blob: fc77f68dffa2241e526c063ebbef15170c0b87db [file] [log] [blame]
/*
** The "printf" code that follows dates from the 1980's. It is in
** the public domain.
**
**************************************************************************
**
** This file contains code for a set of "printf"-like routines. These
** routines format strings much like the printf() from the standard C
** library, though the implementation here has enhancements to support
** SQLite.
*/
#include "sqliteInt.h"
/*
** Conversion types fall into various categories as defined by the
** following enumeration.
*/
#define etRADIX 0 /* non-decimal integer types. %x %o */
#define etFLOAT 1 /* Floating point. %f */
#define etEXP 2 /* Exponentional notation. %e and %E */
#define etGENERIC 3 /* Floating or exponential, depending on exponent. %g */
#define etSIZE 4 /* Return number of characters processed so far. %n */
#define etSTRING 5 /* Strings. %s */
#define etDYNSTRING 6 /* Dynamically allocated strings. %z */
#define etPERCENT 7 /* Percent symbol. %% */
#define etCHARX 8 /* Characters. %c */
/* The rest are extensions, not normally found in printf() */
#define etSQLESCAPE 9 /* Strings with '\'' doubled. %q */
#define etSQLESCAPE2 10 /* Strings with '\'' doubled and enclosed in '',
NULL pointers replaced by SQL NULL. %Q */
#define etTOKEN 11 /* a pointer to a Token structure */
#define etSRCLIST 12 /* a pointer to a SrcList */
#define etPOINTER 13 /* The %p conversion */
#define etSQLESCAPE3 14 /* %w -> Strings with '\"' doubled */
#define etORDINAL 15 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */
#define etDECIMAL 16 /* %d or %u, but not %x, %o */
#define etINVALID 17 /* Any unrecognized conversion type */
/*
** An "etByte" is an 8-bit unsigned value.
*/
typedef unsigned char etByte;
/*
** Each builtin conversion character (ex: the 'd' in "%d") is described
** by an instance of the following structure
*/
typedef struct et_info { /* Information about each format field */
char fmttype; /* The format field code letter */
etByte base; /* The base for radix conversion */
etByte flags; /* One or more of FLAG_ constants below */
etByte type; /* Conversion paradigm */
etByte charset; /* Offset into aDigits[] of the digits string */
etByte prefix; /* Offset into aPrefix[] of the prefix string */
} et_info;
/*
** Allowed values for et_info.flags
*/
#define FLAG_SIGNED 1 /* True if the value to convert is signed */
#define FLAG_STRING 4 /* Allow infinite precision */
/*
** The following table is searched linearly, so it is good to put the
** most frequently used conversion types first.
*/
static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
static const char aPrefix[] = "-x0\000X0";
static const et_info fmtinfo[] = {
{ 'd', 10, 1, etDECIMAL, 0, 0 },
{ 's', 0, 4, etSTRING, 0, 0 },
{ 'g', 0, 1, etGENERIC, 30, 0 },
{ 'z', 0, 4, etDYNSTRING, 0, 0 },
{ 'q', 0, 4, etSQLESCAPE, 0, 0 },
{ 'Q', 0, 4, etSQLESCAPE2, 0, 0 },
{ 'w', 0, 4, etSQLESCAPE3, 0, 0 },
{ 'c', 0, 0, etCHARX, 0, 0 },
{ 'o', 8, 0, etRADIX, 0, 2 },
{ 'u', 10, 0, etDECIMAL, 0, 0 },
{ 'x', 16, 0, etRADIX, 16, 1 },
{ 'X', 16, 0, etRADIX, 0, 4 },
#ifndef SQLITE_OMIT_FLOATING_POINT
{ 'f', 0, 1, etFLOAT, 0, 0 },
{ 'e', 0, 1, etEXP, 30, 0 },
{ 'E', 0, 1, etEXP, 14, 0 },
{ 'G', 0, 1, etGENERIC, 14, 0 },
#endif
{ 'i', 10, 1, etDECIMAL, 0, 0 },
{ 'n', 0, 0, etSIZE, 0, 0 },
{ '%', 0, 0, etPERCENT, 0, 0 },
{ 'p', 16, 0, etPOINTER, 0, 1 },
/* All the rest are undocumented and are for internal use only */
{ 'T', 0, 0, etTOKEN, 0, 0 },
{ 'S', 0, 0, etSRCLIST, 0, 0 },
{ 'r', 10, 1, etORDINAL, 0, 0 },
};
/* Floating point constants used for rounding */
static const double arRound[] = {
5.0e-01, 5.0e-02, 5.0e-03, 5.0e-04, 5.0e-05,
5.0e-06, 5.0e-07, 5.0e-08, 5.0e-09, 5.0e-10,
};
/*
** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point
** conversions will work.
*/
#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** "*val" is a double such that 0.1 <= *val < 10.0
** Return the ascii code for the leading digit of *val, then
** multiply "*val" by 10.0 to renormalize.
**
** Example:
** input: *val = 3.14159
** output: *val = 1.4159 function return = '3'
**
** The counter *cnt is incremented each time. After counter exceeds
** 16 (the number of significant digits in a 64-bit float) '0' is
** always returned.
*/
static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
int digit;
LONGDOUBLE_TYPE d;
if( (*cnt)<=0 ) return '0';
(*cnt)--;
digit = (int)*val;
d = digit;
digit += '0';
*val = (*val - d)*10.0;
return (char)digit;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */
/*
** Set the StrAccum object to an error mode.
*/
static void setStrAccumError(StrAccum *p, u8 eError){
assert( eError==SQLITE_NOMEM || eError==SQLITE_TOOBIG );
p->accError = eError;
if( p->mxAlloc ) sqlite3_str_reset(p);
if( eError==SQLITE_TOOBIG ) sqlite3ErrorToParser(p->db, eError);
}
/*
** Extra argument values from a PrintfArguments object
*/
static sqlite3_int64 getIntArg(PrintfArguments *p){
if( p->nArg<=p->nUsed ) return 0;
return sqlite3_value_int64(p->apArg[p->nUsed++]);
}
static double getDoubleArg(PrintfArguments *p){
if( p->nArg<=p->nUsed ) return 0.0;
return sqlite3_value_double(p->apArg[p->nUsed++]);
}
static char *getTextArg(PrintfArguments *p){
if( p->nArg<=p->nUsed ) return 0;
return (char*)sqlite3_value_text(p->apArg[p->nUsed++]);
}
/*
** Allocate memory for a temporary buffer needed for printf rendering.
**
** If the requested size of the temp buffer is larger than the size
** of the output buffer in pAccum, then cause an SQLITE_TOOBIG error.
** Do the size check before the memory allocation to prevent rogue
** SQL from requesting large allocations using the precision or width
** field of the printf() function.
*/
static char *printfTempBuf(sqlite3_str *pAccum, sqlite3_int64 n){
char *z;
if( pAccum->accError ) return 0;
if( n>pAccum->nAlloc && n>pAccum->mxAlloc ){
setStrAccumError(pAccum, SQLITE_TOOBIG);
return 0;
}
z = sqlite3DbMallocRaw(pAccum->db, n);
if( z==0 ){
setStrAccumError(pAccum, SQLITE_NOMEM);
}
return z;
}
/*
** On machines with a small stack size, you can redefine the
** SQLITE_PRINT_BUF_SIZE to be something smaller, if desired.
*/
#ifndef SQLITE_PRINT_BUF_SIZE
# define SQLITE_PRINT_BUF_SIZE 70
#endif
#define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */
/*
** Render a string given by "fmt" into the StrAccum object.
*/
void sqlite3_str_vappendf(
sqlite3_str *pAccum, /* Accumulate results here */
const char *fmt, /* Format string */
va_list ap /* arguments */
){
int c; /* Next character in the format string */
char *bufpt; /* Pointer to the conversion buffer */
int precision; /* Precision of the current field */
int length; /* Length of the field */
int idx; /* A general purpose loop counter */
int width; /* Width of the current field */
etByte flag_leftjustify; /* True if "-" flag is present */
etByte flag_prefix; /* '+' or ' ' or 0 for prefix */
etByte flag_alternateform; /* True if "#" flag is present */
etByte flag_altform2; /* True if "!" flag is present */
etByte flag_zeropad; /* True if field width constant starts with zero */
etByte flag_long; /* 1 for the "l" flag, 2 for "ll", 0 by default */
etByte done; /* Loop termination flag */
etByte cThousand; /* Thousands separator for %d and %u */
etByte xtype = etINVALID; /* Conversion paradigm */
u8 bArgList; /* True for SQLITE_PRINTF_SQLFUNC */
char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
sqlite_uint64 longvalue; /* Value for integer types */
LONGDOUBLE_TYPE realvalue; /* Value for real types */
const et_info *infop; /* Pointer to the appropriate info structure */
char *zOut; /* Rendering buffer */
int nOut; /* Size of the rendering buffer */
char *zExtra = 0; /* Malloced memory used by some conversion */
#ifndef SQLITE_OMIT_FLOATING_POINT
int exp, e2; /* exponent of real numbers */
int nsd; /* Number of significant digits returned */
double rounder; /* Used for rounding floating point values */
etByte flag_dp; /* True if decimal point should be shown */
etByte flag_rtz; /* True if trailing zeros should be removed */
#endif
PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
char buf[etBUFSIZE]; /* Conversion buffer */
/* pAccum never starts out with an empty buffer that was obtained from
** malloc(). This precondition is required by the mprintf("%z...")
** optimization. */
assert( pAccum->nChar>0 || (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 );
bufpt = 0;
if( (pAccum->printfFlags & SQLITE_PRINTF_SQLFUNC)!=0 ){
pArgList = va_arg(ap, PrintfArguments*);
bArgList = 1;
}else{
bArgList = 0;
}
for(; (c=(*fmt))!=0; ++fmt){
if( c!='%' ){
bufpt = (char *)fmt;
#if HAVE_STRCHRNUL
fmt = strchrnul(fmt, '%');
#else
do{ fmt++; }while( *fmt && *fmt != '%' );
#endif
sqlite3_str_append(pAccum, bufpt, (int)(fmt - bufpt));
if( *fmt==0 ) break;
}
if( (c=(*++fmt))==0 ){
sqlite3_str_append(pAccum, "%", 1);
break;
}
/* Find out what flags are present */
flag_leftjustify = flag_prefix = cThousand =
flag_alternateform = flag_altform2 = flag_zeropad = 0;
done = 0;
width = 0;
flag_long = 0;
precision = -1;
do{
switch( c ){
case '-': flag_leftjustify = 1; break;
case '+': flag_prefix = '+'; break;
case ' ': flag_prefix = ' '; break;
case '#': flag_alternateform = 1; break;
case '!': flag_altform2 = 1; break;
case '0': flag_zeropad = 1; break;
case ',': cThousand = ','; break;
default: done = 1; break;
case 'l': {
flag_long = 1;
c = *++fmt;
if( c=='l' ){
c = *++fmt;
flag_long = 2;
}
done = 1;
break;
}
case '1': case '2': case '3': case '4': case '5':
case '6': case '7': case '8': case '9': {
unsigned wx = c - '0';
while( (c = *++fmt)>='0' && c<='9' ){
wx = wx*10 + c - '0';
}
testcase( wx>0x7fffffff );
width = wx & 0x7fffffff;
#ifdef SQLITE_PRINTF_PRECISION_LIMIT
if( width>SQLITE_PRINTF_PRECISION_LIMIT ){
width = SQLITE_PRINTF_PRECISION_LIMIT;
}
#endif
if( c!='.' && c!='l' ){
done = 1;
}else{
fmt--;
}
break;
}
case '*': {
if( bArgList ){
width = (int)getIntArg(pArgList);
}else{
width = va_arg(ap,int);
}
if( width<0 ){
flag_leftjustify = 1;
width = width >= -2147483647 ? -width : 0;
}
#ifdef SQLITE_PRINTF_PRECISION_LIMIT
if( width>SQLITE_PRINTF_PRECISION_LIMIT ){
width = SQLITE_PRINTF_PRECISION_LIMIT;
}
#endif
if( (c = fmt[1])!='.' && c!='l' ){
c = *++fmt;
done = 1;
}
break;
}
case '.': {
c = *++fmt;
if( c=='*' ){
if( bArgList ){
precision = (int)getIntArg(pArgList);
}else{
precision = va_arg(ap,int);
}
if( precision<0 ){
precision = precision >= -2147483647 ? -precision : -1;
}
c = *++fmt;
}else{
unsigned px = 0;
while( c>='0' && c<='9' ){
px = px*10 + c - '0';
c = *++fmt;
}
testcase( px>0x7fffffff );
precision = px & 0x7fffffff;
}
#ifdef SQLITE_PRINTF_PRECISION_LIMIT
if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){
precision = SQLITE_PRINTF_PRECISION_LIMIT;
}
#endif
if( c=='l' ){
--fmt;
}else{
done = 1;
}
break;
}
}
}while( !done && (c=(*++fmt))!=0 );
/* Fetch the info entry for the field */
infop = &fmtinfo[0];
xtype = etINVALID;
for(idx=0; idx<ArraySize(fmtinfo); idx++){
if( c==fmtinfo[idx].fmttype ){
infop = &fmtinfo[idx];
xtype = infop->type;
break;
}
}
/*
** At this point, variables are initialized as follows:
**
** flag_alternateform TRUE if a '#' is present.
** flag_altform2 TRUE if a '!' is present.
** flag_prefix '+' or ' ' or zero
** flag_leftjustify TRUE if a '-' is present or if the
** field width was negative.
** flag_zeropad TRUE if the width began with 0.
** flag_long 1 for "l", 2 for "ll"
** width The specified field width. This is
** always non-negative. Zero is the default.
** precision The specified precision. The default
** is -1.
** xtype The class of the conversion.
** infop Pointer to the appropriate info struct.
*/
switch( xtype ){
case etPOINTER:
flag_long = sizeof(char*)==sizeof(i64) ? 2 :
sizeof(char*)==sizeof(long int) ? 1 : 0;
/* Fall through into the next case */
case etORDINAL:
case etRADIX:
cThousand = 0;
/* Fall through into the next case */
case etDECIMAL:
if( infop->flags & FLAG_SIGNED ){
i64 v;
if( bArgList ){
v = getIntArg(pArgList);
}else if( flag_long ){
if( flag_long==2 ){
v = va_arg(ap,i64) ;
}else{
v = va_arg(ap,long int);
}
}else{
v = va_arg(ap,int);
}
if( v<0 ){
if( v==SMALLEST_INT64 ){
longvalue = ((u64)1)<<63;
}else{
longvalue = -v;
}
prefix = '-';
}else{
longvalue = v;
prefix = flag_prefix;
}
}else{
if( bArgList ){
longvalue = (u64)getIntArg(pArgList);
}else if( flag_long ){
if( flag_long==2 ){
longvalue = va_arg(ap,u64);
}else{
longvalue = va_arg(ap,unsigned long int);
}
}else{
longvalue = va_arg(ap,unsigned int);
}
prefix = 0;
}
if( longvalue==0 ) flag_alternateform = 0;
if( flag_zeropad && precision<width-(prefix!=0) ){
precision = width-(prefix!=0);
}
if( precision<etBUFSIZE-10-etBUFSIZE/3 ){
nOut = etBUFSIZE;
zOut = buf;
}else{
u64 n;
n = (u64)precision + 10;
if( cThousand ) n += precision/3;
zOut = zExtra = printfTempBuf(pAccum, n);
if( zOut==0 ) return;
nOut = (int)n;
}
bufpt = &zOut[nOut-1];
if( xtype==etORDINAL ){
static const char zOrd[] = "thstndrd";
int x = (int)(longvalue % 10);
if( x>=4 || (longvalue/10)%10==1 ){
x = 0;
}
*(--bufpt) = zOrd[x*2+1];
*(--bufpt) = zOrd[x*2];
}
{
const char *cset = &aDigits[infop->charset];
u8 base = infop->base;
do{ /* Convert to ascii */
*(--bufpt) = cset[longvalue%base];
longvalue = longvalue/base;
}while( longvalue>0 );
}
length = (int)(&zOut[nOut-1]-bufpt);
while( precision>length ){
*(--bufpt) = '0'; /* Zero pad */
length++;
}
if( cThousand ){
int nn = (length - 1)/3; /* Number of "," to insert */
int ix = (length - 1)%3 + 1;
bufpt -= nn;
for(idx=0; nn>0; idx++){
bufpt[idx] = bufpt[idx+nn];
ix--;
if( ix==0 ){
bufpt[++idx] = cThousand;
nn--;
ix = 3;
}
}
}
if( prefix ) *(--bufpt) = prefix; /* Add sign */
if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */
const char *pre;
char x;
pre = &aPrefix[infop->prefix];
for(; (x=(*pre))!=0; pre++) *(--bufpt) = x;
}
length = (int)(&zOut[nOut-1]-bufpt);
break;
case etFLOAT:
case etEXP:
case etGENERIC:
if( bArgList ){
realvalue = getDoubleArg(pArgList);
}else{
realvalue = va_arg(ap,double);
}
#ifdef SQLITE_OMIT_FLOATING_POINT
length = 0;
#else
if( precision<0 ) precision = 6; /* Set default precision */
if( realvalue<0.0 ){
realvalue = -realvalue;
prefix = '-';
}else{
prefix = flag_prefix;
}
if( xtype==etGENERIC && precision>0 ) precision--;
testcase( precision>0xfff );
idx = precision & 0xfff;
rounder = arRound[idx%10];
while( idx>=10 ){ rounder *= 1.0e-10; idx -= 10; }
if( xtype==etFLOAT ){
double rx = (double)realvalue;
sqlite3_uint64 u;
int ex;
memcpy(&u, &rx, sizeof(u));
ex = -1023 + (int)((u>>52)&0x7ff);
if( precision+(ex/3) < 15 ) rounder += realvalue*3e-16;
realvalue += rounder;
}
/* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
exp = 0;
if( sqlite3IsNaN((double)realvalue) ){
bufpt = "NaN";
length = 3;
break;
}
if( realvalue>0.0 ){
LONGDOUBLE_TYPE scale = 1.0;
while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;}
while( realvalue>=1e10*scale && exp<=350 ){ scale *= 1e10; exp+=10; }
while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; }
realvalue /= scale;
while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; }
while( realvalue<1.0 ){ realvalue *= 10.0; exp--; }
if( exp>350 ){
bufpt = buf;
buf[0] = prefix;
memcpy(buf+(prefix!=0),"Inf",4);
length = 3+(prefix!=0);
break;
}
}
bufpt = buf;
/*
** If the field type is etGENERIC, then convert to either etEXP
** or etFLOAT, as appropriate.
*/
if( xtype!=etFLOAT ){
realvalue += rounder;
if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; }
}
if( xtype==etGENERIC ){
flag_rtz = !flag_alternateform;
if( exp<-4 || exp>precision ){
xtype = etEXP;
}else{
precision = precision - exp;
xtype = etFLOAT;
}
}else{
flag_rtz = flag_altform2;
}
if( xtype==etEXP ){
e2 = 0;
}else{
e2 = exp;
}
{
i64 szBufNeeded; /* Size of a temporary buffer needed */
szBufNeeded = MAX(e2,0)+(i64)precision+(i64)width+15;
if( szBufNeeded > etBUFSIZE ){
bufpt = zExtra = printfTempBuf(pAccum, szBufNeeded);
if( bufpt==0 ) return;
}
}
zOut = bufpt;
nsd = 16 + flag_altform2*10;
flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
/* The sign in front of the number */
if( prefix ){
*(bufpt++) = prefix;
}
/* Digits prior to the decimal point */
if( e2<0 ){
*(bufpt++) = '0';
}else{
for(; e2>=0; e2--){
*(bufpt++) = et_getdigit(&realvalue,&nsd);
}
}
/* The decimal point */
if( flag_dp ){
*(bufpt++) = '.';
}
/* "0" digits after the decimal point but before the first
** significant digit of the number */
for(e2++; e2<0; precision--, e2++){
assert( precision>0 );
*(bufpt++) = '0';
}
/* Significant digits after the decimal point */
while( (precision--)>0 ){
*(bufpt++) = et_getdigit(&realvalue,&nsd);
}
/* Remove trailing zeros and the "." if no digits follow the "." */
if( flag_rtz && flag_dp ){
while( bufpt[-1]=='0' ) *(--bufpt) = 0;
assert( bufpt>zOut );
if( bufpt[-1]=='.' ){
if( flag_altform2 ){
*(bufpt++) = '0';
}else{
*(--bufpt) = 0;
}
}
}
/* Add the "eNNN" suffix */
if( xtype==etEXP ){
*(bufpt++) = aDigits[infop->charset];
if( exp<0 ){
*(bufpt++) = '-'; exp = -exp;
}else{
*(bufpt++) = '+';
}
if( exp>=100 ){
*(bufpt++) = (char)((exp/100)+'0'); /* 100's digit */
exp %= 100;
}
*(bufpt++) = (char)(exp/10+'0'); /* 10's digit */
*(bufpt++) = (char)(exp%10+'0'); /* 1's digit */
}
*bufpt = 0;
/* The converted number is in buf[] and zero terminated. Output it.
** Note that the number is in the usual order, not reversed as with
** integer conversions. */
length = (int)(bufpt-zOut);
bufpt = zOut;
/* Special case: Add leading zeros if the flag_zeropad flag is
** set and we are not left justified */
if( flag_zeropad && !flag_leftjustify && length < width){
int i;
int nPad = width - length;
for(i=width; i>=nPad; i--){
bufpt[i] = bufpt[i-nPad];
}
i = prefix!=0;
while( nPad-- ) bufpt[i++] = '0';
length = width;
}
#endif /* !defined(SQLITE_OMIT_FLOATING_POINT) */
break;
case etSIZE:
if( !bArgList ){
*(va_arg(ap,int*)) = pAccum->nChar;
}
length = width = 0;
break;
case etPERCENT:
buf[0] = '%';
bufpt = buf;
length = 1;
break;
case etCHARX:
if( bArgList ){
bufpt = getTextArg(pArgList);
length = 1;
if( bufpt ){
buf[0] = c = *(bufpt++);
if( (c&0xc0)==0xc0 ){
while( length<4 && (bufpt[0]&0xc0)==0x80 ){
buf[length++] = *(bufpt++);
}
}
}else{
buf[0] = 0;
}
}else{
unsigned int ch = va_arg(ap,unsigned int);
if( ch<0x00080 ){
buf[0] = ch & 0xff;
length = 1;
}else if( ch<0x00800 ){
buf[0] = 0xc0 + (u8)((ch>>6)&0x1f);
buf[1] = 0x80 + (u8)(ch & 0x3f);
length = 2;
}else if( ch<0x10000 ){
buf[0] = 0xe0 + (u8)((ch>>12)&0x0f);
buf[1] = 0x80 + (u8)((ch>>6) & 0x3f);
buf[2] = 0x80 + (u8)(ch & 0x3f);
length = 3;
}else{
buf[0] = 0xf0 + (u8)((ch>>18) & 0x07);
buf[1] = 0x80 + (u8)((ch>>12) & 0x3f);
buf[2] = 0x80 + (u8)((ch>>6) & 0x3f);
buf[3] = 0x80 + (u8)(ch & 0x3f);
length = 4;
}
}
if( precision>1 ){
width -= precision-1;
if( width>1 && !flag_leftjustify ){
sqlite3_str_appendchar(pAccum, width-1, ' ');
width = 0;
}
while( precision-- > 1 ){
sqlite3_str_append(pAccum, buf, length);
}
}
bufpt = buf;
flag_altform2 = 1;
goto adjust_width_for_utf8;
case etSTRING:
case etDYNSTRING:
if( bArgList ){
bufpt = getTextArg(pArgList);
xtype = etSTRING;
}else{
bufpt = va_arg(ap,char*);
}
if( bufpt==0 ){
bufpt = "";
}else if( xtype==etDYNSTRING ){
if( pAccum->nChar==0
&& pAccum->mxAlloc
&& width==0
&& precision<0
&& pAccum->accError==0
){
/* Special optimization for sqlite3_mprintf("%z..."):
** Extend an existing memory allocation rather than creating
** a new one. */
assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 );
pAccum->zText = bufpt;
pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt);
pAccum->nChar = 0x7fffffff & (int)strlen(bufpt);
pAccum->printfFlags |= SQLITE_PRINTF_MALLOCED;
length = 0;
break;
}
zExtra = bufpt;
}
if( precision>=0 ){
if( flag_altform2 ){
/* Set length to the number of bytes needed in order to display
** precision characters */
unsigned char *z = (unsigned char*)bufpt;
while( precision-- > 0 && z[0] ){
SQLITE_SKIP_UTF8(z);
}
length = (int)(z - (unsigned char*)bufpt);
}else{
for(length=0; length<precision && bufpt[length]; length++){}
}
}else{
length = 0x7fffffff & (int)strlen(bufpt);
}
adjust_width_for_utf8:
if( flag_altform2 && width>0 ){
/* Adjust width to account for extra bytes in UTF-8 characters */
int ii = length - 1;
while( ii>=0 ) if( (bufpt[ii--] & 0xc0)==0x80 ) width++;
}
break;
case etSQLESCAPE: /* %q: Escape ' characters */
case etSQLESCAPE2: /* %Q: Escape ' and enclose in '...' */
case etSQLESCAPE3: { /* %w: Escape " characters */
int i, j, k, n, isnull;
int needQuote;
char ch;
char q = ((xtype==etSQLESCAPE3)?'"':'\''); /* Quote character */
char *escarg;
if( bArgList ){
escarg = getTextArg(pArgList);
}else{
escarg = va_arg(ap,char*);
}
isnull = escarg==0;
if( isnull ) escarg = (xtype==etSQLESCAPE2 ? "NULL" : "(NULL)");
/* For %q, %Q, and %w, the precision is the number of byte (or
** characters if the ! flags is present) to use from the input.
** Because of the extra quoting characters inserted, the number
** of output characters may be larger than the precision.
*/
k = precision;
for(i=n=0; k!=0 && (ch=escarg[i])!=0; i++, k--){
if( ch==q ) n++;
if( flag_altform2 && (ch&0xc0)==0xc0 ){
while( (escarg[i+1]&0xc0)==0x80 ){ i++; }
}
}
needQuote = !isnull && xtype==etSQLESCAPE2;
n += i + 3;
if( n>etBUFSIZE ){
bufpt = zExtra = printfTempBuf(pAccum, n);
if( bufpt==0 ) return;
}else{
bufpt = buf;
}
j = 0;
if( needQuote ) bufpt[j++] = q;
k = i;
for(i=0; i<k; i++){
bufpt[j++] = ch = escarg[i];
if( ch==q ) bufpt[j++] = ch;
}
if( needQuote ) bufpt[j++] = q;
bufpt[j] = 0;
length = j;
goto adjust_width_for_utf8;
}
case etTOKEN: {
Token *pToken;
if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
pToken = va_arg(ap, Token*);
assert( bArgList==0 );
if( pToken && pToken->n ){
sqlite3_str_append(pAccum, (const char*)pToken->z, pToken->n);
}
length = width = 0;
break;
}
case etSRCLIST: {
SrcList *pSrc;
int k;
struct SrcList_item *pItem;
if( (pAccum->printfFlags & SQLITE_PRINTF_INTERNAL)==0 ) return;
pSrc = va_arg(ap, SrcList*);
k = va_arg(ap, int);
pItem = &pSrc->a[k];
assert( bArgList==0 );
assert( k>=0 && k<pSrc->nSrc );
if( pItem->zDatabase ){
sqlite3_str_appendall(pAccum, pItem->zDatabase);
sqlite3_str_append(pAccum, ".", 1);
}
sqlite3_str_appendall(pAccum, pItem->zName);
length = width = 0;
break;
}
default: {
assert( xtype==etINVALID );
return;
}
}/* End switch over the format type */
/*
** The text of the conversion is pointed to by "bufpt" and is
** "length" characters long. The field width is "width". Do
** the output. Both length and width are in bytes, not characters,
** at this point. If the "!" flag was present on string conversions
** indicating that width and precision should be expressed in characters,
** then the values have been translated prior to reaching this point.
*/
width -= length;
if( width>0 ){
if( !flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' ');
sqlite3_str_append(pAccum, bufpt, length);
if( flag_leftjustify ) sqlite3_str_appendchar(pAccum, width, ' ');
}else{
sqlite3_str_append(pAccum, bufpt, length);
}
if( zExtra ){
sqlite3DbFree(pAccum->db, zExtra);
zExtra = 0;
}
}/* End for loop over the format string */
} /* End of function */
/*
** Enlarge the memory allocation on a StrAccum object so that it is
** able to accept at least N more bytes of text.
**
** Return the number of bytes of text that StrAccum is able to accept
** after the attempted enlargement. The value returned might be zero.
*/
static int sqlite3StrAccumEnlarge(StrAccum *p, int N){
char *zNew;
assert( p->nChar+(i64)N >= p->nAlloc ); /* Only called if really needed */
if( p->accError ){
testcase(p->accError==SQLITE_TOOBIG);
testcase(p->accError==SQLITE_NOMEM);
return 0;
}
if( p->mxAlloc==0 ){
setStrAccumError(p, SQLITE_TOOBIG);
return p->nAlloc - p->nChar - 1;
}else{
char *zOld = isMalloced(p) ? p->zText : 0;
i64 szNew = p->nChar;
szNew += N + 1;
if( szNew+p->nChar<=p->mxAlloc ){
/* Force exponential buffer size growth as long as it does not overflow,
** to avoid having to call this routine too often */
szNew += p->nChar;
}
if( szNew > p->mxAlloc ){
sqlite3_str_reset(p);
setStrAccumError(p, SQLITE_TOOBIG);
return 0;
}else{
p->nAlloc = (int)szNew;
}
if( p->db ){
zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
}else{
zNew = sqlite3_realloc64(zOld, p->nAlloc);
}
if( zNew ){
assert( p->zText!=0 || p->nChar==0 );
if( !isMalloced(p) && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
p->zText = zNew;
p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
p->printfFlags |= SQLITE_PRINTF_MALLOCED;
}else{
sqlite3_str_reset(p);
setStrAccumError(p, SQLITE_NOMEM);
return 0;
}
}
return N;
}
/*
** Append N copies of character c to the given string buffer.
*/
void sqlite3_str_appendchar(sqlite3_str *p, int N, char c){
testcase( p->nChar + (i64)N > 0x7fffffff );
if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){
return;
}
while( (N--)>0 ) p->zText[p->nChar++] = c;
}
/*
** The StrAccum "p" is not large enough to accept N new bytes of z[].
** So enlarge if first, then do the append.
**
** This is a helper routine to sqlite3_str_append() that does special-case
** work (enlarging the buffer) using tail recursion, so that the
** sqlite3_str_append() routine can use fast calling semantics.
*/
static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){
N = sqlite3StrAccumEnlarge(p, N);
if( N>0 ){
memcpy(&p->zText[p->nChar], z, N);
p->nChar += N;
}
}
/*
** Append N bytes of text from z to the StrAccum object. Increase the
** size of the memory allocation for StrAccum if necessary.
*/
void sqlite3_str_append(sqlite3_str *p, const char *z, int N){
assert( z!=0 || N==0 );
assert( p->zText!=0 || p->nChar==0 || p->accError );
assert( N>=0 );
assert( p->accError==0 || p->nAlloc==0 || p->mxAlloc==0 );
if( p->nChar+N >= p->nAlloc ){
enlargeAndAppend(p,z,N);
}else if( N ){
assert( p->zText );
p->nChar += N;
memcpy(&p->zText[p->nChar-N], z, N);
}
}
/*
** Append the complete text of zero-terminated string z[] to the p string.
*/
void sqlite3_str_appendall(sqlite3_str *p, const char *z){
sqlite3_str_append(p, z, sqlite3Strlen30(z));
}
/*
** Finish off a string by making sure it is zero-terminated.
** Return a pointer to the resulting string. Return a NULL
** pointer if any kind of error was encountered.
*/
static SQLITE_NOINLINE char *strAccumFinishRealloc(StrAccum *p){
char *zText;
assert( p->mxAlloc>0 && !isMalloced(p) );
zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
if( zText ){
memcpy(zText, p->zText, p->nChar+1);
p->printfFlags |= SQLITE_PRINTF_MALLOCED;
}else{
setStrAccumError(p, SQLITE_NOMEM);
}
p->zText = zText;
return zText;
}
char *sqlite3StrAccumFinish(StrAccum *p){
if( p->zText ){
p->zText[p->nChar] = 0;
if( p->mxAlloc>0 && !isMalloced(p) ){
return strAccumFinishRealloc(p);
}
}
return p->zText;
}
/*
** This singleton is an sqlite3_str object that is returned if
** sqlite3_malloc() fails to provide space for a real one. This
** sqlite3_str object accepts no new text and always returns
** an SQLITE_NOMEM error.
*/
static sqlite3_str sqlite3OomStr = {
0, 0, 0, 0, 0, SQLITE_NOMEM, 0
};
/* Finalize a string created using sqlite3_str_new().
*/
char *sqlite3_str_finish(sqlite3_str *p){
char *z;
if( p!=0 && p!=&sqlite3OomStr ){
z = sqlite3StrAccumFinish(p);
sqlite3_free(p);
}else{
z = 0;
}
return z;
}
/* Return any error code associated with p */
int sqlite3_str_errcode(sqlite3_str *p){
return p ? p->accError : SQLITE_NOMEM;
}
/* Return the current length of p in bytes */
int sqlite3_str_length(sqlite3_str *p){
return p ? p->nChar : 0;
}
/* Return the current value for p */
char *sqlite3_str_value(sqlite3_str *p){
if( p==0 || p->nChar==0 ) return 0;
p->zText[p->nChar] = 0;
return p->zText;
}
/*
** Reset an StrAccum string. Reclaim all malloced memory.
*/
void sqlite3_str_reset(StrAccum *p){
if( isMalloced(p) ){
sqlite3DbFree(p->db, p->zText);
p->printfFlags &= ~SQLITE_PRINTF_MALLOCED;
}
p->nAlloc = 0;
p->nChar = 0;
p->zText = 0;
}
/*
** Initialize a string accumulator.
**
** p: The accumulator to be initialized.
** db: Pointer to a database connection. May be NULL. Lookaside
** memory is used if not NULL. db->mallocFailed is set appropriately
** when not NULL.
** zBase: An initial buffer. May be NULL in which case the initial buffer
** is malloced.
** n: Size of zBase in bytes. If total space requirements never exceed
** n then no memory allocations ever occur.
** mx: Maximum number of bytes to accumulate. If mx==0 then no memory
** allocations will ever occur.
*/
void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){
p->zText = zBase;
p->db = db;
p->nAlloc = n;
p->mxAlloc = mx;
p->nChar = 0;
p->accError = 0;
p->printfFlags = 0;
}
/* Allocate and initialize a new dynamic string object */
sqlite3_str *sqlite3_str_new(sqlite3 *db){
sqlite3_str *p = sqlite3_malloc64(sizeof(*p));
if( p ){
sqlite3StrAccumInit(p, 0, 0, 0,
db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH);
}else{
p = &sqlite3OomStr;
}
return p;
}
/*
** Print into memory obtained from sqliteMalloc(). Use the internal
** %-conversion extensions.
*/
char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
char *z;
char zBase[SQLITE_PRINT_BUF_SIZE];
StrAccum acc;
assert( db!=0 );
sqlite3StrAccumInit(&acc, db, zBase, sizeof(zBase),
db->aLimit[SQLITE_LIMIT_LENGTH]);
acc.printfFlags = SQLITE_PRINTF_INTERNAL;
sqlite3_str_vappendf(&acc, zFormat, ap);
z = sqlite3StrAccumFinish(&acc);
if( acc.accError==SQLITE_NOMEM ){
sqlite3OomFault(db);
}
return z;
}
/*
** Print into memory obtained from sqliteMalloc(). Use the internal
** %-conversion extensions.
*/
char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){
va_list ap;
char *z;
va_start(ap, zFormat);
z = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
return z;
}
/*
** Print into memory obtained from sqlite3_malloc(). Omit the internal
** %-conversion extensions.
*/
char *sqlite3_vmprintf(const char *zFormat, va_list ap){
char *z;
char zBase[SQLITE_PRINT_BUF_SIZE];
StrAccum acc;
#ifdef SQLITE_ENABLE_API_ARMOR
if( zFormat==0 ){
(void)SQLITE_MISUSE_BKPT;
return 0;
}
#endif
#ifndef SQLITE_OMIT_AUTOINIT
if( sqlite3_initialize() ) return 0;
#endif
sqlite3StrAccumInit(&acc, 0, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
sqlite3_str_vappendf(&acc, zFormat, ap);
z = sqlite3StrAccumFinish(&acc);
return z;
}
/*
** Print into memory obtained from sqlite3_malloc()(). Omit the internal
** %-conversion extensions.
*/
char *sqlite3_mprintf(const char *zFormat, ...){
va_list ap;
char *z;
#ifndef SQLITE_OMIT_AUTOINIT
if( sqlite3_initialize() ) return 0;
#endif
va_start(ap, zFormat);
z = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
return z;
}
/*
** sqlite3_snprintf() works like snprintf() except that it ignores the
** current locale settings. This is important for SQLite because we
** are not able to use a "," as the decimal point in place of "." as
** specified by some locales.
**
** Oops: The first two arguments of sqlite3_snprintf() are backwards
** from the snprintf() standard. Unfortunately, it is too late to change
** this without breaking compatibility, so we just have to live with the
** mistake.
**
** sqlite3_vsnprintf() is the varargs version.
*/
char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){
StrAccum acc;
if( n<=0 ) return zBuf;
#ifdef SQLITE_ENABLE_API_ARMOR
if( zBuf==0 || zFormat==0 ) {
(void)SQLITE_MISUSE_BKPT;
if( zBuf ) zBuf[0] = 0;
return zBuf;
}
#endif
sqlite3StrAccumInit(&acc, 0, zBuf, n, 0);
sqlite3_str_vappendf(&acc, zFormat, ap);
zBuf[acc.nChar] = 0;
return zBuf;
}
char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
char *z;
va_list ap;
va_start(ap,zFormat);
z = sqlite3_vsnprintf(n, zBuf, zFormat, ap);
va_end(ap);
return z;
}
/*
** This is the routine that actually formats the sqlite3_log() message.
** We house it in a separate routine from sqlite3_log() to avoid using
** stack space on small-stack systems when logging is disabled.
**
** sqlite3_log() must render into a static buffer. It cannot dynamically
** allocate memory because it might be called while the memory allocator
** mutex is held.
**
** sqlite3_str_vappendf() might ask for *temporary* memory allocations for
** certain format characters (%q) or for very large precisions or widths.
** Care must be taken that any sqlite3_log() calls that occur while the
** memory mutex is held do not use these mechanisms.
*/
static void renderLogMsg(int iErrCode, const char *zFormat, va_list ap){
StrAccum acc; /* String accumulator */
char zMsg[SQLITE_PRINT_BUF_SIZE*3]; /* Complete log message */
sqlite3StrAccumInit(&acc, 0, zMsg, sizeof(zMsg), 0);
sqlite3_str_vappendf(&acc, zFormat, ap);
sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
sqlite3StrAccumFinish(&acc));
}
/*
** Format and write a message to the log if logging is enabled.
*/
void sqlite3_log(int iErrCode, const char *zFormat, ...){
va_list ap; /* Vararg list */
if( sqlite3GlobalConfig.xLog ){
va_start(ap, zFormat);
renderLogMsg(iErrCode, zFormat, ap);
va_end(ap);
}
}
#if defined(SQLITE_DEBUG) || defined(SQLITE_HAVE_OS_TRACE)
/*
** A version of printf() that understands %lld. Used for debugging.
** The printf() built into some versions of windows does not understand %lld
** and segfaults if you give it a long long int.
*/
void sqlite3DebugPrintf(const char *zFormat, ...){
va_list ap;
StrAccum acc;
char zBuf[500];
sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
va_start(ap,zFormat);
sqlite3_str_vappendf(&acc, zFormat, ap);
va_end(ap);
sqlite3StrAccumFinish(&acc);
#ifdef SQLITE_OS_TRACE_PROC
{
extern void SQLITE_OS_TRACE_PROC(const char *zBuf, int nBuf);
SQLITE_OS_TRACE_PROC(zBuf, sizeof(zBuf));
}
#else
fprintf(stdout,"%s", zBuf);
fflush(stdout);
#endif
}
#endif
/*
** variable-argument wrapper around sqlite3_str_vappendf(). The bFlags argument
** can contain the bit SQLITE_PRINTF_INTERNAL enable internal formats.
*/
void sqlite3_str_appendf(StrAccum *p, const char *zFormat, ...){
va_list ap;
va_start(ap,zFormat);
sqlite3_str_vappendf(p, zFormat, ap);
va_end(ap);
}