| /*[clinic input] |
| preserve |
| [clinic start generated code]*/ |
| |
| PyDoc_STRVAR(math_gcd__doc__, |
| "gcd($module, x, y, /)\n" |
| "--\n" |
| "\n" |
| "greatest common divisor of x and y"); |
| |
| #define MATH_GCD_METHODDEF \ |
| {"gcd", (PyCFunction)(void(*)(void))math_gcd, METH_FASTCALL, math_gcd__doc__}, |
| |
| static PyObject * |
| math_gcd_impl(PyObject *module, PyObject *a, PyObject *b); |
| |
| static PyObject * |
| math_gcd(PyObject *module, PyObject *const *args, Py_ssize_t nargs) |
| { |
| PyObject *return_value = NULL; |
| PyObject *a; |
| PyObject *b; |
| |
| if (!_PyArg_CheckPositional("gcd", nargs, 2, 2)) { |
| goto exit; |
| } |
| a = args[0]; |
| b = args[1]; |
| return_value = math_gcd_impl(module, a, b); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_ceil__doc__, |
| "ceil($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Return the ceiling of x as an Integral.\n" |
| "\n" |
| "This is the smallest integer >= x."); |
| |
| #define MATH_CEIL_METHODDEF \ |
| {"ceil", (PyCFunction)math_ceil, METH_O, math_ceil__doc__}, |
| |
| PyDoc_STRVAR(math_floor__doc__, |
| "floor($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Return the floor of x as an Integral.\n" |
| "\n" |
| "This is the largest integer <= x."); |
| |
| #define MATH_FLOOR_METHODDEF \ |
| {"floor", (PyCFunction)math_floor, METH_O, math_floor__doc__}, |
| |
| PyDoc_STRVAR(math_fsum__doc__, |
| "fsum($module, seq, /)\n" |
| "--\n" |
| "\n" |
| "Return an accurate floating point sum of values in the iterable seq.\n" |
| "\n" |
| "Assumes IEEE-754 floating point arithmetic."); |
| |
| #define MATH_FSUM_METHODDEF \ |
| {"fsum", (PyCFunction)math_fsum, METH_O, math_fsum__doc__}, |
| |
| PyDoc_STRVAR(math_isqrt__doc__, |
| "isqrt($module, n, /)\n" |
| "--\n" |
| "\n" |
| "Return the integer part of the square root of the input."); |
| |
| #define MATH_ISQRT_METHODDEF \ |
| {"isqrt", (PyCFunction)math_isqrt, METH_O, math_isqrt__doc__}, |
| |
| PyDoc_STRVAR(math_factorial__doc__, |
| "factorial($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Find x!.\n" |
| "\n" |
| "Raise a ValueError if x is negative or non-integral."); |
| |
| #define MATH_FACTORIAL_METHODDEF \ |
| {"factorial", (PyCFunction)math_factorial, METH_O, math_factorial__doc__}, |
| |
| PyDoc_STRVAR(math_trunc__doc__, |
| "trunc($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Truncates the Real x to the nearest Integral toward 0.\n" |
| "\n" |
| "Uses the __trunc__ magic method."); |
| |
| #define MATH_TRUNC_METHODDEF \ |
| {"trunc", (PyCFunction)math_trunc, METH_O, math_trunc__doc__}, |
| |
| PyDoc_STRVAR(math_frexp__doc__, |
| "frexp($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Return the mantissa and exponent of x, as pair (m, e).\n" |
| "\n" |
| "m is a float and e is an int, such that x = m * 2.**e.\n" |
| "If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0."); |
| |
| #define MATH_FREXP_METHODDEF \ |
| {"frexp", (PyCFunction)math_frexp, METH_O, math_frexp__doc__}, |
| |
| static PyObject * |
| math_frexp_impl(PyObject *module, double x); |
| |
| static PyObject * |
| math_frexp(PyObject *module, PyObject *arg) |
| { |
| PyObject *return_value = NULL; |
| double x; |
| |
| if (PyFloat_CheckExact(arg)) { |
| x = PyFloat_AS_DOUBLE(arg); |
| } |
| else |
| { |
| x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| return_value = math_frexp_impl(module, x); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_ldexp__doc__, |
| "ldexp($module, x, i, /)\n" |
| "--\n" |
| "\n" |
| "Return x * (2**i).\n" |
| "\n" |
| "This is essentially the inverse of frexp()."); |
| |
| #define MATH_LDEXP_METHODDEF \ |
| {"ldexp", (PyCFunction)(void(*)(void))math_ldexp, METH_FASTCALL, math_ldexp__doc__}, |
| |
| static PyObject * |
| math_ldexp_impl(PyObject *module, double x, PyObject *i); |
| |
| static PyObject * |
| math_ldexp(PyObject *module, PyObject *const *args, Py_ssize_t nargs) |
| { |
| PyObject *return_value = NULL; |
| double x; |
| PyObject *i; |
| |
| if (!_PyArg_CheckPositional("ldexp", nargs, 2, 2)) { |
| goto exit; |
| } |
| if (PyFloat_CheckExact(args[0])) { |
| x = PyFloat_AS_DOUBLE(args[0]); |
| } |
| else |
| { |
| x = PyFloat_AsDouble(args[0]); |
| if (x == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| i = args[1]; |
| return_value = math_ldexp_impl(module, x, i); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_modf__doc__, |
| "modf($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Return the fractional and integer parts of x.\n" |
| "\n" |
| "Both results carry the sign of x and are floats."); |
| |
| #define MATH_MODF_METHODDEF \ |
| {"modf", (PyCFunction)math_modf, METH_O, math_modf__doc__}, |
| |
| static PyObject * |
| math_modf_impl(PyObject *module, double x); |
| |
| static PyObject * |
| math_modf(PyObject *module, PyObject *arg) |
| { |
| PyObject *return_value = NULL; |
| double x; |
| |
| if (PyFloat_CheckExact(arg)) { |
| x = PyFloat_AS_DOUBLE(arg); |
| } |
| else |
| { |
| x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| return_value = math_modf_impl(module, x); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_log__doc__, |
| "log(x, [base=math.e])\n" |
| "Return the logarithm of x to the given base.\n" |
| "\n" |
| "If the base not specified, returns the natural logarithm (base e) of x."); |
| |
| #define MATH_LOG_METHODDEF \ |
| {"log", (PyCFunction)math_log, METH_VARARGS, math_log__doc__}, |
| |
| static PyObject * |
| math_log_impl(PyObject *module, PyObject *x, int group_right_1, |
| PyObject *base); |
| |
| static PyObject * |
| math_log(PyObject *module, PyObject *args) |
| { |
| PyObject *return_value = NULL; |
| PyObject *x; |
| int group_right_1 = 0; |
| PyObject *base = NULL; |
| |
| switch (PyTuple_GET_SIZE(args)) { |
| case 1: |
| if (!PyArg_ParseTuple(args, "O:log", &x)) { |
| goto exit; |
| } |
| break; |
| case 2: |
| if (!PyArg_ParseTuple(args, "OO:log", &x, &base)) { |
| goto exit; |
| } |
| group_right_1 = 1; |
| break; |
| default: |
| PyErr_SetString(PyExc_TypeError, "math.log requires 1 to 2 arguments"); |
| goto exit; |
| } |
| return_value = math_log_impl(module, x, group_right_1, base); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_log2__doc__, |
| "log2($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Return the base 2 logarithm of x."); |
| |
| #define MATH_LOG2_METHODDEF \ |
| {"log2", (PyCFunction)math_log2, METH_O, math_log2__doc__}, |
| |
| PyDoc_STRVAR(math_log10__doc__, |
| "log10($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Return the base 10 logarithm of x."); |
| |
| #define MATH_LOG10_METHODDEF \ |
| {"log10", (PyCFunction)math_log10, METH_O, math_log10__doc__}, |
| |
| PyDoc_STRVAR(math_fmod__doc__, |
| "fmod($module, x, y, /)\n" |
| "--\n" |
| "\n" |
| "Return fmod(x, y), according to platform C.\n" |
| "\n" |
| "x % y may differ."); |
| |
| #define MATH_FMOD_METHODDEF \ |
| {"fmod", (PyCFunction)(void(*)(void))math_fmod, METH_FASTCALL, math_fmod__doc__}, |
| |
| static PyObject * |
| math_fmod_impl(PyObject *module, double x, double y); |
| |
| static PyObject * |
| math_fmod(PyObject *module, PyObject *const *args, Py_ssize_t nargs) |
| { |
| PyObject *return_value = NULL; |
| double x; |
| double y; |
| |
| if (!_PyArg_CheckPositional("fmod", nargs, 2, 2)) { |
| goto exit; |
| } |
| if (PyFloat_CheckExact(args[0])) { |
| x = PyFloat_AS_DOUBLE(args[0]); |
| } |
| else |
| { |
| x = PyFloat_AsDouble(args[0]); |
| if (x == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| if (PyFloat_CheckExact(args[1])) { |
| y = PyFloat_AS_DOUBLE(args[1]); |
| } |
| else |
| { |
| y = PyFloat_AsDouble(args[1]); |
| if (y == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| return_value = math_fmod_impl(module, x, y); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_dist__doc__, |
| "dist($module, p, q, /)\n" |
| "--\n" |
| "\n" |
| "Return the Euclidean distance between two points p and q.\n" |
| "\n" |
| "The points should be specified as sequences (or iterables) of\n" |
| "coordinates. Both inputs must have the same dimension.\n" |
| "\n" |
| "Roughly equivalent to:\n" |
| " sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))"); |
| |
| #define MATH_DIST_METHODDEF \ |
| {"dist", (PyCFunction)(void(*)(void))math_dist, METH_FASTCALL, math_dist__doc__}, |
| |
| static PyObject * |
| math_dist_impl(PyObject *module, PyObject *p, PyObject *q); |
| |
| static PyObject * |
| math_dist(PyObject *module, PyObject *const *args, Py_ssize_t nargs) |
| { |
| PyObject *return_value = NULL; |
| PyObject *p; |
| PyObject *q; |
| |
| if (!_PyArg_CheckPositional("dist", nargs, 2, 2)) { |
| goto exit; |
| } |
| p = args[0]; |
| q = args[1]; |
| return_value = math_dist_impl(module, p, q); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_pow__doc__, |
| "pow($module, x, y, /)\n" |
| "--\n" |
| "\n" |
| "Return x**y (x to the power of y)."); |
| |
| #define MATH_POW_METHODDEF \ |
| {"pow", (PyCFunction)(void(*)(void))math_pow, METH_FASTCALL, math_pow__doc__}, |
| |
| static PyObject * |
| math_pow_impl(PyObject *module, double x, double y); |
| |
| static PyObject * |
| math_pow(PyObject *module, PyObject *const *args, Py_ssize_t nargs) |
| { |
| PyObject *return_value = NULL; |
| double x; |
| double y; |
| |
| if (!_PyArg_CheckPositional("pow", nargs, 2, 2)) { |
| goto exit; |
| } |
| if (PyFloat_CheckExact(args[0])) { |
| x = PyFloat_AS_DOUBLE(args[0]); |
| } |
| else |
| { |
| x = PyFloat_AsDouble(args[0]); |
| if (x == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| if (PyFloat_CheckExact(args[1])) { |
| y = PyFloat_AS_DOUBLE(args[1]); |
| } |
| else |
| { |
| y = PyFloat_AsDouble(args[1]); |
| if (y == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| return_value = math_pow_impl(module, x, y); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_degrees__doc__, |
| "degrees($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Convert angle x from radians to degrees."); |
| |
| #define MATH_DEGREES_METHODDEF \ |
| {"degrees", (PyCFunction)math_degrees, METH_O, math_degrees__doc__}, |
| |
| static PyObject * |
| math_degrees_impl(PyObject *module, double x); |
| |
| static PyObject * |
| math_degrees(PyObject *module, PyObject *arg) |
| { |
| PyObject *return_value = NULL; |
| double x; |
| |
| if (PyFloat_CheckExact(arg)) { |
| x = PyFloat_AS_DOUBLE(arg); |
| } |
| else |
| { |
| x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| return_value = math_degrees_impl(module, x); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_radians__doc__, |
| "radians($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Convert angle x from degrees to radians."); |
| |
| #define MATH_RADIANS_METHODDEF \ |
| {"radians", (PyCFunction)math_radians, METH_O, math_radians__doc__}, |
| |
| static PyObject * |
| math_radians_impl(PyObject *module, double x); |
| |
| static PyObject * |
| math_radians(PyObject *module, PyObject *arg) |
| { |
| PyObject *return_value = NULL; |
| double x; |
| |
| if (PyFloat_CheckExact(arg)) { |
| x = PyFloat_AS_DOUBLE(arg); |
| } |
| else |
| { |
| x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| return_value = math_radians_impl(module, x); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_isfinite__doc__, |
| "isfinite($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Return True if x is neither an infinity nor a NaN, and False otherwise."); |
| |
| #define MATH_ISFINITE_METHODDEF \ |
| {"isfinite", (PyCFunction)math_isfinite, METH_O, math_isfinite__doc__}, |
| |
| static PyObject * |
| math_isfinite_impl(PyObject *module, double x); |
| |
| static PyObject * |
| math_isfinite(PyObject *module, PyObject *arg) |
| { |
| PyObject *return_value = NULL; |
| double x; |
| |
| if (PyFloat_CheckExact(arg)) { |
| x = PyFloat_AS_DOUBLE(arg); |
| } |
| else |
| { |
| x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| return_value = math_isfinite_impl(module, x); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_isnan__doc__, |
| "isnan($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Return True if x is a NaN (not a number), and False otherwise."); |
| |
| #define MATH_ISNAN_METHODDEF \ |
| {"isnan", (PyCFunction)math_isnan, METH_O, math_isnan__doc__}, |
| |
| static PyObject * |
| math_isnan_impl(PyObject *module, double x); |
| |
| static PyObject * |
| math_isnan(PyObject *module, PyObject *arg) |
| { |
| PyObject *return_value = NULL; |
| double x; |
| |
| if (PyFloat_CheckExact(arg)) { |
| x = PyFloat_AS_DOUBLE(arg); |
| } |
| else |
| { |
| x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| return_value = math_isnan_impl(module, x); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_isinf__doc__, |
| "isinf($module, x, /)\n" |
| "--\n" |
| "\n" |
| "Return True if x is a positive or negative infinity, and False otherwise."); |
| |
| #define MATH_ISINF_METHODDEF \ |
| {"isinf", (PyCFunction)math_isinf, METH_O, math_isinf__doc__}, |
| |
| static PyObject * |
| math_isinf_impl(PyObject *module, double x); |
| |
| static PyObject * |
| math_isinf(PyObject *module, PyObject *arg) |
| { |
| PyObject *return_value = NULL; |
| double x; |
| |
| if (PyFloat_CheckExact(arg)) { |
| x = PyFloat_AS_DOUBLE(arg); |
| } |
| else |
| { |
| x = PyFloat_AsDouble(arg); |
| if (x == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| return_value = math_isinf_impl(module, x); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_isclose__doc__, |
| "isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0)\n" |
| "--\n" |
| "\n" |
| "Determine whether two floating point numbers are close in value.\n" |
| "\n" |
| " rel_tol\n" |
| " maximum difference for being considered \"close\", relative to the\n" |
| " magnitude of the input values\n" |
| " abs_tol\n" |
| " maximum difference for being considered \"close\", regardless of the\n" |
| " magnitude of the input values\n" |
| "\n" |
| "Return True if a is close in value to b, and False otherwise.\n" |
| "\n" |
| "For the values to be considered close, the difference between them\n" |
| "must be smaller than at least one of the tolerances.\n" |
| "\n" |
| "-inf, inf and NaN behave similarly to the IEEE 754 Standard. That\n" |
| "is, NaN is not close to anything, even itself. inf and -inf are\n" |
| "only close to themselves."); |
| |
| #define MATH_ISCLOSE_METHODDEF \ |
| {"isclose", (PyCFunction)(void(*)(void))math_isclose, METH_FASTCALL|METH_KEYWORDS, math_isclose__doc__}, |
| |
| static int |
| math_isclose_impl(PyObject *module, double a, double b, double rel_tol, |
| double abs_tol); |
| |
| static PyObject * |
| math_isclose(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames) |
| { |
| PyObject *return_value = NULL; |
| static const char * const _keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL}; |
| static _PyArg_Parser _parser = {NULL, _keywords, "isclose", 0}; |
| PyObject *argsbuf[4]; |
| Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 2; |
| double a; |
| double b; |
| double rel_tol = 1e-09; |
| double abs_tol = 0.0; |
| int _return_value; |
| |
| args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 2, 2, 0, argsbuf); |
| if (!args) { |
| goto exit; |
| } |
| if (PyFloat_CheckExact(args[0])) { |
| a = PyFloat_AS_DOUBLE(args[0]); |
| } |
| else |
| { |
| a = PyFloat_AsDouble(args[0]); |
| if (a == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| if (PyFloat_CheckExact(args[1])) { |
| b = PyFloat_AS_DOUBLE(args[1]); |
| } |
| else |
| { |
| b = PyFloat_AsDouble(args[1]); |
| if (b == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| if (!noptargs) { |
| goto skip_optional_kwonly; |
| } |
| if (args[2]) { |
| if (PyFloat_CheckExact(args[2])) { |
| rel_tol = PyFloat_AS_DOUBLE(args[2]); |
| } |
| else |
| { |
| rel_tol = PyFloat_AsDouble(args[2]); |
| if (rel_tol == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| if (!--noptargs) { |
| goto skip_optional_kwonly; |
| } |
| } |
| if (PyFloat_CheckExact(args[3])) { |
| abs_tol = PyFloat_AS_DOUBLE(args[3]); |
| } |
| else |
| { |
| abs_tol = PyFloat_AsDouble(args[3]); |
| if (abs_tol == -1.0 && PyErr_Occurred()) { |
| goto exit; |
| } |
| } |
| skip_optional_kwonly: |
| _return_value = math_isclose_impl(module, a, b, rel_tol, abs_tol); |
| if ((_return_value == -1) && PyErr_Occurred()) { |
| goto exit; |
| } |
| return_value = PyBool_FromLong((long)_return_value); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_prod__doc__, |
| "prod($module, iterable, /, *, start=1)\n" |
| "--\n" |
| "\n" |
| "Calculate the product of all the elements in the input iterable.\n" |
| "\n" |
| "The default start value for the product is 1.\n" |
| "\n" |
| "When the iterable is empty, return the start value. This function is\n" |
| "intended specifically for use with numeric values and may reject\n" |
| "non-numeric types."); |
| |
| #define MATH_PROD_METHODDEF \ |
| {"prod", (PyCFunction)(void(*)(void))math_prod, METH_FASTCALL|METH_KEYWORDS, math_prod__doc__}, |
| |
| static PyObject * |
| math_prod_impl(PyObject *module, PyObject *iterable, PyObject *start); |
| |
| static PyObject * |
| math_prod(PyObject *module, PyObject *const *args, Py_ssize_t nargs, PyObject *kwnames) |
| { |
| PyObject *return_value = NULL; |
| static const char * const _keywords[] = {"", "start", NULL}; |
| static _PyArg_Parser _parser = {NULL, _keywords, "prod", 0}; |
| PyObject *argsbuf[2]; |
| Py_ssize_t noptargs = nargs + (kwnames ? PyTuple_GET_SIZE(kwnames) : 0) - 1; |
| PyObject *iterable; |
| PyObject *start = NULL; |
| |
| args = _PyArg_UnpackKeywords(args, nargs, NULL, kwnames, &_parser, 1, 1, 0, argsbuf); |
| if (!args) { |
| goto exit; |
| } |
| iterable = args[0]; |
| if (!noptargs) { |
| goto skip_optional_kwonly; |
| } |
| start = args[1]; |
| skip_optional_kwonly: |
| return_value = math_prod_impl(module, iterable, start); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_perm__doc__, |
| "perm($module, n, k=None, /)\n" |
| "--\n" |
| "\n" |
| "Number of ways to choose k items from n items without repetition and with order.\n" |
| "\n" |
| "Evaluates to n! / (n - k)! when k <= n and evaluates\n" |
| "to zero when k > n.\n" |
| "\n" |
| "If k is not specified or is None, then k defaults to n\n" |
| "and the function returns n!.\n" |
| "\n" |
| "Raises TypeError if either of the arguments are not integers.\n" |
| "Raises ValueError if either of the arguments are negative."); |
| |
| #define MATH_PERM_METHODDEF \ |
| {"perm", (PyCFunction)(void(*)(void))math_perm, METH_FASTCALL, math_perm__doc__}, |
| |
| static PyObject * |
| math_perm_impl(PyObject *module, PyObject *n, PyObject *k); |
| |
| static PyObject * |
| math_perm(PyObject *module, PyObject *const *args, Py_ssize_t nargs) |
| { |
| PyObject *return_value = NULL; |
| PyObject *n; |
| PyObject *k = Py_None; |
| |
| if (!_PyArg_CheckPositional("perm", nargs, 1, 2)) { |
| goto exit; |
| } |
| n = args[0]; |
| if (nargs < 2) { |
| goto skip_optional; |
| } |
| k = args[1]; |
| skip_optional: |
| return_value = math_perm_impl(module, n, k); |
| |
| exit: |
| return return_value; |
| } |
| |
| PyDoc_STRVAR(math_comb__doc__, |
| "comb($module, n, k, /)\n" |
| "--\n" |
| "\n" |
| "Number of ways to choose k items from n items without repetition and without order.\n" |
| "\n" |
| "Evaluates to n! / (k! * (n - k)!) when k <= n and evaluates\n" |
| "to zero when k > n.\n" |
| "\n" |
| "Also called the binomial coefficient because it is equivalent\n" |
| "to the coefficient of k-th term in polynomial expansion of the\n" |
| "expression (1 + x)**n.\n" |
| "\n" |
| "Raises TypeError if either of the arguments are not integers.\n" |
| "Raises ValueError if either of the arguments are negative."); |
| |
| #define MATH_COMB_METHODDEF \ |
| {"comb", (PyCFunction)(void(*)(void))math_comb, METH_FASTCALL, math_comb__doc__}, |
| |
| static PyObject * |
| math_comb_impl(PyObject *module, PyObject *n, PyObject *k); |
| |
| static PyObject * |
| math_comb(PyObject *module, PyObject *const *args, Py_ssize_t nargs) |
| { |
| PyObject *return_value = NULL; |
| PyObject *n; |
| PyObject *k; |
| |
| if (!_PyArg_CheckPositional("comb", nargs, 2, 2)) { |
| goto exit; |
| } |
| n = args[0]; |
| k = args[1]; |
| return_value = math_comb_impl(module, n, k); |
| |
| exit: |
| return return_value; |
| } |
| /*[clinic end generated code: output=9a2b3dc91eb9aadd input=a9049054013a1b77]*/ |