blob: f27c80b5d1a1cf7aff852a9acca0ab9797efceff [file] [log] [blame]
//===-- ProcessMachCore.cpp ------------------------------------------*- C++
//-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <errno.h>
#include <stdlib.h>
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Threading.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/ModuleSpec.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/Section.h"
#include "lldb/Host/Host.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/MemoryRegionInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/DataBuffer.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/State.h"
#include "ProcessMachCore.h"
#include "Plugins/Process/Utility/StopInfoMachException.h"
#include "ThreadMachCore.h"
// Needed for the plug-in names for the dynamic loaders.
#include "lldb/Host/SafeMachO.h"
#include "Plugins/DynamicLoader/Darwin-Kernel/DynamicLoaderDarwinKernel.h"
#include "Plugins/DynamicLoader/MacOSX-DYLD/DynamicLoaderMacOSXDYLD.h"
#include "Plugins/ObjectFile/Mach-O/ObjectFileMachO.h"
#include <memory>
#include <mutex>
using namespace lldb;
using namespace lldb_private;
ConstString ProcessMachCore::GetPluginNameStatic() {
static ConstString g_name("mach-o-core");
return g_name;
}
const char *ProcessMachCore::GetPluginDescriptionStatic() {
return "Mach-O core file debugging plug-in.";
}
void ProcessMachCore::Terminate() {
PluginManager::UnregisterPlugin(ProcessMachCore::CreateInstance);
}
lldb::ProcessSP ProcessMachCore::CreateInstance(lldb::TargetSP target_sp,
ListenerSP listener_sp,
const FileSpec *crash_file) {
lldb::ProcessSP process_sp;
if (crash_file) {
const size_t header_size = sizeof(llvm::MachO::mach_header);
auto data_sp = FileSystem::Instance().CreateDataBuffer(
crash_file->GetPath(), header_size, 0);
if (data_sp && data_sp->GetByteSize() == header_size) {
DataExtractor data(data_sp, lldb::eByteOrderLittle, 4);
lldb::offset_t data_offset = 0;
llvm::MachO::mach_header mach_header;
if (ObjectFileMachO::ParseHeader(data, &data_offset, mach_header)) {
if (mach_header.filetype == llvm::MachO::MH_CORE)
process_sp = std::make_shared<ProcessMachCore>(target_sp, listener_sp,
*crash_file);
}
}
}
return process_sp;
}
bool ProcessMachCore::CanDebug(lldb::TargetSP target_sp,
bool plugin_specified_by_name) {
if (plugin_specified_by_name)
return true;
// For now we are just making sure the file exists for a given module
if (!m_core_module_sp && FileSystem::Instance().Exists(m_core_file)) {
// Don't add the Target's architecture to the ModuleSpec - we may be
// working with a core file that doesn't have the correct cpusubtype in the
// header but we should still try to use it -
// ModuleSpecList::FindMatchingModuleSpec enforces a strict arch mach.
ModuleSpec core_module_spec(m_core_file);
Status error(ModuleList::GetSharedModule(core_module_spec, m_core_module_sp,
NULL, NULL, NULL));
if (m_core_module_sp) {
ObjectFile *core_objfile = m_core_module_sp->GetObjectFile();
if (core_objfile && core_objfile->GetType() == ObjectFile::eTypeCoreFile)
return true;
}
}
return false;
}
// ProcessMachCore constructor
ProcessMachCore::ProcessMachCore(lldb::TargetSP target_sp,
ListenerSP listener_sp,
const FileSpec &core_file)
: Process(target_sp, listener_sp), m_core_aranges(), m_core_range_infos(),
m_core_module_sp(), m_core_file(core_file),
m_dyld_addr(LLDB_INVALID_ADDRESS),
m_mach_kernel_addr(LLDB_INVALID_ADDRESS), m_dyld_plugin_name() {}
// Destructor
ProcessMachCore::~ProcessMachCore() {
Clear();
// We need to call finalize on the process before destroying ourselves to
// make sure all of the broadcaster cleanup goes as planned. If we destruct
// this class, then Process::~Process() might have problems trying to fully
// destroy the broadcaster.
Finalize();
}
// PluginInterface
ConstString ProcessMachCore::GetPluginName() { return GetPluginNameStatic(); }
uint32_t ProcessMachCore::GetPluginVersion() { return 1; }
bool ProcessMachCore::GetDynamicLoaderAddress(lldb::addr_t addr) {
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER |
LIBLLDB_LOG_PROCESS));
llvm::MachO::mach_header header;
Status error;
if (DoReadMemory(addr, &header, sizeof(header), error) != sizeof(header))
return false;
if (header.magic == llvm::MachO::MH_CIGAM ||
header.magic == llvm::MachO::MH_CIGAM_64) {
header.magic = llvm::ByteSwap_32(header.magic);
header.cputype = llvm::ByteSwap_32(header.cputype);
header.cpusubtype = llvm::ByteSwap_32(header.cpusubtype);
header.filetype = llvm::ByteSwap_32(header.filetype);
header.ncmds = llvm::ByteSwap_32(header.ncmds);
header.sizeofcmds = llvm::ByteSwap_32(header.sizeofcmds);
header.flags = llvm::ByteSwap_32(header.flags);
}
// TODO: swap header if needed...
// printf("0x%16.16" PRIx64 ": magic = 0x%8.8x, file_type= %u\n", vaddr,
// header.magic, header.filetype);
if (header.magic == llvm::MachO::MH_MAGIC ||
header.magic == llvm::MachO::MH_MAGIC_64) {
// Check MH_EXECUTABLE to see if we can find the mach image that contains
// the shared library list. The dynamic loader (dyld) is what contains the
// list for user applications, and the mach kernel contains a global that
// has the list of kexts to load
switch (header.filetype) {
case llvm::MachO::MH_DYLINKER:
// printf("0x%16.16" PRIx64 ": file_type = MH_DYLINKER\n", vaddr);
// Address of dyld "struct mach_header" in the core file
if (log)
log->Printf("ProcessMachCore::GetDynamicLoaderAddress found a user "
"process dyld binary image at 0x%" PRIx64,
addr);
m_dyld_addr = addr;
return true;
case llvm::MachO::MH_EXECUTE:
// printf("0x%16.16" PRIx64 ": file_type = MH_EXECUTE\n", vaddr);
// Check MH_EXECUTABLE file types to see if the dynamic link object flag
// is NOT set. If it isn't, then we have a mach_kernel.
if ((header.flags & llvm::MachO::MH_DYLDLINK) == 0) {
if (log)
log->Printf("ProcessMachCore::GetDynamicLoaderAddress found a mach "
"kernel binary image at 0x%" PRIx64,
addr);
// Address of the mach kernel "struct mach_header" in the core file.
m_mach_kernel_addr = addr;
return true;
}
break;
}
}
return false;
}
// Process Control
Status ProcessMachCore::DoLoadCore() {
Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_DYNAMIC_LOADER |
LIBLLDB_LOG_PROCESS));
Status error;
if (!m_core_module_sp) {
error.SetErrorString("invalid core module");
return error;
}
ObjectFile *core_objfile = m_core_module_sp->GetObjectFile();
if (core_objfile == NULL) {
error.SetErrorString("invalid core object file");
return error;
}
if (core_objfile->GetNumThreadContexts() == 0) {
error.SetErrorString("core file doesn't contain any LC_THREAD load "
"commands, or the LC_THREAD architecture is not "
"supported in this lldb");
return error;
}
SectionList *section_list = core_objfile->GetSectionList();
if (section_list == NULL) {
error.SetErrorString("core file has no sections");
return error;
}
const uint32_t num_sections = section_list->GetNumSections(0);
if (num_sections == 0) {
error.SetErrorString("core file has no sections");
return error;
}
SetCanJIT(false);
llvm::MachO::mach_header header;
DataExtractor data(&header, sizeof(header),
m_core_module_sp->GetArchitecture().GetByteOrder(),
m_core_module_sp->GetArchitecture().GetAddressByteSize());
bool ranges_are_sorted = true;
addr_t vm_addr = 0;
for (uint32_t i = 0; i < num_sections; ++i) {
Section *section = section_list->GetSectionAtIndex(i).get();
if (section) {
lldb::addr_t section_vm_addr = section->GetFileAddress();
FileRange file_range(section->GetFileOffset(), section->GetFileSize());
VMRangeToFileOffset::Entry range_entry(
section_vm_addr, section->GetByteSize(), file_range);
if (vm_addr > section_vm_addr)
ranges_are_sorted = false;
vm_addr = section->GetFileAddress();
VMRangeToFileOffset::Entry *last_entry = m_core_aranges.Back();
// printf ("LC_SEGMENT[%u] arange=[0x%16.16" PRIx64 " -
// 0x%16.16" PRIx64 "), frange=[0x%8.8x - 0x%8.8x)\n",
// i,
// range_entry.GetRangeBase(),
// range_entry.GetRangeEnd(),
// range_entry.data.GetRangeBase(),
// range_entry.data.GetRangeEnd());
if (last_entry &&
last_entry->GetRangeEnd() == range_entry.GetRangeBase() &&
last_entry->data.GetRangeEnd() == range_entry.data.GetRangeBase()) {
last_entry->SetRangeEnd(range_entry.GetRangeEnd());
last_entry->data.SetRangeEnd(range_entry.data.GetRangeEnd());
// puts("combine");
} else {
m_core_aranges.Append(range_entry);
}
// Some core files don't fill in the permissions correctly. If that is
// the case assume read + execute so clients don't think the memory is
// not readable, or executable. The memory isn't writable since this
// plug-in doesn't implement DoWriteMemory.
uint32_t permissions = section->GetPermissions();
if (permissions == 0)
permissions = lldb::ePermissionsReadable | lldb::ePermissionsExecutable;
m_core_range_infos.Append(VMRangeToPermissions::Entry(
section_vm_addr, section->GetByteSize(), permissions));
}
}
if (!ranges_are_sorted) {
m_core_aranges.Sort();
m_core_range_infos.Sort();
}
bool found_main_binary_definitively = false;
addr_t objfile_binary_addr;
UUID objfile_binary_uuid;
if (core_objfile->GetCorefileMainBinaryInfo (objfile_binary_addr, objfile_binary_uuid))
{
if (objfile_binary_addr != LLDB_INVALID_ADDRESS)
{
m_mach_kernel_addr = objfile_binary_addr;
found_main_binary_definitively = true;
if (log)
log->Printf ("ProcessMachCore::DoLoadCore: using kernel address 0x%" PRIx64
" from LC_NOTE 'main bin spec' load command.", m_mach_kernel_addr);
}
}
// This checks for the presence of an LC_IDENT string in a core file;
// LC_IDENT is very obsolete and should not be used in new code, but if the
// load command is present, let's use the contents.
std::string corefile_identifier = core_objfile->GetIdentifierString();
if (!found_main_binary_definitively &&
corefile_identifier.find("Darwin Kernel") != std::string::npos) {
UUID uuid;
addr_t addr = LLDB_INVALID_ADDRESS;
if (corefile_identifier.find("UUID=") != std::string::npos) {
size_t p = corefile_identifier.find("UUID=") + strlen("UUID=");
std::string uuid_str = corefile_identifier.substr(p, 36);
uuid.SetFromStringRef(uuid_str);
}
if (corefile_identifier.find("stext=") != std::string::npos) {
size_t p = corefile_identifier.find("stext=") + strlen("stext=");
if (corefile_identifier[p] == '0' && corefile_identifier[p + 1] == 'x') {
errno = 0;
addr = ::strtoul(corefile_identifier.c_str() + p, NULL, 16);
if (errno != 0 || addr == 0)
addr = LLDB_INVALID_ADDRESS;
}
}
if (uuid.IsValid() && addr != LLDB_INVALID_ADDRESS) {
m_mach_kernel_addr = addr;
found_main_binary_definitively = true;
if (log)
log->Printf(
"ProcessMachCore::DoLoadCore: Using the kernel address 0x%" PRIx64
" from LC_IDENT/LC_NOTE 'kern ver str' string: '%s'",
addr, corefile_identifier.c_str());
}
}
if (!found_main_binary_definitively &&
(m_dyld_addr == LLDB_INVALID_ADDRESS ||
m_mach_kernel_addr == LLDB_INVALID_ADDRESS)) {
// We need to locate the main executable in the memory ranges we have in
// the core file. We need to search for both a user-process dyld binary
// and a kernel binary in memory; we must look at all the pages in the
// binary so we don't miss one or the other. Step through all memory
// segments searching for a kernel binary and for a user process dyld --
// we'll decide which to prefer later if both are present.
const size_t num_core_aranges = m_core_aranges.GetSize();
for (size_t i = 0; i < num_core_aranges; ++i) {
const VMRangeToFileOffset::Entry *entry =
m_core_aranges.GetEntryAtIndex(i);
lldb::addr_t section_vm_addr_start = entry->GetRangeBase();
lldb::addr_t section_vm_addr_end = entry->GetRangeEnd();
for (lldb::addr_t section_vm_addr = section_vm_addr_start;
section_vm_addr < section_vm_addr_end; section_vm_addr += 0x1000) {
GetDynamicLoaderAddress(section_vm_addr);
}
}
}
if (!found_main_binary_definitively &&
m_mach_kernel_addr != LLDB_INVALID_ADDRESS) {
// In the case of multiple kernel images found in the core file via
// exhaustive search, we may not pick the correct one. See if the
// DynamicLoaderDarwinKernel's search heuristics might identify the correct
// one. Most of the time, I expect the address from SearchForDarwinKernel()
// will be the same as the address we found via exhaustive search.
if (!GetTarget().GetArchitecture().IsValid() && m_core_module_sp.get()) {
GetTarget().SetArchitecture(m_core_module_sp->GetArchitecture());
}
// SearchForDarwinKernel will end up calling back into this this class in
// the GetImageInfoAddress method which will give it the
// m_mach_kernel_addr/m_dyld_addr it already has. Save that aside and set
// m_mach_kernel_addr/m_dyld_addr to an invalid address temporarily so
// DynamicLoaderDarwinKernel does a real search for the kernel using its
// own heuristics.
addr_t saved_mach_kernel_addr = m_mach_kernel_addr;
addr_t saved_user_dyld_addr = m_dyld_addr;
m_mach_kernel_addr = LLDB_INVALID_ADDRESS;
m_dyld_addr = LLDB_INVALID_ADDRESS;
addr_t better_kernel_address =
DynamicLoaderDarwinKernel::SearchForDarwinKernel(this);
m_mach_kernel_addr = saved_mach_kernel_addr;
m_dyld_addr = saved_user_dyld_addr;
if (better_kernel_address != LLDB_INVALID_ADDRESS) {
if (log)
log->Printf("ProcessMachCore::DoLoadCore: Using the kernel address "
"from DynamicLoaderDarwinKernel");
m_mach_kernel_addr = better_kernel_address;
}
}
// If we found both a user-process dyld and a kernel binary, we need to
// decide which to prefer.
if (GetCorefilePreference() == eKernelCorefile) {
if (m_mach_kernel_addr != LLDB_INVALID_ADDRESS) {
if (log)
log->Printf("ProcessMachCore::DoLoadCore: Using kernel corefile image "
"at 0x%" PRIx64,
m_mach_kernel_addr);
m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic();
} else if (m_dyld_addr != LLDB_INVALID_ADDRESS) {
if (log)
log->Printf("ProcessMachCore::DoLoadCore: Using user process dyld "
"image at 0x%" PRIx64,
m_dyld_addr);
m_dyld_plugin_name = DynamicLoaderMacOSXDYLD::GetPluginNameStatic();
}
} else {
if (m_dyld_addr != LLDB_INVALID_ADDRESS) {
if (log)
log->Printf("ProcessMachCore::DoLoadCore: Using user process dyld "
"image at 0x%" PRIx64,
m_dyld_addr);
m_dyld_plugin_name = DynamicLoaderMacOSXDYLD::GetPluginNameStatic();
} else if (m_mach_kernel_addr != LLDB_INVALID_ADDRESS) {
if (log)
log->Printf("ProcessMachCore::DoLoadCore: Using kernel corefile image "
"at 0x%" PRIx64,
m_mach_kernel_addr);
m_dyld_plugin_name = DynamicLoaderDarwinKernel::GetPluginNameStatic();
}
}
if (m_dyld_plugin_name != DynamicLoaderMacOSXDYLD::GetPluginNameStatic()) {
// For non-user process core files, the permissions on the core file
// segments are usually meaningless, they may be just "read", because we're
// dealing with kernel coredumps or early startup coredumps and the dumper
// is grabbing pages of memory without knowing what they are. If they
// aren't marked as "exeuctable", that can break the unwinder which will
// check a pc value to see if it is in an executable segment and stop the
// backtrace early if it is not ("executable" and "unknown" would both be
// fine, but "not executable" will break the unwinder).
size_t core_range_infos_size = m_core_range_infos.GetSize();
for (size_t i = 0; i < core_range_infos_size; i++) {
VMRangeToPermissions::Entry *ent =
m_core_range_infos.GetMutableEntryAtIndex(i);
ent->data = lldb::ePermissionsReadable | lldb::ePermissionsExecutable;
}
}
// Even if the architecture is set in the target, we need to override it to
// match the core file which is always single arch.
ArchSpec arch(m_core_module_sp->GetArchitecture());
if (arch.GetCore() == ArchSpec::eCore_x86_32_i486) {
arch = Platform::GetAugmentedArchSpec(GetTarget().GetPlatform().get(), "i386");
}
if (arch.IsValid())
GetTarget().SetArchitecture(arch);
return error;
}
lldb_private::DynamicLoader *ProcessMachCore::GetDynamicLoader() {
if (m_dyld_up.get() == NULL)
m_dyld_up.reset(DynamicLoader::FindPlugin(
this,
m_dyld_plugin_name.IsEmpty() ? NULL : m_dyld_plugin_name.GetCString()));
return m_dyld_up.get();
}
bool ProcessMachCore::UpdateThreadList(ThreadList &old_thread_list,
ThreadList &new_thread_list) {
if (old_thread_list.GetSize(false) == 0) {
// Make up the thread the first time this is called so we can setup our one
// and only core thread state.
ObjectFile *core_objfile = m_core_module_sp->GetObjectFile();
if (core_objfile) {
const uint32_t num_threads = core_objfile->GetNumThreadContexts();
for (lldb::tid_t tid = 0; tid < num_threads; ++tid) {
ThreadSP thread_sp(new ThreadMachCore(*this, tid));
new_thread_list.AddThread(thread_sp);
}
}
} else {
const uint32_t num_threads = old_thread_list.GetSize(false);
for (uint32_t i = 0; i < num_threads; ++i)
new_thread_list.AddThread(old_thread_list.GetThreadAtIndex(i, false));
}
return new_thread_list.GetSize(false) > 0;
}
void ProcessMachCore::RefreshStateAfterStop() {
// Let all threads recover from stopping and do any clean up based on the
// previous thread state (if any).
m_thread_list.RefreshStateAfterStop();
// SetThreadStopInfo (m_last_stop_packet);
}
Status ProcessMachCore::DoDestroy() { return Status(); }
// Process Queries
bool ProcessMachCore::IsAlive() { return true; }
bool ProcessMachCore::WarnBeforeDetach() const { return false; }
// Process Memory
size_t ProcessMachCore::ReadMemory(addr_t addr, void *buf, size_t size,
Status &error) {
// Don't allow the caching that lldb_private::Process::ReadMemory does since
// in core files we have it all cached our our core file anyway.
return DoReadMemory(addr, buf, size, error);
}
size_t ProcessMachCore::DoReadMemory(addr_t addr, void *buf, size_t size,
Status &error) {
ObjectFile *core_objfile = m_core_module_sp->GetObjectFile();
size_t bytes_read = 0;
if (core_objfile) {
// Segments are not always contiguous in mach-o core files. We have core
// files that have segments like:
// Address Size File off File size
// ---------- ---------- ---------- ----------
// LC_SEGMENT 0x000f6000 0x00001000 0x1d509ee8 0x00001000 --- --- 0
// 0x00000000 __TEXT LC_SEGMENT 0x0f600000 0x00100000 0x1d50aee8 0x00100000
// --- --- 0 0x00000000 __TEXT LC_SEGMENT 0x000f7000 0x00001000
// 0x1d60aee8 0x00001000 --- --- 0 0x00000000 __TEXT
//
// Any if the user executes the following command:
//
// (lldb) mem read 0xf6ff0
//
// We would attempt to read 32 bytes from 0xf6ff0 but would only get 16
// unless we loop through consecutive memory ranges that are contiguous in
// the address space, but not in the file data.
while (bytes_read < size) {
const addr_t curr_addr = addr + bytes_read;
const VMRangeToFileOffset::Entry *core_memory_entry =
m_core_aranges.FindEntryThatContains(curr_addr);
if (core_memory_entry) {
const addr_t offset = curr_addr - core_memory_entry->GetRangeBase();
const addr_t bytes_left = core_memory_entry->GetRangeEnd() - curr_addr;
const size_t bytes_to_read =
std::min(size - bytes_read, (size_t)bytes_left);
const size_t curr_bytes_read = core_objfile->CopyData(
core_memory_entry->data.GetRangeBase() + offset, bytes_to_read,
(char *)buf + bytes_read);
if (curr_bytes_read == 0)
break;
bytes_read += curr_bytes_read;
} else {
// Only set the error if we didn't read any bytes
if (bytes_read == 0)
error.SetErrorStringWithFormat(
"core file does not contain 0x%" PRIx64, curr_addr);
break;
}
}
}
return bytes_read;
}
Status ProcessMachCore::GetMemoryRegionInfo(addr_t load_addr,
MemoryRegionInfo &region_info) {
region_info.Clear();
const VMRangeToPermissions::Entry *permission_entry =
m_core_range_infos.FindEntryThatContainsOrFollows(load_addr);
if (permission_entry) {
if (permission_entry->Contains(load_addr)) {
region_info.GetRange().SetRangeBase(permission_entry->GetRangeBase());
region_info.GetRange().SetRangeEnd(permission_entry->GetRangeEnd());
const Flags permissions(permission_entry->data);
region_info.SetReadable(permissions.Test(ePermissionsReadable)
? MemoryRegionInfo::eYes
: MemoryRegionInfo::eNo);
region_info.SetWritable(permissions.Test(ePermissionsWritable)
? MemoryRegionInfo::eYes
: MemoryRegionInfo::eNo);
region_info.SetExecutable(permissions.Test(ePermissionsExecutable)
? MemoryRegionInfo::eYes
: MemoryRegionInfo::eNo);
region_info.SetMapped(MemoryRegionInfo::eYes);
} else if (load_addr < permission_entry->GetRangeBase()) {
region_info.GetRange().SetRangeBase(load_addr);
region_info.GetRange().SetRangeEnd(permission_entry->GetRangeBase());
region_info.SetReadable(MemoryRegionInfo::eNo);
region_info.SetWritable(MemoryRegionInfo::eNo);
region_info.SetExecutable(MemoryRegionInfo::eNo);
region_info.SetMapped(MemoryRegionInfo::eNo);
}
return Status();
}
region_info.GetRange().SetRangeBase(load_addr);
region_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
region_info.SetReadable(MemoryRegionInfo::eNo);
region_info.SetWritable(MemoryRegionInfo::eNo);
region_info.SetExecutable(MemoryRegionInfo::eNo);
region_info.SetMapped(MemoryRegionInfo::eNo);
return Status();
}
void ProcessMachCore::Clear() { m_thread_list.Clear(); }
void ProcessMachCore::Initialize() {
static llvm::once_flag g_once_flag;
llvm::call_once(g_once_flag, []() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance);
});
}
addr_t ProcessMachCore::GetImageInfoAddress() {
// If we found both a user-process dyld and a kernel binary, we need to
// decide which to prefer.
if (GetCorefilePreference() == eKernelCorefile) {
if (m_mach_kernel_addr != LLDB_INVALID_ADDRESS) {
return m_mach_kernel_addr;
}
return m_dyld_addr;
} else {
if (m_dyld_addr != LLDB_INVALID_ADDRESS) {
return m_dyld_addr;
}
return m_mach_kernel_addr;
}
}
lldb_private::ObjectFile *ProcessMachCore::GetCoreObjectFile() {
return m_core_module_sp->GetObjectFile();
}