blob: d24bea5783c631643ba2cecb274e90ccb62803ba [file] [log] [blame]
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import, division, print_function
import math
from cryptography import utils
from cryptography.exceptions import (
AlreadyFinalized, InvalidSignature, UnsupportedAlgorithm, _Reasons
)
from cryptography.hazmat.primitives import hashes, interfaces
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.primitives.asymmetric.padding import (
MGF1, OAEP, PKCS1v15, PSS
)
from cryptography.hazmat.primitives.interfaces import (
RSAPrivateKeyWithNumbers, RSAPublicKeyWithNumbers
)
def _get_rsa_pss_salt_length(pss, key_size, digest_size):
salt = pss._salt_length
if salt is MGF1.MAX_LENGTH or salt is PSS.MAX_LENGTH:
# bit length - 1 per RFC 3447
emlen = int(math.ceil((key_size - 1) / 8.0))
salt_length = emlen - digest_size - 2
assert salt_length >= 0
return salt_length
else:
return salt
def _enc_dec_rsa(backend, key, data, padding):
if not isinstance(padding, interfaces.AsymmetricPadding):
raise TypeError("Padding must be an instance of AsymmetricPadding.")
if isinstance(padding, PKCS1v15):
padding_enum = backend._lib.RSA_PKCS1_PADDING
elif isinstance(padding, OAEP):
padding_enum = backend._lib.RSA_PKCS1_OAEP_PADDING
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
if not isinstance(padding._mgf._algorithm, hashes.SHA1):
raise UnsupportedAlgorithm(
"This backend supports only SHA1 inside MGF1 when "
"using OAEP.",
_Reasons.UNSUPPORTED_HASH
)
if padding._label is not None and padding._label != b"":
raise ValueError("This backend does not support OAEP labels.")
if not isinstance(padding._algorithm, hashes.SHA1):
raise UnsupportedAlgorithm(
"This backend only supports SHA1 when using OAEP.",
_Reasons.UNSUPPORTED_HASH
)
else:
raise UnsupportedAlgorithm(
"{0} is not supported by this backend.".format(
padding.name
),
_Reasons.UNSUPPORTED_PADDING
)
if backend._lib.Cryptography_HAS_PKEY_CTX:
return _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum)
else:
return _enc_dec_rsa_098(backend, key, data, padding_enum)
def _enc_dec_rsa_pkey_ctx(backend, key, data, padding_enum):
if isinstance(key, _RSAPublicKey):
init = backend._lib.EVP_PKEY_encrypt_init
crypt = backend._lib.Cryptography_EVP_PKEY_encrypt
else:
init = backend._lib.EVP_PKEY_decrypt_init
crypt = backend._lib.Cryptography_EVP_PKEY_decrypt
pkey_ctx = backend._lib.EVP_PKEY_CTX_new(
key._evp_pkey, backend._ffi.NULL
)
assert pkey_ctx != backend._ffi.NULL
pkey_ctx = backend._ffi.gc(pkey_ctx, backend._lib.EVP_PKEY_CTX_free)
res = init(pkey_ctx)
assert res == 1
res = backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, padding_enum)
assert res > 0
buf_size = backend._lib.EVP_PKEY_size(key._evp_pkey)
assert buf_size > 0
outlen = backend._ffi.new("size_t *", buf_size)
buf = backend._ffi.new("char[]", buf_size)
res = crypt(pkey_ctx, buf, outlen, data, len(data))
if res <= 0:
_handle_rsa_enc_dec_error(backend, key)
return backend._ffi.buffer(buf)[:outlen[0]]
def _enc_dec_rsa_098(backend, key, data, padding_enum):
if isinstance(key, _RSAPublicKey):
crypt = backend._lib.RSA_public_encrypt
else:
crypt = backend._lib.RSA_private_decrypt
key_size = backend._lib.RSA_size(key._rsa_cdata)
assert key_size > 0
buf = backend._ffi.new("unsigned char[]", key_size)
res = crypt(len(data), data, buf, key._rsa_cdata, padding_enum)
if res < 0:
_handle_rsa_enc_dec_error(backend, key)
return backend._ffi.buffer(buf)[:res]
def _handle_rsa_enc_dec_error(backend, key):
errors = backend._consume_errors()
assert errors
assert errors[0].lib == backend._lib.ERR_LIB_RSA
if isinstance(key, _RSAPublicKey):
assert (errors[0].reason ==
backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
raise ValueError(
"Data too long for key size. Encrypt less data or use a "
"larger key size."
)
else:
assert (
errors[0].reason == backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_01 or
errors[0].reason == backend._lib.RSA_R_BLOCK_TYPE_IS_NOT_02
)
raise ValueError("Decryption failed.")
@utils.register_interface(interfaces.AsymmetricSignatureContext)
class _RSASignatureContext(object):
def __init__(self, backend, private_key, padding, algorithm):
self._backend = backend
self._private_key = private_key
if not isinstance(padding, interfaces.AsymmetricPadding):
raise TypeError(
"Expected provider of interfaces.AsymmetricPadding.")
self._pkey_size = self._backend._lib.EVP_PKEY_size(
self._private_key._evp_pkey
)
if isinstance(padding, PKCS1v15):
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._finalize_method = self._finalize_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
else:
self._finalize_method = self._finalize_pkcs1
elif isinstance(padding, PSS):
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
# Size of key in bytes - 2 is the maximum
# PSS signature length (salt length is checked later)
assert self._pkey_size > 0
if self._pkey_size - algorithm.digest_size - 2 < 0:
raise ValueError("Digest too large for key size. Use a larger "
"key.")
if not self._backend._mgf1_hash_supported(padding._mgf._algorithm):
raise UnsupportedAlgorithm(
"When OpenSSL is older than 1.0.1 then only SHA1 is "
"supported with MGF1.",
_Reasons.UNSUPPORTED_HASH
)
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._finalize_method = self._finalize_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
else:
self._finalize_method = self._finalize_pss
else:
raise UnsupportedAlgorithm(
"{0} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING
)
self._padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def finalize(self):
evp_md = self._backend._lib.EVP_get_digestbyname(
self._algorithm.name.encode("ascii"))
assert evp_md != self._backend._ffi.NULL
return self._finalize_method(evp_md)
def _finalize_pkey_ctx(self, evp_md):
pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
self._private_key._evp_pkey, self._backend._ffi.NULL
)
assert pkey_ctx != self._backend._ffi.NULL
pkey_ctx = self._backend._ffi.gc(pkey_ctx,
self._backend._lib.EVP_PKEY_CTX_free)
res = self._backend._lib.EVP_PKEY_sign_init(pkey_ctx)
assert res == 1
res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
pkey_ctx, evp_md)
assert res > 0
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, self._padding_enum)
assert res > 0
if isinstance(self._padding, PSS):
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
pkey_ctx,
_get_rsa_pss_salt_length(
self._padding,
self._private_key.key_size,
self._hash_ctx.algorithm.digest_size
)
)
assert res > 0
if self._backend._lib.Cryptography_HAS_MGF1_MD:
# MGF1 MD is configurable in OpenSSL 1.0.1+
mgf1_md = self._backend._lib.EVP_get_digestbyname(
self._padding._mgf._algorithm.name.encode("ascii"))
assert mgf1_md != self._backend._ffi.NULL
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
pkey_ctx, mgf1_md
)
assert res > 0
data_to_sign = self._hash_ctx.finalize()
buflen = self._backend._ffi.new("size_t *")
res = self._backend._lib.EVP_PKEY_sign(
pkey_ctx,
self._backend._ffi.NULL,
buflen,
data_to_sign,
len(data_to_sign)
)
assert res == 1
buf = self._backend._ffi.new("unsigned char[]", buflen[0])
res = self._backend._lib.EVP_PKEY_sign(
pkey_ctx, buf, buflen, data_to_sign, len(data_to_sign))
if res != 1:
errors = self._backend._consume_errors()
assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
reason = None
if (errors[0].reason ==
self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE):
reason = ("Salt length too long for key size. Try using "
"MAX_LENGTH instead.")
elif (errors[0].reason ==
self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY):
reason = "Digest too large for key size. Use a larger key."
assert reason is not None
raise ValueError(reason)
return self._backend._ffi.buffer(buf)[:]
def _finalize_pkcs1(self, evp_md):
if self._hash_ctx._ctx is None:
raise AlreadyFinalized("Context has already been finalized.")
sig_buf = self._backend._ffi.new("char[]", self._pkey_size)
sig_len = self._backend._ffi.new("unsigned int *")
res = self._backend._lib.EVP_SignFinal(
self._hash_ctx._ctx._ctx,
sig_buf,
sig_len,
self._private_key._evp_pkey
)
self._hash_ctx.finalize()
if res == 0:
errors = self._backend._consume_errors()
assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
assert (errors[0].reason ==
self._backend._lib.RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY)
raise ValueError("Digest too large for key size. Use a larger "
"key.")
return self._backend._ffi.buffer(sig_buf)[:sig_len[0]]
def _finalize_pss(self, evp_md):
data_to_sign = self._hash_ctx.finalize()
padded = self._backend._ffi.new("unsigned char[]", self._pkey_size)
res = self._backend._lib.RSA_padding_add_PKCS1_PSS(
self._private_key._rsa_cdata,
padded,
data_to_sign,
evp_md,
_get_rsa_pss_salt_length(
self._padding,
self._private_key.key_size,
len(data_to_sign)
)
)
if res != 1:
errors = self._backend._consume_errors()
assert errors[0].lib == self._backend._lib.ERR_LIB_RSA
assert (errors[0].reason ==
self._backend._lib.RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE)
raise ValueError("Salt length too long for key size. Try using "
"MAX_LENGTH instead.")
sig_buf = self._backend._ffi.new("char[]", self._pkey_size)
sig_len = self._backend._lib.RSA_private_encrypt(
self._pkey_size,
padded,
sig_buf,
self._private_key._rsa_cdata,
self._backend._lib.RSA_NO_PADDING
)
assert sig_len != -1
return self._backend._ffi.buffer(sig_buf)[:sig_len]
@utils.register_interface(interfaces.AsymmetricVerificationContext)
class _RSAVerificationContext(object):
def __init__(self, backend, public_key, signature, padding, algorithm):
self._backend = backend
self._public_key = public_key
self._signature = signature
if not isinstance(padding, interfaces.AsymmetricPadding):
raise TypeError(
"Expected provider of interfaces.AsymmetricPadding.")
self._pkey_size = self._backend._lib.EVP_PKEY_size(
self._public_key._evp_pkey
)
if isinstance(padding, PKCS1v15):
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._verify_method = self._verify_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PADDING
else:
self._verify_method = self._verify_pkcs1
elif isinstance(padding, PSS):
if not isinstance(padding._mgf, MGF1):
raise UnsupportedAlgorithm(
"Only MGF1 is supported by this backend.",
_Reasons.UNSUPPORTED_MGF
)
# Size of key in bytes - 2 is the maximum
# PSS signature length (salt length is checked later)
assert self._pkey_size > 0
if self._pkey_size - algorithm.digest_size - 2 < 0:
raise ValueError(
"Digest too large for key size. Check that you have the "
"correct key and digest algorithm."
)
if not self._backend._mgf1_hash_supported(padding._mgf._algorithm):
raise UnsupportedAlgorithm(
"When OpenSSL is older than 1.0.1 then only SHA1 is "
"supported with MGF1.",
_Reasons.UNSUPPORTED_HASH
)
if self._backend._lib.Cryptography_HAS_PKEY_CTX:
self._verify_method = self._verify_pkey_ctx
self._padding_enum = self._backend._lib.RSA_PKCS1_PSS_PADDING
else:
self._verify_method = self._verify_pss
else:
raise UnsupportedAlgorithm(
"{0} is not supported by this backend.".format(padding.name),
_Reasons.UNSUPPORTED_PADDING
)
self._padding = padding
self._algorithm = algorithm
self._hash_ctx = hashes.Hash(self._algorithm, self._backend)
def update(self, data):
self._hash_ctx.update(data)
def verify(self):
evp_md = self._backend._lib.EVP_get_digestbyname(
self._algorithm.name.encode("ascii"))
assert evp_md != self._backend._ffi.NULL
self._verify_method(evp_md)
def _verify_pkey_ctx(self, evp_md):
pkey_ctx = self._backend._lib.EVP_PKEY_CTX_new(
self._public_key._evp_pkey, self._backend._ffi.NULL
)
assert pkey_ctx != self._backend._ffi.NULL
pkey_ctx = self._backend._ffi.gc(pkey_ctx,
self._backend._lib.EVP_PKEY_CTX_free)
res = self._backend._lib.EVP_PKEY_verify_init(pkey_ctx)
assert res == 1
res = self._backend._lib.EVP_PKEY_CTX_set_signature_md(
pkey_ctx, evp_md)
assert res > 0
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_padding(
pkey_ctx, self._padding_enum)
assert res > 0
if isinstance(self._padding, PSS):
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_pss_saltlen(
pkey_ctx,
_get_rsa_pss_salt_length(
self._padding,
self._public_key.key_size,
self._hash_ctx.algorithm.digest_size
)
)
assert res > 0
if self._backend._lib.Cryptography_HAS_MGF1_MD:
# MGF1 MD is configurable in OpenSSL 1.0.1+
mgf1_md = self._backend._lib.EVP_get_digestbyname(
self._padding._mgf._algorithm.name.encode("ascii"))
assert mgf1_md != self._backend._ffi.NULL
res = self._backend._lib.EVP_PKEY_CTX_set_rsa_mgf1_md(
pkey_ctx, mgf1_md
)
assert res > 0
data_to_verify = self._hash_ctx.finalize()
res = self._backend._lib.EVP_PKEY_verify(
pkey_ctx,
self._signature,
len(self._signature),
data_to_verify,
len(data_to_verify)
)
# The previous call can return negative numbers in the event of an
# error. This is not a signature failure but we need to fail if it
# occurs.
assert res >= 0
if res == 0:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
def _verify_pkcs1(self, evp_md):
if self._hash_ctx._ctx is None:
raise AlreadyFinalized("Context has already been finalized.")
res = self._backend._lib.EVP_VerifyFinal(
self._hash_ctx._ctx._ctx,
self._signature,
len(self._signature),
self._public_key._evp_pkey
)
self._hash_ctx.finalize()
# The previous call can return negative numbers in the event of an
# error. This is not a signature failure but we need to fail if it
# occurs.
assert res >= 0
if res == 0:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
def _verify_pss(self, evp_md):
buf = self._backend._ffi.new("unsigned char[]", self._pkey_size)
res = self._backend._lib.RSA_public_decrypt(
len(self._signature),
self._signature,
buf,
self._public_key._rsa_cdata,
self._backend._lib.RSA_NO_PADDING
)
if res != self._pkey_size:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
data_to_verify = self._hash_ctx.finalize()
res = self._backend._lib.RSA_verify_PKCS1_PSS(
self._public_key._rsa_cdata,
data_to_verify,
evp_md,
buf,
_get_rsa_pss_salt_length(
self._padding,
self._public_key.key_size,
len(data_to_verify)
)
)
if res != 1:
errors = self._backend._consume_errors()
assert errors
raise InvalidSignature
@utils.register_interface(RSAPrivateKeyWithNumbers)
class _RSAPrivateKey(object):
def __init__(self, backend, rsa_cdata):
self._backend = backend
self._rsa_cdata = rsa_cdata
evp_pkey = self._backend._lib.EVP_PKEY_new()
assert evp_pkey != self._backend._ffi.NULL
evp_pkey = self._backend._ffi.gc(
evp_pkey, self._backend._lib.EVP_PKEY_free
)
res = self._backend._lib.EVP_PKEY_set1_RSA(evp_pkey, rsa_cdata)
assert res == 1
self._evp_pkey = evp_pkey
self._key_size = self._backend._lib.BN_num_bits(self._rsa_cdata.n)
@property
def key_size(self):
return self._key_size
def signer(self, padding, algorithm):
return _RSASignatureContext(self._backend, self, padding, algorithm)
def decrypt(self, ciphertext, padding):
key_size_bytes = int(math.ceil(self.key_size / 8.0))
if key_size_bytes != len(ciphertext):
raise ValueError("Ciphertext length must be equal to key size.")
return _enc_dec_rsa(self._backend, self, ciphertext, padding)
def public_key(self):
ctx = self._backend._lib.RSA_new()
assert ctx != self._backend._ffi.NULL
ctx = self._backend._ffi.gc(ctx, self._backend._lib.RSA_free)
ctx.e = self._backend._lib.BN_dup(self._rsa_cdata.e)
ctx.n = self._backend._lib.BN_dup(self._rsa_cdata.n)
res = self._backend._lib.RSA_blinding_on(ctx, self._backend._ffi.NULL)
assert res == 1
return _RSAPublicKey(self._backend, ctx)
def private_numbers(self):
return rsa.RSAPrivateNumbers(
p=self._backend._bn_to_int(self._rsa_cdata.p),
q=self._backend._bn_to_int(self._rsa_cdata.q),
d=self._backend._bn_to_int(self._rsa_cdata.d),
dmp1=self._backend._bn_to_int(self._rsa_cdata.dmp1),
dmq1=self._backend._bn_to_int(self._rsa_cdata.dmq1),
iqmp=self._backend._bn_to_int(self._rsa_cdata.iqmp),
public_numbers=rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(self._rsa_cdata.e),
n=self._backend._bn_to_int(self._rsa_cdata.n),
)
)
@utils.register_interface(RSAPublicKeyWithNumbers)
class _RSAPublicKey(object):
def __init__(self, backend, rsa_cdata):
self._backend = backend
self._rsa_cdata = rsa_cdata
evp_pkey = self._backend._lib.EVP_PKEY_new()
assert evp_pkey != self._backend._ffi.NULL
evp_pkey = self._backend._ffi.gc(
evp_pkey, self._backend._lib.EVP_PKEY_free
)
res = self._backend._lib.EVP_PKEY_set1_RSA(evp_pkey, rsa_cdata)
assert res == 1
self._evp_pkey = evp_pkey
self._key_size = self._backend._lib.BN_num_bits(self._rsa_cdata.n)
@property
def key_size(self):
return self._key_size
def verifier(self, signature, padding, algorithm):
return _RSAVerificationContext(
self._backend, self, signature, padding, algorithm
)
def encrypt(self, plaintext, padding):
return _enc_dec_rsa(self._backend, self, plaintext, padding)
def public_numbers(self):
return rsa.RSAPublicNumbers(
e=self._backend._bn_to_int(self._rsa_cdata.e),
n=self._backend._bn_to_int(self._rsa_cdata.n),
)