDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqrdmulh_lane, |
| int_aarch64_neon_sqrdmulh_laneq>; |
| |
| // Generated by MachineCombine |
| defm MLA : SIMDVectorIndexedHSTied<1, 0b0000, "mla", null_frag>; |
| defm MLS : SIMDVectorIndexedHSTied<1, 0b0100, "mls", null_frag>; |
| |
| defm MUL : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>; |
| defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal", |
| TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>>; |
| defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl", |
| TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>>; |
| defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull", AArch64smull>; |
| defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal", |
| int_aarch64_neon_sqadd>; |
| defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl", |
| int_aarch64_neon_sqsub>; |
| defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah", |
| int_aarch64_neon_sqrdmlah>; |
| defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh", |
| int_aarch64_neon_sqrdmlsh>; |
| defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>; |
| defm UMLAL : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal", |
| TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>>; |
| defm UMLSL : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl", |
| TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>>; |
| defm UMULL : SIMDVectorIndexedLongSD<1, 0b1010, "umull", AArch64umull>; |
| |
| // A scalar sqdmull with the second operand being a vector lane can be |
| // handled directly with the indexed instruction encoding. |
| def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn), |
| (vector_extract (v4i32 V128:$Vm), |
| VectorIndexS:$idx)), |
| (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>; |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD scalar shift instructions |
| //---------------------------------------------------------------------------- |
| defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">; |
| defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">; |
| defm SCVTF : SIMDFPScalarRShift<0, 0b11100, "scvtf">; |
| defm UCVTF : SIMDFPScalarRShift<1, 0b11100, "ucvtf">; |
| // Codegen patterns for the above. We don't put these directly on the |
| // instructions because TableGen's type inference can't handle the truth. |
| // Having the same base pattern for fp <--> int totally freaks it out. |
| def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm), |
| (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>; |
| def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm), |
| (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>; |
| def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)), |
| (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>; |
| def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)), |
| (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>; |
| def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn), |
| vecshiftR64:$imm)), |
| (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>; |
| def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn), |
| vecshiftR64:$imm)), |
| (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>; |
| def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm), |
| (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>; |
| def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)), |
| (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>; |
| def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn), |
| vecshiftR64:$imm)), |
| (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>; |
| def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)), |
| (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>; |
| def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn), |
| vecshiftR64:$imm)), |
| (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>; |
| def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm), |
| (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>; |
| |
| // Patterns for FP16 Intrinsics - requires reg copy to/from as i16s not supported. |
| |
| def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)), |
| (SCVTFh (f16 (EXTRACT_SUBREG FPR32:$Rn, hsub)), vecshiftR16:$imm)>; |
| def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)), |
| (SCVTFh (f16 (EXTRACT_SUBREG FPR32:$Rn, hsub)), vecshiftR16:$imm)>; |
| def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR16:$imm)), |
| (SCVTFh (f16 (EXTRACT_SUBREG FPR64:$Rn, hsub)), vecshiftR16:$imm)>; |
| def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp |
| (and FPR32:$Rn, (i32 65535)), |
| vecshiftR16:$imm)), |
| (UCVTFh (f16 (EXTRACT_SUBREG FPR32:$Rn, hsub)), vecshiftR16:$imm)>; |
| def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)), |
| (UCVTFh (f16 (EXTRACT_SUBREG FPR32:$Rn, hsub)), vecshiftR16:$imm)>; |
| def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)), |
| (UCVTFh (f16 (EXTRACT_SUBREG FPR64:$Rn, hsub)), vecshiftR16:$imm)>; |
| def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)), |
| (i32 (INSERT_SUBREG |
| (i32 (IMPLICIT_DEF)), |
| (FCVTZSh FPR16:$Rn, vecshiftR32:$imm), |
| hsub))>; |
| def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)), |
| (i64 (INSERT_SUBREG |
| (i64 (IMPLICIT_DEF)), |
| (FCVTZSh FPR16:$Rn, vecshiftR64:$imm), |
| hsub))>; |
| def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)), |
| (i32 (INSERT_SUBREG |
| (i32 (IMPLICIT_DEF)), |
| (FCVTZUh FPR16:$Rn, vecshiftR32:$imm), |
| hsub))>; |
| def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)), |
| (i64 (INSERT_SUBREG |
| (i64 (IMPLICIT_DEF)), |
| (FCVTZUh FPR16:$Rn, vecshiftR64:$imm), |
| hsub))>; |
| def : Pat<(i32 (int_aarch64_neon_facge (f16 FPR16:$Rn), (f16 FPR16:$Rm))), |
| (i32 (INSERT_SUBREG |
| (i32 (IMPLICIT_DEF)), |
| (FACGE16 FPR16:$Rn, FPR16:$Rm), |
| hsub))>; |
| def : Pat<(i32 (int_aarch64_neon_facgt (f16 FPR16:$Rn), (f16 FPR16:$Rm))), |
| (i32 (INSERT_SUBREG |
| (i32 (IMPLICIT_DEF)), |
| (FACGT16 FPR16:$Rn, FPR16:$Rm), |
| hsub))>; |
| |
| defm SHL : SIMDScalarLShiftD< 0, 0b01010, "shl", AArch64vshl>; |
| defm SLI : SIMDScalarLShiftDTied<1, 0b01010, "sli">; |
| defm SQRSHRN : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn", |
| int_aarch64_neon_sqrshrn>; |
| defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun", |
| int_aarch64_neon_sqrshrun>; |
| defm SQSHLU : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>; |
| defm SQSHL : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>; |
| defm SQSHRN : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn", |
| int_aarch64_neon_sqshrn>; |
| defm SQSHRUN : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun", |
| int_aarch64_neon_sqshrun>; |
| defm SRI : SIMDScalarRShiftDTied< 1, 0b01000, "sri">; |
| defm SRSHR : SIMDScalarRShiftD< 0, 0b00100, "srshr", AArch64srshri>; |
| defm SRSRA : SIMDScalarRShiftDTied< 0, 0b00110, "srsra", |
| TriOpFrag<(add node:$LHS, |
| (AArch64srshri node:$MHS, node:$RHS))>>; |
| defm SSHR : SIMDScalarRShiftD< 0, 0b00000, "sshr", AArch64vashr>; |
| defm SSRA : SIMDScalarRShiftDTied< 0, 0b00010, "ssra", |
| TriOpFrag<(add_and_or_is_add node:$LHS, |
| (AArch64vashr node:$MHS, node:$RHS))>>; |
| defm UQRSHRN : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn", |
| int_aarch64_neon_uqrshrn>; |
| defm UQSHL : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>; |
| defm UQSHRN : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn", |
| int_aarch64_neon_uqshrn>; |
| defm URSHR : SIMDScalarRShiftD< 1, 0b00100, "urshr", AArch64urshri>; |
| defm URSRA : SIMDScalarRShiftDTied< 1, 0b00110, "ursra", |
| TriOpFrag<(add node:$LHS, |
| (AArch64urshri node:$MHS, node:$RHS))>>; |
| defm USHR : SIMDScalarRShiftD< 1, 0b00000, "ushr", AArch64vlshr>; |
| defm USRA : SIMDScalarRShiftDTied< 1, 0b00010, "usra", |
| TriOpFrag<(add_and_or_is_add node:$LHS, |
| (AArch64vlshr node:$MHS, node:$RHS))>>; |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD vector shift instructions |
| //---------------------------------------------------------------------------- |
| defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>; |
| defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>; |
| defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf", |
| int_aarch64_neon_vcvtfxs2fp>; |
| defm RSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn", AArch64rshrn>; |
| defm SHL : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>; |
| |
| let Predicates = [HasNEON] in { |
| def : Pat<(v2f32 (sint_to_fp (v2i32 (AArch64vashr_exact v2i32:$Vn, i32:$shift)))), |
| (SCVTFv2i32_shift $Vn, vecshiftR32:$shift)>; |
| |
| def : Pat<(v4f32 (sint_to_fp (v4i32 (AArch64vashr_exact v4i32:$Vn, i32:$shift)))), |
| (SCVTFv4i32_shift $Vn, vecshiftR32:$shift)>; |
| |
| def : Pat<(v2f64 (sint_to_fp (v2i64 (AArch64vashr_exact v2i64:$Vn, i32:$shift)))), |
| (SCVTFv2i64_shift $Vn, vecshiftR64:$shift)>; |
| } |
| |
| let Predicates = [HasNEON, HasFullFP16] in { |
| def : Pat<(v4f16 (sint_to_fp (v4i16 (AArch64vashr_exact v4i16:$Vn, i32:$shift)))), |
| (SCVTFv4i16_shift $Vn, vecshiftR16:$shift)>; |
| |
| def : Pat<(v8f16 (sint_to_fp (v8i16 (AArch64vashr_exact v8i16:$Vn, i32:$shift)))), |
| (SCVTFv8i16_shift $Vn, vecshiftR16:$shift)>; |
| } |
| |
| // X << 1 ==> X + X |
| class SHLToADDPat<ValueType ty, RegisterClass regtype> |
| : Pat<(ty (AArch64vshl (ty regtype:$Rn), (i32 1))), |
| (!cast<Instruction>("ADD"#ty) regtype:$Rn, regtype:$Rn)>; |
| |
| def : SHLToADDPat<v16i8, FPR128>; |
| def : SHLToADDPat<v8i16, FPR128>; |
| def : SHLToADDPat<v4i32, FPR128>; |
| def : SHLToADDPat<v2i64, FPR128>; |
| def : SHLToADDPat<v8i8, FPR64>; |
| def : SHLToADDPat<v4i16, FPR64>; |
| def : SHLToADDPat<v2i32, FPR64>; |
| |
| defm SHRN : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn", |
| BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>; |
| defm SLI : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", AArch64vsli>; |
| def : Pat<(v1i64 (AArch64vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn), |
| (i32 vecshiftL64:$imm))), |
| (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>; |
| defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn", |
| int_aarch64_neon_sqrshrn>; |
| defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun", |
| int_aarch64_neon_sqrshrun>; |
| defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>; |
| defm SQSHL : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>; |
| defm SQSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn", |
| int_aarch64_neon_sqshrn>; |
| defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun", |
| int_aarch64_neon_sqshrun>; |
| defm SRI : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", AArch64vsri>; |
| def : Pat<(v1i64 (AArch64vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn), |
| (i32 vecshiftR64:$imm))), |
| (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>; |
| defm SRSHR : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>; |
| defm SRSRA : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra", |
| TriOpFrag<(add node:$LHS, |
| (AArch64srshri node:$MHS, node:$RHS))> >; |
| defm SSHLL : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll", |
| BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>; |
| |
| defm SSHR : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>; |
| defm SSRA : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra", |
| TriOpFrag<(add_and_or_is_add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>; |
| defm UCVTF : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf", |
| int_aarch64_neon_vcvtfxu2fp>; |
| defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn", |
| int_aarch64_neon_uqrshrn>; |
| defm UQSHL : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>; |
| defm UQSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn", |
| int_aarch64_neon_uqshrn>; |
| defm URSHR : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>; |
| defm URSRA : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra", |
| TriOpFrag<(add node:$LHS, |
| (AArch64urshri node:$MHS, node:$RHS))> >; |
| defm USHLL : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll", |
| BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>; |
| defm USHR : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>; |
| defm USRA : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra", |
| TriOpFrag<(add_and_or_is_add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >; |
| |
| def VImm0080: PatLeaf<(AArch64movi_shift (i32 128), (i32 0))>; |
| def VImm00008000: PatLeaf<(AArch64movi_shift (i32 128), (i32 8))>; |
| def VImm0000000080000000: PatLeaf<(AArch64NvCast (v2f64 (fneg (AArch64NvCast (v4i32 (AArch64movi_shift (i32 128), (i32 24)))))))>; |
| |
| // RADDHN patterns for when RSHRN shifts by half the size of the vector element |
| def : Pat<(v8i8 (trunc (AArch64vlshr (add (v8i16 V128:$Vn), VImm0080), (i32 8)))), |
| (RADDHNv8i16_v8i8 V128:$Vn, (v8i16 (MOVIv2d_ns (i32 0))))>; |
| def : Pat<(v4i16 (trunc (AArch64vlshr (add (v4i32 V128:$Vn), VImm00008000), (i32 16)))), |
| (RADDHNv4i32_v4i16 V128:$Vn, (v4i32 (MOVIv2d_ns (i32 0))))>; |
| let AddedComplexity = 5 in |
| def : Pat<(v2i32 (trunc (AArch64vlshr (add (v2i64 V128:$Vn), VImm0000000080000000), (i32 32)))), |
| (RADDHNv2i64_v2i32 V128:$Vn, (v2i64 (MOVIv2d_ns (i32 0))))>; |
| def : Pat<(v8i8 (int_aarch64_neon_rshrn (v8i16 V128:$Vn), (i32 8))), |
| (RADDHNv8i16_v8i8 V128:$Vn, (v8i16 (MOVIv2d_ns (i32 0))))>; |
| def : Pat<(v4i16 (int_aarch64_neon_rshrn (v4i32 V128:$Vn), (i32 16))), |
| (RADDHNv4i32_v4i16 V128:$Vn, (v4i32 (MOVIv2d_ns (i32 0))))>; |
| def : Pat<(v2i32 (int_aarch64_neon_rshrn (v2i64 V128:$Vn), (i32 32))), |
| (RADDHNv2i64_v2i32 V128:$Vn, (v2i64 (MOVIv2d_ns (i32 0))))>; |
| |
| // RADDHN2 patterns for when RSHRN shifts by half the size of the vector element |
| def : Pat<(v16i8 (concat_vectors |
| (v8i8 V64:$Vd), |
| (v8i8 (trunc (AArch64vlshr (add (v8i16 V128:$Vn), VImm0080), (i32 8)))))), |
| (RADDHNv8i16_v16i8 |
| (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, |
| (v8i16 (MOVIv2d_ns (i32 0))))>; |
| def : Pat<(v8i16 (concat_vectors |
| (v4i16 V64:$Vd), |
| (v4i16 (trunc (AArch64vlshr (add (v4i32 V128:$Vn), VImm00008000), (i32 16)))))), |
| (RADDHNv4i32_v8i16 |
| (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, |
| (v4i32 (MOVIv2d_ns (i32 0))))>; |
| let AddedComplexity = 5 in |
| def : Pat<(v4i32 (concat_vectors |
| (v2i32 V64:$Vd), |
| (v2i32 (trunc (AArch64vlshr (add (v2i64 V128:$Vn), VImm0000000080000000), (i32 32)))))), |
| (RADDHNv2i64_v4i32 |
| (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, |
| (v2i64 (MOVIv2d_ns (i32 0))))>; |
| def : Pat<(v16i8 (concat_vectors |
| (v8i8 V64:$Vd), |
| (v8i8 (int_aarch64_neon_rshrn (v8i16 V128:$Vn), (i32 8))))), |
| (RADDHNv8i16_v16i8 |
| (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, |
| (v8i16 (MOVIv2d_ns (i32 0))))>; |
| def : Pat<(v8i16 (concat_vectors |
| (v4i16 V64:$Vd), |
| (v4i16 (int_aarch64_neon_rshrn (v4i32 V128:$Vn), (i32 16))))), |
| (RADDHNv4i32_v8i16 |
| (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, |
| (v4i32 (MOVIv2d_ns (i32 0))))>; |
| def : Pat<(v4i32 (concat_vectors |
| (v2i32 V64:$Vd), |
| (v2i32 (int_aarch64_neon_rshrn (v2i64 V128:$Vn), (i32 32))))), |
| (RADDHNv2i64_v4i32 |
| (INSERT_SUBREG (IMPLICIT_DEF), V64:$Vd, dsub), V128:$Vn, |
| (v2i64 (MOVIv2d_ns (i32 0))))>; |
| |
| // SHRN patterns for when a logical right shift was used instead of arithmetic |
| // (the immediate guarantees no sign bits actually end up in the result so it |
| // doesn't matter). |
| def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))), |
| (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>; |
| def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))), |
| (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>; |
| def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))), |
| (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>; |
| |
| def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd), |
| (trunc (AArch64vlshr (v8i16 V128:$Rn), |
| vecshiftR16Narrow:$imm)))), |
| (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), |
| V128:$Rn, vecshiftR16Narrow:$imm)>; |
| def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd), |
| (trunc (AArch64vlshr (v4i32 V128:$Rn), |
| vecshiftR32Narrow:$imm)))), |
| (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), |
| V128:$Rn, vecshiftR32Narrow:$imm)>; |
| def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd), |
| (trunc (AArch64vlshr (v2i64 V128:$Rn), |
| vecshiftR64Narrow:$imm)))), |
| (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), |
| V128:$Rn, vecshiftR32Narrow:$imm)>; |
| |
| // Vector sign and zero extensions are implemented with SSHLL and USSHLL. |
| // Anyexts are implemented as zexts. |
| def : Pat<(v8i16 (sext (v8i8 V64:$Rn))), (SSHLLv8i8_shift V64:$Rn, (i32 0))>; |
| def : Pat<(v8i16 (zext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>; |
| def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))), (USHLLv8i8_shift V64:$Rn, (i32 0))>; |
| def : Pat<(v4i32 (sext (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>; |
| def : Pat<(v4i32 (zext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>; |
| def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>; |
| def : Pat<(v2i64 (sext (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>; |
| def : Pat<(v2i64 (zext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>; |
| def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>; |
| // Vector bf16 -> fp32 is implemented morally as a zext + shift. |
| def : Pat<(v4f32 (any_fpextend (v4bf16 V64:$Rn))), (SHLLv4i16 V64:$Rn)>; |
| // Also match an extend from the upper half of a 128 bit source register. |
| def : Pat<(v8i16 (anyext (v8i8 (extract_high_v16i8 (v16i8 V128:$Rn)) ))), |
| (USHLLv16i8_shift V128:$Rn, (i32 0))>; |
| def : Pat<(v8i16 (zext (v8i8 (extract_high_v16i8 (v16i8 V128:$Rn)) ))), |
| (USHLLv16i8_shift V128:$Rn, (i32 0))>; |
| def : Pat<(v8i16 (sext (v8i8 (extract_high_v16i8 (v16i8 V128:$Rn)) ))), |
| (SSHLLv16i8_shift V128:$Rn, (i32 0))>; |
| def : Pat<(v4i32 (anyext (v4i16 (extract_high_v8i16 (v8i16 V128:$Rn)) ))), |
| (USHLLv8i16_shift V128:$Rn, (i32 0))>; |
| def : Pat<(v4i32 (zext (v4i16 (extract_high_v8i16 (v8i16 V128:$Rn)) ))), |
| (USHLLv8i16_shift V128:$Rn, (i32 0))>; |
| def : Pat<(v4i32 (sext (v4i16 (extract_high_v8i16 (v8i16 V128:$Rn)) ))), |
| (SSHLLv8i16_shift V128:$Rn, (i32 0))>; |
| def : Pat<(v2i64 (anyext (v2i32 (extract_high_v4i32 (v4i32 V128:$Rn)) ))), |
| (USHLLv4i32_shift V128:$Rn, (i32 0))>; |
| def : Pat<(v2i64 (zext (v2i32 (extract_high_v4i32 (v4i32 V128:$Rn)) ))), |
| (USHLLv4i32_shift V128:$Rn, (i32 0))>; |
| def : Pat<(v2i64 (sext (v2i32 (extract_high_v4i32 (v4i32 V128:$Rn)) ))), |
| (SSHLLv4i32_shift V128:$Rn, (i32 0))>; |
| |
| let Predicates = [HasNEON] in { |
| // Vector shift sxtl aliases |
| def : InstAlias<"sxtl.8h $dst, $src1", |
| (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>; |
| def : InstAlias<"sxtl $dst.8h, $src1.8b", |
| (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>; |
| def : InstAlias<"sxtl.4s $dst, $src1", |
| (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>; |
| def : InstAlias<"sxtl $dst.4s, $src1.4h", |
| (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>; |
| def : InstAlias<"sxtl.2d $dst, $src1", |
| (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>; |
| def : InstAlias<"sxtl $dst.2d, $src1.2s", |
| (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>; |
| |
| // Vector shift sxtl2 aliases |
| def : InstAlias<"sxtl2.8h $dst, $src1", |
| (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>; |
| def : InstAlias<"sxtl2 $dst.8h, $src1.16b", |
| (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>; |
| def : InstAlias<"sxtl2.4s $dst, $src1", |
| (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>; |
| def : InstAlias<"sxtl2 $dst.4s, $src1.8h", |
| (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>; |
| def : InstAlias<"sxtl2.2d $dst, $src1", |
| (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>; |
| def : InstAlias<"sxtl2 $dst.2d, $src1.4s", |
| (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>; |
| |
| // Vector shift uxtl aliases |
| def : InstAlias<"uxtl.8h $dst, $src1", |
| (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>; |
| def : InstAlias<"uxtl $dst.8h, $src1.8b", |
| (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>; |
| def : InstAlias<"uxtl.4s $dst, $src1", |
| (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>; |
| def : InstAlias<"uxtl $dst.4s, $src1.4h", |
| (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>; |
| def : InstAlias<"uxtl.2d $dst, $src1", |
| (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>; |
| def : InstAlias<"uxtl $dst.2d, $src1.2s", |
| (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>; |
| |
| // Vector shift uxtl2 aliases |
| def : InstAlias<"uxtl2.8h $dst, $src1", |
| (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>; |
| def : InstAlias<"uxtl2 $dst.8h, $src1.16b", |
| (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>; |
| def : InstAlias<"uxtl2.4s $dst, $src1", |
| (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>; |
| def : InstAlias<"uxtl2 $dst.4s, $src1.8h", |
| (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>; |
| def : InstAlias<"uxtl2.2d $dst, $src1", |
| (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>; |
| def : InstAlias<"uxtl2 $dst.2d, $src1.4s", |
| (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>; |
| } |
| |
| def abs_f16 : |
| OutPatFrag<(ops node:$Rn), |
| (EXTRACT_SUBREG (f32 (COPY_TO_REGCLASS |
| (i32 (ANDWri |
| (i32 (COPY_TO_REGCLASS (INSERT_SUBREG (f32 (IMPLICIT_DEF)), |
| node:$Rn, hsub), GPR32)), |
| (i32 (logical_imm32_XFORM(i32 0x7fff))))), |
| FPR32)), hsub)>; |
| |
| def : Pat<(f16 (fabs (f16 FPR16:$Rn))), (f16 (abs_f16 (f16 FPR16:$Rn)))>; |
| def : Pat<(bf16 (fabs (bf16 FPR16:$Rn))), (bf16 (abs_f16 (bf16 FPR16:$Rn)))>; |
| |
| def neg_f16 : |
| OutPatFrag<(ops node:$Rn), |
| (EXTRACT_SUBREG (f32 (COPY_TO_REGCLASS |
| (i32 (EORWri |
| (i32 (COPY_TO_REGCLASS (INSERT_SUBREG (f32 (IMPLICIT_DEF)), |
| node:$Rn, hsub), GPR32)), |
| (i32 (logical_imm32_XFORM(i32 0x8000))))), |
| FPR32)), hsub)>; |
| |
| def : Pat<(f16 (fneg (f16 FPR16:$Rn))), (f16 (neg_f16 (f16 FPR16:$Rn)))>; |
| def : Pat<(bf16 (fneg (bf16 FPR16:$Rn))), (bf16 (neg_f16 (bf16 FPR16:$Rn)))>; |
| |
| let Predicates = [HasNEON] in { |
| def : Pat<(v4f16 (fabs (v4f16 V64:$Rn))), (v4f16 (BICv4i16 (v4f16 V64:$Rn), (i32 128), (i32 8)))>; |
| def : Pat<(v4bf16 (fabs (v4bf16 V64:$Rn))), (v4bf16 (BICv4i16 (v4bf16 V64:$Rn), (i32 128), (i32 8)))>; |
| def : Pat<(v8f16 (fabs (v8f16 V128:$Rn))), (v8f16 (BICv8i16 (v8f16 V128:$Rn), (i32 128), (i32 8)))>; |
| def : Pat<(v8bf16 (fabs (v8bf16 V128:$Rn))), (v8bf16 (BICv8i16 (v8bf16 V128:$Rn), (i32 128), (i32 8)))>; |
| |
| def : Pat<(v4f16 (fneg (v4f16 V64:$Rn))), (v4f16 (EORv8i8 (v4f16 V64:$Rn), (MOVIv4i16 (i32 128), (i32 8))))>; |
| def : Pat<(v4bf16 (fneg (v4bf16 V64:$Rn))), (v4bf16 (EORv8i8 (v4bf16 V64:$Rn), (v4i16 (MOVIv4i16 (i32 0x80), (i32 8)))))>; |
| def : Pat<(v8f16 (fneg (v8f16 V128:$Rn))), (v8f16 (EORv16i8 (v8f16 V128:$Rn), (MOVIv8i16 (i32 128), (i32 8))))>; |
| def : Pat<(v8bf16 (fneg (v8bf16 V128:$Rn))), (v8bf16 (EORv16i8 (v8bf16 V128:$Rn), (v8i16 (MOVIv8i16 (i32 0x80), (i32 8)))))>; |
| } |
| |
| // If an integer is about to be converted to a floating point value, |
| // just load it on the floating point unit. |
| // These patterns are more complex because floating point loads do not |
| // support sign extension. |
| // The sign extension has to be explicitly added and is only supported for |
| // one step: byte-to-half, half-to-word, word-to-doubleword. |
| // SCVTF GPR -> FPR is 9 cycles. |
| // SCVTF FPR -> FPR is 4 cyclces. |
| // (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles. |
| // Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR |
| // and still being faster. |
| // However, this is not good for code size. |
| // 8-bits -> float. 2 sizes step-up. |
| class SExtLoadi8CVTf32Pat<dag addrmode, dag INST> |
| : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))), |
| (SCVTFv1i32 (f32 (EXTRACT_SUBREG |
| (SSHLLv4i16_shift |
| (f64 |
| (EXTRACT_SUBREG |
| (SSHLLv8i8_shift |
| (INSERT_SUBREG (f64 (IMPLICIT_DEF)), |
| INST, |
| bsub), |
| 0), |
| dsub)), |
| 0), |
| ssub)))>, |
| Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32, HasNEON]>; |
| |
| def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext), |
| (LDRBroW GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>; |
| def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext), |
| (LDRBroX GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>; |
| def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), |
| (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>; |
| def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset), |
| (LDURBi GPR64sp:$Rn, simm9:$offset)>; |
| |
| // 16-bits -> float. 1 size step-up. |
| class SExtLoadi16CVTf32Pat<dag addrmode, dag INST> |
| : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))), |
| (SCVTFv1i32 (f32 (EXTRACT_SUBREG |
| (SSHLLv4i16_shift |
| (INSERT_SUBREG (f64 (IMPLICIT_DEF)), |
| INST, |
| hsub), |
| 0), |
| ssub)))>, |
| Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32, HasNEON]>; |
| |
| def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext), |
| (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>; |
| def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext), |
| (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>; |
| def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), |
| (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>; |
| def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset), |
| (LDURHi GPR64sp:$Rn, simm9:$offset)>; |
| |
| // 32-bits to 32-bits are handled in target specific dag combine: |
| // performIntToFpCombine. |
| // 64-bits integer to 32-bits floating point, not possible with |
| // SCVTF on floating point registers (both source and destination |
| // must have the same size). |
| |
| // Here are the patterns for 8, 16, 32, and 64-bits to double. |
| // 8-bits -> double. 3 size step-up: give up. |
| // 16-bits -> double. 2 size step. |
| class SExtLoadi16CVTf64Pat<dag addrmode, dag INST> |
| : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))), |
| (SCVTFv1i64 (f64 (EXTRACT_SUBREG |
| (SSHLLv2i32_shift |
| (f64 |
| (EXTRACT_SUBREG |
| (SSHLLv4i16_shift |
| (INSERT_SUBREG (f64 (IMPLICIT_DEF)), |
| INST, |
| hsub), |
| 0), |
| dsub)), |
| 0), |
| dsub)))>, |
| Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32, HasNEON]>; |
| |
| def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext), |
| (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>; |
| def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext), |
| (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>; |
| def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), |
| (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>; |
| def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset), |
| (LDURHi GPR64sp:$Rn, simm9:$offset)>; |
| // 32-bits -> double. 1 size step-up. |
| class SExtLoadi32CVTf64Pat<dag addrmode, dag INST> |
| : Pat <(f64 (sint_to_fp (i32 (load addrmode)))), |
| (SCVTFv1i64 (f64 (EXTRACT_SUBREG |
| (SSHLLv2i32_shift |
| (INSERT_SUBREG (f64 (IMPLICIT_DEF)), |
| INST, |
| ssub), |
| 0), |
| dsub)))>, |
| Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32, HasNEON]>; |
| |
| def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext), |
| (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>; |
| def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext), |
| (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>; |
| def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), |
| (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>; |
| def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset), |
| (LDURSi GPR64sp:$Rn, simm9:$offset)>; |
| |
| // 64-bits -> double are handled in target specific dag combine: |
| // performIntToFpCombine. |
| |
| |
| //---------------------------------------------------------------------------- |
| // AdvSIMD Load-Store Structure |
| //---------------------------------------------------------------------------- |
| defm LD1 : SIMDLd1Multiple<"ld1">; |
| defm LD2 : SIMDLd2Multiple<"ld2">; |
| defm LD3 : SIMDLd3Multiple<"ld3">; |
| defm LD4 : SIMDLd4Multiple<"ld4">; |
| |
| defm ST1 : SIMDSt1Multiple<"st1">; |
| defm ST2 : SIMDSt2Multiple<"st2">; |
| defm ST3 : SIMDSt3Multiple<"st3">; |
| defm ST4 : SIMDSt4Multiple<"st4">; |
| |
| class Ld1Pat<ValueType ty, Instruction INST> |
| : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>; |
| |
| def : Ld1Pat<v16i8, LD1Onev16b>; |
| def : Ld1Pat<v8i16, LD1Onev8h>; |
| def : Ld1Pat<v4i32, LD1Onev4s>; |
| def : Ld1Pat<v2i64, LD1Onev2d>; |
| def : Ld1Pat<v8i8, LD1Onev8b>; |
| def : Ld1Pat<v4i16, LD1Onev4h>; |
| def : Ld1Pat<v2i32, LD1Onev2s>; |
| def : Ld1Pat<v1i64, LD1Onev1d>; |
| |
| class St1Pat<ValueType ty, Instruction INST> |
| : Pat<(store ty:$Vt, GPR64sp:$Rn), |
| (INST ty:$Vt, GPR64sp:$Rn)>; |
| |
| def : St1Pat<v16i8, ST1Onev16b>; |
| def : St1Pat<v8i16, ST1Onev8h>; |
| def : St1Pat<v4i32, ST1Onev4s>; |
| def : St1Pat<v2i64, ST1Onev2d>; |
| def : St1Pat<v8i8, ST1Onev8b>; |
| def : St1Pat<v4i16, ST1Onev4h>; |
| def : St1Pat<v2i32, ST1Onev2s>; |
| def : St1Pat<v1i64, ST1Onev1d>; |
| |
| //--- |
| // Single-element |
| //--- |
| |
| defm LD1R : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>; |
| defm LD2R : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>; |
| defm LD3R : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>; |
| defm LD4R : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>; |
| let mayLoad = 1, hasSideEffects = 0 in { |
| defm LD1 : SIMDLdSingleBTied<0, 0b000, "ld1", VecListOneb, GPR64pi1>; |
| defm LD1 : SIMDLdSingleHTied<0, 0b010, 0, "ld1", VecListOneh, GPR64pi2>; |
| defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes, GPR64pi4>; |
| defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned, GPR64pi8>; |
| defm LD2 : SIMDLdSingleBTied<1, 0b000, "ld2", VecListTwob, GPR64pi2>; |
| defm LD2 : SIMDLdSingleHTied<1, 0b010, 0, "ld2", VecListTwoh, GPR64pi4>; |
| defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos, GPR64pi8>; |
| defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod, GPR64pi16>; |
| defm LD3 : SIMDLdSingleBTied<0, 0b001, "ld3", VecListThreeb, GPR64pi3>; |
| defm LD3 : SIMDLdSingleHTied<0, 0b011, 0, "ld3", VecListThreeh, GPR64pi6>; |
| defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>; |
| defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>; |
| defm LD4 : SIMDLdSingleBTied<1, 0b001, "ld4", VecListFourb, GPR64pi4>; |
| defm LD4 : SIMDLdSingleHTied<1, 0b011, 0, "ld4", VecListFourh, GPR64pi8>; |
| defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours, GPR64pi16>; |
| defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd, GPR64pi32>; |
| } |
| |
| def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))), |
| (LD1Rv8b GPR64sp:$Rn)>; |
| def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))), |
| (LD1Rv16b GPR64sp:$Rn)>; |
| def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))), |
| (LD1Rv4h GPR64sp:$Rn)>; |
| def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))), |
| (LD1Rv8h GPR64sp:$Rn)>; |
| def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))), |
| (LD1Rv2s GPR64sp:$Rn)>; |
| def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))), |
| (LD1Rv4s GPR64sp:$Rn)>; |
| def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))), |
| (LD1Rv2d GPR64sp:$Rn)>; |
| def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))), |
| (LD1Rv1d GPR64sp:$Rn)>; |
| |
| def : Pat<(v8i8 (AArch64duplane8 (v16i8 (insert_subvector undef, (v8i8 (load GPR64sp:$Rn)), (i64 0))), (i64 0))), |
| (LD1Rv8b GPR64sp:$Rn)>; |
| def : Pat<(v16i8 (AArch64duplane8 (v16i8 (load GPR64sp:$Rn)), (i64 0))), |
| (LD1Rv16b GPR64sp:$Rn)>; |
| def : Pat<(v4i16 (AArch64duplane16 (v8i16 (insert_subvector undef, (v4i16 (load GPR64sp:$Rn)), (i64 0))), (i64 0))), |
| (LD1Rv4h GPR64sp:$Rn)>; |
| def : Pat<(v8i16 (AArch64duplane16 (v8i16 (load GPR64sp:$Rn)), (i64 0))), |
| (LD1Rv8h GPR64sp:$Rn)>; |
| def : Pat<(v2i32 (AArch64duplane32 (v4i32 (insert_subvector undef, (v2i32 (load GPR64sp:$Rn)), (i64 0))), (i64 0))), |
| (LD1Rv2s GPR64sp:$Rn)>; |
| def : Pat<(v4i32 (AArch64duplane32 (v4i32 (load GPR64sp:$Rn)), (i64 0))), |
| (LD1Rv4s GPR64sp:$Rn)>; |
| def : Pat<(v2i64 (AArch64duplane64 (v2i64 (load GPR64sp:$Rn)), (i64 0))), |
| (LD1Rv2d GPR64sp:$Rn)>; |
| |
| // Grab the floating point version too |
| def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))), |
| (LD1Rv2s GPR64sp:$Rn)>; |
| def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))), |
| (LD1Rv4s GPR64sp:$Rn)>; |
| def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))), |
| (LD1Rv2d GPR64sp:$Rn)>; |
| def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))), |
| (LD1Rv1d GPR64sp:$Rn)>; |
| def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))), |
| (LD1Rv4h GPR64sp:$Rn)>; |
| def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))), |
| (LD1Rv8h GPR64sp:$Rn)>; |
| def : Pat<(v4bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))), |
| (LD1Rv4h GPR64sp:$Rn)>; |
| def : Pat<(v8bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))), |
| (LD1Rv8h GPR64sp:$Rn)>; |
| |
| class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex, |
| ValueType VTy, ValueType STy, Instruction LD1> |
| : Pat<(vector_insert (VTy VecListOne128:$Rd), |
| (STy (scalar_load GPR64sp:$Rn)), (i64 VecIndex:$idx)), |
| (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>; |
| |
| def : Ld1Lane128Pat<extloadi8, VectorIndexB, v16i8, i32, LD1i8>; |
| def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>; |
| def : Ld1Lane128Pat<load, VectorIndexS, v4i32, i32, LD1i32>; |
| def : Ld1Lane128Pat<load, VectorIndexS, v4f32, f32, LD1i32>; |
| def : Ld1Lane128Pat<load, VectorIndexD, v2i64, i64, LD1i64>; |
| def : Ld1Lane128Pat<load, VectorIndexD, v2f64, f64, LD1i64>; |
| def : Ld1Lane128Pat<load, VectorIndexH, v8f16, f16, LD1i16>; |
| def : Ld1Lane128Pat<load, VectorIndexH, v8bf16, bf16, LD1i16>; |
| |
| // Generate LD1 for extload if memory type does not match the |
| // destination type, for example: |
| // |
| // (v4i32 (insert_vector_elt (load anyext from i8) idx)) |
| // |
| // In this case, the index must be adjusted to match LD1 type. |
| // |
| class Ld1Lane128IdxOpPat<SDPatternOperator scalar_load, Operand |
| VecIndex, ValueType VTy, ValueType STy, |
| Instruction LD1, SDNodeXForm IdxOp> |
| : Pat<(vector_insert (VTy VecListOne128:$Rd), |
| (STy (scalar_load GPR64sp:$Rn)), (i64 VecIndex:$idx)), |
| (LD1 VecListOne128:$Rd, (IdxOp VecIndex:$idx), GPR64sp:$Rn)>; |
| |
| class Ld1Lane64IdxOpPat<SDPatternOperator scalar_load, Operand VecIndex, |
| ValueType VTy, ValueType STy, Instruction LD1, |
| SDNodeXForm IdxOp> |
| : Pat<(vector_insert (VTy VecListOne64:$Rd), |
| (STy (scalar_load GPR64sp:$Rn)), (i64 VecIndex:$idx)), |
| (EXTRACT_SUBREG |
| (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub), |
| (IdxOp VecIndex:$idx), GPR64sp:$Rn), |
| dsub)>; |
| |
| def VectorIndexStoH : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getZExtValue() * 2, SDLoc(N), MVT::i64); |
| }]>; |
| def VectorIndexStoB : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getZExtValue() * 4, SDLoc(N), MVT::i64); |
| }]>; |
| def VectorIndexHtoB : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(N->getZExtValue() * 2, SDLoc(N), MVT::i64); |
| }]>; |
| |
| def : Ld1Lane128IdxOpPat<extloadi16, VectorIndexS, v4i32, i32, LD1i16, VectorIndexStoH>; |
| def : Ld1Lane128IdxOpPat<extloadi8, VectorIndexS, v4i32, i32, LD1i8, VectorIndexStoB>; |
| def : Ld1Lane128IdxOpPat<extloadi8, VectorIndexH, v8i16, i32, LD1i8, VectorIndexHtoB>; |
| |
| def : Ld1Lane64IdxOpPat<extloadi16, VectorIndexS, v2i32, i32, LD1i16, VectorIndexStoH>; |
| def : Ld1Lane64IdxOpPat<extloadi8, VectorIndexS, v2i32, i32, LD1i8, VectorIndexStoB>; |
| def : Ld1Lane64IdxOpPat<extloadi8, VectorIndexH, v4i16, i32, LD1i8, VectorIndexHtoB>; |
| |
| // Same as above, but the first element is populated using |
| // scalar_to_vector + insert_subvector instead of insert_vector_elt. |
| let Predicates = [HasNEON] in { |
| class Ld1Lane128FirstElm<ValueType ResultTy, ValueType VecTy, |
| SDPatternOperator ExtLoad, Instruction LD1> |
| : Pat<(ResultTy (scalar_to_vector (i32 (ExtLoad GPR64sp:$Rn)))), |
| (ResultTy (EXTRACT_SUBREG |
| (LD1 (VecTy (IMPLICIT_DEF)), 0, GPR64sp:$Rn), dsub))>; |
| |
| def : Ld1Lane128FirstElm<v2i32, v8i16, extloadi16, LD1i16>; |
| def : Ld1Lane128FirstElm<v2i32, v16i8, extloadi8, LD1i8>; |
| def : Ld1Lane128FirstElm<v4i16, v16i8, extloadi8, LD1i8>; |
| } |
| class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex, |
| ValueType VTy, ValueType STy, Instruction LD1> |
| : Pat<(vector_insert (VTy VecListOne64:$Rd), |
| (STy (scalar_load GPR64sp:$Rn)), (i64 VecIndex:$idx)), |
| (EXTRACT_SUBREG |
| (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub), |
| VecIndex:$idx, GPR64sp:$Rn), |
| dsub)>; |
| |
| def : Ld1Lane64Pat<extloadi8, VectorIndexB, v8i8, i32, LD1i8>; |
| def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>; |
| def : Ld1Lane64Pat<load, VectorIndexS, v2i32, i32, LD1i32>; |
| def : Ld1Lane64Pat<load, VectorIndexS, v2f32, f32, LD1i32>; |
| def : Ld1Lane64Pat<load, VectorIndexH, v4f16, f16, LD1i16>; |
| def : Ld1Lane64Pat<load, VectorIndexH, v4bf16, bf16, LD1i16>; |
| |
| |
| defm LD1 : SIMDLdSt1SingleAliases<"ld1">; |
| defm LD2 : SIMDLdSt2SingleAliases<"ld2">; |
| defm LD3 : SIMDLdSt3SingleAliases<"ld3">; |
| defm LD4 : SIMDLdSt4SingleAliases<"ld4">; |
| |
| // Stores |
| defm ST1 : SIMDStSingleB<0, 0b000, "st1", VecListOneb, GPR64pi1>; |
| defm ST1 : SIMDStSingleH<0, 0b010, 0, "st1", VecListOneh, GPR64pi2>; |
| defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>; |
| defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>; |
| |
| let AddedComplexity = 19 in |
| class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex, |
| ValueType VTy, ValueType STy, Instruction ST1> |
| : Pat<(scalar_store |
| (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), |
| GPR64sp:$Rn), |
| (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>; |
| |
| def : St1Lane128Pat<truncstorei8, VectorIndexB, v16i8, i32, ST1i8>; |
| def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>; |
| def : St1Lane128Pat<store, VectorIndexS, v4i32, i32, ST1i32>; |
| def : St1Lane128Pat<store, VectorIndexS, v4f32, f32, ST1i32>; |
| def : St1Lane128Pat<store, VectorIndexD, v2i64, i64, ST1i64>; |
| def : St1Lane128Pat<store, VectorIndexD, v2f64, f64, ST1i64>; |
| def : St1Lane128Pat<store, VectorIndexH, v8f16, f16, ST1i16>; |
| def : St1Lane128Pat<store, VectorIndexH, v8bf16, bf16, ST1i16>; |
| |
| let AddedComplexity = 19 in |
| class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex, |
| ValueType VTy, ValueType STy, Instruction ST1> |
| : Pat<(scalar_store |
| (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), |
| GPR64sp:$Rn), |
| (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), |
| VecIndex:$idx, GPR64sp:$Rn)>; |
| |
| def : St1Lane64Pat<truncstorei8, VectorIndexB, v8i8, i32, ST1i8>; |
| def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>; |
| def : St1Lane64Pat<store, VectorIndexS, v2i32, i32, ST1i32>; |
| def : St1Lane64Pat<store, VectorIndexS, v2f32, f32, ST1i32>; |
| def : St1Lane64Pat<store, VectorIndexH, v4f16, f16, ST1i16>; |
| def : St1Lane64Pat<store, VectorIndexH, v4bf16, bf16, ST1i16>; |
| |
| multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex, |
| ValueType VTy, ValueType STy, Instruction ST1, |
| int offset> { |
| def : Pat<(scalar_store |
| (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), |
| GPR64sp:$Rn, offset), |
| (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), |
| VecIndex:$idx, GPR64sp:$Rn, XZR)>; |
| |
| def : Pat<(scalar_store |
| (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)), |
| GPR64sp:$Rn, GPR64:$Rm), |
| (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub), |
| VecIndex:$idx, GPR64sp:$Rn, $Rm)>; |
| } |
| |
| defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>; |
| defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST, |
| 2>; |
| defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>; |
| defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>; |
| defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>; |
| defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>; |
| defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>; |
| defm : St1LanePost64Pat<post_store, VectorIndexH, v4bf16, bf16, ST1i16_POST, 2>; |
| |
| multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex, |
| ValueType VTy, ValueType STy, Instruction ST1, |
| int offset> { |
| def : Pat<(scalar_store |
| (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), |
| GPR64sp:$Rn, offset), |
| (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>; |
| |
| def : Pat<(scalar_store |
| (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)), |
| GPR64sp:$Rn, GPR64:$Rm), |
| (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>; |
| } |
| |
| defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST, |
| 1>; |
| defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST, |
| 2>; |
| defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>; |
| defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>; |
| defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>; |
| defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>; |
| defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>; |
| defm : St1LanePost128Pat<post_store, VectorIndexH, v8bf16, bf16, ST1i16_POST, 2>; |
| |
| let mayStore = 1, hasSideEffects = 0 in { |
| defm ST2 : SIMDStSingleB<1, 0b000, "st2", VecListTwob, GPR64pi2>; |
| defm ST2 : SIMDStSingleH<1, 0b010, 0, "st2", VecListTwoh, GPR64pi4>; |
| defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos, GPR64pi8>; |
| defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod, GPR64pi16>; |
| defm ST3 : SIMDStSingleB<0, 0b001, "st3", VecListThreeb, GPR64pi3>; |
| defm ST3 : SIMDStSingleH<0, 0b011, 0, "st3", VecListThreeh, GPR64pi6>; |
| defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>; |
| defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>; |
| defm ST4 : SIMDStSingleB<1, 0b001, "st4", VecListFourb, GPR64pi4>; |
| defm ST4 : SIMDStSingleH<1, 0b011, 0, "st4", VecListFourh, GPR64pi8>; |
| defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours, GPR64pi16>; |
| defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd, GPR64pi32>; |
| } |
| |
| defm ST1 : SIMDLdSt1SingleAliases<"st1">; |
| defm ST2 : SIMDLdSt2SingleAliases<"st2">; |
| defm ST3 : SIMDLdSt3SingleAliases<"st3">; |
| defm ST4 : SIMDLdSt4SingleAliases<"st4">; |
| |
| //---------------------------------------------------------------------------- |
| // Crypto extensions |
| //---------------------------------------------------------------------------- |
| |
| let Predicates = [HasAES] in { |
| let isCommutable = 1 in { |
| def AESErr : AESTiedInst<0b0100, "aese", int_aarch64_crypto_aese>; |
| def AESDrr : AESTiedInst<0b0101, "aesd", int_aarch64_crypto_aesd>; |
| } |
| def AESMCrr : AESInst< 0b0110, "aesmc", int_aarch64_crypto_aesmc>; |
| def AESIMCrr : AESInst< 0b0111, "aesimc", int_aarch64_crypto_aesimc>; |
| } |
| |
| // Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required |
| // for AES fusion on some CPUs. |
| let hasSideEffects = 0, mayStore = 0, mayLoad = 0, Predicates = [HasAES] in { |
| def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">, |
| Sched<[WriteVq]>; |
| def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">, |
| Sched<[WriteVq]>; |
| } |
| |
| // Only use constrained versions of AES(I)MC instructions if they are paired with |
| // AESE/AESD. |
| def : Pat<(v16i8 (int_aarch64_crypto_aesmc |
| (v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1), |
| (v16i8 V128:$src2))))), |
| (v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1), |
| (v16i8 V128:$src2)))))>, |
| Requires<[HasFuseAES]>; |
| |
| def : Pat<(v16i8 (int_aarch64_crypto_aesimc |
| (v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1), |
| (v16i8 V128:$src2))))), |
| (v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1), |
| (v16i8 V128:$src2)))))>, |
| Requires<[HasFuseAES]>; |
| |
| let Predicates = [HasSHA2] in { |
| def SHA1Crrr : SHATiedInstQSV<0b000, "sha1c", int_aarch64_crypto_sha1c>; |
| def SHA1Prrr : SHATiedInstQSV<0b001, "sha1p", int_aarch64_crypto_sha1p>; |
| def SHA1Mrrr : SHATiedInstQSV<0b010, "sha1m", int_aarch64_crypto_sha1m>; |
| def SHA1SU0rrr : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>; |
| def SHA256Hrrr : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>; |
| def SHA256H2rrr : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>; |
| def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>; |
| |
| def SHA1Hrr : SHAInstSS< 0b0000, "sha1h", int_aarch64_crypto_sha1h>; |
| def SHA1SU1rr : SHATiedInstVV<0b0001, "sha1su1", int_aarch64_crypto_sha1su1>; |
| def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>; |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Compiler-pseudos |
| //---------------------------------------------------------------------------- |
| // FIXME: Like for X86, these should go in their own separate .td file. |
| |
| // For an anyext, we don't care what the high bits are, so we can perform an |
| // INSERT_SUBREF into an IMPLICIT_DEF. |
| def : Pat<(i64 (anyext GPR32:$src)), |
| (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>; |
| |
| // When we need to explicitly zero-extend, we use a 32-bit MOV instruction and |
| // then assert the extension has happened. |
| def : Pat<(i64 (zext GPR32:$src)), |
| (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>; |
| |
| // To sign extend, we use a signed bitfield move instruction (SBFM) on the |
| // containing super-reg. |
| def : Pat<(i64 (sext GPR32:$src)), |
| (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>; |
| def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>; |
| def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>; |
| def : Pat<(i64 (sext_inreg GPR64:$src, i8)), (SBFMXri GPR64:$src, 0, 7)>; |
| def : Pat<(i64 (sext_inreg GPR64:$src, i1)), (SBFMXri GPR64:$src, 0, 0)>; |
| def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>; |
| def : Pat<(i32 (sext_inreg GPR32:$src, i8)), (SBFMWri GPR32:$src, 0, 7)>; |
| def : Pat<(i32 (sext_inreg GPR32:$src, i1)), (SBFMWri GPR32:$src, 0, 0)>; |
| |
| def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)), |
| (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), |
| (i64 (i32shift_sext_i8 imm0_31:$imm)))>; |
| def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)), |
| (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), |
| (i64 (i64shift_sext_i8 imm0_63:$imm)))>; |
| |
| def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)), |
| (SBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)), |
| (i64 (i32shift_sext_i16 imm0_31:$imm)))>; |
| def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)), |
| (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)), |
| (i64 (i64shift_sext_i16 imm0_63:$imm)))>; |
| |
| def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)), |
| (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32), |
| (i64 (i64shift_a imm0_63:$imm)), |
| (i64 (i64shift_sext_i32 imm0_63:$imm)))>; |
| |
| def : Pat<(shl (i64 (zext GPR32:$Rn)), (i64 imm0_63:$imm)), |
| (UBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32), |
| (i64 (i64shift_a imm0_63:$imm)), |
| (i64 (i64shift_sext_i32 imm0_63:$imm)))>; |
| |
| // sra patterns have an AddedComplexity of 10, so make sure we have a higher |
| // AddedComplexity for the following patterns since we want to match sext + sra |
| // patterns before we attempt to match a single sra node. |
| let AddedComplexity = 20 in { |
| // We support all sext + sra combinations which preserve at least one bit of the |
| // original value which is to be sign extended. E.g. we support shifts up to |
| // bitwidth-1 bits. |
| def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)), |
| (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>; |
| def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)), |
| (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>; |
| |
| def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)), |
| (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>; |
| def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)), |
| (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>; |
| |
| def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)), |
| (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32), |
| (i64 imm0_31:$imm), 31)>; |
| } // AddedComplexity = 20 |
| |
| // To truncate, we can simply extract from a subregister. |
| def : Pat<(i32 (trunc GPR64sp:$src)), |
| (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>; |
| |
| // __builtin_trap() uses the BRK instruction on AArch64. |
| def : Pat<(trap), (BRK 1)>; |
| def : Pat<(debugtrap), (BRK 0xF000)>; |
| |
| def ubsan_trap_xform : SDNodeXForm<timm, [{ |
| return CurDAG->getTargetConstant(N->getZExtValue() | ('U' << 8), SDLoc(N), MVT::i32); |
| }]>; |
| |
| def gi_ubsan_trap_xform : GICustomOperandRenderer<"renderUbsanTrap">, |
| GISDNodeXFormEquiv<ubsan_trap_xform>; |
| |
| def ubsan_trap_imm : TImmLeaf<i32, [{ |
| return isUInt<8>(Imm); |
| }], ubsan_trap_xform>; |
| |
| def : Pat<(ubsantrap ubsan_trap_imm:$kind), (BRK ubsan_trap_imm:$kind)>; |
| |
| // Multiply high patterns which multiply the lower subvector using smull/umull |
| // and the upper subvector with smull2/umull2. Then shuffle the high the high |
| // part of both results together. |
| def : Pat<(v16i8 (mulhs V128:$Rn, V128:$Rm)), |
| (UZP2v16i8 |
| (SMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub), |
| (EXTRACT_SUBREG V128:$Rm, dsub)), |
| (SMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>; |
| def : Pat<(v8i16 (mulhs V128:$Rn, V128:$Rm)), |
| (UZP2v8i16 |
| (SMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub), |
| (EXTRACT_SUBREG V128:$Rm, dsub)), |
| (SMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>; |
| def : Pat<(v4i32 (mulhs V128:$Rn, V128:$Rm)), |
| (UZP2v4i32 |
| (SMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub), |
| (EXTRACT_SUBREG V128:$Rm, dsub)), |
| (SMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>; |
| |
| def : Pat<(v16i8 (mulhu V128:$Rn, V128:$Rm)), |
| (UZP2v16i8 |
| (UMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub), |
| (EXTRACT_SUBREG V128:$Rm, dsub)), |
| (UMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>; |
| def : Pat<(v8i16 (mulhu V128:$Rn, V128:$Rm)), |
| (UZP2v8i16 |
| (UMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub), |
| (EXTRACT_SUBREG V128:$Rm, dsub)), |
| (UMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>; |
| def : Pat<(v4i32 (mulhu V128:$Rn, V128:$Rm)), |
| (UZP2v4i32 |
| (UMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub), |
| (EXTRACT_SUBREG V128:$Rm, dsub)), |
| (UMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>; |
| |
| // Conversions within AdvSIMD types in the same register size are free. |
| // But because we need a consistent lane ordering, in big endian many |
| // conversions require one or more REV instructions. |
| // |
| // Consider a simple memory load followed by a bitconvert then a store. |
| // v0 = load v2i32 |
| // v1 = BITCAST v2i32 v0 to v4i16 |
| // store v4i16 v2 |
| // |
| // In big endian mode every memory access has an implicit byte swap. LDR and |
| // STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that |
| // is, they treat the vector as a sequence of elements to be byte-swapped. |
| // The two pairs of instructions are fundamentally incompatible. We've decided |
| // to use LD1/ST1 only to simplify compiler implementation. |
| // |
| // LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes |
| // the original code sequence: |
| // v0 = load v2i32 |
| // v1 = REV v2i32 (implicit) |
| // v2 = BITCAST v2i32 v1 to v4i16 |
| // v3 = REV v4i16 v2 (implicit) |
| // store v4i16 v3 |
| // |
| // But this is now broken - the value stored is different to the value loaded |
| // due to lane reordering. To fix this, on every BITCAST we must perform two |
| // other REVs: |
| // v0 = load v2i32 |
| // v1 = REV v2i32 (implicit) |
| // v2 = REV v2i32 |
| // v3 = BITCAST v2i32 v2 to v4i16 |
| // v4 = REV v4i16 |
| // v5 = REV v4i16 v4 (implicit) |
| // store v4i16 v5 |
| // |
| // This means an extra two instructions, but actually in most cases the two REV |
| // instructions can be combined into one. For example: |
| // (REV64_2s (REV64_4h X)) === (REV32_4h X) |
| // |
| // There is also no 128-bit REV instruction. This must be synthesized with an |
| // EXT instruction. |
| // |
| // Most bitconverts require some sort of conversion. The only exceptions are: |
| // a) Identity conversions - vNfX <-> vNiX |
| // b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX |
| // |
| |
| // Natural vector casts (64 bit) |
| foreach VT = [ v8i8, v4i16, v4f16, v4bf16, v2i32, v2f32, v1i64, v1f64, f64 ] in |
| foreach VT2 = [ v8i8, v4i16, v4f16, v4bf16, v2i32, v2f32, v1i64, v1f64, f64 ] in |
| def : Pat<(VT (AArch64NvCast (VT2 FPR64:$src))), |
| (VT FPR64:$src)>; |
| |
| // Natural vector casts (128 bit) |
| foreach VT = [ v16i8, v8i16, v8f16, v8bf16, v4i32, v4f32, v2i64, v2f64 ] in |
| foreach VT2 = [ v16i8, v8i16, v8f16, v8bf16, v4i32, v4f32, v2i64, v2f64 ] in |
| def : Pat<(VT (AArch64NvCast (VT2 FPR128:$src))), |
| (VT FPR128:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v8i8 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; |
| def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; |
| def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; |
| def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; |
| def : Pat<(v4bf16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; |
| def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; |
| |
| def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))), |
| (COPY_TO_REGCLASS V64:$Vn, GPR64)>; |
| def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))), |
| (COPY_TO_REGCLASS V64:$Vn, GPR64)>; |
| def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))), |
| (COPY_TO_REGCLASS V64:$Vn, GPR64)>; |
| def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))), |
| (COPY_TO_REGCLASS V64:$Vn, GPR64)>; |
| def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))), |
| (COPY_TO_REGCLASS V64:$Vn, GPR64)>; |
| def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))), |
| (COPY_TO_REGCLASS V64:$Vn, GPR64)>; |
| def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))), |
| (COPY_TO_REGCLASS V64:$Vn, GPR64)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v8i8 (bitconvert GPR64:$Xn)), |
| (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; |
| def : Pat<(v4i16 (bitconvert GPR64:$Xn)), |
| (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; |
| def : Pat<(v2i32 (bitconvert GPR64:$Xn)), |
| (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; |
| def : Pat<(v4f16 (bitconvert GPR64:$Xn)), |
| (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; |
| def : Pat<(v4bf16 (bitconvert GPR64:$Xn)), |
| (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; |
| def : Pat<(v2f32 (bitconvert GPR64:$Xn)), |
| (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>; |
| |
| def : Pat<(i64 (bitconvert (v8i8 V64:$Vn))), |
| (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; |
| def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))), |
| (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; |
| def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))), |
| (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; |
| def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))), |
| (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; |
| def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))), |
| (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; |
| def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))), |
| (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>; |
| } |
| def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; |
| def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; |
| def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))), |
| (COPY_TO_REGCLASS V64:$Vn, GPR64)>; |
| def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)), |
| (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; |
| def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)), |
| (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; |
| def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>; |
| |
| def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))), |
| (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>; |
| def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))), |
| (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>; |
| def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))), |
| (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>; |
| def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))), |
| (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>; |
| def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))), |
| (COPY_TO_REGCLASS V64:$Vn, GPR64)>; |
| |
| def : Pat<(f16 (bitconvert (bf16 FPR16:$src))), (f16 FPR16:$src)>; |
| def : Pat<(bf16 (bitconvert (f16 FPR16:$src))), (bf16 FPR16:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>; |
| def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>; |
| def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>; |
| def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>; |
| def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))), (v1i64 FPR64:$src)>; |
| def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), |
| (v1i64 (REV64v2i32 FPR64:$src))>; |
| def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), |
| (v1i64 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(v1i64 (bitconvert (v8i8 FPR64:$src))), |
| (v1i64 (REV64v8i8 FPR64:$src))>; |
| def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), |
| (v1i64 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))), |
| (v1i64 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), |
| (v1i64 (REV64v2i32 FPR64:$src))>; |
| } |
| def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>; |
| def : Pat<(v1i64 (bitconvert (f64 FPR64:$src))), (v1i64 FPR64:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>; |
| def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>; |
| def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>; |
| def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), (v2i32 FPR64:$src)>; |
| def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>; |
| def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>; |
| def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))), (v2i32 FPR64:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), |
| (v2i32 (REV64v2i32 FPR64:$src))>; |
| def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), |
| (v2i32 (REV32v4i16 FPR64:$src))>; |
| def : Pat<(v2i32 (bitconvert (v8i8 FPR64:$src))), |
| (v2i32 (REV32v8i8 FPR64:$src))>; |
| def : Pat<(v2i32 (bitconvert (f64 FPR64:$src))), |
| (v2i32 (REV64v2i32 FPR64:$src))>; |
| def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), |
| (v2i32 (REV64v2i32 FPR64:$src))>; |
| def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), |
| (v2i32 (REV32v4i16 FPR64:$src))>; |
| def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))), |
| (v2i32 (REV32v4i16 FPR64:$src))>; |
| } |
| def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>; |
| def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>; |
| def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>; |
| def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), (v4i16 FPR64:$src)>; |
| def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>; |
| def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), |
| (v4i16 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), |
| (v4i16 (REV32v4i16 FPR64:$src))>; |
| def : Pat<(v4i16 (bitconvert (v8i8 FPR64:$src))), |
| (v4i16 (REV16v8i8 FPR64:$src))>; |
| def : Pat<(v4i16 (bitconvert (f64 FPR64:$src))), |
| (v4i16 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), |
| (v4i16 (REV32v4i16 FPR64:$src))>; |
| def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), |
| (v4i16 (REV64v4i16 FPR64:$src))>; |
| } |
| def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>; |
| def : Pat<(v4i16 (bitconvert (v4bf16 FPR64:$src))), (v4i16 FPR64:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>; |
| def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>; |
| def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>; |
| def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), (v4f16 FPR64:$src)>; |
| def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>; |
| def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>; |
| |
| def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))), (v4bf16 FPR64:$src)>; |
| def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>; |
| def : Pat<(v4bf16 (bitconvert (v8i8 FPR64:$src))), (v4bf16 FPR64:$src)>; |
| def : Pat<(v4bf16 (bitconvert (f64 FPR64:$src))), (v4bf16 FPR64:$src)>; |
| def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))), (v4bf16 FPR64:$src)>; |
| def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))), (v4bf16 FPR64:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), |
| (v4f16 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), |
| (v4f16 (REV32v4i16 FPR64:$src))>; |
| def : Pat<(v4f16 (bitconvert (v8i8 FPR64:$src))), |
| (v4f16 (REV16v8i8 FPR64:$src))>; |
| def : Pat<(v4f16 (bitconvert (f64 FPR64:$src))), |
| (v4f16 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), |
| (v4f16 (REV32v4i16 FPR64:$src))>; |
| def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), |
| (v4f16 (REV64v4i16 FPR64:$src))>; |
| |
| def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))), |
| (v4bf16 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))), |
| (v4bf16 (REV32v4i16 FPR64:$src))>; |
| def : Pat<(v4bf16 (bitconvert (v8i8 FPR64:$src))), |
| (v4bf16 (REV16v8i8 FPR64:$src))>; |
| def : Pat<(v4bf16 (bitconvert (f64 FPR64:$src))), |
| (v4bf16 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))), |
| (v4bf16 (REV32v4i16 FPR64:$src))>; |
| def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))), |
| (v4bf16 (REV64v4i16 FPR64:$src))>; |
| } |
| def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>; |
| def : Pat<(v4bf16 (bitconvert (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), (v8i8 FPR64:$src)>; |
| def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>; |
| def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>; |
| def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), (v8i8 FPR64:$src)>; |
| def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>; |
| def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), (v8i8 FPR64:$src)>; |
| def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), (v8i8 FPR64:$src)>; |
| def : Pat<(v8i8 (bitconvert (v4bf16 FPR64:$src))), (v8i8 FPR64:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v8i8 (bitconvert (v1i64 FPR64:$src))), |
| (v8i8 (REV64v8i8 FPR64:$src))>; |
| def : Pat<(v8i8 (bitconvert (v2i32 FPR64:$src))), |
| (v8i8 (REV32v8i8 FPR64:$src))>; |
| def : Pat<(v8i8 (bitconvert (v4i16 FPR64:$src))), |
| (v8i8 (REV16v8i8 FPR64:$src))>; |
| def : Pat<(v8i8 (bitconvert (f64 FPR64:$src))), |
| (v8i8 (REV64v8i8 FPR64:$src))>; |
| def : Pat<(v8i8 (bitconvert (v2f32 FPR64:$src))), |
| (v8i8 (REV32v8i8 FPR64:$src))>; |
| def : Pat<(v8i8 (bitconvert (v1f64 FPR64:$src))), |
| (v8i8 (REV64v8i8 FPR64:$src))>; |
| def : Pat<(v8i8 (bitconvert (v4f16 FPR64:$src))), |
| (v8i8 (REV16v8i8 FPR64:$src))>; |
| def : Pat<(v8i8 (bitconvert (v4bf16 FPR64:$src))), |
| (v8i8 (REV16v8i8 FPR64:$src))>; |
| } |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), (f64 FPR64:$src)>; |
| def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), (f64 FPR64:$src)>; |
| def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), (f64 FPR64:$src)>; |
| def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), (f64 FPR64:$src)>; |
| def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), (f64 FPR64:$src)>; |
| def : Pat<(f64 (bitconvert (v4bf16 FPR64:$src))), (f64 FPR64:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(f64 (bitconvert (v2i32 FPR64:$src))), |
| (f64 (REV64v2i32 FPR64:$src))>; |
| def : Pat<(f64 (bitconvert (v4i16 FPR64:$src))), |
| (f64 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(f64 (bitconvert (v2f32 FPR64:$src))), |
| (f64 (REV64v2i32 FPR64:$src))>; |
| def : Pat<(f64 (bitconvert (v8i8 FPR64:$src))), |
| (f64 (REV64v8i8 FPR64:$src))>; |
| def : Pat<(f64 (bitconvert (v4f16 FPR64:$src))), |
| (f64 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(f64 (bitconvert (v4bf16 FPR64:$src))), |
| (f64 (REV64v4i16 FPR64:$src))>; |
| } |
| def : Pat<(f64 (bitconvert (v1i64 FPR64:$src))), (f64 FPR64:$src)>; |
| def : Pat<(f64 (bitconvert (v1f64 FPR64:$src))), (f64 FPR64:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>; |
| def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>; |
| def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), (v1f64 FPR64:$src)>; |
| def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>; |
| def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>; |
| def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))), (v1f64 FPR64:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), |
| (v1f64 (REV64v2i32 FPR64:$src))>; |
| def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), |
| (v1f64 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(v1f64 (bitconvert (v8i8 FPR64:$src))), |
| (v1f64 (REV64v8i8 FPR64:$src))>; |
| def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), |
| (v1f64 (REV64v2i32 FPR64:$src))>; |
| def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), |
| (v1f64 (REV64v4i16 FPR64:$src))>; |
| def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))), |
| (v1f64 (REV64v4i16 FPR64:$src))>; |
| } |
| def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>; |
| def : Pat<(v1f64 (bitconvert (f64 FPR64:$src))), (v1f64 FPR64:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>; |
| def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>; |
| def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>; |
| def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>; |
| def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), (v2f32 FPR64:$src)>; |
| def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>; |
| def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))), (v2f32 FPR64:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), |
| (v2f32 (REV64v2i32 FPR64:$src))>; |
| def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), |
| (v2f32 (REV32v4i16 FPR64:$src))>; |
| def : Pat<(v2f32 (bitconvert (v8i8 FPR64:$src))), |
| (v2f32 (REV32v8i8 FPR64:$src))>; |
| def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), |
| (v2f32 (REV64v2i32 FPR64:$src))>; |
| def : Pat<(v2f32 (bitconvert (f64 FPR64:$src))), |
| (v2f32 (REV64v2i32 FPR64:$src))>; |
| def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), |
| (v2f32 (REV32v4i16 FPR64:$src))>; |
| def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))), |
| (v2f32 (REV32v4i16 FPR64:$src))>; |
| } |
| def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>; |
| def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>; |
| def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>; |
| def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>; |
| def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>; |
| def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>; |
| def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))), (f128 FPR128:$src)>; |
| def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), |
| (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>; |
| def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), |
| (f128 (EXTv16i8 (REV64v4i32 FPR128:$src), |
| (REV64v4i32 FPR128:$src), (i32 8)))>; |
| def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), |
| (f128 (EXTv16i8 (REV64v8i16 FPR128:$src), |
| (REV64v8i16 FPR128:$src), (i32 8)))>; |
| def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), |
| (f128 (EXTv16i8 (REV64v8i16 FPR128:$src), |
| (REV64v8i16 FPR128:$src), (i32 8)))>; |
| def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))), |
| (f128 (EXTv16i8 (REV64v8i16 FPR128:$src), |
| (REV64v8i16 FPR128:$src), (i32 8)))>; |
| def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), |
| (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>; |
| def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), |
| (f128 (EXTv16i8 (REV64v4i32 FPR128:$src), |
| (REV64v4i32 FPR128:$src), (i32 8)))>; |
| def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), |
| (f128 (EXTv16i8 (REV64v16i8 FPR128:$src), |
| (REV64v16i8 FPR128:$src), (i32 8)))>; |
| } |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), (v2f64 FPR128:$src)>; |
| def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>; |
| def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>; |
| def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>; |
| def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))), (v2f64 FPR128:$src)>; |
| def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>; |
| def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v2f64 (bitconvert (f128 FPR128:$src))), |
| (v2f64 (EXTv16i8 FPR128:$src, |
| FPR128:$src, (i32 8)))>; |
| def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), |
| (v2f64 (REV64v4i32 FPR128:$src))>; |
| def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), |
| (v2f64 (REV64v8i16 FPR128:$src))>; |
| def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), |
| (v2f64 (REV64v8i16 FPR128:$src))>; |
| def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))), |
| (v2f64 (REV64v8i16 FPR128:$src))>; |
| def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), |
| (v2f64 (REV64v16i8 FPR128:$src))>; |
| def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), |
| (v2f64 (REV64v4i32 FPR128:$src))>; |
| } |
| def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), (v4f32 FPR128:$src)>; |
| def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>; |
| def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>; |
| def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))), (v4f32 FPR128:$src)>; |
| def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>; |
| def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>; |
| def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v4f32 (bitconvert (f128 FPR128:$src))), |
| (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src), |
| (REV64v4i32 FPR128:$src), (i32 8)))>; |
| def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), |
| (v4f32 (REV32v8i16 FPR128:$src))>; |
| def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), |
| (v4f32 (REV32v8i16 FPR128:$src))>; |
| def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))), |
| (v4f32 (REV32v8i16 FPR128:$src))>; |
| def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), |
| (v4f32 (REV32v16i8 FPR128:$src))>; |
| def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), |
| (v4f32 (REV64v4i32 FPR128:$src))>; |
| def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), |
| (v4f32 (REV64v4i32 FPR128:$src))>; |
| } |
| def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), (v2i64 FPR128:$src)>; |
| def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>; |
| def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>; |
| def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>; |
| def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>; |
| def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>; |
| def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))), (v2i64 FPR128:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v2i64 (bitconvert (f128 FPR128:$src))), |
| (v2i64 (EXTv16i8 FPR128:$src, |
| FPR128:$src, (i32 8)))>; |
| def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), |
| (v2i64 (REV64v4i32 FPR128:$src))>; |
| def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), |
| (v2i64 (REV64v8i16 FPR128:$src))>; |
| def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), |
| (v2i64 (REV64v16i8 FPR128:$src))>; |
| def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), |
| (v2i64 (REV64v4i32 FPR128:$src))>; |
| def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), |
| (v2i64 (REV64v8i16 FPR128:$src))>; |
| def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))), |
| (v2i64 (REV64v8i16 FPR128:$src))>; |
| } |
| def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), (v4i32 FPR128:$src)>; |
| def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>; |
| def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>; |
| def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>; |
| def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>; |
| def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>; |
| def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))), (v4i32 FPR128:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v4i32 (bitconvert (f128 FPR128:$src))), |
| (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src), |
| (REV64v4i32 FPR128:$src), |
| (i32 8)))>; |
| def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), |
| (v4i32 (REV64v4i32 FPR128:$src))>; |
| def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), |
| (v4i32 (REV32v8i16 FPR128:$src))>; |
| def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), |
| (v4i32 (REV32v16i8 FPR128:$src))>; |
| def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), |
| (v4i32 (REV64v4i32 FPR128:$src))>; |
| def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), |
| (v4i32 (REV32v8i16 FPR128:$src))>; |
| def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))), |
| (v4i32 (REV32v8i16 FPR128:$src))>; |
| } |
| def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), (v8i16 FPR128:$src)>; |
| def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>; |
| def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>; |
| def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>; |
| def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>; |
| def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v8i16 (bitconvert (f128 FPR128:$src))), |
| (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src), |
| (REV64v8i16 FPR128:$src), |
| (i32 8)))>; |
| def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), |
| (v8i16 (REV64v8i16 FPR128:$src))>; |
| def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), |
| (v8i16 (REV32v8i16 FPR128:$src))>; |
| def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), |
| (v8i16 (REV16v16i8 FPR128:$src))>; |
| def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), |
| (v8i16 (REV64v8i16 FPR128:$src))>; |
| def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), |
| (v8i16 (REV32v8i16 FPR128:$src))>; |
| } |
| def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>; |
| def : Pat<(v8i16 (bitconvert (v8bf16 FPR128:$src))), (v8i16 FPR128:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), (v8f16 FPR128:$src)>; |
| def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>; |
| def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>; |
| def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>; |
| def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>; |
| def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>; |
| |
| def : Pat<(v8bf16 (bitconvert (f128 FPR128:$src))), (v8bf16 FPR128:$src)>; |
| def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>; |
| def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>; |
| def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>; |
| def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>; |
| def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v8f16 (bitconvert (f128 FPR128:$src))), |
| (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src), |
| (REV64v8i16 FPR128:$src), |
| (i32 8)))>; |
| def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), |
| (v8f16 (REV64v8i16 FPR128:$src))>; |
| def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), |
| (v8f16 (REV32v8i16 FPR128:$src))>; |
| def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), |
| (v8f16 (REV16v16i8 FPR128:$src))>; |
| def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), |
| (v8f16 (REV64v8i16 FPR128:$src))>; |
| def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), |
| (v8f16 (REV32v8i16 FPR128:$src))>; |
| |
| def : Pat<(v8bf16 (bitconvert (f128 FPR128:$src))), |
| (v8bf16 (EXTv16i8 (REV64v8i16 FPR128:$src), |
| (REV64v8i16 FPR128:$src), |
| (i32 8)))>; |
| def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))), |
| (v8bf16 (REV64v8i16 FPR128:$src))>; |
| def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))), |
| (v8bf16 (REV32v8i16 FPR128:$src))>; |
| def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))), |
| (v8bf16 (REV16v16i8 FPR128:$src))>; |
| def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))), |
| (v8bf16 (REV64v8i16 FPR128:$src))>; |
| def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))), |
| (v8bf16 (REV32v8i16 FPR128:$src))>; |
| } |
| def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>; |
| def : Pat<(v8bf16 (bitconvert (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>; |
| |
| let Predicates = [IsLE] in { |
| def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), (v16i8 FPR128:$src)>; |
| def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>; |
| def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>; |
| def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>; |
| def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>; |
| def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>; |
| def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>; |
| def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))), (v16i8 FPR128:$src)>; |
| } |
| let Predicates = [IsBE] in { |
| def : Pat<(v16i8 (bitconvert (f128 FPR128:$src))), |
| (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src), |
| (REV64v16i8 FPR128:$src), |
| (i32 8)))>; |
| def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), |
| (v16i8 (REV64v16i8 FPR128:$src))>; |
| def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), |
| (v16i8 (REV32v16i8 FPR128:$src))>; |
| def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), |
| (v16i8 (REV16v16i8 FPR128:$src))>; |
| def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), |
| (v16i8 (REV64v16i8 FPR128:$src))>; |
| def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), |
| (v16i8 (REV32v16i8 FPR128:$src))>; |
| def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), |
| (v16i8 (REV16v16i8 FPR128:$src))>; |
| def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))), |
| (v16i8 (REV16v16i8 FPR128:$src))>; |
| } |
| |
| def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))), |
| (EXTRACT_SUBREG V128:$Rn, dsub)>; |
| def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))), |
| (EXTRACT_SUBREG V128:$Rn, dsub)>; |
| def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))), |
| (EXTRACT_SUBREG V128:$Rn, dsub)>; |
| def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))), |
| (EXTRACT_SUBREG V128:$Rn, dsub)>; |
| def : Pat<(v4bf16 (extract_subvector V128:$Rn, (i64 0))), |
| (EXTRACT_SUBREG V128:$Rn, dsub)>; |
| def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))), |
| (EXTRACT_SUBREG V128:$Rn, dsub)>; |
| def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))), |
| (EXTRACT_SUBREG V128:$Rn, dsub)>; |
| def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))), |
| (EXTRACT_SUBREG V128:$Rn, dsub)>; |
| |
| def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))), |
| (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; |
| def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))), |
| (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; |
| def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))), |
| (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; |
| def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))), |
| (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>; |
| |
| // A 64-bit subvector insert to the first 128-bit vector position |
| // is a subregister copy that needs no instruction. |
| multiclass InsertSubvectorUndef<ValueType Ty> { |
| def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)), |
| (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>; |
| def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)), |
| (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>; |
| def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)), |
| (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>; |
| def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)), |
| (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>; |
| def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)), |
| (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>; |
| def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)), |
| (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>; |
| def : Pat<(insert_subvector undef, (v4bf16 FPR64:$src), (Ty 0)), |
| (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR64:$src, dsub)>; |
| def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)), |
| (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>; |
| } |
| |
| defm : InsertSubvectorUndef<i32>; |
| defm : InsertSubvectorUndef<i64>; |
| |
| // Use pair-wise add instructions when summing up the lanes for v2f64, v2i64 |
| // or v2f32. |
| def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)), |
| (vector_extract (v2i64 FPR128:$Rn), (i64 1)))), |
| (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>; |
| def : Pat<(f64 (any_fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)), |
| (vector_extract (v2f64 FPR128:$Rn), (i64 1)))), |
| (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>; |
| // vector_extract on 64-bit vectors gets promoted to a 128 bit vector, |
| // so we match on v4f32 here, not v2f32. This will also catch adding |
| // the low two lanes of a true v4f32 vector. |
| def : Pat<(any_fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)), |
| (vector_extract (v4f32 FPR128:$Rn), (i64 1))), |
| (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>; |
| def : Pat<(any_fadd (vector_extract (v8f16 FPR128:$Rn), (i64 0)), |
| (vector_extract (v8f16 FPR128:$Rn), (i64 1))), |
| (f16 (FADDPv2i16p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>; |
| |
| // Prefer using the bottom lanes of addp Rn, Rn compared to |
| // addp extractlow(Rn), extracthigh(Rn) |
| def : Pat<(AArch64addp (v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 0))), |
| (v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 2)))), |
| (v2i32 (EXTRACT_SUBREG (ADDPv4i32 $Rn, $Rn), dsub))>; |
| def : Pat<(AArch64addp (v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 0))), |
| (v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 4)))), |
| (v4i16 (EXTRACT_SUBREG (ADDPv8i16 $Rn, $Rn), dsub))>; |
| def : Pat<(AArch64addp (v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 0))), |
| (v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 8)))), |
| (v8i8 (EXTRACT_SUBREG (ADDPv16i8 $Rn, $Rn), dsub))>; |
| |
| def : Pat<(AArch64faddp (v2f32 (extract_subvector (v4f32 FPR128:$Rn), (i64 0))), |
| (v2f32 (extract_subvector (v4f32 FPR128:$Rn), (i64 2)))), |
| (v2f32 (EXTRACT_SUBREG (FADDPv4f32 $Rn, $Rn), dsub))>; |
| def : Pat<(AArch64faddp (v4f16 (extract_subvector (v8f16 FPR128:$Rn), (i64 0))), |
| (v4f16 (extract_subvector (v8f16 FPR128:$Rn), (i64 4)))), |
| (v4f16 (EXTRACT_SUBREG (FADDPv8f16 $Rn, $Rn), dsub))>; |
| |
| // add(uzp1(X, Y), uzp2(X, Y)) -> addp(X, Y) |
| def : Pat<(v2i64 (add (AArch64zip1 (v2i64 FPR128:$Rn), (v2i64 FPR128:$Rm)), |
| (AArch64zip2 (v2i64 FPR128:$Rn), (v2i64 FPR128:$Rm)))), |
| (v2i64 (ADDPv2i64 $Rn, $Rm))>; |
| def : Pat<(v4i32 (add (AArch64uzp1 (v4i32 FPR128:$Rn), (v4i32 FPR128:$Rm)), |
| (AArch64uzp2 (v4i32 FPR128:$Rn), (v4i32 FPR128:$Rm)))), |
| (v4i32 (ADDPv4i32 $Rn, $Rm))>; |
| def : Pat<(v8i16 (add (AArch64uzp1 (v8i16 FPR128:$Rn), (v8i16 FPR128:$Rm)), |
| (AArch64uzp2 (v8i16 FPR128:$Rn), (v8i16 FPR128:$Rm)))), |
| (v8i16 (ADDPv8i16 $Rn, $Rm))>; |
| def : Pat<(v16i8 (add (AArch64uzp1 (v16i8 FPR128:$Rn), (v16i8 FPR128:$Rm)), |
| (AArch64uzp2 (v16i8 FPR128:$Rn), (v16i8 FPR128:$Rm)))), |
| (v16i8 (ADDPv16i8 $Rn, $Rm))>; |
| |
| def : Pat<(v2f64 (fadd (AArch64zip1 (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm)), |
| (AArch64zip2 (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm)))), |
| (v2f64 (FADDPv2f64 $Rn, $Rm))>; |
| def : Pat<(v4f32 (fadd (AArch64uzp1 (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm)), |
| (AArch64uzp2 (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm)))), |
| (v4f32 (FADDPv4f32 $Rn, $Rm))>; |
| let Predicates = [HasFullFP16] in |
| def : Pat<(v8f16 (fadd (AArch64uzp1 (v8f16 FPR128:$Rn), (v8f16 FPR128:$Rm)), |
| (AArch64uzp2 (v8f16 FPR128:$Rn), (v8f16 FPR128:$Rm)))), |
| (v8f16 (FADDPv8f16 $Rn, $Rm))>; |
| |
| // Scalar 64-bit shifts in FPR64 registers. |
| def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), |
| (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; |
| def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), |
| (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>; |
| def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), |
| (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; |
| def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))), |
| (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>; |
| |
| // Patterns for nontemporal/no-allocate stores. |
| // We have to resort to tricks to turn a single-input store into a store pair, |
| // because there is no single-input nontemporal store, only STNP. |
| let Predicates = [IsLE] in { |
| let AddedComplexity = 15 in { |
| class NTStore128Pat<ValueType VT> : |
| Pat<(nontemporalstore (VT FPR128:$Rt), |
| (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)), |
| (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub), |
| (DUPi64 FPR128:$Rt, (i64 1)), |
| GPR64sp:$Rn, simm7s8:$offset)>; |
| |
| def : NTStore128Pat<v2i64>; |
| def : NTStore128Pat<v4i32>; |
| def : NTStore128Pat<v8i16>; |
| def : NTStore128Pat<v16i8>; |
| |
| class NTStore64Pat<ValueType VT> : |
| Pat<(nontemporalstore (VT FPR64:$Rt), |
| (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)), |
| (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub), |
| (DUPi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)), |
| GPR64sp:$Rn, simm7s4:$offset)>; |
| |
| // FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64? |
| def : NTStore64Pat<v1f64>; |
| def : NTStore64Pat<v1i64>; |
| def : NTStore64Pat<v2i32>; |
| def : NTStore64Pat<v4i16>; |
| def : NTStore64Pat<v8i8>; |
| |
| def : Pat<(nontemporalstore GPR64:$Rt, |
| (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)), |
| (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), |
| (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32), |
| GPR64sp:$Rn, simm7s4:$offset)>; |
| } // AddedComplexity=10 |
| } // Predicates = [IsLE] |
| |
| // Tail call return handling. These are all compiler pseudo-instructions, |
| // so no encoding information or anything like that. |
| let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in { |
| def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>, |
| Sched<[WriteBrReg]>; |
| def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>, |
| Sched<[WriteBrReg]>; |
| // Indirect tail-call with any register allowed, used by MachineOutliner when |
| // this is proven safe. |
| // FIXME: If we have to add any more hacks like this, we should instead relax |
| // some verifier checks for outlined functions. |
| def TCRETURNriALL : Pseudo<(outs), (ins GPR64:$dst, i32imm:$FPDiff), []>, |
| Sched<[WriteBrReg]>; |
| |
| // Indirect tail-calls with reduced register classes, needed for BTI and |
| // PAuthLR. |
| def TCRETURNrix16x17 : Pseudo<(outs), (ins tcGPRx16x17:$dst, i32imm:$FPDiff), []>, |
| Sched<[WriteBrReg]>; |
| def TCRETURNrix17 : Pseudo<(outs), (ins tcGPRx17:$dst, i32imm:$FPDiff), []>, |
| Sched<[WriteBrReg]>; |
| def TCRETURNrinotx16 : Pseudo<(outs), (ins tcGPRnotx16:$dst, i32imm:$FPDiff), []>, |
| Sched<[WriteBrReg]>; |
| } |
| |
| def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)), |
| (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>, |
| Requires<[TailCallAny]>; |
| def : Pat<(AArch64tcret tcGPRx16x17:$dst, (i32 timm:$FPDiff)), |
| (TCRETURNrix16x17 tcGPRx16x17:$dst, imm:$FPDiff)>, |
| Requires<[TailCallX16X17]>; |
| def : Pat<(AArch64tcret tcGPRx17:$dst, (i32 timm:$FPDiff)), |
| (TCRETURNrix17 tcGPRx17:$dst, imm:$FPDiff)>, |
| Requires<[TailCallX17]>; |
| def : Pat<(AArch64tcret tcGPRnotx16:$dst, (i32 timm:$FPDiff)), |
| (TCRETURNrinotx16 tcGPRnotx16:$dst, imm:$FPDiff)>, |
| Requires<[TailCallNotX16]>; |
| |
| def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)), |
| (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>; |
| def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)), |
| (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>; |
| |
| def MOVMCSym : Pseudo<(outs GPR64:$dst), (ins i64imm:$sym), []>, Sched<[]>; |
| def : Pat<(i64 (AArch64LocalRecover mcsym:$sym)), (MOVMCSym mcsym:$sym)>; |
| |
| // Extracting lane zero is a special case where we can just use a plain |
| // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for the |
| // rest of the compiler, especially the register allocator and copy propagation, |
| // to reason about, so is preferred when it's possible to use it. |
| let AddedComplexity = 10 in { |
| def : Pat<(i64 (extractelt (v2i64 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, dsub)>; |
| def : Pat<(i32 (extractelt (v4i32 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, ssub)>; |
| def : Pat<(i32 (extractelt (v2i32 V64:$V), (i64 0))), (EXTRACT_SUBREG V64:$V, ssub)>; |
| } |
| |
| // dot_v4i8 |
| class mul_v4i8<SDPatternOperator ldop> : |
| PatFrag<(ops node:$Rn, node:$Rm, node:$offset), |
| (mul (ldop (add node:$Rn, node:$offset)), |
| (ldop (add node:$Rm, node:$offset)))>; |
| class mulz_v4i8<SDPatternOperator ldop> : |
| PatFrag<(ops node:$Rn, node:$Rm), |
| (mul (ldop node:$Rn), (ldop node:$Rm))>; |
| |
| def load_v4i8 : |
| OutPatFrag<(ops node:$R), |
| (INSERT_SUBREG |
| (v2i32 (IMPLICIT_DEF)), |
| (i32 (COPY_TO_REGCLASS (LDRWui node:$R, (i64 0)), FPR32)), |
| ssub)>; |
| |
| class dot_v4i8<Instruction DOT, SDPatternOperator ldop> : |
| Pat<(i32 (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 3)), |
| (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 2)), |
| (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 1)), |
| (mulz_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm))))), |
| (EXTRACT_SUBREG (i64 (DOT (DUPv2i32gpr WZR), |
| (load_v4i8 GPR64sp:$Rn), |
| (load_v4i8 GPR64sp:$Rm))), |
| sub_32)>, Requires<[HasDotProd]>; |
| |
| // dot_v8i8 |
| class ee_v8i8<SDPatternOperator extend> : |
| PatFrag<(ops node:$V, node:$K), |
| (v4i16 (extract_subvector (v8i16 (extend node:$V)), node:$K))>; |
| |
| class mul_v8i8<SDPatternOperator mulop, SDPatternOperator extend> : |
| PatFrag<(ops node:$M, node:$N, node:$K), |
| (mulop (v4i16 (ee_v8i8<extend> node:$M, node:$K)), |
| (v4i16 (ee_v8i8<extend> node:$N, node:$K)))>; |
| |
| class idot_v8i8<SDPatternOperator mulop, SDPatternOperator extend> : |
| PatFrag<(ops node:$M, node:$N), |
| (i32 (extractelt |
| (v4i32 (AArch64uaddv |
| (add (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 0)), |
| (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 4))))), |
| (i64 0)))>; |
| |
| // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm |
| def VADDV_32 : OutPatFrag<(ops node:$R), (ADDPv2i32 node:$R, node:$R)>; |
| |
| class odot_v8i8<Instruction DOT> : |
| OutPatFrag<(ops node:$Vm, node:$Vn), |
| (EXTRACT_SUBREG |
| (VADDV_32 |
| (i64 (DOT (DUPv2i32gpr WZR), |
| (v8i8 node:$Vm), |
| (v8i8 node:$Vn)))), |
| sub_32)>; |
| |
| class dot_v8i8<Instruction DOT, SDPatternOperator mulop, |
| SDPatternOperator extend> : |
| Pat<(idot_v8i8<mulop, extend> V64:$Vm, V64:$Vn), |
| (odot_v8i8<DOT> V64:$Vm, V64:$Vn)>, |
| Requires<[HasDotProd]>; |
| |
| // dot_v16i8 |
| class ee_v16i8<SDPatternOperator extend> : |
| PatFrag<(ops node:$V, node:$K1, node:$K2), |
| (v4i16 (extract_subvector |
| (v8i16 (extend |
| (v8i8 (extract_subvector node:$V, node:$K1)))), node:$K2))>; |
| |
| class mul_v16i8<SDPatternOperator mulop, SDPatternOperator extend> : |
| PatFrag<(ops node:$M, node:$N, node:$K1, node:$K2), |
| (v4i32 |
| (mulop (v4i16 (ee_v16i8<extend> node:$M, node:$K1, node:$K2)), |
| (v4i16 (ee_v16i8<extend> node:$N, node:$K1, node:$K2))))>; |
| |
| class idot_v16i8<SDPatternOperator m, SDPatternOperator x> : |
| PatFrag<(ops node:$M, node:$N), |
| (i32 (extractelt |
| (v4i32 (AArch64uaddv |
| (add |
| (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 0)), |
| (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 0))), |
| (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 4)), |
| (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 4)))))), |
| (i64 0)))>; |
| |
| class odot_v16i8<Instruction DOT> : |
| OutPatFrag<(ops node:$Vm, node:$Vn), |
| (i32 (ADDVv4i32v |
| (DOT (DUPv4i32gpr WZR), node:$Vm, node:$Vn)))>; |
| |
| class dot_v16i8<Instruction DOT, SDPatternOperator mulop, |
| SDPatternOperator extend> : |
| Pat<(idot_v16i8<mulop, extend> V128:$Vm, V128:$Vn), |
| (odot_v16i8<DOT> V128:$Vm, V128:$Vn)>, |
| Requires<[HasDotProd]>; |
| |
| let AddedComplexity = 10 in { |
| def : dot_v4i8<SDOTv8i8, sextloadi8>; |
| def : dot_v4i8<UDOTv8i8, zextloadi8>; |
| def : dot_v8i8<SDOTv8i8, AArch64smull, sext>; |
| def : dot_v8i8<UDOTv8i8, AArch64umull, zext>; |
| def : dot_v16i8<SDOTv16i8, AArch64smull, sext>; |
| def : dot_v16i8<UDOTv16i8, AArch64umull, zext>; |
| |
| // FIXME: add patterns to generate vector by element dot product. |
| // FIXME: add SVE dot-product patterns. |
| } |
| |
| // Custom DAG nodes and isel rules to make a 64-byte block out of eight GPRs, |
| // so that it can be used as input to inline asm, and vice versa. |
| def LS64_BUILD : SDNode<"AArch64ISD::LS64_BUILD", SDTypeProfile<1, 8, []>>; |
| def LS64_EXTRACT : SDNode<"AArch64ISD::LS64_EXTRACT", SDTypeProfile<1, 2, []>>; |
| def : Pat<(i64x8 (LS64_BUILD GPR64:$x0, GPR64:$x1, GPR64:$x2, GPR64:$x3, |
| GPR64:$x4, GPR64:$x5, GPR64:$x6, GPR64:$x7)), |
| (REG_SEQUENCE GPR64x8Class, |
| $x0, x8sub_0, $x1, x8sub_1, $x2, x8sub_2, $x3, x8sub_3, |
| $x4, x8sub_4, $x5, x8sub_5, $x6, x8sub_6, $x7, x8sub_7)>; |
| foreach i = 0-7 in { |
| def : Pat<(i64 (LS64_EXTRACT (i64x8 GPR64x8:$val), (i32 i))), |
| (EXTRACT_SUBREG $val, !cast<SubRegIndex>("x8sub_"#i))>; |
| } |
| |
| let Predicates = [HasLS64] in { |
| def LD64B: LoadStore64B<0b101, "ld64b", (ins GPR64sp:$Rn), |
| (outs GPR64x8:$Rt)>; |
| def ST64B: LoadStore64B<0b001, "st64b", (ins GPR64x8:$Rt, GPR64sp:$Rn), |
| (outs)>; |
| def ST64BV: Store64BV<0b011, "st64bv">; |
| def ST64BV0: Store64BV<0b010, "st64bv0">; |
| |
| class ST64BPattern<Intrinsic intrinsic, Instruction instruction> |
| : Pat<(intrinsic GPR64sp:$addr, GPR64:$x0, GPR64:$x1, GPR64:$x2, GPR64:$x3, GPR64:$x4, GPR64:$x5, GPR64:$x6, GPR64:$x7), |
| (instruction (REG_SEQUENCE GPR64x8Class, $x0, x8sub_0, $x1, x8sub_1, $x2, x8sub_2, $x3, x8sub_3, $x4, x8sub_4, $x5, x8sub_5, $x6, x8sub_6, $x7, x8sub_7), $addr)>; |
| |
| def : ST64BPattern<int_aarch64_st64b, ST64B>; |
| def : ST64BPattern<int_aarch64_st64bv, ST64BV>; |
| def : ST64BPattern<int_aarch64_st64bv0, ST64BV0>; |
| } |
| |
| let Predicates = [HasMOPS] in { |
| let Defs = [NZCV] in { |
| defm CPYFP : MOPSMemoryCopyInsns<0b00, "cpyfp">; |
| |
| defm CPYP : MOPSMemoryMoveInsns<0b00, "cpyp">; |
| |
| defm SETP : MOPSMemorySetInsns<0b00, "setp">; |
| } |
| let Uses = [NZCV] in { |
| defm CPYFM : MOPSMemoryCopyInsns<0b01, "cpyfm">; |
| defm CPYFE : MOPSMemoryCopyInsns<0b10, "cpyfe">; |
| |
| defm CPYM : MOPSMemoryMoveInsns<0b01, "cpym">; |
| defm CPYE : MOPSMemoryMoveInsns<0b10, "cpye">; |
| |
| defm SETM : MOPSMemorySetInsns<0b01, "setm">; |
| defm SETE : MOPSMemorySetInsns<0b10, "sete">; |
| } |
| } |
| let Predicates = [HasMOPS, HasMTE] in { |
| let Defs = [NZCV] in { |
| defm SETGP : MOPSMemorySetTaggingInsns<0b00, "setgp">; |
| } |
| let Uses = [NZCV] in { |
| defm SETGM : MOPSMemorySetTaggingInsns<0b01, "setgm">; |
| // Can't use SETGE because it's a reserved name in TargetSelectionDAG.td |
| defm MOPSSETGE : MOPSMemorySetTaggingInsns<0b10, "setge">; |
| } |
| } |
| |
| // MOPS Node operands: 0: Dst, 1: Src or Value, 2: Size, 3: Chain |
| // MOPS Node results: 0: Dst writeback, 1: Size writeback, 2: Chain |
| def SDT_AArch64mops : SDTypeProfile<2, 3, [ SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2> ]>; |
| def AArch64mops_memset : SDNode<"AArch64ISD::MOPS_MEMSET", SDT_AArch64mops>; |
| def AArch64mops_memset_tagging : SDNode<"AArch64ISD::MOPS_MEMSET_TAGGING", SDT_AArch64mops>; |
| def AArch64mops_memcopy : SDNode<"AArch64ISD::MOPS_MEMCOPY", SDT_AArch64mops>; |
| def AArch64mops_memmove : SDNode<"AArch64ISD::MOPS_MEMMOVE", SDT_AArch64mops>; |
| |
| // MOPS operations always contain three 4-byte instructions |
| let Predicates = [HasMOPS], Defs = [NZCV], Size = 12, mayStore = 1 in { |
| let mayLoad = 1 in { |
| def MOPSMemoryCopyPseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64common:$Rs_wb, GPR64:$Rn_wb), |
| (ins GPR64common:$Rd, GPR64common:$Rs, GPR64:$Rn), |
| [], "$Rd = $Rd_wb,$Rs = $Rs_wb,$Rn = $Rn_wb">, Sched<[]>; |
| def MOPSMemoryMovePseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64common:$Rs_wb, GPR64:$Rn_wb), |
| (ins GPR64common:$Rd, GPR64common:$Rs, GPR64:$Rn), |
| [], "$Rd = $Rd_wb,$Rs = $Rs_wb,$Rn = $Rn_wb">, Sched<[]>; |
| } |
| let mayLoad = 0 in { |
| def MOPSMemorySetPseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64:$Rn_wb), |
| (ins GPR64common:$Rd, GPR64:$Rn, GPR64:$Rm), |
| [], "$Rd = $Rd_wb,$Rn = $Rn_wb,@earlyclobber $Rn_wb">, Sched<[]>; |
| } |
| } |
| let Predicates = [HasMOPS, HasMTE], Defs = [NZCV], Size = 12, mayLoad = 0, mayStore = 1 in { |
| def MOPSMemorySetTaggingPseudo : Pseudo<(outs GPR64common:$Rd_wb, GPR64:$Rn_wb), |
| (ins GPR64common:$Rd, GPR64:$Rn, GPR64:$Rm), |
| [], "$Rd = $Rd_wb,$Rn = $Rn_wb">, Sched<[]>; |
| } |
| |
| //----------------------------------------------------------------------------- |
| // v8.3 Pointer Authentication late patterns |
| |
| def : Pat<(int_ptrauth_blend GPR64:$Rd, imm64_0_65535:$imm), |
| (PAUTH_BLEND GPR64:$Rd, (trunc_imm imm64_0_65535:$imm))>; |
| def : Pat<(int_ptrauth_blend GPR64:$Rd, GPR64:$Rn), |
| (BFMXri GPR64:$Rd, GPR64:$Rn, 16, 15)>; |
| |
| //----------------------------------------------------------------------------- |
| |
| // This gets lowered into an instruction sequence of 20 bytes |
| let Defs = [X16, X17], mayStore = 1, isCodeGenOnly = 1, Size = 20 in |
| def StoreSwiftAsyncContext |
| : Pseudo<(outs), (ins GPR64:$ctx, GPR64sp:$base, simm9:$offset), |
| []>, Sched<[]>; |
| |
| def AArch64AssertZExtBool : SDNode<"AArch64ISD::ASSERT_ZEXT_BOOL", SDT_assert>; |
| def : Pat<(AArch64AssertZExtBool GPR32:$op), |
| (i32 GPR32:$op)>; |
| |
| //===----------------------------===// |
| // 2022 Architecture Extensions: |
| //===----------------------------===// |
| |
| def : InstAlias<"clrbhb", (HINT 22), 0>; |
| let Predicates = [HasCLRBHB] in { |
| def : InstAlias<"clrbhb", (HINT 22), 1>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Translation Hardening Extension (FEAT_THE) |
| //===----------------------------------------------------------------------===// |
| defm RCW : ReadCheckWriteCompareAndSwap; |
| |
| defm RCWCLR : ReadCheckWriteOperation<0b001, "clr">; |
| defm RCWSET : ReadCheckWriteOperation<0b011, "set">; |
| defm RCWSWP : ReadCheckWriteOperation<0b010, "swp">; |
| |
| //===----------------------------------------------------------------------===// |
| // General Data-Processing Instructions (FEAT_V94_DP) |
| //===----------------------------------------------------------------------===// |
| defm ABS : OneOperandData<0b001000, "abs", abs>, Requires<[HasCSSC]>; |
| defm CNT : OneOperandData<0b000111, "cnt", ctpop>, Requires<[HasCSSC]>; |
| defm CTZ : OneOperandData<0b000110, "ctz", cttz>, Requires<[HasCSSC]>; |
| |
| defm SMAX : ComparisonOp<0, 0, "smax", smax>, Requires<[HasCSSC]>; |
| defm SMIN : ComparisonOp<0, 1, "smin", smin>, Requires<[HasCSSC]>; |
| defm UMAX : ComparisonOp<1, 0, "umax", umax>, Requires<[HasCSSC]>; |
| defm UMIN : ComparisonOp<1, 1, "umin", umin>, Requires<[HasCSSC]>; |
| |
| def RPRFM: |
| I<(outs), (ins rprfop:$Rt, GPR64:$Rm, GPR64sp:$Rn), |
| "rprfm", "\t$Rt, $Rm, [$Rn]", "", []>, |
| Sched<[]> { |
| bits<6> Rt; |
| bits<5> Rn; |
| bits<5> Rm; |
| let Inst{2-0} = Rt{2-0}; |
| let Inst{4-3} = 0b11; |
| let Inst{9-5} = Rn; |
| let Inst{11-10} = 0b10; |
| let Inst{13-12} = Rt{4-3}; |
| let Inst{14} = 0b1; |
| let Inst{15} = Rt{5}; |
| let Inst{20-16} = Rm; |
| let Inst{31-21} = 0b11111000101; |
| let mayLoad = 0; |
| let mayStore = 0; |
| let hasSideEffects = 1; |
| // RPRFM overlaps with PRFM (reg), when the decoder method of PRFM returns |
| // Fail, the decoder should attempt to decode RPRFM. This requires setting |
| // the decoder namespace to "Fallback". |
| let DecoderNamespace = "Fallback"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // 128-bit Atomics (FEAT_LSE128) |
| //===----------------------------------------------------------------------===// |
| let Predicates = [HasLSE128] in { |
| def SWPP : LSE128Base<0b000, 0b00, 0b1, "swpp">; |
| def SWPPA : LSE128Base<0b000, 0b10, 0b1, "swppa">; |
| def SWPPAL : LSE128Base<0b000, 0b11, 0b1, "swppal">; |
| def SWPPL : LSE128Base<0b000, 0b01, 0b1, "swppl">; |
| def LDCLRP : LSE128Base<0b001, 0b00, 0b0, "ldclrp">; |
| def LDCLRPA : LSE128Base<0b001, 0b10, 0b0, "ldclrpa">; |
| def LDCLRPAL : LSE128Base<0b001, 0b11, 0b0, "ldclrpal">; |
| def LDCLRPL : LSE128Base<0b001, 0b01, 0b0, "ldclrpl">; |
| def LDSETP : LSE128Base<0b011, 0b00, 0b0, "ldsetp">; |
| def LDSETPA : LSE128Base<0b011, 0b10, 0b0, "ldsetpa">; |
| def LDSETPAL : LSE128Base<0b011, 0b11, 0b0, "ldsetpal">; |
| def LDSETPL : LSE128Base<0b011, 0b01, 0b0, "ldsetpl">; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // RCPC Instructions (FEAT_LRCPC3) |
| //===----------------------------------------------------------------------===// |
| |
| let Predicates = [HasRCPC3] in { |
| // size opc opc2 |
| def STILPWpre: BaseLRCPC3IntegerLoadStorePair<0b10, 0b00, 0b0000, (outs GPR64sp:$wback), (ins GPR32:$Rt, GPR32:$Rt2, GPR64sp:$Rn), "stilp", "\t$Rt, $Rt2, [$Rn, #-8]!", "$Rn = $wback">; |
| def STILPXpre: BaseLRCPC3IntegerLoadStorePair<0b11, 0b00, 0b0000, (outs GPR64sp:$wback), (ins GPR64:$Rt, GPR64:$Rt2, GPR64sp:$Rn), "stilp", "\t$Rt, $Rt2, [$Rn, #-16]!", "$Rn = $wback">; |
| def STILPW: BaseLRCPC3IntegerLoadStorePair<0b10, 0b00, 0b0001, (outs), (ins GPR32:$Rt, GPR32:$Rt2, GPR64sp:$Rn), "stilp", "\t$Rt, $Rt2, [$Rn]", "">; |
| def STILPX: BaseLRCPC3IntegerLoadStorePair<0b11, 0b00, 0b0001, (outs), (ins GPR64:$Rt, GPR64:$Rt2, GPR64sp:$Rn), "stilp", "\t$Rt, $Rt2, [$Rn]", "">; |
| def LDIAPPWpost: BaseLRCPC3IntegerLoadStorePair<0b10, 0b01, 0b0000, (outs GPR64sp:$wback, GPR32:$Rt, GPR32:$Rt2), (ins GPR64sp:$Rn), "ldiapp", "\t$Rt, $Rt2, [$Rn], #8", "$Rn = $wback">; |
| def LDIAPPXpost: BaseLRCPC3IntegerLoadStorePair<0b11, 0b01, 0b0000, (outs GPR64sp:$wback, GPR64:$Rt, GPR64:$Rt2), (ins GPR64sp:$Rn), "ldiapp", "\t$Rt, $Rt2, [$Rn], #16", "$Rn = $wback">; |
| def LDIAPPW: BaseLRCPC3IntegerLoadStorePair<0b10, 0b01, 0b0001, (outs GPR32:$Rt, GPR32:$Rt2), (ins GPR64sp0:$Rn), "ldiapp", "\t$Rt, $Rt2, [$Rn]", "">; |
| def LDIAPPX: BaseLRCPC3IntegerLoadStorePair<0b11, 0b01, 0b0001, (outs GPR64:$Rt, GPR64:$Rt2), (ins GPR64sp0:$Rn), "ldiapp", "\t$Rt, $Rt2, [$Rn]", "">; |
| |
| def : Pat<(AArch64ldiapp GPR64sp:$Rn), (LDIAPPX GPR64sp:$Rn)>; |
| def : Pat<(AArch64stilp GPR64:$Rt, GPR64:$Rt2, GPR64sp:$Rn), (STILPX GPR64:$Rt, GPR64:$Rt2, GPR64sp:$Rn)>; |
| |
| // Aliases for when offset=0 |
| def : InstAlias<"stilp\t$Rt, $Rt2, [$Rn, #0]", (STILPW GPR32: $Rt, GPR32: $Rt2, GPR64sp:$Rn)>; |
| def : InstAlias<"stilp\t$Rt, $Rt2, [$Rn, #0]", (STILPX GPR64: $Rt, GPR64: $Rt2, GPR64sp:$Rn)>; |
| |
| // size opc |
| def STLRWpre: BaseLRCPC3IntegerLoadStore<0b10, 0b10, (outs GPR64sp:$wback), (ins GPR32:$Rt, GPR64sp:$Rn), "stlr", "\t$Rt, [$Rn, #-4]!", "$Rn = $wback">; |
| def STLRXpre: BaseLRCPC3IntegerLoadStore<0b11, 0b10, (outs GPR64sp:$wback), (ins GPR64:$Rt, GPR64sp:$Rn), "stlr", "\t$Rt, [$Rn, #-8]!", "$Rn = $wback">; |
| def LDAPRWpost: BaseLRCPC3IntegerLoadStore<0b10, 0b11, (outs GPR64sp:$wback, GPR32:$Rt), (ins GPR64sp:$Rn), "ldapr", "\t$Rt, [$Rn], #4", "$Rn = $wback">; |
| def LDAPRXpost: BaseLRCPC3IntegerLoadStore<0b11, 0b11, (outs GPR64sp:$wback, GPR64:$Rt), (ins GPR64sp:$Rn), "ldapr", "\t$Rt, [$Rn], #8", "$Rn = $wback">; |
| } |
| |
| let Predicates = [HasRCPC3, HasNEON] in { |
| // size opc regtype |
| defm STLURb: LRCPC3NEONLoadStoreUnscaledOffset<0b00, 0b00, FPR8 , (outs), (ins FPR8 :$Rt, GPR64sp:$Rn, simm9:$simm), "stlur">; |
| defm STLURh: LRCPC3NEONLoadStoreUnscaledOffset<0b01, 0b00, FPR16 , (outs), (ins FPR16 :$Rt, GPR64sp:$Rn, simm9:$simm), "stlur">; |
| defm STLURs: LRCPC3NEONLoadStoreUnscaledOffset<0b10, 0b00, FPR32 , (outs), (ins FPR32 :$Rt, GPR64sp:$Rn, simm9:$simm), "stlur">; |
| defm STLURd: LRCPC3NEONLoadStoreUnscaledOffset<0b11, 0b00, FPR64 , (outs), (ins FPR64 :$Rt, GPR64sp:$Rn, simm9:$simm), "stlur">; |
| defm STLURq: LRCPC3NEONLoadStoreUnscaledOffset<0b00, 0b10, FPR128, (outs), (ins FPR128:$Rt, GPR64sp:$Rn, simm9:$simm), "stlur">; |
| defm LDAPURb: LRCPC3NEONLoadStoreUnscaledOffset<0b00, 0b01, FPR8 , (outs FPR8 :$Rt), (ins GPR64sp:$Rn, simm9:$simm), "ldapur">; |
| defm LDAPURh: LRCPC3NEONLoadStoreUnscaledOffset<0b01, 0b01, FPR16 , (outs FPR16 :$Rt), (ins GPR64sp:$Rn, simm9:$simm), "ldapur">; |
| defm LDAPURs: LRCPC3NEONLoadStoreUnscaledOffset<0b10, 0b01, FPR32 , (outs FPR32 :$Rt), (ins GPR64sp:$Rn, simm9:$simm), "ldapur">; |
| defm LDAPURd: LRCPC3NEONLoadStoreUnscaledOffset<0b11, 0b01, FPR64 , (outs FPR64 :$Rt), (ins GPR64sp:$Rn, simm9:$simm), "ldapur">; |
| defm LDAPURq: LRCPC3NEONLoadStoreUnscaledOffset<0b00, 0b11, FPR128, (outs FPR128:$Rt), (ins GPR64sp:$Rn, simm9:$simm), "ldapur">; |
| |
| // L |
| def STL1: LRCPC3NEONLdStSingle<0b0, (outs), (ins VecListOned:$Vt, VectorIndexD:$Q, GPR64sp:$Rn) , "stl1", "">; |
| def LDAP1: LRCPC3NEONLdStSingle<0b1, (outs VecListOned:$dst), (ins VecListOned:$Vt, VectorIndexD:$Q, GPR64sp0:$Rn), "ldap1", "$Vt = $dst">; |
| |
| // Aliases for when offset=0 |
| def : InstAlias<"stl1\t$Vt$Q, [$Rn, #0]", (STL1 VecListOned:$Vt, VectorIndexD:$Q, GPR64sp:$Rn)>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // 128-bit System Instructions (FEAT_SYSINSTR128) |
| //===----------------------------------------------------------------------===// |
| let Predicates = [HasD128] in { |
| def SYSPxt : SystemPXtI<0, "sysp">; |
| |
| def SYSPxt_XZR |
| : BaseSystemI<0, (outs), |
| (ins imm0_7:$op1, sys_cr_op:$Cn, sys_cr_op:$Cm, imm0_7:$op2, SyspXzrPairOperand:$xzr_pair), |
| "sysp", "\t$op1, $Cn, $Cm, $op2, $xzr_pair">, |
| Sched<[WriteSys]> |
| { |
| // Had to use a custom decoder because tablegen interprets this as having 4 fields (why?) |
| // and therefore autogenerates a decoder that builds an MC representation that has 4 fields |
| // (decodeToMCInst), but when printing we expect the MC representation to have 5 fields (one |
| // extra for the XZR) because AArch64InstPrinter::printInstruction in AArch64GenAsmWriter.inc |
| // is based off of the asm template (maybe) and therefore wants to print 5 operands. |
| // I could add a bits<5> xzr_pair. But without a way to constrain it to 0b11111 here it would |
| // overlap with the main SYSP instruction. |
| let DecoderMethod = "DecodeSyspXzrInstruction"; |
| bits<3> op1; |
| bits<4> Cn; |
| bits<4> Cm; |
| bits<3> op2; |
| let Inst{22} = 0b1; // override BaseSystemI |
| let Inst{20-19} = 0b01; |
| let Inst{18-16} = op1; |
| let Inst{15-12} = Cn; |
| let Inst{11-8} = Cm; |
| let Inst{7-5} = op2; |
| let Inst{4-0} = 0b11111; |
| } |
| |
| def : InstAlias<"sysp $op1, $Cn, $Cm, $op2", |
| (SYSPxt_XZR imm0_7:$op1, sys_cr_op:$Cn, sys_cr_op:$Cm, imm0_7:$op2, XZR)>; |
| } |
| |
| //--- |
| // 128-bit System Registers (FEAT_SYSREG128) |
| //--- |
| |
| // Instruction encoding: |
| // |
| // 31 22|21|20|19|18 16|15 12|11 8|7 5|4 0 |
| // MRRS 1101010101| 1| 1|o0| op1| Cn| Cm|op2| Rt |
| // MSRR 1101010101| 0| 1|o0| op1| Cn| Cm|op2| Rt |
| |
| // Instruction syntax: |
| // |
| // MRRS <Xt>, <Xt+1>, <sysreg|S<op0>_<op1>_<Cn>_<Cm>_<op2>> |
| // MSRR <sysreg|S<op0>_<op1>_<Cn>_<Cm>_<op2>>, <Xt>, <Xt+1> |
| // |
| // ...where t is even (X0, X2, etc). |
| |
| let Predicates = [HasD128] in { |
| def MRRS : RtSystemI128<1, |
| (outs MrrsMssrPairClassOperand:$Rt), (ins mrs_sysreg_op:$systemreg), |
| "mrrs", "\t$Rt, $systemreg"> |
| { |
| bits<16> systemreg; |
| let Inst{20-5} = systemreg; |
| } |
| |
| def MSRR : RtSystemI128<0, |
| (outs), (ins msr_sysreg_op:$systemreg, MrrsMssrPairClassOperand:$Rt), |
| "msrr", "\t$systemreg, $Rt"> |
| { |
| bits<16> systemreg; |
| let Inst{20-5} = systemreg; |
| } |
| } |
| |
| //===----------------------------===// |
| // 2023 Architecture Extensions: |
| //===----------------------------===// |
| |
| let Predicates = [HasFP8] in { |
| defm F1CVTL : SIMDMixedTwoVectorFP8<0b00, "f1cvtl">; |
| defm F2CVTL : SIMDMixedTwoVectorFP8<0b01, "f2cvtl">; |
| defm BF1CVTL : SIMDMixedTwoVectorFP8<0b10, "bf1cvtl">; |
| defm BF2CVTL : SIMDMixedTwoVectorFP8<0b11, "bf2cvtl">; |
| defm FCVTN_F16_F8 : SIMDThreeSameSizeVectorCvt<"fcvtn">; |
| defm FCVTN_F32_F8 : SIMDThreeVectorCvt<"fcvtn">; |
| defm FSCALE : SIMDThreeSameVectorFP<0b1, 0b1, 0b111, "fscale", null_frag>; |
| } // End let Predicates = [HasFP8] |
| |
| let Predicates = [HasFAMINMAX] in { |
| defm FAMAX : SIMDThreeSameVectorFP<0b0, 0b1, 0b011, "famax", null_frag>; |
| defm FAMIN : SIMDThreeSameVectorFP<0b1, 0b1, 0b011, "famin", null_frag>; |
| } // End let Predicates = [HasFAMAXMIN] |
| |
| let Predicates = [HasFP8FMA] in { |
| defm FMLALBlane : SIMDThreeSameVectorMLAIndex<0b0, "fmlalb">; |
| defm FMLALTlane : SIMDThreeSameVectorMLAIndex<0b1, "fmlalt">; |
| defm FMLALLBBlane : SIMDThreeSameVectorMLALIndex<0b0, 0b00, "fmlallbb">; |
| defm FMLALLBTlane : SIMDThreeSameVectorMLALIndex<0b0, 0b01, "fmlallbt">; |
| defm FMLALLTBlane : SIMDThreeSameVectorMLALIndex<0b1, 0b00, "fmlalltb">; |
| defm FMLALLTTlane : SIMDThreeSameVectorMLALIndex<0b1, 0b01, "fmlalltt">; |
| |
| defm FMLALB : SIMDThreeSameVectorMLA<0b0, "fmlalb">; |
| defm FMLALT : SIMDThreeSameVectorMLA<0b1, "fmlalt">; |
| defm FMLALLBB : SIMDThreeSameVectorMLAL<0b0, 0b00, "fmlallbb">; |
| defm FMLALLBT : SIMDThreeSameVectorMLAL<0b0, 0b01, "fmlallbt">; |
| defm FMLALLTB : SIMDThreeSameVectorMLAL<0b1, 0b00, "fmlalltb">; |
| defm FMLALLTT : SIMDThreeSameVectorMLAL<0b1, 0b01, "fmlalltt">; |
| } // End let Predicates = [HasFP8FMA] |
| |
| let Predicates = [HasFP8DOT2] in { |
| defm FDOTlane : SIMDThreeSameVectorFP8DOT2Index<"fdot">; |
| defm FDOT : SIMDThreeSameVectorDOT2<"fdot">; |
| } // End let Predicates = [HasFP8DOT2] |
| |
| let Predicates = [HasFP8DOT4] in { |
| defm FDOTlane : SIMDThreeSameVectorFP8DOT4Index<"fdot">; |
| defm FDOT : SIMDThreeSameVectorDOT4<"fdot">; |
| } // End let Predicates = [HasFP8DOT4] |
| |
| //===----------------------------------------------------------------------===// |
| // Checked Pointer Arithmetic (FEAT_CPA) |
| //===----------------------------------------------------------------------===// |
| let Predicates = [HasCPA] in { |
| // Scalar add/subtract |
| defm ADDPT : AddSubCPA<0, "addpt">; |
| defm SUBPT : AddSubCPA<1, "subpt">; |
| |
| // Scalar multiply-add/subtract |
| def MADDPT : MulAccumCPA<0, "maddpt">; |
| def MSUBPT : MulAccumCPA<1, "msubpt">; |
| } |
| |
| def round_v4fp32_to_v4bf16 : |
| OutPatFrag<(ops node:$Rn), |
| // NaN? Round : Quiet(NaN) |
| (BSPv16i8 (FCMEQv4f32 $Rn, $Rn), |
| (ADDv4i32 |
| (ADDv4i32 $Rn, |
| // Extract the LSB of the fp32 *truncated* to bf16. |
| (ANDv16i8 (USHRv4i32_shift V128:$Rn, (i32 16)), |
| (MOVIv4i32 (i32 1), (i32 0)))), |
| // Bias which will help us break ties correctly. |
| (MOVIv4s_msl (i32 127), (i32 264))), |
| // Set the quiet bit in the NaN. |
| (ORRv4i32 $Rn, (i32 64), (i32 16)))>; |
| |
| multiclass PromoteUnaryv8f16Tov4f32<SDPatternOperator InOp, Instruction OutInst> { |
| let Predicates = [HasNoFullFP16] in |
| def : Pat<(InOp (v8f16 V128:$Rn)), |
| (v8f16 (FCVTNv8i16 |
| (INSERT_SUBREG (IMPLICIT_DEF), |
| (v4f16 (FCVTNv4i16 |
| (v4f32 (OutInst |
| (v4f32 (FCVTLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub)))))))), |
| dsub), |
| (v4f32 (OutInst (v4f32 (FCVTLv8i16 V128:$Rn))))))>; |
| |
| let Predicates = [HasBF16] in |
| def : Pat<(InOp (v8bf16 V128:$Rn)), |
| (v8bf16 (BFCVTN2 |
| (v8bf16 (BFCVTN |
| (v4f32 (OutInst |
| (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub)))))))), |
| (v4f32 (OutInst (v4f32 (SHLLv8i16 V128:$Rn))))))>; |
| |
| let Predicates = [HasNoBF16] in |
| def : Pat<(InOp (v8bf16 V128:$Rn)), |
| (UZP2v8i16 |
| (round_v4fp32_to_v4bf16 (v4f32 (OutInst |
| (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub))))))), |
| (round_v4fp32_to_v4bf16 (v4f32 (OutInst |
| (v4f32 (SHLLv8i16 V128:$Rn))))))>; |
| } |
| defm : PromoteUnaryv8f16Tov4f32<any_fceil, FRINTPv4f32>; |
| defm : PromoteUnaryv8f16Tov4f32<any_ffloor, FRINTMv4f32>; |
| defm : PromoteUnaryv8f16Tov4f32<any_fnearbyint, FRINTIv4f32>; |
| defm : PromoteUnaryv8f16Tov4f32<any_fround, FRINTAv4f32>; |
| defm : PromoteUnaryv8f16Tov4f32<any_froundeven, FRINTNv4f32>; |
| defm : PromoteUnaryv8f16Tov4f32<any_frint, FRINTXv4f32>; |
| defm : PromoteUnaryv8f16Tov4f32<any_ftrunc, FRINTZv4f32>; |
| |
| multiclass PromoteBinaryv8f16Tov4f32<SDPatternOperator InOp, Instruction OutInst> { |
| let Predicates = [HasNoFullFP16] in |
| def : Pat<(InOp (v8f16 V128:$Rn), (v8f16 V128:$Rm)), |
| (v8f16 (FCVTNv8i16 |
| (INSERT_SUBREG (IMPLICIT_DEF), |
| (v4f16 (FCVTNv4i16 |
| (v4f32 (OutInst |
| (v4f32 (FCVTLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub)))), |
| (v4f32 (FCVTLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rm, dsub)))))))), |
| dsub), |
| (v4f32 (OutInst (v4f32 (FCVTLv8i16 V128:$Rn)), |
| (v4f32 (FCVTLv8i16 V128:$Rm))))))>; |
| |
| let Predicates = [HasBF16] in |
| def : Pat<(InOp (v8bf16 V128:$Rn), (v8bf16 V128:$Rm)), |
| (v8bf16 (BFCVTN2 |
| (v8bf16 (BFCVTN |
| (v4f32 (OutInst |
| (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub)))), |
| (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rm, dsub)))))))), |
| (v4f32 (OutInst (v4f32 (SHLLv8i16 V128:$Rn)), |
| (v4f32 (SHLLv8i16 V128:$Rm))))))>; |
| |
| let Predicates = [HasNoBF16] in |
| def : Pat<(InOp (v8bf16 V128:$Rn), (v8bf16 V128:$Rm)), |
| (UZP2v8i16 |
| (round_v4fp32_to_v4bf16 (v4f32 (OutInst |
| (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rn, dsub)))), |
| (v4f32 (SHLLv4i16 (v4i16 (EXTRACT_SUBREG V128:$Rm, dsub))))))), |
| (round_v4fp32_to_v4bf16 (v4f32 (OutInst |
| (v4f32 (SHLLv8i16 V128:$Rn)), |
| (v4f32 (SHLLv8i16 V128:$Rm))))))>; |
| } |
| defm : PromoteBinaryv8f16Tov4f32<any_fadd, FADDv4f32>; |
| defm : PromoteBinaryv8f16Tov4f32<any_fdiv, FDIVv4f32>; |
| defm : PromoteBinaryv8f16Tov4f32<any_fmul, FMULv4f32>; |
| defm : PromoteBinaryv8f16Tov4f32<any_fsub, FSUBv4f32>; |
| |
| include "AArch64InstrAtomics.td" |
| include "AArch64SVEInstrInfo.td" |
| include "AArch64SMEInstrInfo.td" |
| include "AArch64InstrGISel.td" |