ci: Add an Ubuntu:22.04 builder for RISC-V (#219)

cpuinfo is built for riscv64 using a riscv64 container.  binfmt_misc
allows the riscv64 binaries in the container to be executed with QEMU.
This is slower than cross compiling but as there's not that much code
the build times are acceptable.  It takes just under 6 minutes for the
full riscv64 github action to run.  We also have the option of running
some of the built RISC-V binaries, e.g., unit tests, in the CI. It
should be easy to expand the matrix to add CI for other architectures
not natively supported by github actions.
1 file changed
tree: 6106d04fe81f24dbcba82d7e00e4e762c160e5cc
  1. .github/
  2. bench/
  3. cmake/
  4. deps/
  5. include/
  6. jni/
  7. scripts/
  8. src/
  9. test/
  10. tools/
  11. .bazelrc
  12. .clang-format
  13. .gitignore
  14. .travis.yml
  15. appveyor.yml
  16. BUILD.bazel
  17. CMakeLists.txt
  18. CMakePresets.json
  21. confu.yaml
  26. WORKSPACE.bazel

CPU INFOrmation library

BSD (2 clause) License Linux/Mac build status Windows build status

cpuinfo is a library to detect essential for performance optimization information about host CPU.


  • Cross-platform availability:
    • Linux, Windows, macOS, Android, and iOS operating systems
    • x86, x86-64, ARM, and ARM64 architectures
  • Modern C/C++ interface
    • Thread-safe
    • No memory allocation after initialization
    • No exceptions thrown
  • Detection of supported instruction sets, up to AVX512 (x86) and ARMv8.3 extensions
  • Detection of SoC and core information:
    • Processor (SoC) name
    • Vendor and microarchitecture for each CPU core
    • ID (MIDR on ARM, CPUID leaf 1 EAX value on x86) for each CPU core
  • Detection of cache information:
    • Cache type (instruction/data/unified), size and line size
    • Cache associativity
    • Cores and logical processors (hyper-threads) sharing the cache
  • Detection of topology information (relative between logical processors, cores, and processor packages)
  • Well-tested production-quality code:
    • 60+ mock tests based on data from real devices
    • Includes work-arounds for common bugs in hardware and OS kernels
    • Supports systems with heterogenous cores, such as big.LITTLE and Max.Med.Min
  • Permissive open-source license (Simplified BSD)


Log processor name:

printf("Running on %s CPU\n", cpuinfo_get_package(0)->name);

Detect if target is a 32-bit or 64-bit ARM system:

    /* 32-bit ARM-specific code here */

Check if the host CPU supports ARM NEON

if (cpuinfo_has_arm_neon()) {

Check if the host CPU supports x86 AVX

if (cpuinfo_has_x86_avx()) {

Check if the thread runs on a Cortex-A53 core

switch (cpuinfo_get_current_core()->uarch) {
    case cpuinfo_uarch_cortex_a53:

Get the size of level 1 data cache on the fastest core in the processor (e.g. big core in big.LITTLE ARM systems):

const size_t l1_size = cpuinfo_get_processor(0)->cache.l1d->size;

Pin thread to cores sharing L2 cache with the current core (Linux or Android)

cpu_set_t cpu_set;
const struct cpuinfo_cache* current_l2 = cpuinfo_get_current_processor()->cache.l2;
for (uint32_t i = 0; i < current_l2->processor_count; i++) {
    CPU_SET(cpuinfo_get_processor(current_l2->processor_start + i)->linux_id, &cpu_set);
pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpu_set);

Use via pkg-config

If you would like to provide your project's build environment with the necessary compiler and linker flags in a portable manner, the library by default when built enables CPUINFO_BUILD_PKG_CONFIG and will generate a pkg-config manifest (libcpuinfo.pc). Here are several examples of how to use it:

Command Line

If you used your distro's package manager to install the library, you can verify that it is available to your build environment like so:

$ pkg-config --cflags --libs libcpuinfo
-I/usr/include/x86_64-linux-gnu/ -L/lib/x86_64-linux-gnu/ -lcpuinfo

If you have installed the library from source into a non-standard prefix, pkg-config may need help finding it:

$ PKG_CONFIG_PATH="/home/me/projects/cpuinfo/prefix/lib/pkgconfig/:$PKG_CONFIG_PATH" pkg-config --cflags --libs libcpuinfo
-I/home/me/projects/cpuinfo/prefix/include -L/home/me/projects/cpuinfo/prefix/lib -lcpuinfo

GNU Autotools

To use with the GNU Autotools include the following snippet in your project's

# CPU INFOrmation library...
    [libcpuinfo], [libcpuinfo], [],
    [AC_MSG_ERROR([libcpuinfo missing...])])


To use with Meson you just need to add dependency('libcpuinfo') as a dependency for your executable.

    meson_version: '>=0.55.0'

    sources: 'main.cpp',
    dependencies: dependency('libcpuinfo')


This project can be built using Bazel.

You can also use this library as a dependency to your Bazel project. Add to the WORKSPACE file:

load("@bazel_tools//tools/build_defs/repo:git.bzl", "git_repository")

    name = "org_pytorch_cpuinfo",
    branch = "master",
    remote = "",

And to your BUILD file:

    name = "cpuinfo_test",
    srcs = [
        # ...
    deps = [


To use with CMake use the FindPkgConfig module. Here is an example:

cmake_minimum_required(VERSION 3.6)

pkg_check_modules(CpuInfo REQUIRED IMPORTED_TARGET libcpuinfo)

add_executable(${PROJECT_NAME} main.cpp)
target_link_libraries(${PROJECT_NAME} PkgConfig::CpuInfo)


To use within a vanilla makefile, you can call pkg-config directly to supply compiler and linker flags using shell substitution.

CFLAGS=-g3 -Wall -Wextra -Werror ...
LDFLAGS=-lfoo ...
CFLAGS+= $(pkg-config --cflags libcpuinfo)
LDFLAGS+= $(pkg-config --libs libcpuinfo)

Exposed information

  • [x] Processor (SoC) name
  • [x] Microarchitecture
  • [x] Usable instruction sets
  • [ ] CPU frequency
  • [x] Cache
    • [x] Size
    • [x] Associativity
    • [x] Line size
    • [x] Number of partitions
    • [x] Flags (unified, inclusive, complex hash function)
    • [x] Topology (logical processors that share this cache level)
  • [ ] TLB
    • [ ] Number of entries
    • [ ] Associativity
    • [ ] Covered page types (instruction, data)
    • [ ] Covered page sizes
  • [x] Topology information
    • [x] Logical processors
    • [x] Cores
    • [x] Packages (sockets)

Supported environments:

  • [x] Android
    • [x] x86 ABI
    • [x] x86_64 ABI
    • [x] armeabi ABI
    • [x] armeabiv7-a ABI
    • [x] arm64-v8a ABI
    • [ ] mips ABI
    • [ ] mips64 ABI
  • [x] Linux
    • [x] x86
    • [x] x86-64
    • [x] 32-bit ARM (ARMv5T and later)
    • [x] ARM64
    • [ ] PowerPC64
  • [x] iOS
    • [x] x86 (iPhone simulator)
    • [x] x86-64 (iPhone simulator)
    • [x] ARMv7
    • [x] ARM64
  • [x] macOS
    • [x] x86
    • [x] x86-64
    • [x] ARM64 (Apple silicon)
  • [x] Windows
    • [x] x86
    • [x] x86-64
    • [x] arm64


  • Processor (SoC) name detection
    • [x] Using CPUID leaves 0x80000002–0x80000004 on x86/x86-64
    • [x] Using /proc/cpuinfo on ARM
    • [x] Using ro.chipname, ro.board.platform, ro.product.board, ro.mediatek.platform, ro.arch properties (Android)
    • [ ] Using kernel log (dmesg) on ARM Linux
    • [x] Using Windows registry on ARM64 Windows
  • Vendor and microarchitecture detection
    • [x] Intel-designed x86/x86-64 cores (up to Sunny Cove, Goldmont Plus, and Knights Mill)
    • [x] AMD-designed x86/x86-64 cores (up to Puma/Jaguar and Zen 2)
    • [ ] VIA-designed x86/x86-64 cores
    • [ ] Other x86 cores (DM&P, RDC, Transmeta, Cyrix, Rise)
    • [x] ARM-designed ARM cores (up to Cortex-A55, Cortex-A77, and Neoverse E1/V1/N2/V2)
    • [x] Qualcomm-designed ARM cores (Scorpion, Krait, and Kryo)
    • [x] Nvidia-designed ARM cores (Denver and Carmel)
    • [x] Samsung-designed ARM cores (Exynos)
    • [x] Intel-designed ARM cores (XScale up to 3rd-gen)
    • [x] Apple-designed ARM cores (up to Lightning and Thunder)
    • [x] Cavium-designed ARM cores (ThunderX)
    • [x] AppliedMicro-designed ARM cores (X-Gene)
  • Instruction set detection
    • [x] Using CPUID (x86/x86-64)
    • [x] Using /proc/cpuinfo on 32-bit ARM EABI (Linux)
    • [x] Using microarchitecture heuristics on (32-bit ARM)
    • [x] Using FPSID and WCID registers (32-bit ARM)
    • [x] Using getauxval (Linux/ARM)
    • [x] Using /proc/self/auxv (Android/ARM)
    • [ ] Using instruction probing on ARM (Linux)
    • [ ] Using CPUID registers on ARM64 (Linux)
    • [x] Using IsProcessorFeaturePresent on ARM64 Windows
  • Cache detection
    • [x] Using CPUID leaf 0x00000002 (x86/x86-64)
    • [x] Using CPUID leaf 0x00000004 (non-AMD x86/x86-64)
    • [ ] Using CPUID leaves 0x80000005-0x80000006 (AMD x86/x86-64)
    • [x] Using CPUID leaf 0x8000001D (AMD x86/x86-64)
    • [x] Using /proc/cpuinfo (Linux/pre-ARMv7)
    • [x] Using microarchitecture heuristics (ARM)
    • [x] Using chipset name (ARM)
    • [x] Using sysctlbyname (Mach)
    • [x] Using sysfs typology directories (ARM/Linux)
    • [ ] Using sysfs cache directories (Linux)
    • [x] Using GetLogicalProcessorInformationEx on ARM64 Windows
  • TLB detection
    • [x] Using CPUID leaf 0x00000002 (x86/x86-64)
    • [ ] Using CPUID leaves 0x80000005-0x80000006 and 0x80000019 (AMD x86/x86-64)
    • [x] Using microarchitecture heuristics (ARM)
  • Topology detection
    • [x] Using CPUID leaf 0x00000001 on x86/x86-64 (legacy APIC ID)
    • [x] Using CPUID leaf 0x0000000B on x86/x86-64 (Intel APIC ID)
    • [ ] Using CPUID leaf 0x8000001E on x86/x86-64 (AMD APIC ID)
    • [x] Using /proc/cpuinfo (Linux)
    • [x] Using host_info (Mach)
    • [x] Using GetLogicalProcessorInformationEx (Windows)
    • [x] Using sysfs (Linux)
    • [x] Using chipset name (ARM/Linux)