| # *attrs* by Example |
| |
| ## Basics |
| |
| The simplest possible usage is: |
| |
| ```{doctest} |
| >>> from attrs import define, field |
| >>> @define |
| ... class Empty: |
| ... pass |
| >>> Empty() |
| Empty() |
| >>> Empty() == Empty() |
| True |
| >>> Empty() is Empty() |
| False |
| ``` |
| |
| So in other words: *attrs* is useful even without actual attributes! |
| |
| But you'll usually want some data on your classes, so let's add some: |
| |
| ```{doctest} |
| >>> @define |
| ... class Coordinates: |
| ... x: int |
| ... y: int |
| ``` |
| |
| By default, all features are added, so you immediately have a fully functional data class with a nice `repr` string and comparison methods. |
| |
| ```{doctest} |
| >>> c1 = Coordinates(1, 2) |
| >>> c1 |
| Coordinates(x=1, y=2) |
| >>> c2 = Coordinates(x=2, y=1) |
| >>> c2 |
| Coordinates(x=2, y=1) |
| >>> c1 == c2 |
| False |
| ``` |
| |
| As shown, the generated `__init__` method allows for both positional and keyword arguments. |
| |
| For private attributes, *attrs* will strip the leading underscores for keyword arguments: |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... _x: int |
| >>> C(x=1) |
| C(_x=1) |
| ``` |
| |
| If you want to initialize your private attributes yourself, you can do that too: |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... _x: int = field(init=False, default=42) |
| >>> C() |
| C(_x=42) |
| >>> C(23) |
| Traceback (most recent call last): |
| ... |
| TypeError: __init__() takes exactly 1 argument (2 given) |
| ``` |
| |
| If you prefer to expose your privates, you can use keyword argument aliases: |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... _x: int = field(alias="_x") |
| >>> C(_x=1) |
| C(_x=1) |
| ``` |
| |
| An additional way of defining attributes is supported too. |
| This is useful in times when you want to enhance classes that are not yours (nice `__repr__` for Django models anyone?): |
| |
| ```{doctest} |
| >>> class SomethingFromSomeoneElse: |
| ... def __init__(self, x): |
| ... self.x = x |
| >>> SomethingFromSomeoneElse = define( |
| ... these={ |
| ... "x": field() |
| ... }, init=False)(SomethingFromSomeoneElse) |
| >>> SomethingFromSomeoneElse(1) |
| SomethingFromSomeoneElse(x=1) |
| ``` |
| |
| [Subclassing is bad for you](https://www.youtube.com/watch?v=3MNVP9-hglc), but *attrs* will still do what you'd hope for: |
| |
| ```{doctest} |
| >>> @define(slots=False) |
| ... class A: |
| ... a: int |
| ... def get_a(self): |
| ... return self.a |
| >>> @define(slots=False) |
| ... class B: |
| ... b: int |
| >>> @define(slots=False) |
| ... class C(B, A): |
| ... c: int |
| >>> i = C(1, 2, 3) |
| >>> i |
| C(a=1, b=2, c=3) |
| >>> i == C(1, 2, 3) |
| True |
| >>> i.get_a() |
| 1 |
| ``` |
| |
| {term}`Slotted classes <slotted classes>`, which are the default for the new APIs, don't play well with multiple inheritance so we don't use them in the example. |
| |
| The order of the attributes is defined by the [MRO](https://www.python.org/download/releases/2.3/mro/). |
| |
| |
| ### Keyword-only Attributes |
| |
| You can also add [keyword-only](https://docs.python.org/3/glossary.html#keyword-only-parameter) attributes: |
| |
| ```{doctest} |
| >>> @define |
| ... class A: |
| ... a: int = field(kw_only=True) |
| >>> A() |
| Traceback (most recent call last): |
| ... |
| TypeError: A() missing 1 required keyword-only argument: 'a' |
| >>> A(a=1) |
| A(a=1) |
| ``` |
| |
| `kw_only` may also be specified at decorator level, and will apply to all attributes: |
| |
| ```{doctest} |
| >>> @define(kw_only=True) |
| ... class A: |
| ... a: int |
| ... b: int |
| >>> A(1, 2) |
| Traceback (most recent call last): |
| ... |
| TypeError: __init__() takes 1 positional argument but 3 were given |
| >>> A(a=1, b=2) |
| A(a=1, b=2) |
| ``` |
| |
| If you create an attribute with `init=False`, the `kw_only` argument is ignored. |
| |
| Keyword-only attributes allow subclasses to add attributes without default values, even if the base class defines attributes with default values: |
| |
| ```{doctest} |
| >>> @define |
| ... class A: |
| ... a: int = 0 |
| >>> @define |
| ... class B(A): |
| ... b: int = field(kw_only=True) |
| >>> B(b=1) |
| B(a=0, b=1) |
| >>> B() |
| Traceback (most recent call last): |
| ... |
| TypeError: B() missing 1 required keyword-only argument: 'b' |
| ``` |
| |
| If you don't set `kw_only=True`, then there is no valid attribute ordering, and you'll get an error: |
| |
| ```{doctest} |
| >>> @define |
| ... class A: |
| ... a: int = 0 |
| >>> @define |
| ... class B(A): |
| ... b: int |
| Traceback (most recent call last): |
| ... |
| ValueError: No mandatory attributes allowed after an attribute with a default value or factory. Attribute in question: Attribute(name='b', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, converter=None, metadata=mappingproxy({}), type=int, kw_only=False) |
| ``` |
| |
| (asdict)= |
| |
| ## Converting to Collections Types |
| |
| When you have a class with data, it often is very convenient to transform that class into a {class}`dict` (for example if you want to serialize it to JSON): |
| |
| ```{doctest} |
| >>> from attrs import asdict |
| >>> asdict(Coordinates(x=1, y=2)) |
| {'x': 1, 'y': 2} |
| ``` |
| |
| Some fields cannot or should not be transformed. |
| For that, {func}`attrs.asdict` offers a callback that decides whether an attribute should be included: |
| |
| ```{doctest} |
| >>> @define |
| ... class User: |
| ... email: str |
| ... password: str |
| |
| >>> @define |
| ... class UserList: |
| ... users: list[User] |
| |
| >>> asdict(UserList([User("jane@doe.invalid", "s33kred"), |
| ... User("joe@doe.invalid", "p4ssw0rd")]), |
| ... filter=lambda attr, value: attr.name != "password") |
| {'users': [{'email': 'jane@doe.invalid'}, {'email': 'joe@doe.invalid'}]} |
| ``` |
| |
| For the common case where you want to [`include`](attrs.filters.include) or [`exclude`](attrs.filters.exclude) certain types, string name or attributes, *attrs* ships with a few helpers: |
| |
| ```{doctest} |
| >>> from attrs import asdict, filters, fields |
| |
| >>> @define |
| ... class User: |
| ... login: str |
| ... password: str |
| ... email: str |
| ... id: int |
| |
| >>> asdict( |
| ... User("jane", "s33kred", "jane@example.com", 42), |
| ... filter=filters.exclude(fields(User).password, "email", int)) |
| {'login': 'jane'} |
| |
| >>> @define |
| ... class C: |
| ... x: str |
| ... y: str |
| ... z: int |
| |
| >>> asdict(C("foo", "2", 3), |
| ... filter=filters.include(int, fields(C).x)) |
| {'x': 'foo', 'z': 3} |
| |
| >>> asdict(C("foo", "2", 3), |
| ... filter=filters.include(fields(C).x, "z")) |
| {'x': 'foo', 'z': 3} |
| ``` |
| |
| :::{note} |
| Though using string names directly is convenient, mistyping attribute names will silently do the wrong thing and neither Python nor your type checker can help you. |
| {func}`attrs.fields()` will raise an `AttributeError` when the field doesn't exist while literal string names won't. |
| Using {func}`attrs.fields()` to get attributes is worth being recommended in most cases. |
| |
| ```{doctest} |
| >>> asdict( |
| ... User("jane", "s33kred", "jane@example.com", 42), |
| ... filter=filters.exclude("passwd") |
| ... ) |
| {'login': 'jane', 'password': 's33kred', 'email': 'jane@example.com', 'id': 42} |
| |
| >>> asdict( |
| ... User("jane", "s33kred", "jane@example.com", 42), |
| ... filter=fields(User).passwd |
| ... ) |
| Traceback (most recent call last): |
| ... |
| AttributeError: 'UserAttributes' object has no attribute 'passwd'. Did you mean: 'password'? |
| ``` |
| ::: |
| |
| Other times, all you want is a tuple and *attrs* won't let you down: |
| |
| ```{doctest} |
| >>> import sqlite3 |
| >>> from attrs import astuple |
| |
| >>> @define |
| ... class Foo: |
| ... a: int |
| ... b: int |
| |
| >>> foo = Foo(2, 3) |
| >>> with sqlite3.connect(":memory:") as conn: |
| ... c = conn.cursor() |
| ... c.execute("CREATE TABLE foo (x INTEGER PRIMARY KEY ASC, y)") #doctest: +ELLIPSIS |
| ... c.execute("INSERT INTO foo VALUES (?, ?)", astuple(foo)) #doctest: +ELLIPSIS |
| ... foo2 = Foo(*c.execute("SELECT x, y FROM foo").fetchone()) |
| <sqlite3.Cursor object at ...> |
| <sqlite3.Cursor object at ...> |
| >>> foo == foo2 |
| True |
| ``` |
| |
| For more advanced transformations and conversions, we recommend you look at a companion library (such as [*cattrs*](https://catt.rs/)). |
| |
| |
| ## Defaults |
| |
| Sometimes you want to have default values for your initializer. |
| And sometimes you even want mutable objects as default values (ever accidentally used `def f(arg=[])`?). |
| *attrs* has you covered in both cases: |
| |
| ```{doctest} |
| >>> import collections |
| |
| >>> @define |
| ... class Connection: |
| ... socket: int |
| ... @classmethod |
| ... def connect(cls, db_string): |
| ... # ... connect somehow to db_string ... |
| ... return cls(socket=42) |
| |
| >>> @define |
| ... class ConnectionPool: |
| ... db_string: str |
| ... pool: collections.deque = Factory(collections.deque) |
| ... debug: bool = False |
| ... def get_connection(self): |
| ... try: |
| ... return self.pool.pop() |
| ... except IndexError: |
| ... if self.debug: |
| ... print("New connection!") |
| ... return Connection.connect(self.db_string) |
| ... def free_connection(self, conn): |
| ... if self.debug: |
| ... print("Connection returned!") |
| ... self.pool.appendleft(conn) |
| ... |
| >>> cp = ConnectionPool("postgres://localhost") |
| >>> cp |
| ConnectionPool(db_string='postgres://localhost', pool=deque([]), debug=False) |
| >>> conn = cp.get_connection() |
| >>> conn |
| Connection(socket=42) |
| >>> cp.free_connection(conn) |
| >>> cp |
| ConnectionPool(db_string='postgres://localhost', pool=deque([Connection(socket=42)]), debug=False) |
| ``` |
| |
| More information on why class methods for constructing objects are awesome can be found in this insightful [blog post](https://web.archive.org/web/20210130220433/http://as.ynchrono.us/2014/12/asynchronous-object-initialization.html). |
| |
| Default factories can also be set using the `factory` argument to {func}`~attrs.field`, and using a decorator. |
| The method receives the partially initialized instance which enables you to base a default value on other attributes: |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... x: int = 1 |
| ... y: int = field() |
| ... @y.default |
| ... def _any_name_except_a_name_of_an_attribute(self): |
| ... return self.x + 1 |
| ... z: list = field(factory=list) |
| >>> C() |
| C(x=1, y=2, z=[]) |
| ``` |
| |
| Please keep in mind that the decorator approach *only* works if the attribute in question has a {func}`~attrs.field` assigned to it. |
| As a result, annotating an attribute with a type is *not* enough if you use `@default`. |
| |
| (examples-validators)= |
| |
| ## Validators |
| |
| Although your initializers should do as little as possible (ideally: just initialize your instance according to the arguments!), it can come in handy to do some kind of validation on the arguments. |
| |
| *attrs* offers two ways to define validators for each attribute and it's up to you to choose which one suits your style and project better. |
| |
| You can use a decorator: |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... x: int = field() |
| ... @x.validator |
| ... def check(self, attribute, value): |
| ... if value > 42: |
| ... raise ValueError("x must be smaller or equal to 42") |
| >>> C(42) |
| C(x=42) |
| >>> C(43) |
| Traceback (most recent call last): |
| ... |
| ValueError: x must be smaller or equal to 42 |
| ``` |
| |
| ...or a callable... |
| |
| ```{doctest} |
| >>> from attrs import validators |
| |
| >>> def x_smaller_than_y(instance, attribute, value): |
| ... if value >= instance.y: |
| ... raise ValueError("'x' has to be smaller than 'y'!") |
| >>> @define |
| ... class C: |
| ... x: int = field(validator=[validators.instance_of(int), |
| ... x_smaller_than_y]) |
| ... y: int |
| >>> C(x=3, y=4) |
| C(x=3, y=4) |
| >>> C(x=4, y=3) |
| Traceback (most recent call last): |
| ... |
| ValueError: 'x' has to be smaller than 'y'! |
| ``` |
| |
| ...or both at once: |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... x: int = field(validator=validators.instance_of(int)) |
| ... @x.validator |
| ... def fits_byte(self, attribute, value): |
| ... if not 0 <= value < 256: |
| ... raise ValueError("value out of bounds") |
| >>> C(128) |
| C(x=128) |
| >>> C("128") |
| Traceback (most recent call last): |
| ... |
| TypeError: ("'x' must be <class 'int'> (got '128' that is a <class 'str'>).", Attribute(name='x', default=NOTHING, validator=[<instance_of validator for type <class 'int'>>, <function fits_byte at 0x10fd7a0d0>], repr=True, cmp=True, hash=True, init=True, metadata=mappingproxy({}), type=int, converter=None, kw_only=False), <class 'int'>, '128') |
| >>> C(256) |
| Traceback (most recent call last): |
| ... |
| ValueError: value out of bounds |
| ``` |
| |
| Please note that the decorator approach only works if -- and only if! -- the attribute in question has a {func}`~attrs.field` assigned. |
| Therefore if you use `@validator`, it is *not* enough to annotate said attribute with a type. |
| |
| *attrs* ships with a bunch of validators, make sure to [check them out](api-validators) before writing your own: |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... x: int = field(validator=validators.instance_of(int)) |
| >>> C(42) |
| C(x=42) |
| >>> C("42") |
| Traceback (most recent call last): |
| ... |
| TypeError: ("'x' must be <type 'int'> (got '42' that is a <type 'str'>).", Attribute(name='x', default=NOTHING, factory=NOTHING, validator=<instance_of validator for type <type 'int'>>, type=None, kw_only=False), <type 'int'>, '42') |
| ``` |
| |
| Please note that if you use {func}`attr.s` (and **not** {func}`attrs.define`) to define your class, validators only run on initialization by default -- not when you set an attribute. |
| This behavior can be changed using the `on_setattr` argument. |
| |
| Check out {ref}`validators` for more details. |
| |
| |
| ## Conversion |
| |
| Attributes can have a `converter` function specified, which will be called with the attribute's passed-in value to get a new value to use. |
| This can be useful for doing type-conversions on values that you don't want to force your callers to do. |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... x: int = field(converter=int) |
| >>> o = C("1") |
| >>> o.x |
| 1 |
| ``` |
| |
| Please note that converters only run on initialization. |
| |
| Check out {ref}`converters` for more details. |
| |
| (metadata)= |
| |
| ## Metadata |
| |
| All *attrs* attributes may include arbitrary metadata in the form of a read-only dictionary. |
| |
| ```{doctest} |
| >>> from attrs import fields |
| |
| >>> @define |
| ... class C: |
| ... x = field(metadata={'my_metadata': 1}) |
| >>> fields(C).x.metadata |
| mappingproxy({'my_metadata': 1}) |
| >>> fields(C).x.metadata['my_metadata'] |
| 1 |
| ``` |
| |
| Metadata is not used by *attrs*, and is meant to enable rich functionality in third-party libraries. |
| The metadata dictionary follows the normal dictionary rules: |
| Keys need to be hashable, and both keys and values are recommended to be immutable. |
| |
| If you're the author of a third-party library with *attrs* integration, please see [*Extending Metadata*](extending-metadata). |
| |
| |
| ## Types |
| |
| *attrs* also allows you to associate a type with an attribute using either the *type* argument to using {pep}`526`-annotations or {func}`attrs.field`/{func}`attr.ib`: |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... x: int |
| >>> fields(C).x.type |
| <class 'int'> |
| |
| >>> import attr |
| >>> @attr.s |
| ... class C: |
| ... x = attr.ib(type=int) |
| >>> fields(C).x.type |
| <class 'int'> |
| ``` |
| |
| If you don't mind annotating *all* attributes, you can even drop the `attrs.field` and assign default values instead: |
| |
| ```{doctest} |
| >>> import typing |
| |
| >>> @define |
| ... class AutoC: |
| ... cls_var: typing.ClassVar[int] = 5 # this one is ignored |
| ... l: list[int] = Factory(list) |
| ... x: int = 1 |
| ... foo: str = "every attrib needs a type if auto_attribs=True" |
| ... bar: typing.Any = None |
| >>> fields(AutoC).l.type |
| list[int] |
| >>> fields(AutoC).x.type |
| <class 'int'> |
| >>> fields(AutoC).foo.type |
| <class 'str'> |
| >>> fields(AutoC).bar.type |
| typing.Any |
| >>> AutoC() |
| AutoC(l=[], x=1, foo='every attrib needs a type if auto_attribs=True', bar=None) |
| >>> AutoC.cls_var |
| 5 |
| ``` |
| |
| The generated `__init__` method will have an attribute called `__annotations__` that contains this type information. |
| |
| If your annotations contain strings (e.g. forward references), |
| you can resolve these after all references have been defined by using {func}`attrs.resolve_types`. |
| This will replace the *type* attribute in the respective fields. |
| |
| ```{doctest} |
| >>> from attrs import resolve_types |
| |
| >>> @define |
| ... class A: |
| ... a: 'list[A]' |
| ... b: 'B' |
| ... |
| >>> @define |
| ... class B: |
| ... a: A |
| ... |
| >>> fields(A).a.type |
| 'list[A]' |
| >>> fields(A).b.type |
| 'B' |
| >>> resolve_types(A, globals(), locals()) |
| <class 'A'> |
| >>> fields(A).a.type |
| list[A] |
| >>> fields(A).b.type |
| <class 'B'> |
| ``` |
| |
| :::{note} |
| If you find yourself using string type annotations to handle forward references, wrap the entire type annotation in quotes instead of only the type you need a forward reference to (so `'list[A]'` instead of `list['A']`). |
| This is a limitation of the Python typing system. |
| ::: |
| |
| :::{warning} |
| *attrs* itself doesn't have any features that work on top of type metadata. |
| However it's useful for writing your own validators or serialization frameworks. |
| ::: |
| |
| |
| ## Slots |
| |
| {term}`Slotted classes <slotted classes>` have several advantages on CPython. |
| Defining `__slots__` by hand is tedious, in *attrs* it's just a matter of using {func}`attrs.define` or passing `slots=True` to {func}`attr.s`: |
| |
| ```{doctest} |
| >>> @define |
| ... class Coordinates: |
| ... x: int |
| ... y: int |
| |
| >>> import attr |
| |
| >>> @attr.s(slots=True) |
| ... class Coordinates: |
| ... x: int |
| ... y: int |
| ``` |
| |
| {func}`~attrs.define` sets `slots=True` by default. |
| |
| |
| ## Immutability |
| |
| Sometimes you have instances that shouldn't be changed after instantiation. |
| Immutability is especially popular in functional programming and is generally a very good thing. |
| If you'd like to enforce it, *attrs* will try to help: |
| |
| ```{doctest} |
| >>> from attrs import frozen |
| |
| >>> @frozen |
| ... class C: |
| ... x: int |
| >>> i = C(1) |
| >>> i.x = 2 |
| Traceback (most recent call last): |
| ... |
| attrs.exceptions.FrozenInstanceError: can't set attribute |
| >>> i.x |
| 1 |
| ``` |
| |
| Please note that true immutability is impossible in Python but it will [get](how-frozen) you 99% there. |
| By themselves, immutable classes are useful for long-lived objects that should never change; like configurations for example. |
| |
| In order to use them in regular program flow, you'll need a way to easily create new instances with changed attributes. |
| In Clojure that function is called [*assoc*](https://clojuredocs.org/clojure.core/assoc) and *attrs* shamelessly imitates it: {func}`attrs.evolve`: |
| |
| ```{doctest} |
| >>> from attrs import evolve, frozen |
| |
| >>> @frozen |
| ... class C: |
| ... x: int |
| ... y: int |
| >>> i1 = C(1, 2) |
| >>> i1 |
| C(x=1, y=2) |
| >>> i2 = evolve(i1, y=3) |
| >>> i2 |
| C(x=1, y=3) |
| >>> i1 == i2 |
| False |
| ``` |
| |
| |
| ## Other Goodies |
| |
| Sometimes you may want to create a class programmatically. |
| *attrs* gives you {func}`attrs.make_class` for that: |
| |
| ```{doctest} |
| >>> from attrs import make_class |
| >>> @define |
| ... class C1: |
| ... x = field(type=int) |
| ... y = field() |
| >>> C2 = make_class("C2", {"x": field(type=int), "y": field()}) |
| >>> fields(C1) == fields(C2) |
| True |
| >>> fields(C1).x.type |
| <class 'int'> |
| ``` |
| |
| You can still have power over the attributes if you pass a dictionary of name: {func}`~attrs.field` mappings and can pass the same arguments as you can to `@attrs.define`: |
| |
| ```{doctest} |
| >>> C = make_class("C", {"x": field(default=42), |
| ... "y": field(default=Factory(list))}, |
| ... repr=False) |
| >>> i = C() |
| >>> i # no repr added! |
| <__main__.C object at ...> |
| >>> i.x |
| 42 |
| >>> i.y |
| [] |
| ``` |
| |
| If you need to dynamically make a class with {func}`~attrs.make_class` and it needs to be a subclass of something else than {class}`object`, use the `bases` argument: |
| |
| ```{doctest} |
| >>> class D: |
| ... def __eq__(self, other): |
| ... return True # arbitrary example |
| >>> C = make_class("C", {}, bases=(D,), cmp=False) |
| >>> isinstance(C(), D) |
| True |
| ``` |
| |
| Sometimes, you want to have your class's `__init__` method do more than just |
| the initialization, validation, etc. that gets done for you automatically when |
| using `@define`. |
| To do this, just define a `__attrs_post_init__` method in your class. |
| It will get called at the end of the generated `__init__` method. |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... x: int |
| ... y: int |
| ... z: int = field(init=False) |
| ... |
| ... def __attrs_post_init__(self): |
| ... self.z = self.x + self.y |
| >>> obj = C(x=1, y=2) |
| >>> obj |
| C(x=1, y=2, z=3) |
| ``` |
| |
| You can exclude single attributes from certain methods: |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... user: str |
| ... password: str = field(repr=False) |
| >>> C("me", "s3kr3t") |
| C(user='me') |
| ``` |
| |
| Alternatively, to influence how the generated `__repr__()` method formats a specific attribute, specify a custom callable to be used instead of the `repr()` built-in function: |
| |
| ```{doctest} |
| >>> @define |
| ... class C: |
| ... user: str |
| ... password: str = field(repr=lambda value: '***') |
| >>> C("me", "s3kr3t") |
| C(user='me', password=***) |
| ``` |