blob: 039812c55e9fbd2ea84ea00bf960587927830a65 [file] [log] [blame]
/*
** 2003 September 6
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code used for creating, destroying, and populating
** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
*/
#include "sqliteInt.h"
#include "vdbeInt.h"
/*
** Create a new virtual database engine.
*/
Vdbe *sqlite3VdbeCreate(Parse *pParse){
sqlite3 *db = pParse->db;
Vdbe *p;
p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
if( p==0 ) return 0;
memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
p->db = db;
if( db->pVdbe ){
db->pVdbe->pPrev = p;
}
p->pNext = db->pVdbe;
p->pPrev = 0;
db->pVdbe = p;
p->magic = VDBE_MAGIC_INIT;
p->pParse = pParse;
pParse->pVdbe = p;
assert( pParse->aLabel==0 );
assert( pParse->nLabel==0 );
assert( p->nOpAlloc==0 );
assert( pParse->szOpAlloc==0 );
sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
return p;
}
/*
** Change the error string stored in Vdbe.zErrMsg
*/
void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
va_list ap;
sqlite3DbFree(p->db, p->zErrMsg);
va_start(ap, zFormat);
p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
va_end(ap);
}
/*
** Remember the SQL string for a prepared statement.
*/
void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
if( p==0 ) return;
p->prepFlags = prepFlags;
if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
p->expmask = 0;
}
assert( p->zSql==0 );
p->zSql = sqlite3DbStrNDup(p->db, z, n);
}
#ifdef SQLITE_ENABLE_NORMALIZE
/*
** Add a new element to the Vdbe->pDblStr list.
*/
void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
if( p ){
int n = sqlite3Strlen30(z);
DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
sizeof(*pStr)+n+1-sizeof(pStr->z));
if( pStr ){
pStr->pNextStr = p->pDblStr;
p->pDblStr = pStr;
memcpy(pStr->z, z, n+1);
}
}
}
#endif
#ifdef SQLITE_ENABLE_NORMALIZE
/*
** zId of length nId is a double-quoted identifier. Check to see if
** that identifier is really used as a string literal.
*/
int sqlite3VdbeUsesDoubleQuotedString(
Vdbe *pVdbe, /* The prepared statement */
const char *zId /* The double-quoted identifier, already dequoted */
){
DblquoteStr *pStr;
assert( zId!=0 );
if( pVdbe->pDblStr==0 ) return 0;
for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
if( strcmp(zId, pStr->z)==0 ) return 1;
}
return 0;
}
#endif
/*
** Swap all content between two VDBE structures.
*/
void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
Vdbe tmp, *pTmp;
char *zTmp;
assert( pA->db==pB->db );
tmp = *pA;
*pA = *pB;
*pB = tmp;
pTmp = pA->pNext;
pA->pNext = pB->pNext;
pB->pNext = pTmp;
pTmp = pA->pPrev;
pA->pPrev = pB->pPrev;
pB->pPrev = pTmp;
zTmp = pA->zSql;
pA->zSql = pB->zSql;
pB->zSql = zTmp;
#if 0
zTmp = pA->zNormSql;
pA->zNormSql = pB->zNormSql;
pB->zNormSql = zTmp;
#endif
pB->expmask = pA->expmask;
pB->prepFlags = pA->prepFlags;
memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
}
/*
** Resize the Vdbe.aOp array so that it is at least nOp elements larger
** than its current size. nOp is guaranteed to be less than or equal
** to 1024/sizeof(Op).
**
** If an out-of-memory error occurs while resizing the array, return
** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
** unchanged (this is so that any opcodes already allocated can be
** correctly deallocated along with the rest of the Vdbe).
*/
static int growOpArray(Vdbe *v, int nOp){
VdbeOp *pNew;
Parse *p = v->pParse;
/* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
** more frequent reallocs and hence provide more opportunities for
** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
** by the minimum* amount required until the size reaches 512. Normal
** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
** size of the op array or add 1KB of space, whichever is smaller. */
#ifdef SQLITE_TEST_REALLOC_STRESS
sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
: (sqlite3_int64)v->nOpAlloc+nOp);
#else
sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
: (sqlite3_int64)(1024/sizeof(Op)));
UNUSED_PARAMETER(nOp);
#endif
/* Ensure that the size of a VDBE does not grow too large */
if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
sqlite3OomFault(p->db);
return SQLITE_NOMEM;
}
assert( nOp<=(1024/sizeof(Op)) );
assert( nNew>=(v->nOpAlloc+nOp) );
pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
if( pNew ){
p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
v->nOpAlloc = p->szOpAlloc/sizeof(Op);
v->aOp = pNew;
}
return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
}
#ifdef SQLITE_DEBUG
/* This routine is just a convenient place to set a breakpoint that will
** fire after each opcode is inserted and displayed using
** "PRAGMA vdbe_addoptrace=on".
*/
static void test_addop_breakpoint(void){
static int n = 0;
n++;
}
#endif
/*
** Add a new instruction to the list of instructions current in the
** VDBE. Return the address of the new instruction.
**
** Parameters:
**
** p Pointer to the VDBE
**
** op The opcode for this instruction
**
** p1, p2, p3 Operands
**
** Use the sqlite3VdbeResolveLabel() function to fix an address and
** the sqlite3VdbeChangeP4() function to change the value of the P4
** operand.
*/
static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
assert( p->nOpAlloc<=p->nOp );
if( growOpArray(p, 1) ) return 1;
assert( p->nOpAlloc>p->nOp );
return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
}
int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
int i;
VdbeOp *pOp;
i = p->nOp;
assert( p->magic==VDBE_MAGIC_INIT );
assert( op>=0 && op<0xff );
if( p->nOpAlloc<=i ){
return growOp3(p, op, p1, p2, p3);
}
p->nOp++;
pOp = &p->aOp[i];
pOp->opcode = (u8)op;
pOp->p5 = 0;
pOp->p1 = p1;
pOp->p2 = p2;
pOp->p3 = p3;
pOp->p4.p = 0;
pOp->p4type = P4_NOTUSED;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
pOp->zComment = 0;
#endif
#ifdef SQLITE_DEBUG
if( p->db->flags & SQLITE_VdbeAddopTrace ){
sqlite3VdbePrintOp(0, i, &p->aOp[i]);
test_addop_breakpoint();
}
#endif
#ifdef VDBE_PROFILE
pOp->cycles = 0;
pOp->cnt = 0;
#endif
#ifdef SQLITE_VDBE_COVERAGE
pOp->iSrcLine = 0;
#endif
return i;
}
int sqlite3VdbeAddOp0(Vdbe *p, int op){
return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
}
int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
}
int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
}
/* Generate code for an unconditional jump to instruction iDest
*/
int sqlite3VdbeGoto(Vdbe *p, int iDest){
return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
}
/* Generate code to cause the string zStr to be loaded into
** register iDest
*/
int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
}
/*
** Generate code that initializes multiple registers to string or integer
** constants. The registers begin with iDest and increase consecutively.
** One register is initialized for each characgter in zTypes[]. For each
** "s" character in zTypes[], the register is a string if the argument is
** not NULL, or OP_Null if the value is a null pointer. For each "i" character
** in zTypes[], the register is initialized to an integer.
**
** If the input string does not end with "X" then an OP_ResultRow instruction
** is generated for the values inserted.
*/
void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
va_list ap;
int i;
char c;
va_start(ap, zTypes);
for(i=0; (c = zTypes[i])!=0; i++){
if( c=='s' ){
const char *z = va_arg(ap, const char*);
sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
}else if( c=='i' ){
sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
}else{
goto skip_op_resultrow;
}
}
sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
skip_op_resultrow:
va_end(ap);
}
/*
** Add an opcode that includes the p4 value as a pointer.
*/
int sqlite3VdbeAddOp4(
Vdbe *p, /* Add the opcode to this VM */
int op, /* The new opcode */
int p1, /* The P1 operand */
int p2, /* The P2 operand */
int p3, /* The P3 operand */
const char *zP4, /* The P4 operand */
int p4type /* P4 operand type */
){
int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
sqlite3VdbeChangeP4(p, addr, zP4, p4type);
return addr;
}
/*
** Add an opcode that includes the p4 value with a P4_INT64 or
** P4_REAL type.
*/
int sqlite3VdbeAddOp4Dup8(
Vdbe *p, /* Add the opcode to this VM */
int op, /* The new opcode */
int p1, /* The P1 operand */
int p2, /* The P2 operand */
int p3, /* The P3 operand */
const u8 *zP4, /* The P4 operand */
int p4type /* P4 operand type */
){
char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
if( p4copy ) memcpy(p4copy, zP4, 8);
return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
}
#ifndef SQLITE_OMIT_EXPLAIN
/*
** Return the address of the current EXPLAIN QUERY PLAN baseline.
** 0 means "none".
*/
int sqlite3VdbeExplainParent(Parse *pParse){
VdbeOp *pOp;
if( pParse->addrExplain==0 ) return 0;
pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
return pOp->p2;
}
/*
** Set a debugger breakpoint on the following routine in order to
** monitor the EXPLAIN QUERY PLAN code generation.
*/
#if defined(SQLITE_DEBUG)
void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
(void)z1;
(void)z2;
}
#endif
/*
** Add a new OP_ opcode.
**
** If the bPush flag is true, then make this opcode the parent for
** subsequent Explains until sqlite3VdbeExplainPop() is called.
*/
void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
#ifndef SQLITE_DEBUG
/* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
** But omit them (for performance) during production builds */
if( pParse->explain==2 )
#endif
{
char *zMsg;
Vdbe *v;
va_list ap;
int iThis;
va_start(ap, zFmt);
zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
va_end(ap);
v = pParse->pVdbe;
iThis = v->nOp;
sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
zMsg, P4_DYNAMIC);
sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
if( bPush){
pParse->addrExplain = iThis;
}
}
}
/*
** Pop the EXPLAIN QUERY PLAN stack one level.
*/
void sqlite3VdbeExplainPop(Parse *pParse){
sqlite3ExplainBreakpoint("POP", 0);
pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
}
#endif /* SQLITE_OMIT_EXPLAIN */
/*
** Add an OP_ParseSchema opcode. This routine is broken out from
** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
** as having been used.
**
** The zWhere string must have been obtained from sqlite3_malloc().
** This routine will take ownership of the allocated memory.
*/
void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
int j;
sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
}
/*
** Add an opcode that includes the p4 value as an integer.
*/
int sqlite3VdbeAddOp4Int(
Vdbe *p, /* Add the opcode to this VM */
int op, /* The new opcode */
int p1, /* The P1 operand */
int p2, /* The P2 operand */
int p3, /* The P3 operand */
int p4 /* The P4 operand as an integer */
){
int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
if( p->db->mallocFailed==0 ){
VdbeOp *pOp = &p->aOp[addr];
pOp->p4type = P4_INT32;
pOp->p4.i = p4;
}
return addr;
}
/* Insert the end of a co-routine
*/
void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
/* Clear the temporary register cache, thereby ensuring that each
** co-routine has its own independent set of registers, because co-routines
** might expect their registers to be preserved across an OP_Yield, and
** that could cause problems if two or more co-routines are using the same
** temporary register.
*/
v->pParse->nTempReg = 0;
v->pParse->nRangeReg = 0;
}
/*
** Create a new symbolic label for an instruction that has yet to be
** coded. The symbolic label is really just a negative number. The
** label can be used as the P2 value of an operation. Later, when
** the label is resolved to a specific address, the VDBE will scan
** through its operation list and change all values of P2 which match
** the label into the resolved address.
**
** The VDBE knows that a P2 value is a label because labels are
** always negative and P2 values are suppose to be non-negative.
** Hence, a negative P2 value is a label that has yet to be resolved.
** (Later:) This is only true for opcodes that have the OPFLG_JUMP
** property.
**
** Variable usage notes:
**
** Parse.aLabel[x] Stores the address that the x-th label resolves
** into. For testing (SQLITE_DEBUG), unresolved
** labels stores -1, but that is not required.
** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
** Parse.nLabel The *negative* of the number of labels that have
** been issued. The negative is stored because
** that gives a performance improvement over storing
** the equivalent positive value.
*/
int sqlite3VdbeMakeLabel(Parse *pParse){
return --pParse->nLabel;
}
/*
** Resolve label "x" to be the address of the next instruction to
** be inserted. The parameter "x" must have been obtained from
** a prior call to sqlite3VdbeMakeLabel().
*/
static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
int nNewSize = 10 - p->nLabel;
p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
nNewSize*sizeof(p->aLabel[0]));
if( p->aLabel==0 ){
p->nLabelAlloc = 0;
}else{
#ifdef SQLITE_DEBUG
int i;
for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
#endif
p->nLabelAlloc = nNewSize;
p->aLabel[j] = v->nOp;
}
}
void sqlite3VdbeResolveLabel(Vdbe *v, int x){
Parse *p = v->pParse;
int j = ADDR(x);
assert( v->magic==VDBE_MAGIC_INIT );
assert( j<-p->nLabel );
assert( j>=0 );
#ifdef SQLITE_DEBUG
if( p->db->flags & SQLITE_VdbeAddopTrace ){
printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
}
#endif
if( p->nLabelAlloc + p->nLabel < 0 ){
resizeResolveLabel(p,v,j);
}else{
assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
p->aLabel[j] = v->nOp;
}
}
/*
** Mark the VDBE as one that can only be run one time.
*/
void sqlite3VdbeRunOnlyOnce(Vdbe *p){
p->runOnlyOnce = 1;
}
/*
** Mark the VDBE as one that can only be run multiple times.
*/
void sqlite3VdbeReusable(Vdbe *p){
p->runOnlyOnce = 0;
}
#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
/*
** The following type and function are used to iterate through all opcodes
** in a Vdbe main program and each of the sub-programs (triggers) it may
** invoke directly or indirectly. It should be used as follows:
**
** Op *pOp;
** VdbeOpIter sIter;
**
** memset(&sIter, 0, sizeof(sIter));
** sIter.v = v; // v is of type Vdbe*
** while( (pOp = opIterNext(&sIter)) ){
** // Do something with pOp
** }
** sqlite3DbFree(v->db, sIter.apSub);
**
*/
typedef struct VdbeOpIter VdbeOpIter;
struct VdbeOpIter {
Vdbe *v; /* Vdbe to iterate through the opcodes of */
SubProgram **apSub; /* Array of subprograms */
int nSub; /* Number of entries in apSub */
int iAddr; /* Address of next instruction to return */
int iSub; /* 0 = main program, 1 = first sub-program etc. */
};
static Op *opIterNext(VdbeOpIter *p){
Vdbe *v = p->v;
Op *pRet = 0;
Op *aOp;
int nOp;
if( p->iSub<=p->nSub ){
if( p->iSub==0 ){
aOp = v->aOp;
nOp = v->nOp;
}else{
aOp = p->apSub[p->iSub-1]->aOp;
nOp = p->apSub[p->iSub-1]->nOp;
}
assert( p->iAddr<nOp );
pRet = &aOp[p->iAddr];
p->iAddr++;
if( p->iAddr==nOp ){
p->iSub++;
p->iAddr = 0;
}
if( pRet->p4type==P4_SUBPROGRAM ){
int nByte = (p->nSub+1)*sizeof(SubProgram*);
int j;
for(j=0; j<p->nSub; j++){
if( p->apSub[j]==pRet->p4.pProgram ) break;
}
if( j==p->nSub ){
p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
if( !p->apSub ){
pRet = 0;
}else{
p->apSub[p->nSub++] = pRet->p4.pProgram;
}
}
}
}
return pRet;
}
/*
** Check if the program stored in the VM associated with pParse may
** throw an ABORT exception (causing the statement, but not entire transaction
** to be rolled back). This condition is true if the main program or any
** sub-programs contains any of the following:
**
** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
** * OP_Destroy
** * OP_VUpdate
** * OP_VRename
** * OP_FkCounter with P2==0 (immediate foreign key constraint)
** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
** (for CREATE TABLE AS SELECT ...)
**
** Then check that the value of Parse.mayAbort is true if an
** ABORT may be thrown, or false otherwise. Return true if it does
** match, or false otherwise. This function is intended to be used as
** part of an assert statement in the compiler. Similar to:
**
** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
*/
int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
int hasAbort = 0;
int hasFkCounter = 0;
int hasCreateTable = 0;
int hasCreateIndex = 0;
int hasInitCoroutine = 0;
Op *pOp;
VdbeOpIter sIter;
memset(&sIter, 0, sizeof(sIter));
sIter.v = v;
while( (pOp = opIterNext(&sIter))!=0 ){
int opcode = pOp->opcode;
if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
|| opcode==OP_VDestroy
|| (opcode==OP_ParseSchema && pOp->p4.z==0)
|| ((opcode==OP_Halt || opcode==OP_HaltIfNull)
&& ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
){
hasAbort = 1;
break;
}
if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
if( mayAbort ){
/* hasCreateIndex may also be set for some DELETE statements that use
** OP_Clear. So this routine may end up returning true in the case
** where a "DELETE FROM tbl" has a statement-journal but does not
** require one. This is not so bad - it is an inefficiency, not a bug. */
if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
if( opcode==OP_Clear ) hasCreateIndex = 1;
}
if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
#ifndef SQLITE_OMIT_FOREIGN_KEY
if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
hasFkCounter = 1;
}
#endif
}
sqlite3DbFree(v->db, sIter.apSub);
/* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
** If malloc failed, then the while() loop above may not have iterated
** through all opcodes and hasAbort may be set incorrectly. Return
** true for this case to prevent the assert() in the callers frame
** from failing. */
return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
|| (hasCreateTable && hasInitCoroutine) || hasCreateIndex
);
}
#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
#ifdef SQLITE_DEBUG
/*
** Increment the nWrite counter in the VDBE if the cursor is not an
** ephemeral cursor, or if the cursor argument is NULL.
*/
void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
if( pC==0
|| (pC->eCurType!=CURTYPE_SORTER
&& pC->eCurType!=CURTYPE_PSEUDO
&& !pC->isEphemeral)
){
p->nWrite++;
}
}
#endif
#ifdef SQLITE_DEBUG
/*
** Assert if an Abort at this point in time might result in a corrupt
** database.
*/
void sqlite3VdbeAssertAbortable(Vdbe *p){
assert( p->nWrite==0 || p->usesStmtJournal );
}
#endif
/*
** This routine is called after all opcodes have been inserted. It loops
** through all the opcodes and fixes up some details.
**
** (1) For each jump instruction with a negative P2 value (a label)
** resolve the P2 value to an actual address.
**
** (2) Compute the maximum number of arguments used by any SQL function
** and store that value in *pMaxFuncArgs.
**
** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
** indicate what the prepared statement actually does.
**
** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
**
** (5) Reclaim the memory allocated for storing labels.
**
** This routine will only function correctly if the mkopcodeh.tcl generator
** script numbers the opcodes correctly. Changes to this routine must be
** coordinated with changes to mkopcodeh.tcl.
*/
static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
int nMaxArgs = *pMaxFuncArgs;
Op *pOp;
Parse *pParse = p->pParse;
int *aLabel = pParse->aLabel;
p->readOnly = 1;
p->bIsReader = 0;
pOp = &p->aOp[p->nOp-1];
while(1){
/* Only JUMP opcodes and the short list of special opcodes in the switch
** below need to be considered. The mkopcodeh.tcl generator script groups
** all these opcodes together near the front of the opcode list. Skip
** any opcode that does not need processing by virtual of the fact that
** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
*/
if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
/* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
** cases from this switch! */
switch( pOp->opcode ){
case OP_Transaction: {
if( pOp->p2!=0 ) p->readOnly = 0;
/* fall thru */
}
case OP_AutoCommit:
case OP_Savepoint: {
p->bIsReader = 1;
break;
}
#ifndef SQLITE_OMIT_WAL
case OP_Checkpoint:
#endif
case OP_Vacuum:
case OP_JournalMode: {
p->readOnly = 0;
p->bIsReader = 1;
break;
}
case OP_Next:
case OP_SorterNext: {
pOp->p4.xAdvance = sqlite3BtreeNext;
pOp->p4type = P4_ADVANCE;
/* The code generator never codes any of these opcodes as a jump
** to a label. They are always coded as a jump backwards to a
** known address */
assert( pOp->p2>=0 );
break;
}
case OP_Prev: {
pOp->p4.xAdvance = sqlite3BtreePrevious;
pOp->p4type = P4_ADVANCE;
/* The code generator never codes any of these opcodes as a jump
** to a label. They are always coded as a jump backwards to a
** known address */
assert( pOp->p2>=0 );
break;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
case OP_VUpdate: {
if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
break;
}
case OP_VFilter: {
int n;
assert( (pOp - p->aOp) >= 3 );
assert( pOp[-1].opcode==OP_Integer );
n = pOp[-1].p1;
if( n>nMaxArgs ) nMaxArgs = n;
/* Fall through into the default case */
}
#endif
default: {
if( pOp->p2<0 ){
/* The mkopcodeh.tcl script has so arranged things that the only
** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
** have non-negative values for P2. */
assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
assert( ADDR(pOp->p2)<-pParse->nLabel );
pOp->p2 = aLabel[ADDR(pOp->p2)];
}
break;
}
}
/* The mkopcodeh.tcl script has so arranged things that the only
** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
** have non-negative values for P2. */
assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
}
if( pOp==p->aOp ) break;
pOp--;
}
sqlite3DbFree(p->db, pParse->aLabel);
pParse->aLabel = 0;
pParse->nLabel = 0;
*pMaxFuncArgs = nMaxArgs;
assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
}
/*
** Return the address of the next instruction to be inserted.
*/
int sqlite3VdbeCurrentAddr(Vdbe *p){
assert( p->magic==VDBE_MAGIC_INIT );
return p->nOp;
}
/*
** Verify that at least N opcode slots are available in p without
** having to malloc for more space (except when compiled using
** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
** to verify that certain calls to sqlite3VdbeAddOpList() can never
** fail due to a OOM fault and hence that the return value from
** sqlite3VdbeAddOpList() will always be non-NULL.
*/
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
assert( p->nOp + N <= p->nOpAlloc );
}
#endif
/*
** Verify that the VM passed as the only argument does not contain
** an OP_ResultRow opcode. Fail an assert() if it does. This is used
** by code in pragma.c to ensure that the implementation of certain
** pragmas comports with the flags specified in the mkpragmatab.tcl
** script.
*/
#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
int i;
for(i=0; i<p->nOp; i++){
assert( p->aOp[i].opcode!=OP_ResultRow );
}
}
#endif
/*
** Generate code (a single OP_Abortable opcode) that will
** verify that the VDBE program can safely call Abort in the current
** context.
*/
#if defined(SQLITE_DEBUG)
void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
}
#endif
/*
** This function returns a pointer to the array of opcodes associated with
** the Vdbe passed as the first argument. It is the callers responsibility
** to arrange for the returned array to be eventually freed using the
** vdbeFreeOpArray() function.
**
** Before returning, *pnOp is set to the number of entries in the returned
** array. Also, *pnMaxArg is set to the larger of its current value and
** the number of entries in the Vdbe.apArg[] array required to execute the
** returned program.
*/
VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
VdbeOp *aOp = p->aOp;
assert( aOp && !p->db->mallocFailed );
/* Check that sqlite3VdbeUsesBtree() was not called on this VM */
assert( DbMaskAllZero(p->btreeMask) );
resolveP2Values(p, pnMaxArg);
*pnOp = p->nOp;
p->aOp = 0;
return aOp;
}
/*
** Add a whole list of operations to the operation stack. Return a
** pointer to the first operation inserted.
**
** Non-zero P2 arguments to jump instructions are automatically adjusted
** so that the jump target is relative to the first operation inserted.
*/
VdbeOp *sqlite3VdbeAddOpList(
Vdbe *p, /* Add opcodes to the prepared statement */
int nOp, /* Number of opcodes to add */
VdbeOpList const *aOp, /* The opcodes to be added */
int iLineno /* Source-file line number of first opcode */
){
int i;
VdbeOp *pOut, *pFirst;
assert( nOp>0 );
assert( p->magic==VDBE_MAGIC_INIT );
if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
return 0;
}
pFirst = pOut = &p->aOp[p->nOp];
for(i=0; i<nOp; i++, aOp++, pOut++){
pOut->opcode = aOp->opcode;
pOut->p1 = aOp->p1;
pOut->p2 = aOp->p2;
assert( aOp->p2>=0 );
if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
pOut->p2 += p->nOp;
}
pOut->p3 = aOp->p3;
pOut->p4type = P4_NOTUSED;
pOut->p4.p = 0;
pOut->p5 = 0;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
pOut->zComment = 0;
#endif
#ifdef SQLITE_VDBE_COVERAGE
pOut->iSrcLine = iLineno+i;
#else
(void)iLineno;
#endif
#ifdef SQLITE_DEBUG
if( p->db->flags & SQLITE_VdbeAddopTrace ){
sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
}
#endif
}
p->nOp += nOp;
return pFirst;
}
#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
/*
** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
*/
void sqlite3VdbeScanStatus(
Vdbe *p, /* VM to add scanstatus() to */
int addrExplain, /* Address of OP_Explain (or 0) */
int addrLoop, /* Address of loop counter */
int addrVisit, /* Address of rows visited counter */
LogEst nEst, /* Estimated number of output rows */
const char *zName /* Name of table or index being scanned */
){
sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
ScanStatus *aNew;
aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
if( aNew ){
ScanStatus *pNew = &aNew[p->nScan++];
pNew->addrExplain = addrExplain;
pNew->addrLoop = addrLoop;
pNew->addrVisit = addrVisit;
pNew->nEst = nEst;
pNew->zName = sqlite3DbStrDup(p->db, zName);
p->aScan = aNew;
}
}
#endif
/*
** Change the value of the opcode, or P1, P2, P3, or P5 operands
** for a specific instruction.
*/
void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
}
void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
sqlite3VdbeGetOp(p,addr)->p1 = val;
}
void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
sqlite3VdbeGetOp(p,addr)->p2 = val;
}
void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
sqlite3VdbeGetOp(p,addr)->p3 = val;
}
void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
assert( p->nOp>0 || p->db->mallocFailed );
if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
}
/*
** Change the P2 operand of instruction addr so that it points to
** the address of the next instruction to be coded.
*/
void sqlite3VdbeJumpHere(Vdbe *p, int addr){
sqlite3VdbeChangeP2(p, addr, p->nOp);
}
/*
** If the input FuncDef structure is ephemeral, then free it. If
** the FuncDef is not ephermal, then do nothing.
*/
static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
sqlite3DbFreeNN(db, pDef);
}
}
static void vdbeFreeOpArray(sqlite3 *, Op *, int);
/*
** Delete a P4 value if necessary.
*/
static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
sqlite3DbFreeNN(db, p);
}
static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
freeEphemeralFunction(db, p->pFunc);
sqlite3DbFreeNN(db, p);
}
static void freeP4(sqlite3 *db, int p4type, void *p4){
assert( db );
switch( p4type ){
case P4_FUNCCTX: {
freeP4FuncCtx(db, (sqlite3_context*)p4);
break;
}
case P4_REAL:
case P4_INT64:
case P4_DYNAMIC:
case P4_DYNBLOB:
case P4_INTARRAY: {
sqlite3DbFree(db, p4);
break;
}
case P4_KEYINFO: {
if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
break;
}
#ifdef SQLITE_ENABLE_CURSOR_HINTS
case P4_EXPR: {
sqlite3ExprDelete(db, (Expr*)p4);
break;
}
#endif
case P4_FUNCDEF: {
freeEphemeralFunction(db, (FuncDef*)p4);
break;
}
case P4_MEM: {
if( db->pnBytesFreed==0 ){
sqlite3ValueFree((sqlite3_value*)p4);
}else{
freeP4Mem(db, (Mem*)p4);
}
break;
}
case P4_VTAB : {
if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
break;
}
}
}
/*
** Free the space allocated for aOp and any p4 values allocated for the
** opcodes contained within. If aOp is not NULL it is assumed to contain
** nOp entries.
*/
static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
if( aOp ){
Op *pOp;
for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
sqlite3DbFree(db, pOp->zComment);
#endif
}
sqlite3DbFreeNN(db, aOp);
}
}
/*
** Link the SubProgram object passed as the second argument into the linked
** list at Vdbe.pSubProgram. This list is used to delete all sub-program
** objects when the VM is no longer required.
*/
void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
p->pNext = pVdbe->pProgram;
pVdbe->pProgram = p;
}
/*
** Change the opcode at addr into OP_Noop
*/
int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
VdbeOp *pOp;
if( p->db->mallocFailed ) return 0;
assert( addr>=0 && addr<p->nOp );
pOp = &p->aOp[addr];
freeP4(p->db, pOp->p4type, pOp->p4.p);
pOp->p4type = P4_NOTUSED;
pOp->p4.z = 0;
pOp->opcode = OP_Noop;
return 1;
}
/*
** If the last opcode is "op" and it is not a jump destination,
** then remove it. Return true if and only if an opcode was removed.
*/
int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
return sqlite3VdbeChangeToNoop(p, p->nOp-1);
}else{
return 0;
}
}
/*
** Change the value of the P4 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
**
** If n>=0 then the P4 operand is dynamic, meaning that a copy of
** the string is made into memory obtained from sqlite3_malloc().
** A value of n==0 means copy bytes of zP4 up to and including the
** first null byte. If n>0 then copy n+1 bytes of zP4.
**
** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
** to a string or structure that is guaranteed to exist for the lifetime of
** the Vdbe. In these cases we can just copy the pointer.
**
** If addr<0 then change P4 on the most recently inserted instruction.
*/
static void SQLITE_NOINLINE vdbeChangeP4Full(
Vdbe *p,
Op *pOp,
const char *zP4,
int n
){
if( pOp->p4type ){
freeP4(p->db, pOp->p4type, pOp->p4.p);
pOp->p4type = 0;
pOp->p4.p = 0;
}
if( n<0 ){
sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
}else{
if( n==0 ) n = sqlite3Strlen30(zP4);
pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
pOp->p4type = P4_DYNAMIC;
}
}
void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
Op *pOp;
sqlite3 *db;
assert( p!=0 );
db = p->db;
assert( p->magic==VDBE_MAGIC_INIT );
assert( p->aOp!=0 || db->mallocFailed );
if( db->mallocFailed ){
if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
return;
}
assert( p->nOp>0 );
assert( addr<p->nOp );
if( addr<0 ){
addr = p->nOp - 1;
}
pOp = &p->aOp[addr];
if( n>=0 || pOp->p4type ){
vdbeChangeP4Full(p, pOp, zP4, n);
return;
}
if( n==P4_INT32 ){
/* Note: this cast is safe, because the origin data point was an int
** that was cast to a (const char *). */
pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
pOp->p4type = P4_INT32;
}else if( zP4!=0 ){
assert( n<0 );
pOp->p4.p = (void*)zP4;
pOp->p4type = (signed char)n;
if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
}
}
/*
** Change the P4 operand of the most recently coded instruction
** to the value defined by the arguments. This is a high-speed
** version of sqlite3VdbeChangeP4().
**
** The P4 operand must not have been previously defined. And the new
** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
** those cases.
*/
void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
VdbeOp *pOp;
assert( n!=P4_INT32 && n!=P4_VTAB );
assert( n<=0 );
if( p->db->mallocFailed ){
freeP4(p->db, n, pP4);
}else{
assert( pP4!=0 );
assert( p->nOp>0 );
pOp = &p->aOp[p->nOp-1];
assert( pOp->p4type==P4_NOTUSED );
pOp->p4type = n;
pOp->p4.p = pP4;
}
}
/*
** Set the P4 on the most recently added opcode to the KeyInfo for the
** index given.
*/
void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
Vdbe *v = pParse->pVdbe;
KeyInfo *pKeyInfo;
assert( v!=0 );
assert( pIdx!=0 );
pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
}
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
/*
** Change the comment on the most recently coded instruction. Or
** insert a No-op and add the comment to that new instruction. This
** makes the code easier to read during debugging. None of this happens
** in a production build.
*/
static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
assert( p->nOp>0 || p->aOp==0 );
assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
if( p->nOp ){
assert( p->aOp );
sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
}
}
void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
va_list ap;
if( p ){
va_start(ap, zFormat);
vdbeVComment(p, zFormat, ap);
va_end(ap);
}
}
void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
va_list ap;
if( p ){
sqlite3VdbeAddOp0(p, OP_Noop);
va_start(ap, zFormat);
vdbeVComment(p, zFormat, ap);
va_end(ap);
}
}
#endif /* NDEBUG */
#ifdef SQLITE_VDBE_COVERAGE
/*
** Set the value if the iSrcLine field for the previously coded instruction.
*/
void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
}
#endif /* SQLITE_VDBE_COVERAGE */
/*
** Return the opcode for a given address. If the address is -1, then
** return the most recently inserted opcode.
**
** If a memory allocation error has occurred prior to the calling of this
** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
** is readable but not writable, though it is cast to a writable value.
** The return of a dummy opcode allows the call to continue functioning
** after an OOM fault without having to check to see if the return from
** this routine is a valid pointer. But because the dummy.opcode is 0,
** dummy will never be written to. This is verified by code inspection and
** by running with Valgrind.
*/
VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
/* C89 specifies that the constant "dummy" will be initialized to all
** zeros, which is correct. MSVC generates a warning, nevertheless. */
static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
assert( p->magic==VDBE_MAGIC_INIT );
if( addr<0 ){
addr = p->nOp - 1;
}
assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
if( p->db->mallocFailed ){
return (VdbeOp*)&dummy;
}else{
return &p->aOp[addr];
}
}
#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
/*
** Return an integer value for one of the parameters to the opcode pOp
** determined by character c.
*/
static int translateP(char c, const Op *pOp){
if( c=='1' ) return pOp->p1;
if( c=='2' ) return pOp->p2;
if( c=='3' ) return pOp->p3;
if( c=='4' ) return pOp->p4.i;
return pOp->p5;
}
/*
** Compute a string for the "comment" field of a VDBE opcode listing.
**
** The Synopsis: field in comments in the vdbe.c source file gets converted
** to an extra string that is appended to the sqlite3OpcodeName(). In the
** absence of other comments, this synopsis becomes the comment on the opcode.
** Some translation occurs:
**
** "PX" -> "r[X]"
** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
*/
static int displayComment(
const Op *pOp, /* The opcode to be commented */
const char *zP4, /* Previously obtained value for P4 */
char *zTemp, /* Write result here */
int nTemp /* Space available in zTemp[] */
){
const char *zOpName;
const char *zSynopsis;
int nOpName;
int ii, jj;
char zAlt[50];
zOpName = sqlite3OpcodeName(pOp->opcode);
nOpName = sqlite3Strlen30(zOpName);
if( zOpName[nOpName+1] ){
int seenCom = 0;
char c;
zSynopsis = zOpName += nOpName + 1;
if( strncmp(zSynopsis,"IF ",3)==0 ){
if( pOp->p5 & SQLITE_STOREP2 ){
sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
}else{
sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
}
zSynopsis = zAlt;
}
for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
if( c=='P' ){
c = zSynopsis[++ii];
if( c=='4' ){
sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
}else if( c=='X' ){
sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
seenCom = 1;
}else{
int v1 = translateP(c, pOp);
int v2;
sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
ii += 3;
jj += sqlite3Strlen30(zTemp+jj);
v2 = translateP(zSynopsis[ii], pOp);
if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
ii += 2;
v2++;
}
if( v2>1 ){
sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
}
}else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
ii += 4;
}
}
jj += sqlite3Strlen30(zTemp+jj);
}else{
zTemp[jj++] = c;
}
}
if( !seenCom && jj<nTemp-5 && pOp->zComment ){
sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
jj += sqlite3Strlen30(zTemp+jj);
}
if( jj<nTemp ) zTemp[jj] = 0;
}else if( pOp->zComment ){
sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
jj = sqlite3Strlen30(zTemp);
}else{
zTemp[0] = 0;
jj = 0;
}
return jj;
}
#endif /* SQLITE_DEBUG */
#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
/*
** Translate the P4.pExpr value for an OP_CursorHint opcode into text
** that can be displayed in the P4 column of EXPLAIN output.
*/
static void displayP4Expr(StrAccum *p, Expr *pExpr){
const char *zOp = 0;
switch( pExpr->op ){
case TK_STRING:
sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
break;
case TK_INTEGER:
sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
break;
case TK_NULL:
sqlite3_str_appendf(p, "NULL");
break;
case TK_REGISTER: {
sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
break;
}
case TK_COLUMN: {
if( pExpr->iColumn<0 ){
sqlite3_str_appendf(p, "rowid");
}else{
sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
}
break;
}
case TK_LT: zOp = "LT"; break;
case TK_LE: zOp = "LE"; break;
case TK_GT: zOp = "GT"; break;
case TK_GE: zOp = "GE"; break;
case TK_NE: zOp = "NE"; break;
case TK_EQ: zOp = "EQ"; break;
case TK_IS: zOp = "IS"; break;
case TK_ISNOT: zOp = "ISNOT"; break;
case TK_AND: zOp = "AND"; break;
case TK_OR: zOp = "OR"; break;
case TK_PLUS: zOp = "ADD"; break;
case TK_STAR: zOp = "MUL"; break;
case TK_MINUS: zOp = "SUB"; break;
case TK_REM: zOp = "REM"; break;
case TK_BITAND: zOp = "BITAND"; break;
case TK_BITOR: zOp = "BITOR"; break;
case TK_SLASH: zOp = "DIV"; break;
case TK_LSHIFT: zOp = "LSHIFT"; break;
case TK_RSHIFT: zOp = "RSHIFT"; break;
case TK_CONCAT: zOp = "CONCAT"; break;
case TK_UMINUS: zOp = "MINUS"; break;
case TK_UPLUS: zOp = "PLUS"; break;
case TK_BITNOT: zOp = "BITNOT"; break;
case TK_NOT: zOp = "NOT"; break;
case TK_ISNULL: zOp = "ISNULL"; break;
case TK_NOTNULL: zOp = "NOTNULL"; break;
default:
sqlite3_str_appendf(p, "%s", "expr");
break;
}
if( zOp ){
sqlite3_str_appendf(p, "%s(", zOp);
displayP4Expr(p, pExpr->pLeft);
if( pExpr->pRight ){
sqlite3_str_append(p, ",", 1);
displayP4Expr(p, pExpr->pRight);
}
sqlite3_str_append(p, ")", 1);
}
}
#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
#if VDBE_DISPLAY_P4
/*
** Compute a string that describes the P4 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
static char *displayP4(Op *pOp, char *zTemp, int nTemp){
char *zP4 = zTemp;
StrAccum x;
assert( nTemp>=20 );
sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
switch( pOp->p4type ){
case P4_KEYINFO: {
int j;
KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
assert( pKeyInfo->aSortFlags!=0 );
sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
for(j=0; j<pKeyInfo->nKeyField; j++){
CollSeq *pColl = pKeyInfo->aColl[j];
const char *zColl = pColl ? pColl->zName : "";
if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
sqlite3_str_appendf(&x, ",%s%s%s",
(pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
(pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
zColl);
}
sqlite3_str_append(&x, ")", 1);
break;
}
#ifdef SQLITE_ENABLE_CURSOR_HINTS
case P4_EXPR: {
displayP4Expr(&x, pOp->p4.pExpr);
break;
}
#endif
case P4_COLLSEQ: {
CollSeq *pColl = pOp->p4.pColl;
sqlite3_str_appendf(&x, "(%.20s)", pColl->zName);
break;
}
case P4_FUNCDEF: {
FuncDef *pDef = pOp->p4.pFunc;
sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
break;
}
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
case P4_FUNCCTX: {
FuncDef *pDef = pOp->p4.pCtx->pFunc;
sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
break;
}
#endif
case P4_INT64: {
sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
break;
}
case P4_INT32: {
sqlite3_str_appendf(&x, "%d", pOp->p4.i);
break;
}
case P4_REAL: {
sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
break;
}
case P4_MEM: {
Mem *pMem = pOp->p4.pMem;
if( pMem->flags & MEM_Str ){
zP4 = pMem->z;
}else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
sqlite3_str_appendf(&x, "%lld", pMem->u.i);
}else if( pMem->flags & MEM_Real ){
sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
}else if( pMem->flags & MEM_Null ){
zP4 = "NULL";
}else{
assert( pMem->flags & MEM_Blob );
zP4 = "(blob)";
}
break;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
case P4_VTAB: {
sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
sqlite3_str_appendf(&x, "vtab:%p", pVtab);
break;
}
#endif
case P4_INTARRAY: {
int i;
int *ai = pOp->p4.ai;
int n = ai[0]; /* The first element of an INTARRAY is always the
** count of the number of elements to follow */
for(i=1; i<=n; i++){
sqlite3_str_appendf(&x, ",%d", ai[i]);
}
zTemp[0] = '[';
sqlite3_str_append(&x, "]", 1);
break;
}
case P4_SUBPROGRAM: {
sqlite3_str_appendf(&x, "program");
break;
}
case P4_DYNBLOB:
case P4_ADVANCE: {
zTemp[0] = 0;
break;
}
case P4_TABLE: {
sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName);
break;
}
default: {
zP4 = pOp->p4.z;
if( zP4==0 ){
zP4 = zTemp;
zTemp[0] = 0;
}
}
}
sqlite3StrAccumFinish(&x);
assert( zP4!=0 );
return zP4;
}
#endif /* VDBE_DISPLAY_P4 */
/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
** The prepared statements need to know in advance the complete set of
** attached databases that will be use. A mask of these databases
** is maintained in p->btreeMask. The p->lockMask value is the subset of
** p->btreeMask of databases that will require a lock.
*/
void sqlite3VdbeUsesBtree(Vdbe *p, int i){
assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
assert( i<(int)sizeof(p->btreeMask)*8 );
DbMaskSet(p->btreeMask, i);
if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
DbMaskSet(p->lockMask, i);
}
}
#if !defined(SQLITE_OMIT_SHARED_CACHE)
/*
** If SQLite is compiled to support shared-cache mode and to be threadsafe,
** this routine obtains the mutex associated with each BtShared structure
** that may be accessed by the VM passed as an argument. In doing so it also
** sets the BtShared.db member of each of the BtShared structures, ensuring
** that the correct busy-handler callback is invoked if required.
**
** If SQLite is not threadsafe but does support shared-cache mode, then
** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
** of all of BtShared structures accessible via the database handle
** associated with the VM.
**
** If SQLite is not threadsafe and does not support shared-cache mode, this
** function is a no-op.
**
** The p->btreeMask field is a bitmask of all btrees that the prepared
** statement p will ever use. Let N be the number of bits in p->btreeMask
** corresponding to btrees that use shared cache. Then the runtime of
** this routine is N*N. But as N is rarely more than 1, this should not
** be a problem.
*/
void sqlite3VdbeEnter(Vdbe *p){
int i;
sqlite3 *db;
Db *aDb;
int nDb;
if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
db = p->db;
aDb = db->aDb;
nDb = db->nDb;
for(i=0; i<nDb; i++){
if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
sqlite3BtreeEnter(aDb[i].pBt);
}
}
}
#endif
#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
/*
** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
*/
static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
int i;
sqlite3 *db;
Db *aDb;
int nDb;
db = p->db;
aDb = db->aDb;
nDb = db->nDb;
for(i=0; i<nDb; i++){
if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
sqlite3BtreeLeave(aDb[i].pBt);
}
}
}
void sqlite3VdbeLeave(Vdbe *p){
if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
vdbeLeave(p);
}
#endif
#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
/*
** Print a single opcode. This routine is used for debugging only.
*/
void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
char *zP4;
char zPtr[50];
char zCom[100];
static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
if( pOut==0 ) pOut = stdout;
zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
displayComment(pOp, zP4, zCom, sizeof(zCom));
#else
zCom[0] = 0;
#endif
/* NB: The sqlite3OpcodeName() function is implemented by code created
** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
** information from the vdbe.c source text */
fprintf(pOut, zFormat1, pc,
sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
zCom
);
fflush(pOut);
}
#endif
/*
** Initialize an array of N Mem element.
*/
static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
while( (N--)>0 ){
p->db = db;
p->flags = flags;
p->szMalloc = 0;
#ifdef SQLITE_DEBUG
p->pScopyFrom = 0;
#endif
p++;
}
}
/*
** Release an array of N Mem elements
*/
static void releaseMemArray(Mem *p, int N){
if( p && N ){
Mem *pEnd = &p[N];
sqlite3 *db = p->db;
if( db->pnBytesFreed ){
do{
if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
}while( (++p)<pEnd );
return;
}
do{
assert( (&p[1])==pEnd || p[0].db==p[1].db );
assert( sqlite3VdbeCheckMemInvariants(p) );
/* This block is really an inlined version of sqlite3VdbeMemRelease()
** that takes advantage of the fact that the memory cell value is
** being set to NULL after releasing any dynamic resources.
**
** The justification for duplicating code is that according to
** callgrind, this causes a certain test case to hit the CPU 4.7
** percent less (x86 linux, gcc version 4.1.2, -O6) than if
** sqlite3MemRelease() were called from here. With -O2, this jumps
** to 6.6 percent. The test case is inserting 1000 rows into a table
** with no indexes using a single prepared INSERT statement, bind()
** and reset(). Inserts are grouped into a transaction.
*/
testcase( p->flags & MEM_Agg );
testcase( p->flags & MEM_Dyn );
testcase( p->xDel==sqlite3VdbeFrameMemDel );
if( p->flags&(MEM_Agg|MEM_Dyn) ){
sqlite3VdbeMemRelease(p);
}else if( p->szMalloc ){
sqlite3DbFreeNN(db, p->zMalloc);
p->szMalloc = 0;
}
p->flags = MEM_Undefined;
}while( (++p)<pEnd );
}
}
#ifdef SQLITE_DEBUG
/*
** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
** and false if something is wrong.
**
** This routine is intended for use inside of assert() statements only.
*/
int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
return 1;
}
#endif
/*
** This is a destructor on a Mem object (which is really an sqlite3_value)
** that deletes the Frame object that is attached to it as a blob.
**
** This routine does not delete the Frame right away. It merely adds the
** frame to a list of frames to be deleted when the Vdbe halts.
*/
void sqlite3VdbeFrameMemDel(void *pArg){
VdbeFrame *pFrame = (VdbeFrame*)pArg;
assert( sqlite3VdbeFrameIsValid(pFrame) );
pFrame->pParent = pFrame->v->pDelFrame;
pFrame->v->pDelFrame = pFrame;
}
/*
** Delete a VdbeFrame object and its contents. VdbeFrame objects are
** allocated by the OP_Program opcode in sqlite3VdbeExec().
*/
void sqlite3VdbeFrameDelete(VdbeFrame *p){
int i;
Mem *aMem = VdbeFrameMem(p);
VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
assert( sqlite3VdbeFrameIsValid(p) );
for(i=0; i<p->nChildCsr; i++){
sqlite3VdbeFreeCursor(p->v, apCsr[i]);
}
releaseMemArray(aMem, p->nChildMem);
sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
sqlite3DbFree(p->v->db, p);
}
#ifndef SQLITE_OMIT_EXPLAIN
/*
** Give a listing of the program in the virtual machine.
**
** The interface is the same as sqlite3VdbeExec(). But instead of
** running the code, it invokes the callback once for each instruction.
** This feature is used to implement "EXPLAIN".
**
** When p->explain==1, each instruction is listed. When
** p->explain==2, only OP_Explain instructions are listed and these
** are shown in a different format. p->explain==2 is used to implement
** EXPLAIN QUERY PLAN.
** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
** are also shown, so that the boundaries between the main program and
** each trigger are clear.
**
** When p->explain==1, first the main program is listed, then each of
** the trigger subprograms are listed one by one.
*/
int sqlite3VdbeList(
Vdbe *p /* The VDBE */
){
int nRow; /* Stop when row count reaches this */
int nSub = 0; /* Number of sub-vdbes seen so far */
SubProgram **apSub = 0; /* Array of sub-vdbes */
Mem *pSub = 0; /* Memory cell hold array of subprogs */
sqlite3 *db = p->db; /* The database connection */
int i; /* Loop counter */
int rc = SQLITE_OK; /* Return code */
Mem *pMem = &p->aMem[1]; /* First Mem of result set */
int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
Op *pOp = 0;
assert( p->explain );
assert( p->magic==VDBE_MAGIC_RUN );
assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
/* Even though this opcode does not use dynamic strings for
** the result, result columns may become dynamic if the user calls
** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
*/
releaseMemArray(pMem, 8);
p->pResultSet = 0;
if( p->rc==SQLITE_NOMEM ){
/* This happens if a malloc() inside a call to sqlite3_column_text() or
** sqlite3_column_text16() failed. */
sqlite3OomFault(db);
return SQLITE_ERROR;
}
/* When the number of output rows reaches nRow, that means the
** listing has finished and sqlite3_step() should return SQLITE_DONE.
** nRow is the sum of the number of rows in the main program, plus
** the sum of the number of rows in all trigger subprograms encountered
** so far. The nRow value will increase as new trigger subprograms are
** encountered, but p->pc will eventually catch up to nRow.
*/
nRow = p->nOp;
if( bListSubprogs ){
/* The first 8 memory cells are used for the result set. So we will
** commandeer the 9th cell to use as storage for an array of pointers
** to trigger subprograms. The VDBE is guaranteed to have at least 9
** cells. */
assert( p->nMem>9 );
pSub = &p->aMem[9];
if( pSub->flags&MEM_Blob ){
/* On the first call to sqlite3_step(), pSub will hold a NULL. It is
** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
nSub = pSub->n/sizeof(Vdbe*);
apSub = (SubProgram **)pSub->z;
}
for(i=0; i<nSub; i++){
nRow += apSub[i]->nOp;
}
}
while(1){ /* Loop exits via break */
i = p->pc++;
if( i>=nRow ){
p->rc = SQLITE_OK;
rc = SQLITE_DONE;
break;
}
if( i<p->nOp ){
/* The output line number is small enough that we are still in the
** main program. */
pOp = &p->aOp[i];
}else{
/* We are currently listing subprograms. Figure out which one and
** pick up the appropriate opcode. */
int j;
i -= p->nOp;
assert( apSub!=0 );
assert( nSub>0 );
for(j=0; i>=apSub[j]->nOp; j++){
i -= apSub[j]->nOp;
assert( i<apSub[j]->nOp || j+1<nSub );
}
pOp = &apSub[j]->aOp[i];
}
/* When an OP_Program opcode is encounter (the only opcode that has
** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
** kept in p->aMem[9].z to hold the new program - assuming this subprogram
** has not already been seen.
*/
if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){
int nByte = (nSub+1)*sizeof(SubProgram*);
int j;
for(j=0; j<nSub; j++){
if( apSub[j]==pOp->p4.pProgram ) break;
}
if( j==nSub ){
p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
if( p->rc!=SQLITE_OK ){
rc = SQLITE_ERROR;
break;
}
apSub = (SubProgram **)pSub->z;
apSub[nSub++] = pOp->p4.pProgram;
pSub->flags |= MEM_Blob;
pSub->n = nSub*sizeof(SubProgram*);
nRow += pOp->p4.pProgram->nOp;
}
}
if( p->explain<2 ) break;
if( pOp->opcode==OP_Explain ) break;
if( pOp->opcode==OP_Init && p->pc>1 ) break;
}
if( rc==SQLITE_OK ){
if( db->u1.isInterrupted ){
p->rc = SQLITE_INTERRUPT;
rc = SQLITE_ERROR;
sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
}else{
char *zP4;
if( p->explain==1 ){
pMem->flags = MEM_Int;
pMem->u.i = i; /* Program counter */
pMem++;
pMem->flags = MEM_Static|MEM_Str|MEM_Term;
pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
assert( pMem->z!=0 );
pMem->n = sqlite3Strlen30(pMem->z);
pMem->enc = SQLITE_UTF8;
pMem++;
}
pMem->flags = MEM_Int;
pMem->u.i = pOp->p1; /* P1 */
pMem++;
pMem->flags = MEM_Int;
pMem->u.i = pOp->p2; /* P2 */
pMem++;
pMem->flags = MEM_Int;
pMem->u.i = pOp->p3; /* P3 */
pMem++;
if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
assert( p->db->mallocFailed );
return SQLITE_ERROR;
}
pMem->flags = MEM_Str|MEM_Term;
zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
if( zP4!=pMem->z ){
pMem->n = 0;
sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
}else{
assert( pMem->z!=0 );
pMem->n = sqlite3Strlen30(pMem->z);
pMem->enc = SQLITE_UTF8;
}
pMem++;
if( p->explain==1 ){
if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
assert( p->db->mallocFailed );
return SQLITE_ERROR;
}
pMem->flags = MEM_Str|MEM_Term;
pMem->n = 2;
sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
pMem->enc = SQLITE_UTF8;
pMem++;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
assert( p->db->mallocFailed );
return SQLITE_ERROR;
}
pMem->flags = MEM_Str|MEM_Term;
pMem->n = displayComment(pOp, zP4, pMem->z, 500);
pMem->enc = SQLITE_UTF8;
#else
pMem->flags = MEM_Null; /* Comment */
#endif
}
p->nResColumn = 8 - 4*(p->explain-1);
p->pResultSet = &p->aMem[1];
p->rc = SQLITE_OK;
rc = SQLITE_ROW;
}
}
return rc;
}
#endif /* SQLITE_OMIT_EXPLAIN */
#ifdef SQLITE_DEBUG
/*
** Print the SQL that was used to generate a VDBE program.
*/
void sqlite3VdbePrintSql(Vdbe *p){
const char *z = 0;
if( p->zSql ){
z = p->zSql;
}else if( p->nOp>=1 ){
const VdbeOp *pOp = &p->aOp[0];
if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
z = pOp->p4.z;
while( sqlite3Isspace(*z) ) z++;
}
}
if( z ) printf("SQL: [%s]\n", z);
}
#endif
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** Print an IOTRACE message showing SQL content.
*/
void sqlite3VdbeIOTraceSql(Vdbe *p){
int nOp = p->nOp;
VdbeOp *pOp;
if( sqlite3IoTrace==0 ) return;
if( nOp<1 ) return;
pOp = &p->aOp[0];
if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
int i, j;
char z[1000];
sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
for(i=0; sqlite3Isspace(z[i]); i++){}
for(j=0; z[i]; i++){
if( sqlite3Isspace(z[i]) ){
if( z[i-1]!=' ' ){
z[j++] = ' ';
}
}else{
z[j++] = z[i];
}
}
z[j] = 0;
sqlite3IoTrace("SQL %s\n", z);
}
}
#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
/* An instance of this object describes bulk memory available for use
** by subcomponents of a prepared statement. Space is allocated out
** of a ReusableSpace object by the allocSpace() routine below.
*/
struct ReusableSpace {
u8 *pSpace; /* Available memory */
sqlite3_int64 nFree; /* Bytes of available memory */
sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
};
/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
** from the ReusableSpace object. Return a pointer to the allocated
** memory on success. If insufficient memory is available in the
** ReusableSpace object, increase the ReusableSpace.nNeeded
** value by the amount needed and return NULL.
**
** If pBuf is not initially NULL, that means that the memory has already
** been allocated by a prior call to this routine, so just return a copy
** of pBuf and leave ReusableSpace unchanged.
**
** This allocator is employed to repurpose unused slots at the end of the
** opcode array of prepared state for other memory needs of the prepared
** statement.
*/
static void *allocSpace(
struct ReusableSpace *p, /* Bulk memory available for allocation */
void *pBuf, /* Pointer to a prior allocation */
sqlite3_int64 nByte /* Bytes of memory needed */
){
assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
if( pBuf==0 ){
nByte = ROUND8(nByte);
if( nByte <= p->nFree ){
p->nFree -= nByte;
pBuf = &p->pSpace[p->nFree];
}else{
p->nNeeded += nByte;
}
}
assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
return pBuf;
}
/*
** Rewind the VDBE back to the beginning in preparation for
** running it.
*/
void sqlite3VdbeRewind(Vdbe *p){
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
int i;
#endif
assert( p!=0 );
assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
/* There should be at least one opcode.
*/
assert( p->nOp>0 );
/* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
p->magic = VDBE_MAGIC_RUN;
#ifdef SQLITE_DEBUG
for(i=0; i<p->nMem; i++){
assert( p->aMem[i].db==p->db );
}
#endif
p->pc = -1;
p->rc = SQLITE_OK;
p->errorAction = OE_Abort;
p->nChange = 0;
p->cacheCtr = 1;
p->minWriteFileFormat = 255;
p->iStatement = 0;
p->nFkConstraint = 0;
#ifdef VDBE_PROFILE
for(i=0; i<p->nOp; i++){
p->aOp[i].cnt = 0;
p->aOp[i].cycles = 0;
}
#endif
}
/*
** Prepare a virtual machine for execution for the first time after
** creating the virtual machine. This involves things such
** as allocating registers and initializing the program counter.
** After the VDBE has be prepped, it can be executed by one or more
** calls to sqlite3VdbeExec().
**
** This function may be called exactly once on each virtual machine.
** After this routine is called the VM has been "packaged" and is ready
** to run. After this routine is called, further calls to
** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
** the Vdbe from the Parse object that helped generate it so that the
** the Vdbe becomes an independent entity and the Parse object can be
** destroyed.
**
** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
** to its initial state after it has been run.
*/
void sqlite3VdbeMakeReady(
Vdbe *p, /* The VDBE */
Parse *pParse /* Parsing context */
){
sqlite3 *db; /* The database connection */
int nVar; /* Number of parameters */
int nMem; /* Number of VM memory registers */
int nCursor; /* Number of cursors required */
int nArg; /* Number of arguments in subprograms */
int n; /* Loop counter */
struct ReusableSpace x; /* Reusable bulk memory */
assert( p!=0 );
assert( p->nOp>0 );
assert( pParse!=0 );
assert( p->magic==VDBE_MAGIC_INIT );
assert( pParse==p->pParse );
db = p->db;
assert( db->mallocFailed==0 );
nVar = pParse->nVar;
nMem = pParse->nMem;
nCursor = pParse->nTab;
nArg = pParse->nMaxArg;
/* Each cursor uses a memory cell. The first cursor (cursor 0) can
** use aMem[0] which is not otherwise used by the VDBE program. Allocate
** space at the end of aMem[] for cursors 1 and greater.
** See also: allocateCursor().
*/
nMem += nCursor;
if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
/* Figure out how much reusable memory is available at the end of the
** opcode array. This extra memory will be reallocated for other elements
** of the prepared statement.
*/
n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
assert( x.nFree>=0 );
assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
resolveP2Values(p, &nArg);
p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
if( pParse->explain && nMem<10 ){
nMem = 10;
}
p->expired = 0;
/* Memory for registers, parameters, cursor, etc, is allocated in one or two
** passes. On the first pass, we try to reuse unused memory at the
** end of the opcode array. If we are unable to satisfy all memory
** requirements by reusing the opcode array tail, then the second
** pass will fill in the remainder using a fresh memory allocation.
**
** This two-pass approach that reuses as much memory as possible from
** the leftover memory at the end of the opcode array. This can significantly
** reduce the amount of memory held by a prepared statement.
*/
x.nNeeded = 0;
p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
#endif
if( x.nNeeded ){
x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
x.nFree = x.nNeeded;
if( !db->mallocFailed ){
p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
#endif
}
}
p->pVList = pParse->pVList;
pParse->pVList = 0;
p->explain = pParse->explain;
if( db->mallocFailed ){
p->nVar = 0;
p->nCursor = 0;
p->nMem = 0;
}else{
p->nCursor = nCursor;
p->nVar = (ynVar)nVar;
initMemArray(p->aVar, nVar, db, MEM_Null);
p->nMem = nMem;
initMemArray(p->aMem, nMem, db, MEM_Undefined);
memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
memset(p->anExec, 0, p->nOp*sizeof(i64));
#endif
}
sqlite3VdbeRewind(p);
}
/*
** Close a VDBE cursor and release all the resources that cursor
** happens to hold.
*/
void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
if( pCx==0 ){
return;
}
assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
switch( pCx->eCurType ){
case CURTYPE_SORTER: {
sqlite3VdbeSorterClose(p->db, pCx);
break;
}
case CURTYPE_BTREE: {
if( pCx->isEphemeral ){
if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
/* The pCx->pCursor will be close automatically, if it exists, by
** the call above. */
}else{
assert( pCx->uc.pCursor!=0 );
sqlite3BtreeCloseCursor(pCx->uc.pCursor);
}
break;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
case CURTYPE_VTAB: {
sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
const sqlite3_module *pModule = pVCur->pVtab->pModule;
assert( pVCur->pVtab->nRef>0 );
pVCur->pVtab->nRef--;
pModule->xClose(pVCur);
break;
}
#endif
}
}
/*
** Close all cursors in the current frame.
*/
static void closeCursorsInFrame(Vdbe *p){
if( p->apCsr ){
int i;
for(i=0; i<p->nCursor; i++){
VdbeCursor *pC = p->apCsr[i];
if( pC ){
sqlite3VdbeFreeCursor(p, pC);
p->apCsr[i] = 0;
}
}
}
}
/*
** Copy the values stored in the VdbeFrame structure to its Vdbe. This
** is used, for example, when a trigger sub-program is halted to restore
** control to the main program.
*/
int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
Vdbe *v = pFrame->v;
closeCursorsInFrame(v);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
v->anExec = pFrame->anExec;
#endif
v->aOp = pFrame->aOp;
v->nOp = pFrame->nOp;
v->aMem = pFrame->aMem;
v->nMem = pFrame->nMem;
v->apCsr = pFrame->apCsr;
v->nCursor = pFrame->nCursor;
v->db->lastRowid = pFrame->lastRowid;
v->nChange = pFrame->nChange;
v->db->nChange = pFrame->nDbChange;
sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
v->pAuxData = pFrame->pAuxData;
pFrame->pAuxData = 0;
return pFrame->pc;
}
/*
** Close all cursors.
**
** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
** cell array. This is necessary as the memory cell array may contain
** pointers to VdbeFrame objects, which may in turn contain pointers to
** open cursors.
*/
static void closeAllCursors(Vdbe *p){
if( p->pFrame ){
VdbeFrame *pFrame;
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
sqlite3VdbeFrameRestore(pFrame);
p->pFrame = 0;
p->nFrame = 0;
}
assert( p->nFrame==0 );
closeCursorsInFrame(p);
if( p->aMem ){
releaseMemArray(p->aMem, p->nMem);
}
while( p->pDelFrame ){
VdbeFrame *pDel = p->pDelFrame;
p->pDelFrame = pDel->pParent;
sqlite3VdbeFrameDelete(pDel);
}
/* Delete any auxdata allocations made by the VM */
if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
assert( p->pAuxData==0 );
}
/*
** Set the number of result columns that will be returned by this SQL
** statement. This is now set at compile time, rather than during
** execution of the vdbe program so that sqlite3_column_count() can
** be called on an SQL statement before sqlite3_step().
*/
void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
int n;
sqlite3 *db = p->db;
if( p->nResColumn ){
releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
sqlite3DbFree(db, p->aColName);
}
n = nResColumn*COLNAME_N;
p->nResColumn = (u16)nResColumn;
p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
if( p->aColName==0 ) return;
initMemArray(p->aColName, n, db, MEM_Null);
}
/*
** Set the name of the idx'th column to be returned by the SQL statement.
** zName must be a pointer to a nul terminated string.
**
** This call must be made after a call to sqlite3VdbeSetNumCols().
**
** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
*/
int sqlite3VdbeSetColName(
Vdbe *p, /* Vdbe being configured */
int idx, /* Index of column zName applies to */
int var, /* One of the COLNAME_* constants */
const char *zName, /* Pointer to buffer containing name */
void (*xDel)(void*) /* Memory management strategy for zName */
){
int rc;
Mem *pColName;
assert( idx<p->nResColumn );
assert( var<COLNAME_N );
if( p->db->mallocFailed ){
assert( !zName || xDel!=SQLITE_DYNAMIC );
return SQLITE_NOMEM_BKPT;
}
assert( p->aColName!=0 );
pColName = &(p->aColName[idx+var*p->nResColumn]);
rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
return rc;
}
/*
** A read or write transaction may or may not be active on database handle
** db. If a transaction is active, commit it. If there is a
** write-transaction spanning more than one database file, this routine
** takes care of the master journal trickery.
*/
static int vdbeCommit(sqlite3 *db, Vdbe *p){
int i;
int nTrans = 0; /* Number of databases with an active write-transaction
** that are candidates for a two-phase commit using a
** master-journal */
int rc = SQLITE_OK;
int needXcommit = 0;
#ifdef SQLITE_OMIT_VIRTUALTABLE
/* With this option, sqlite3VtabSync() is defined to be simply
** SQLITE_OK so p is not used.
*/
UNUSED_PARAMETER(p);
#endif
/* Before doing anything else, call the xSync() callback for any
** virtual module tables written in this transaction. This has to
** be done before determining whether a master journal file is
** required, as an xSync() callback may add an attached database
** to the transaction.
*/
rc = sqlite3VtabSync(db, p);
/* This loop determines (a) if the commit hook should be invoked and
** (b) how many database files have open write transactions, not
** including the temp database. (b) is important because if more than
** one database file has an open write transaction, a master journal
** file is required for an atomic commit.
*/
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( sqlite3BtreeIsInTrans(pBt) ){
/* Whether or not a database might need a master journal depends upon
** its journal mode (among other things). This matrix determines which
** journal modes use a master journal and which do not */
static const u8 aMJNeeded[] = {
/* DELETE */ 1,
/* PERSIST */ 1,
/* OFF */ 0,
/* TRUNCATE */ 1,
/* MEMORY */ 0,
/* WAL */ 0
};
Pager *pPager; /* Pager associated with pBt */
needXcommit = 1;
sqlite3BtreeEnter(pBt);
pPager = sqlite3BtreePager(pBt);
if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
&& aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
&& sqlite3PagerIsMemdb(pPager)==0
){
assert( i!=1 );
nTrans++;
}
rc = sqlite3PagerExclusiveLock(pPager);
sqlite3BtreeLeave(pBt);
}
}
if( rc!=SQLITE_OK ){
return rc;
}
/* If there are any write-transactions at all, invoke the commit hook */
if( needXcommit && db->xCommitCallback ){
rc = db->xCommitCallback(db->pCommitArg);
if( rc ){
return SQLITE_CONSTRAINT_COMMITHOOK;
}
}
/* The simple case - no more than one database file (not counting the
** TEMP database) has a transaction active. There is no need for the
** master-journal.
**
** If the return value of sqlite3BtreeGetFilename() is a zero length
** string, it means the main database is :memory: or a temp file. In
** that case we do not support atomic multi-file commits, so use the
** simple case then too.
*/
if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
|| nTrans<=1
){
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
}
}
/* Do the commit only if all databases successfully complete phase 1.
** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
** IO error while deleting or truncating a journal file. It is unlikely,
** but could happen. In this case abandon processing and return the error.
*/
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
}
}
if( rc==SQLITE_OK ){
sqlite3VtabCommit(db);
}
}
/* The complex case - There is a multi-file write-transaction active.
** This requires a master journal file to ensure the transaction is
** committed atomically.
*/
#ifndef SQLITE_OMIT_DISKIO
else{
sqlite3_vfs *pVfs = db->pVfs;
char *zMaster = 0; /* File-name for the master journal */
char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
sqlite3_file *pMaster = 0;
i64 offset = 0;
int res;
int retryCount = 0;
int nMainFile;
/* Select a master journal file name */
nMainFile = sqlite3Strlen30(zMainFile);
zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
do {
u32 iRandom;
if( retryCount ){
if( retryCount>100 ){
sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
sqlite3OsDelete(pVfs, zMaster, 0);
break;
}else if( retryCount==1 ){
sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
}
}
retryCount++;
sqlite3_randomness(sizeof(iRandom), &iRandom);
sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
(iRandom>>8)&0xffffff, iRandom&0xff);
/* The antipenultimate character of the master journal name must
** be "9" to avoid name collisions when using 8+3 filenames. */
assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
sqlite3FileSuffix3(zMainFile, zMaster);
rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
}while( rc==SQLITE_OK && res );
if( rc==SQLITE_OK ){
/* Open the master journal. */
rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
);
}
if( rc!=SQLITE_OK ){
sqlite3DbFree(db, zMaster);
return rc;
}
/* Write the name of each database file in the transaction into the new
** master journal file. If an error occurs at this point close
** and delete the master journal file. All the individual journal files
** still have 'null' as the master journal pointer, so they will roll
** back independently if a failure occurs.
*/
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( sqlite3BtreeIsInTrans(pBt) ){
char const *zFile = sqlite3BtreeGetJournalname(pBt);
if( zFile==0 ){
continue; /* Ignore TEMP and :memory: databases */
}
assert( zFile[0]!=0 );
rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
offset += sqlite3Strlen30(zFile)+1;
if( rc!=SQLITE_OK ){
sqlite3OsCloseFree(pMaster);
sqlite3OsDelete(pVfs, zMaster, 0);
sqlite3DbFree(db, zMaster);
return rc;
}
}
}
/* Sync the master journal file. If the IOCAP_SEQUENTIAL device
** flag is set this is not required.
*/
if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
&& SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
){
sqlite3OsCloseFree(pMaster);
sqlite3OsDelete(pVfs, zMaster, 0);
sqlite3DbFree(db, zMaster);
return rc;
}
/* Sync all the db files involved in the transaction. The same call
** sets the master journal pointer in each individual journal. If
** an error occurs here, do not delete the master journal file.
**
** If the error occurs during the first call to
** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
** master journal file will be orphaned. But we cannot delete it,
** in case the master journal file name was written into the journal
** file before the failure occurred.
*/
for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
}
}
sqlite3OsCloseFree(pMaster);
assert( rc!=SQLITE_BUSY );
if( rc!=SQLITE_OK ){
sqlite3DbFree(db, zMaster);
return rc;
}
/* Delete the master journal file. This commits the transaction. After
** doing this the directory is synced again before any individual
** transaction files are deleted.
*/
rc = sqlite3OsDelete(pVfs, zMaster, 1);
sqlite3DbFree(db, zMaster);
zMaster = 0;
if( rc ){
return rc;
}
/* All files and directories have already been synced, so the following
** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
** deleting or truncating journals. If something goes wrong while
** this is happening we don't really care. The integrity of the
** transaction is already guaranteed, but some stray 'cold' journals
** may be lying around. Returning an error code won't help matters.
*/
disable_simulated_io_errors();
sqlite3BeginBenignMalloc();
for(i=0; i<db->nDb; i++){
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
sqlite3BtreeCommitPhaseTwo(pBt, 1);
}
}
sqlite3EndBenignMalloc();
enable_simulated_io_errors();
sqlite3VtabCommit(db);
}
#endif
return rc;
}
/*
** This routine checks that the sqlite3.nVdbeActive count variable
** matches the number of vdbe's in the list sqlite3.pVdbe that are
** currently active. An assertion fails if the two counts do not match.
** This is an internal self-check only - it is not an essential processing
** step.
**
** This is a no-op if NDEBUG is defined.
*/
#ifndef NDEBUG
static void checkActiveVdbeCnt(sqlite3 *db){
Vdbe *p;
int cnt = 0;
int nWrite = 0;
int nRead = 0;
p = db->pVdbe;
while( p ){
if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
cnt++;
if( p->readOnly==0 ) nWrite++;
if( p->bIsReader ) nRead++;
}
p = p->pNext;
}
assert( cnt==db->nVdbeActive );
assert( nWrite==db->nVdbeWrite );
assert( nRead==db->nVdbeRead );
}
#else
#define checkActiveVdbeCnt(x)
#endif
/*
** If the Vdbe passed as the first argument opened a statement-transaction,
** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
** statement transaction is committed.
**
** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
** Otherwise SQLITE_OK.
*/
static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
sqlite3 *const db = p->db;
int rc = SQLITE_OK;
int i;
const int iSavepoint = p->iStatement-1;
assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
assert( db->nStatement>0 );
assert( p->iStatement==(db->nStatement+db->nSavepoint) );
for(i=0; i<db->nDb; i++){
int rc2 = SQLITE_OK;
Btree *pBt = db->aDb[i].pBt;
if( pBt ){
if( eOp==SAVEPOINT_ROLLBACK ){
rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
}
if( rc2==SQLITE_OK ){
rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
}
if( rc==SQLITE_OK ){
rc = rc2;
}
}
}
db->nStatement--;
p->iStatement = 0;
if( rc==SQLITE_OK ){
if( eOp==SAVEPOINT_ROLLBACK ){
rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
}
if( rc==SQLITE_OK ){
rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
}
}
/* If the statement transaction is being rolled back, also restore the
** database handles deferred constraint counter to the value it had when
** the statement transaction was opened. */
if( eOp==SAVEPOINT_ROLLBACK ){
db->nDeferredCons = p->nStmtDefCons;
db->nDeferredImmCons = p->nStmtDefImmCons;
}
return rc;
}
int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
if( p->db->nStatement && p->iStatement ){
return vdbeCloseStatement(p, eOp);
}
return SQLITE_OK;
}
/*
** This function is called when a transaction opened by the database
** handle associated with the VM passed as an argument is about to be
** committed. If there are outstanding deferred foreign key constraint
** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
**
** If there are outstanding FK violations and this function returns
** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
** and write an error message to it. Then return SQLITE_ERROR.
*/
#ifndef SQLITE_OMIT_FOREIGN_KEY
int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
sqlite3 *db = p->db;
if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
|| (!deferred && p->nFkConstraint>0)
){
p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
p->errorAction = OE_Abort;
sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
return SQLITE_ERROR;
}
return SQLITE_OK;
}
#endif
/*
** This routine is called the when a VDBE tries to halt. If the VDBE
** has made changes and is in autocommit mode, then commit those
** changes. If a rollback is needed, then do the rollback.
**
** This routine is the only way to move the state of a VM from
** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
** call this on a VM that is in the SQLITE_MAGIC_HALT state.
**
** Return an error code. If the commit could not complete because of
** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
** means the close did not happen and needs to be repeated.
*/
int sqlite3VdbeHalt(Vdbe *p){
int rc; /* Used to store transient return codes */
sqlite3 *db = p->db;
/* This function contains the logic that determines if a statement or
** transaction will be committed or rolled back as a result of the
** execution of this virtual machine.
**
** If any of the following errors occur:
**
** SQLITE_NOMEM
** SQLITE_IOERR
** SQLITE_FULL
** SQLITE_INTERRUPT
**
** Then the internal cache might have been left in an inconsistent
** state. We need to rollback the statement transaction, if there is
** one, or the complete transaction if there is no statement transaction.
*/
if( p->magic!=VDBE_MAGIC_RUN ){
return SQLITE_OK;
}
if( db->mallocFailed ){
p->rc = SQLITE_NOMEM_BKPT;
}
closeAllCursors(p);
checkActiveVdbeCnt(db);
/* No commit or rollback needed if the program never started or if the
** SQL statement does not read or write a database file. */
if( p->pc>=0 && p->bIsReader ){
int mrc; /* Primary error code from p->rc */
int eStatementOp = 0;
int isSpecialError; /* Set to true if a 'special' error */
/* Lock all btrees used by the statement */
sqlite3VdbeEnter(p);
/* Check for one of the special errors */
mrc = p->rc & 0xff;
isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
|| mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
if( isSpecialError ){
/* If the query was read-only and the error code is SQLITE_INTERRUPT,
** no rollback is necessary. Otherwise, at least a savepoint
** transaction must be rolled back to restore the database to a
** consistent state.
**
** Even if the statement is read-only, it is important to perform
** a statement or transaction rollback operation. If the error
** occurred while writing to the journal, sub-journal or database
** file as part of an effort to free up cache space (see function
** pagerStress() in pager.c), the rollback is required to restore
** the pager to a consistent state.
*/
if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
eStatementOp = SAVEPOINT_ROLLBACK;
}else{
/* We are forced to roll back the active transaction. Before doing
** so, abort any other statements this handle currently has active.
*/
sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
sqlite3CloseSavepoints(db);
db->autoCommit = 1;
p->nChange = 0;
}
}
}
/* Check for immediate foreign key violations. */
if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
sqlite3VdbeCheckFk(p, 0);
}
/* If the auto-commit flag is set and this is the only active writer
** VM, then we do either a commit or rollback of the current transaction.
**
** Note: This block also runs if one of the special errors handled
** above has occurred.
*/
if( !sqlite3VtabInSync(db)
&& db->autoCommit
&& db->nVdbeWrite==(p->readOnly==0)
){
if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
rc = sqlite3VdbeCheckFk(p, 1);
if( rc!=SQLITE_OK ){
if( NEVER(p->readOnly) ){
sqlite3VdbeLeave(p);
return SQLITE_ERROR;
}
rc = SQLITE_CONSTRAINT_FOREIGNKEY;
}else{
/* The auto-commit flag is true, the vdbe program was successful
** or hit an 'OR FAIL' constraint and there are no deferred foreign
** key constraints to hold up the transaction. This means a commit
** is required. */
rc = vdbeCommit(db, p);
}
if( rc==SQLITE_BUSY && p->readOnly ){
sqlite3VdbeLeave(p);
return SQLITE_BUSY;
}else if( rc!=SQLITE_OK ){
p->rc = rc;
sqlite3RollbackAll(db, SQLITE_OK);
p->nChange = 0;
}else{
db->nDeferredCons = 0;
db->nDeferredImmCons = 0;
db->flags &= ~(u64)SQLITE_DeferFKs;
sqlite3CommitInternalChanges(db);
}
}else{
sqlite3RollbackAll(db, SQLITE_OK);
p->nChange = 0;
}
db->nStatement = 0;
}else if( eStatementOp==0 ){
if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
eStatementOp = SAVEPOINT_RELEASE;
}else if( p->errorAction==OE_Abort ){
eStatementOp = SAVEPOINT_ROLLBACK;
}else{
sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
sqlite3CloseSavepoints(db);
db->autoCommit = 1;
p->nChange = 0;
}
}
/* If eStatementOp is non-zero, then a statement transaction needs to
** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
** do so. If this operation returns an error, and the current statement
** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
** current statement error code.
*/
if( eStatementOp ){
rc = sqlite3VdbeCloseStatement(p, eStatementOp);
if( rc ){
if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
p->rc = rc;
sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = 0;
}
sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
sqlite3CloseSavepoints(db);
db->autoCommit = 1;
p->nChange = 0;
}
}
/* If this was an INSERT, UPDATE or DELETE and no statement transaction
** has been rolled back, update the database connection change-counter.
*/
if( p->changeCntOn ){
if( eStatementOp!=SAVEPOINT_ROLLBACK ){
sqlite3VdbeSetChanges(db, p->nChange);
}else{
sqlite3VdbeSetChanges(db, 0);
}
p->nChange = 0;
}
/* Release the locks */
sqlite3VdbeLeave(p);
}
/* We have successfully halted and closed the VM. Record this fact. */
if( p->pc>=0 ){
db->nVdbeActive--;
if( !p->readOnly ) db->nVdbeWrite--;
if( p->bIsReader ) db->nVdbeRead--;
assert( db->nVdbeActive>=db->nVdbeRead );
assert( db->nVdbeRead>=db->nVdbeWrite );
assert( db->nVdbeWrite>=0 );
}
p->magic = VDBE_MAGIC_HALT;
checkActiveVdbeCnt(db);
if( db->mallocFailed ){
p->rc = SQLITE_NOMEM_BKPT;
}
/* If the auto-commit flag is set to true, then any locks that were held
** by connection db have now been released. Call sqlite3ConnectionUnlocked()
** to invoke any required unlock-notify callbacks.
*/
if( db->autoCommit ){
sqlite3ConnectionUnlocked(db);
}
assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
}
/*
** Each VDBE holds the result of the most recent sqlite3_step() call
** in p->rc. This routine sets that result back to SQLITE_OK.
*/
void sqlite3VdbeResetStepResult(Vdbe *p){
p->rc = SQLITE_OK;
}
/*
** Copy the error code and error message belonging to the VDBE passed
** as the first argument to its database handle (so that they will be
** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
**
** This function does not clear the VDBE error code or message, just
** copies them to the database handle.
*/
int sqlite3VdbeTransferError(Vdbe *p){
sqlite3 *db = p->db;
int rc = p->rc;
if( p->zErrMsg ){
db->bBenignMalloc++;
sqlite3BeginBenignMalloc();
if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
sqlite3EndBenignMalloc();
db->bBenignMalloc--;
}else if( db->pErr ){
sqlite3ValueSetNull(db->pErr);
}
db->errCode = rc;
return rc;
}
#ifdef SQLITE_ENABLE_SQLLOG
/*
** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
** invoke it.
*/
static void vdbeInvokeSqllog(Vdbe *v){
if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
assert( v->db->init.busy==0 );
if( zExpanded ){
sqlite3GlobalConfig.xSqllog(
sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
);
sqlite3DbFree(v->db, zExpanded);
}
}
}
#else
# define vdbeInvokeSqllog(x)
#endif
/*
** Clean up a VDBE after execution but do not delete the VDBE just yet.
** Write any error messages into *pzErrMsg. Return the result code.
**
** After this routine is run, the VDBE should be ready to be executed
** again.
**
** To look at it another way, this routine resets the state of the
** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
** VDBE_MAGIC_INIT.
*/
int sqlite3VdbeReset(Vdbe *p){
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
int i;
#endif
sqlite3 *db;
db = p->db;
/* If the VM did not run to completion or if it encountered an
** error, then it might not have been halted properly. So halt
** it now.
*/
sqlite3VdbeHalt(p);
/* If the VDBE has been run even partially, then transfer the error code
** and error message from the VDBE into the main database structure. But
** if the VDBE has just been set to run but has not actually executed any
** instructions yet, leave the main database error information unchanged.
*/
if( p->pc>=0 ){
vdbeInvokeSqllog(p);
sqlite3VdbeTransferError(p);
if( p->runOnlyOnce ) p->expired = 1;
}else if( p->rc && p->expired ){
/* The expired flag was set on the VDBE before the first call
** to sqlite3_step(). For consistency (since sqlite3_step() was
** called), set the database error in this case as well.
*/
sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
}
/* Reset register contents and reclaim error message memory.
*/
#ifdef SQLITE_DEBUG
/* Execute assert() statements to ensure that the Vdbe.apCsr[] and
** Vdbe.aMem[] arrays have already been cleaned up. */
if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
if( p->aMem ){
for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
}
#endif
sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = 0;
p->pResultSet = 0;
#ifdef SQLITE_DEBUG
p->nWrite = 0;
#endif
/* Save profiling information from this VDBE run.
*/
#ifdef VDBE_PROFILE
{
FILE *out = fopen("vdbe_profile.out", "a");
if( out ){
fprintf(out, "---- ");
for(i=0; i<p->nOp; i++){
fprintf(out, "%02x", p->aOp[i].opcode);
}
fprintf(out, "\n");
if( p->zSql ){
char c, pc = 0;
fprintf(out, "-- ");
for(i=0; (c = p->zSql[i])!=0; i++){
if( pc=='\n' ) fprintf(out, "-- ");
putc(c, out);
pc = c;
}
if( pc!='\n' ) fprintf(out, "\n");
}
for(i=0; i<p->nOp; i++){
char zHdr[100];
sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
p->aOp[i].cnt,
p->aOp[i].cycles,
p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
);
fprintf(out, "%s", zHdr);
sqlite3VdbePrintOp(out, i, &p->aOp[i]);
}
fclose(out);
}
}
#endif
p->magic = VDBE_MAGIC_RESET;
return p->rc & db->errMask;
}
/*
** Clean up and delete a VDBE after execution. Return an integer which is
** the result code. Write any error message text into *pzErrMsg.
*/
int sqlite3VdbeFinalize(Vdbe *p){
int rc = SQLITE_OK;
if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
rc = sqlite3VdbeReset(p);
assert( (rc & p->db->errMask)==rc );
}
sqlite3VdbeDelete(p);
return rc;
}
/*
** If parameter iOp is less than zero, then invoke the destructor for
** all auxiliary data pointers currently cached by the VM passed as
** the first argument.
**
** Or, if iOp is greater than or equal to zero, then the destructor is
** only invoked for those auxiliary data pointers created by the user
** function invoked by the OP_Function opcode at instruction iOp of
** VM pVdbe, and only then if:
**
** * the associated function parameter is the 32nd or later (counting
** from left to right), or
**
** * the corresponding bit in argument mask is clear (where the first
** function parameter corresponds to bit 0 etc.).
*/
void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
while( *pp ){
AuxData *pAux = *pp;
if( (iOp<0)
|| (pAux->iAuxOp==iOp
&& pAux->iAuxArg>=0
&& (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
){
testcase( pAux->iAuxArg==31 );
if( pAux->xDeleteAux ){
pAux->xDeleteAux(pAux->pAux);
}
*pp = pAux->pNextAux;
sqlite3DbFree(db, pAux);
}else{
pp= &pAux->pNextAux;
}
}
}
/*
** Free all memory associated with the Vdbe passed as the second argument,
** except for object itself, which is preserved.
**
** The difference between this function and sqlite3VdbeDelete() is that
** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
** the database connection and frees the object itself.
*/
void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
SubProgram *pSub, *pNext;
assert( p->db==0 || p->db==db );
releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
for(pSub=p->pProgram; pSub; pSub=pNext){
pNext = pSub->pNext;
vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
sqlite3DbFree(db, pSub);
}
if( p->magic!=VDBE_MAGIC_INIT ){
releaseMemArray(p->aVar, p->nVar);
sqlite3DbFree(db, p->pVList);
sqlite3DbFree(db, p->pFree);
}
vdbeFreeOpArray(db, p->aOp, p->nOp);
sqlite3DbFree(db, p->aColName);
sqlite3DbFree(db, p->zSql);
#ifdef SQLITE_ENABLE_NORMALIZE
sqlite3DbFree(db, p->zNormSql);
{
DblquoteStr *pThis, *pNext;
for(pThis=p->pDblStr; pThis; pThis=pNext){
pNext = pThis->pNextStr;
sqlite3DbFree(db, pThis);
}
}
#endif
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
{
int i;
for(i=0; i<p->nScan; i++){
sqlite3DbFree(db, p->aScan[i].zName);
}
sqlite3DbFree(db, p->aScan);
}
#endif
}
/*
** Delete an entire VDBE.
*/
void sqlite3VdbeDelete(Vdbe *p){
sqlite3 *db;
assert( p!=0 );
db = p->db;
assert( sqlite3_mutex_held(db->mutex) );
sqlite3VdbeClearObject(db, p);
if( p->pPrev ){
p->pPrev->pNext = p->pNext;
}else{
assert( db->pVdbe==p );
db->pVdbe = p->pNext;
}
if( p->pNext ){
p->pNext->pPrev = p->pPrev;
}
p->magic = VDBE_MAGIC_DEAD;
p->db = 0;
sqlite3DbFreeNN(db, p);
}
/*
** The cursor "p" has a pending seek operation that has not yet been
** carried out. Seek the cursor now. If an error occurs, return
** the appropriate error code.
*/
static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
int res, rc;
#ifdef SQLITE_TEST
extern int sqlite3_search_count;
#endif
assert( p->deferredMoveto );
assert( p->isTable );
assert( p->eCurType==CURTYPE_BTREE );
rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
if( rc ) return rc;
if( res!=0 ) return SQLITE_CORRUPT_BKPT;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
p->deferredMoveto = 0;
p->cacheStatus = CACHE_STALE;
return SQLITE_OK;
}
/*
** Something has moved cursor "p" out of place. Maybe the row it was
** pointed to was deleted out from under it. Or maybe the btree was
** rebalanced. Whatever the cause, try to restore "p" to the place it
** is supposed to be pointing. If the row was deleted out from under the
** cursor, set the cursor to point to a NULL row.
*/
static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
int isDifferentRow, rc;
assert( p->eCurType==CURTYPE_BTREE );
assert( p->uc.pCursor!=0 );
assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
p->cacheStatus = CACHE_STALE;
if( isDifferentRow ) p->nullRow = 1;
return rc;
}
/*
** Check to ensure that the cursor is valid. Restore the cursor
** if need be. Return any I/O error from the restore operation.
*/
int sqlite3VdbeCursorRestore(VdbeCursor *p){
assert( p->eCurType==CURTYPE_BTREE );
if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
return handleMovedCursor(p);
}
return SQLITE_OK;
}
/*
** Make sure the cursor p is ready to read or write the row to which it
** was last positioned. Return an error code if an OOM fault or I/O error
** prevents us from positioning the cursor to its correct position.
**
** If a MoveTo operation is pending on the given cursor, then do that
** MoveTo now. If no move is pending, check to see if the row has been
** deleted out from under the cursor and if it has, mark the row as
** a NULL row.
**
** If the cursor is already pointing to the correct row and that row has
** not been deleted out from under the cursor, then this routine is a no-op.
*/
int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
VdbeCursor *p = *pp;
assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
if( p->deferredMoveto ){
int iMap;
if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
*pp = p->pAltCursor;
*piCol = iMap - 1;
return SQLITE_OK;
}
return handleDeferredMoveto(p);
}
if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
return handleMovedCursor(p);
}
return SQLITE_OK;
}
/*
** The following functions:
**
** sqlite3VdbeSerialType()
** sqlite3VdbeSerialTypeLen()
** sqlite3VdbeSerialLen()
** sqlite3VdbeSerialPut()
** sqlite3VdbeSerialGet()
**
** encapsulate the code that serializes values for storage in SQLite
** data and index records. Each serialized value consists of a
** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
** integer, stored as a varint.
**
** In an SQLite index record, the serial type is stored directly before
** the blob of data that it corresponds to. In a table record, all serial
** types are stored at the start of the record, and the blobs of data at
** the end. Hence these functions allow the caller to handle the
** serial-type and data blob separately.
**
** The following table describes the various storage classes for data:
**
** serial type bytes of data type
** -------------- --------------- ---------------
** 0 0 NULL
** 1 1 signed integer
** 2 2 signed integer
** 3 3 signed integer
** 4 4 signed integer
** 5 6 signed integer
** 6 8 signed integer
** 7 8 IEEE float
** 8 0 Integer constant 0
** 9 0 Integer constant 1
** 10,11 reserved for expansion
** N>=12 and even (N-12)/2 BLOB
** N>=13 and odd (N-13)/2 text
**
** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
** of SQLite will not understand those serial types.
*/
#if 0 /* Inlined into the OP_MakeRecord opcode */
/*
** Return the serial-type for the value stored in pMem.
**
** This routine might convert a large MEM_IntReal value into MEM_Real.
**
** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
** opcode in the byte-code engine. But by moving this routine in-line, we
** can omit some redundant tests and make that opcode a lot faster. So
** this routine is now only used by the STAT3 logic and STAT3 support has
** ended. The code is kept here for historical reference only.
*/
u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
int flags = pMem->flags;
u32 n;
assert( pLen!=0 );
if( flags&MEM_Null ){
*pLen = 0;
return 0;
}
if( flags&(MEM_Int|MEM_IntReal) ){
/* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
i64 i = pMem->u.i;
u64 u;
testcase( flags & MEM_Int );
testcase( flags & MEM_IntReal );
if( i<0 ){
u = ~i;
}else{
u = i;
}
if( u<=127 ){
if( (i&1)==i && file_format>=4 ){
*pLen = 0;
return 8+(u32)u;
}else{
*pLen = 1;
return 1;
}
}
if( u<=32767 ){ *pLen = 2; return 2; }
if( u<=8388607 ){ *pLen = 3; return 3; }
if( u<=2147483647 ){ *pLen = 4; return 4; }
if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
*pLen = 8;
if( flags&MEM_IntReal ){
/* If the value is IntReal and is going to take up 8 bytes to store
** as an integer, then we might as well make it an 8-byte floating
** point value */
pMem->u.r = (double)pMem->u.i;
pMem->flags &= ~MEM_IntReal;
pMem->flags |= MEM_Real;
return 7;
}
return 6;
}
if( flags&MEM_Real ){
*pLen = 8;
return 7;
}
assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
assert( pMem->n>=0 );
n = (u32)pMem->n;
if( flags & MEM_Zero ){
n += pMem->u.nZero;
}
*pLen = n;
return ((n*2) + 12 + ((flags&MEM_Str)!=0));
}
#endif /* inlined into OP_MakeRecord */
/*
** The sizes for serial types less than 128
*/
static const u8 sqlite3SmallTypeSizes[] = {
/* 0 1 2 3 4 5 6 7 8 9 */
/* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
/* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
/* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
/* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
/* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
/* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
/* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
/* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
/* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
/* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
/* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
/* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
/* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
};
/*
** Return the length of the data corresponding to the supplied serial-type.
*/
u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
if( serial_type>=128 ){
return (serial_type-12)/2;
}else{
assert( serial_type<12
|| sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
return sqlite3SmallTypeSizes[serial_type];
}
}
u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
assert( serial_type<128 );
return sqlite3SmallTypeSizes[serial_type];
}
/*
** If we are on an architecture with mixed-endian floating
** points (ex: ARM7) then swap the lower 4 bytes with the
** upper 4 bytes. Return the result.
**
** For most architectures, this is a no-op.
**
** (later): It is reported to me that the mixed-endian problem
** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
** that early versions of GCC stored the two words of a 64-bit
** float in the wrong order. And that error has been propagated
** ever since. The blame is not necessarily with GCC, though.
** GCC might have just copying the problem from a prior compiler.
** I am also told that newer versions of GCC that follow a different
** ABI get the byte order right.
**
** Developers using SQLite on an ARM7 should compile and run their
** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
** enabled, some asserts below will ensure that the byte order of
** floating point values is correct.
**
** (2007-08-30) Frank van Vugt has studied this problem closely
** and has send his findings to the SQLite developers. Frank
** writes that some Linux kernels offer floating point hardware
** emulation that uses only 32-bit mantissas instead of a full
** 48-bits as required by the IEEE standard. (This is the
** CONFIG_FPE_FASTFPE option.) On such systems, floating point
** byte swapping becomes very complicated. To avoid problems,
** the necessary byte swapping is carried out using a 64-bit integer
** rather than a 64-bit float. Frank assures us that the code here
** works for him. We, the developers, have no way to independently
** verify this, but Frank seems to know what he is talking about
** so we trust him.
*/
#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
static u64 floatSwap(u64 in){
union {
u64 r;
u32 i[2];
} u;
u32 t;
u.r = in;
t = u.i[0];
u.i[0] = u.i[1];
u.i[1] = t;
return u.r;
}
# define swapMixedEndianFloat(X) X = floatSwap(X)
#else
# define swapMixedEndianFloat(X)
#endif
/*
** Write the serialized data blob for the value stored in pMem into
** buf. It is assumed that the caller has allocated sufficient space.
** Return the number of bytes written.
**
** nBuf is the amount of space left in buf[]. The caller is responsible
** for allocating enough space to buf[] to hold the entire field, exclusive
** of the pMem->u.nZero bytes for a MEM_Zero value.
**
** Return the number of bytes actually written into buf[]. The number
** of bytes in the zero-filled tail is included in the return value only
** if those bytes were zeroed in buf[].
*/
u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
u32 len;
/* Integer and Real */
if( serial_type<=7 && serial_type>0 ){
u64 v;
u32 i;
if( serial_type==7 ){
assert( sizeof(v)==sizeof(pMem->u.r) );
memcpy(&v, &pMem->u.r, sizeof(v));
swapMixedEndianFloat(v);
}else{
v = pMem->u.i;
}
len = i = sqlite3SmallTypeSizes[serial_type];
assert( i>0 );
do{
buf[--i] = (u8)(v&0xFF);
v >>= 8;
}while( i );
return len;
}
/* String or blob */
if( serial_type>=12 ){
assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
== (int)sqlite3VdbeSerialTypeLen(serial_type) );
len = pMem->n;
if( len>0 ) memcpy(buf, pMem->z, len);
return len;
}
/* NULL or constants 0 or 1 */
return 0;
}
/* Input "x" is a sequence of unsigned characters that represent a
** big-endian integer. Return the equivalent native integer
*/
#define ONE_BYTE_INT(x) ((i8)(x)[0])
#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
/*
** Deserialize the data blob pointed to by buf as serial type serial_type
** and store the result in pMem. Return the number of bytes read.
**
** This function is implemented as two separate routines for performance.
** The few cases that require local variables are broken out into a separate
** routine so that in most cases the overhead of moving the stack pointer
** is avoided.
*/
static u32 serialGet(
const unsigned char *buf, /* Buffer to deserialize from */
u32 serial_type, /* Serial type to deserialize */
Mem *pMem /* Memory cell to write value into */
){
u64 x = FOUR_BYTE_UINT(buf);
u32 y = FOUR_BYTE_UINT(buf+4);
x = (x<<32) + y;
if( serial_type==6 ){
/* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
** twos-complement integer. */
pMem->u.i = *(i64*)&x;
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
}else{
/* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
** floating point number. */
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
/* Verify that integers and floating point values use the same
** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
** defined that 64-bit floating point values really are mixed
** endian.
*/
static const u64 t1 = ((u64)0x3ff00000)<<32;
static const double r1 = 1.0;
u64 t2 = t1;
swapMixedEndianFloat(t2);
assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
swapMixedEndianFloat(x);
memcpy(&pMem->u.r, &x, sizeof(x));
pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
}
return 8;
}
u32 sqlite3VdbeSerialGet(
const unsigned char *buf, /* Buffer to deserialize from */
u32 serial_type, /* Serial type to deserialize */
Mem *pMem /* Memory cell to write value into */
){
switch( serial_type ){
case 10: { /* Internal use only: NULL with virtual table
** UPDATE no-change flag set */
pMem->flags = MEM_Null|MEM_Zero;
pMem->n = 0;
pMem->u.nZero = 0;
break;
}
case 11: /* Reserved for future use */
case 0: { /* Null */
/* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
pMem->flags = MEM_Null;
break;
}
case 1: {
/* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
** integer. */
pMem->u.i = ONE_BYTE_INT(buf);
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
return 1;
}
case 2: { /* 2-byte signed integer */
/* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
** twos-complement integer. */
pMem->u.i = TWO_BYTE_INT(buf);
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
return 2;
}
case 3: { /* 3-byte signed integer */
/* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
** twos-complement integer. */
pMem->u.i = THREE_BYTE_INT(buf);
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
return 3;
}
case 4: { /* 4-byte signed integer */
/* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
** twos-complement integer. */
pMem->u.i = FOUR_BYTE_INT(buf);
#ifdef __HP_cc
/* Work around a sign-extension bug in the HP compiler for HP/UX */
if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
#endif
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
return 4;
}
case 5: { /* 6-byte signed integer */
/* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
** twos-complement integer. */
pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
pMem->flags = MEM_Int;
testcase( pMem->u.i<0 );
return 6;
}
case 6: /* 8-byte signed integer */
case 7: { /* IEEE floating point */
/* These use local variables, so do them in a separate routine
** to avoid having to move the frame pointer in the common case */
return serialGet(buf,serial_type,pMem);
}
case 8: /* Integer 0 */
case 9: { /* Integer 1 */
/* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
/* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
pMem->u.i = serial_type-8;
pMem->flags = MEM_Int;
return 0;
}
default: {
/* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
** length.
** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
** (N-13)/2 bytes in length. */
static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
pMem->z = (char *)buf;
pMem->n = (serial_type-12)/2;
pMem->flags = aFlag[serial_type&1];
return pMem->n;
}
}
return 0;
}
/*
** This routine is used to allocate sufficient space for an UnpackedRecord
** structure large enough to be used with sqlite3VdbeRecordUnpack() if
** the first argument is a pointer to KeyInfo structure pKeyInfo.
**
** The space is either allocated using sqlite3DbMallocRaw() or from within
** the unaligned buffer passed via the second and third arguments (presumably
** stack space). If the former, then *ppFree is set to a pointer that should
** be eventually freed by the caller using sqlite3DbFree(). Or, if the
** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
** before returning.
**
** If an OOM error occurs, NULL is returned.
*/
UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
KeyInfo *pKeyInfo /* Description of the record */
){
UnpackedRecord *p; /* Unpacked record to return */
int nByte; /* Number of bytes required for *p */
nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
if( !p ) return 0;
p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
assert( pKeyInfo->aSortFlags!=0 );
p->pKeyInfo = pKeyInfo;
p->nField = pKeyInfo->nKeyField + 1;
return p;
}
/*
** Given the nKey-byte encoding of a record in pKey[], populate the
** UnpackedRecord structure indicated by the fourth argument with the
** contents of the decoded record.
*/
void sqlite3VdbeRecordUnpack(
KeyInfo *pKeyInfo, /* Information about the record format */
int nKey, /* Size of the binary record */
const void *pKey, /* The binary record */
UnpackedRecord *p /* Populate this structure before returning. */
){
const unsigned char *aKey = (const unsigned char *)pKey;
u32 d;
u32 idx; /* Offset in aKey[] to read from */
u16 u; /* Unsigned loop counter */
u32 szHdr;
Mem *pMem = p->aMem;
p->default_rc = 0;
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
idx = getVarint32(aKey, szHdr);
d = szHdr;
u = 0;
while( idx<szHdr && d<=(u32)nKey ){
u32 serial_type;
idx += getVarint32(&aKey[idx], serial_type);
pMem->enc = pKeyInfo->enc;
pMem->db = pKeyInfo->db;
/* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
pMem->szMalloc = 0;
pMem->z = 0;
d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
pMem++;
if( (++u)>=p->nField ) break;
}
if( d>(u32)nKey && u ){
assert( CORRUPT_DB );
/* In a corrupt record entry, the last pMem might have been set up using
** uninitialized memory. Overwrite its value with NULL, to prevent
** warnings from MSAN. */
sqlite3VdbeMemSetNull(pMem-1);
}
assert( u<=pKeyInfo->nKeyField + 1 );
p->nField = u;
}
#ifdef SQLITE_DEBUG
/*
** This function compares two index or table record keys in the same way
** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
** this function deserializes and compares values using the
** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
** in assert() statements to ensure that the optimized code in
** sqlite3VdbeRecordCompare() returns results with these two primitives.
**
** Return true if the result of comparison is equivalent to desiredResult.
** Return false if there is a disagreement.
*/
static int vdbeRecordCompareDebug(
int nKey1, const void *pKey1, /* Left key */
const UnpackedRecord *pPKey2, /* Right key */
int desiredResult /* Correct answer */
){
u32 d1; /* Offset into aKey[] of next data element */
u32 idx1; /* Offset into aKey[] of next header element */
u32 szHdr1; /* Number of bytes in header */
int i = 0;
int rc = 0;
const unsigned char *aKey1 = (const unsigned char *)pKey1;
KeyInfo *pKeyInfo;
Mem mem1;
pKeyInfo = pPKey2->pKeyInfo;
if( pKeyInfo->db==0 ) return 1;
mem1.enc = pKeyInfo->enc;
mem1.db = pKeyInfo->db;
/* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
/* Compilers may complain that mem1.u.i is potentially uninitialized.
** We could initialize it, as shown here, to silence those complaints.
** But in fact, mem1.u.i will never actually be used uninitialized, and doing
** the unnecessary initialization has a measurable negative performance
** impact, since this routine is a very high runner. And so, we choose
** to ignore the compiler warnings and leave this variable uninitialized.
*/
/* mem1.u.i = 0; // not needed, here to silence compiler warning */
idx1 = getVarint32(aKey1, szHdr1);
if( szHdr1>98307 ) return SQLITE_CORRUPT;
d1 = szHdr1;
assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
assert( pKeyInfo->aSortFlags!=0 );
assert( pKeyInfo->nKeyField>0 );
assert( idx1<=szHdr1 || CORRUPT_DB );
do{
u32 serial_type1;
/* Read the serial types for the next element in each key. */
idx1 += getVarint32( aKey1+idx1, serial_type1 );
/* Verify that there is enough key space remaining to avoid
** a buffer overread. The "d1+serial_type1+2" subexpression will
** always be greater than or equal to the amount of required key space.
** Use that approximation to avoid the more expensive call to
** sqlite3VdbeSerialTypeLen() in the common case.
*/
if( d1+(u64)serial_type1+2>(u64)nKey1
&& d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
){
break;
}
/* Extract the values to be compared.
*/
d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
/* Do the comparison
*/
rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
if( rc!=0 ){
assert( mem1.szMalloc==0 ); /* See comment below */
if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
&& ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
){
rc = -rc;
}
if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
rc = -rc; /* Invert the result for DESC sort order. */
}
goto debugCompareEnd;
}
i++;
}while( idx1<szHdr1 && i<pPKey2->nField );
/* No memory allocation is ever used on mem1. Prove this using
** the following assert(). If the assert() fails, it indicates a
** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
*/
assert( mem1.szMalloc==0 );
/* rc==0 here means that one of the keys ran out of fields and
** all the fields up to that point were equal. Return the default_rc
** value. */
rc = pPKey2->default_rc;
debugCompareEnd:
if( desiredResult==0 && rc==0 ) return 1;
if( desiredResult<0 && rc<0 ) return 1;
if( desiredResult>0 && rc>0 ) return 1;
if( CORRUPT_DB ) return 1;
if( pKeyInfo->db->mallocFailed ) return 1;
return 0;
}
#endif
#ifdef SQLITE_DEBUG
/*
** Count the number of fields (a.k.a. columns) in the record given by
** pKey,nKey. The verify that this count is less than or equal to the
** limit given by pKeyInfo->nAllField.
**
** If this constraint is not satisfied, it means that the high-speed
** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
** not work correctly. If this assert() ever fires, it probably means
** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
** incorrectly.
*/
static void vdbeAssertFieldCountWithinLimits(
int nKey, const void *pKey, /* The record to verify */
const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
){
int nField = 0;
u32 szHdr;
u32 idx;
u32 notUsed;
const unsigned char *aKey = (const unsigned char*)pKey;
if( CORRUPT_DB ) return;
idx = getVarint32(aKey, szHdr);
assert( nKey>=0 );
assert( szHdr<=(u32)nKey );
while( idx<szHdr ){
idx += getVarint32(aKey+idx, notUsed);
nField++;
}
assert( nField <= pKeyInfo->nAllField );
}
#else
# define vdbeAssertFieldCountWithinLimits(A,B,C)
#endif
/*
** Both *pMem1 and *pMem2 contain string values. Compare the two values
** using the collation sequence pColl. As usual, return a negative , zero
** or positive value if *pMem1 is less than, equal to or greater than
** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
*/
static int vdbeCompareMemString(
const Mem *pMem1,
const Mem *pMem2,
const CollSeq *pColl,
u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
){
if( pMem1->enc==pColl->enc ){
/* The strings are already in the correct encoding. Call the
** comparison function directly */
return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
}else{
int rc;
const void *v1, *v2;
Mem c1;
Mem c2;
sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
if( (v1==0 || v2==0) ){
if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
rc = 0;
}else{
rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
}
sqlite3VdbeMemRelease(&c1);
sqlite3VdbeMemRelease(&c2);
return rc;
}
}
/*
** The input pBlob is guaranteed to be a Blob that is not marked
** with MEM_Zero. Return true if it could be a zero-blob.
*/
static int isAllZero(const char *z, int n){
int i;
for(i=0; i<n; i++){
if( z[i] ) return 0;
}
return 1;
}
/*
** Compare two blobs. Return negative, zero, or positive if the first
** is less than, equal to, or greater than the second, respectively.
** If one blob is a prefix of the other, then the shorter is the lessor.
*/
SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
int c;
int n1 = pB1->n;
int n2 = pB2->n;
/* It is possible to have a Blob value that has some non-zero content
** followed by zero content. But that only comes up for Blobs formed
** by the OP_MakeRecord opcode, and such Blobs never get passed into
** sqlite3MemCompare(). */
assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
if( (pB1->flags|pB2->flags) & MEM_Zero ){
if( pB1->flags & pB2->flags & MEM_Zero ){
return pB1->u.nZero - pB2->u.nZero;
}else if( pB1->flags & MEM_Zero ){
if( !isAllZero(pB2->z, pB2->n) ) return -1;
return pB1->u.nZero - n2;
}else{
if( !isAllZero(pB1->z, pB1->n) ) return +1;
return n1 - pB2->u.nZero;
}
}
c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
if( c ) return c;
return n1 - n2;
}
/*
** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
** number. Return negative, zero, or positive if the first (i64) is less than,
** equal to, or greater than the second (double).
*/
static int sqlite3IntFloatCompare(i64 i, double r){
if( sizeof(LONGDOUBLE_TYPE)>8 ){
LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
if( x<r ) return -1;
if( x>r ) return +1;
return 0;
}else{
i64 y;
double s;
if( r<-9223372036854775808.0 ) return +1;
if( r>=9223372036854775808.0 ) return -1;
y = (i64)r;
if( i<y ) return -1;
if( i>y ) return +1;
s = (double)i;
if( s<r ) return -1;
if( s>r ) return +1;
return 0;
}
}
/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
**
** Two NULL values are considered equal by this function.
*/
int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
int f1, f2;
int combined_flags;
f1 = pMem1->flags;
f2 = pMem2->flags;
combined_flags = f1|f2;
assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
/* If one value is NULL, it is less than the other. If both values
** are NULL, return 0.
*/
if( combined_flags&MEM_Null ){
return (f2&MEM_Null) - (f1&MEM_Null);
}
/* At least one of the two values is a number
*/
if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
testcase( combined_flags & MEM_Int );
testcase( combined_flags & MEM_Real );
testcase( combined_flags & MEM_IntReal );
if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
testcase( f1 & f2 & MEM_Int );
testcase( f1 & f2 & MEM_IntReal );
if( pMem1->u.i < pMem2->u.i ) return -1;
if( pMem1->u.i > pMem2->u.i ) return +1;
return 0;
}
if( (f1 & f2 & MEM_Real)!=0 ){
if( pMem1->u.r < pMem2->u.r ) return -1;
if( pMem1->u.r > pMem2->u.r ) return +1;
return 0;
}
if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
testcase( f1 & MEM_Int );
testcase( f1 & MEM_IntReal );
if( (f2&MEM_Real)!=0 ){
return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
}else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
if( pMem1->u.i < pMem2->u.i ) return -1;
if( pMem1->u.i > pMem2->u.i ) return +1;
return 0;
}else{
return -1;
}
}
if( (f1&MEM_Real)!=0 ){
if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
testcase( f2 & MEM_Int );
testcase( f2 & MEM_IntReal );
return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
}else{
return -1;
}
}
return +1;
}
/* If one value is a string and the other is a blob, the string is less.
** If both are strings, compare using the collating functions.
*/
if( combined_flags&MEM_Str ){
if( (f1 & MEM_Str)==0 ){
return 1;
}
if( (f2 & MEM_Str)==0 ){
return -1;
}
assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
assert( pMem1->enc==SQLITE_UTF8 ||
pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
/* The collation sequence must be defined at this point, even if
** the user deletes the collation sequence after the vdbe program is
** compiled (this was not always the case).
*/
assert( !pColl || pColl->xCmp );
if( pColl ){
return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
}
/* If a NULL pointer was passed as the collate function, fall through
** to the blob case and use memcmp(). */
}
/* Both values must be blobs. Compare using memcmp(). */
return sqlite3BlobCompare(pMem1, pMem2);
}
/*
** The first argument passed to this function is a serial-type that
** corresponds to an integer - all values between 1 and 9 inclusive
** except 7. The second points to a buffer containing an integer value
** serialized according to serial_type. This function deserializes
** and returns the value.
*/
static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
u32 y;
assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
switch( serial_type ){
case 0:
case 1:
testcase( aKey[0]&0x80 );
return ONE_BYTE_INT(aKey);
case 2:
testcase( aKey[0]&0x80 );
return TWO_BYTE_INT(aKey);
case 3:
testcase( aKey[0]&0x80 );
return THREE_BYTE_INT(aKey);
case 4: {
testcase( aKey[0]&0x80 );
y = FOUR_BYTE_UINT(aKey);
return (i64)*(int*)&y;
}
case 5: {
testcase( aKey[0]&0x80 );
return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
}
case 6: {
u64 x = FOUR_BYTE_UINT(aKey);
testcase( aKey[0]&0x80 );
x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
return (i64)*(i64*)&x;
}
}
return (serial_type - 8);
}
/*
** This function compares the two table rows or index records
** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
** or positive integer if key1 is less than, equal to or
** greater than key2. The {nKey1, pKey1} key must be a blob
** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
** key must be a parsed key such as obtained from
** sqlite3VdbeParseRecord.
**
** If argument bSkip is non-zero, it is assumed that the caller has already
** determined that the first fields of the keys are equal.
**
** Key1 and Key2 do not have to contain the same number of fields. If all
** fields that appear in both keys are equal, then pPKey2->default_rc is
** returned.
**
** If database corruption is discovered, set pPKey2->errCode to
** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
*/
int sqlite3VdbeRecordCompareWithSkip(
int nKey1, const void *pKey1, /* Left key */
UnpackedRecord *pPKey2, /* Right key */
int bSkip /* If true, skip the first field */
){
u32 d1; /* Offset into aKey[] of next data element */
int i; /* Index of next field to compare */
u32 szHdr1; /* Size of record header in bytes */
u32 idx1; /* Offset of first type in header */
int rc = 0; /* Return value */
Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
KeyInfo *pKeyInfo;
const unsigned char *aKey1 = (const unsigned char *)pKey1;
Mem mem1;
/* If bSkip is true, then the caller has already determined that the first
** two elements in the keys are equal. Fix the various stack variables so
** that this routine begins comparing at the second field. */
if( bSkip ){
u32 s1;
idx1 = 1 + getVarint32(&aKey1[1], s1);
szHdr1 = aKey1[0];
d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
i = 1;
pRhs++;
}else{
idx1 = getVarint32(aKey1, szHdr1);
d1 = szHdr1;
i = 0;
}
if( d1>(unsigned)nKey1 ){
pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
return 0; /* Corruption */
}
VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
|| CORRUPT_DB );
assert( pPKey2->pKeyInfo->aSortFlags!=0 );
assert( pPKey2->pKeyInfo->nKeyField>0 );
assert( idx1<=szHdr1 || CORRUPT_DB );
do{
u32 serial_type;
/* RHS is an integer */
if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
testcase( pRhs->flags & MEM_Int );
testcase( pRhs->flags & MEM_IntReal );
serial_type = aKey1[idx1];
testcase( serial_type==12 );
if( serial_type>=10 ){
rc = +1;
}else if( serial_type==0 ){
rc = -1;
}else if( serial_type==7 ){
sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
}else{
i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
i64 rhs = pRhs->u.i;
if( lhs<rhs ){
rc = -1;
}else if( lhs>rhs ){
rc = +1;
}
}
}
/* RHS is real */
else if( pRhs->flags & MEM_Real ){
serial_type = aKey1[idx1];
if( serial_type>=10 ){
/* Serial types 12 or greater are strings and blobs (greater than
** numbers). Types 10 and 11 are currently "reserved for future
** use", so it doesn't really matter what the results of comparing
** them to numberic values are. */
rc = +1;
}else if( serial_type==0 ){
rc = -1;
}else{
sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
if( serial_type==7 ){
if( mem1.u.r<pRhs->u.r ){
rc = -1;
}else if( mem1.u.r>pRhs->u.r ){
rc = +1;
}
}else{
rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
}
}
}
/* RHS is a string */
else if( pRhs->flags & MEM_Str ){
getVarint32(&aKey1[idx1], serial_type);
testcase( serial_type==12 );
if( serial_type<12 ){
rc = -1;
}else if( !(serial_type & 0x01) ){
rc = +1;
}else{
mem1.n = (serial_type - 12) / 2;
testcase( (d1+mem1.n)==(unsigned)nKey1 );
testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
if( (d1+mem1.n) > (unsigned)nKey1
|| (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
){
pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
return 0; /* Corruption */
}else if( pKeyInfo->aColl[i] ){
mem1.enc = pKeyInfo->enc;
mem1.db = pKeyInfo->db;
mem1.flags = MEM_Str;
mem1.z = (char*)&aKey1[d1];
rc = vdbeCompareMemString(
&mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
);
}else{
int nCmp = MIN(mem1.n, pRhs->n);
rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
if( rc==0 ) rc = mem1.n - pRhs->n;
}
}
}
/* RHS is a blob */
else if( pRhs->flags & MEM_Blob ){
assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
getVarint32(&aKey1[idx1], serial_type);
testcase( serial_type==12 );
if( serial_type<12 || (serial_type & 0x01) ){
rc = -1;
}else{
int nStr = (serial_type - 12) / 2;
testcase( (d1+nStr)==(unsigned)nKey1 );
testcase( (d1+nStr+1)==(unsigned)nKey1 );
if( (d1+nStr) > (unsigned)nKey1 ){
pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
return 0; /* Corruption */
}else if( pRhs->flags & MEM_Zero ){
if( !isAllZero((const char*)&aKey1[d1],nStr) ){
rc = 1;
}else{
rc = nStr - pRhs->u.nZero;
}
}else{
int nCmp = MIN(nStr, pRhs->n);
rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
if( rc==0 ) rc = nStr - pRhs->n;
}
}
}
/* RHS is null */
else{
serial_type = aKey1[idx1];
rc = (serial_type!=0);
}
if( rc!=0 ){
int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
if( sortFlags ){
if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
|| ((sortFlags & KEYINFO_ORDER_DESC)
!=(serial_type==0 || (pRhs->flags&MEM_Null)))
){
rc = -rc;
}
}
assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
assert( mem1.szMalloc==0 ); /* See comment below */
return rc;
}
i++;
if( i==pPKey2->nField ) break;
pRhs++;
d1 += sqlite3VdbeSerialTypeLen(serial_type);
idx1 += sqlite3VarintLen(serial_type);
}while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
/* No memory allocation is ever used on mem1. Prove this using
** the following assert(). If the assert() fails, it indicates a
** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
assert( mem1.szMalloc==0 );
/* rc==0 here means that one or both of the keys ran out of fields and
** all the fields up to that point were equal. Return the default_rc
** value. */
assert( CORRUPT_DB
|| vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
|| pPKey2->pKeyInfo->db->mallocFailed
);
pPKey2->eqSeen = 1;
return pPKey2->default_rc;
}
int sqlite3VdbeRecordCompare(
int nKey1, const void *pKey1, /* Left key */
UnpackedRecord *pPKey2 /* Right key */
){
return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
}
/*
** This function is an optimized version of sqlite3VdbeRecordCompare()
** that (a) the first field of pPKey2 is an integer, and (b) the
** size-of-header varint at the start of (pKey1/nKey1) fits in a single
** byte (i.e. is less than 128).
**
** To avoid concerns about buffer overreads, this routine is only used
** on schemas where the maximum valid header size is 63 bytes or less.
*/
static int vdbeRecordCompareInt(
int nKey1, const void *pKey1, /* Left key */
UnpackedRecord *pPKey2 /* Right key */
){
const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
int serial_type = ((const u8*)pKey1)[1];
int res;
u32 y;
u64 x;
i64 v;
i64 lhs;
vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
switch( serial_type ){
case 1: { /* 1-byte signed integer */
lhs = ONE_BYTE_INT(aKey);
testcase( lhs<0 );
break;
}
case 2: { /* 2-byte signed integer */
lhs = TWO_BYTE_INT(aKey);
testcase( lhs<0 );
break;
}
case 3: { /* 3-byte signed integer */
lhs = THREE_BYTE_INT(aKey);
testcase( lhs<0 );
break;
}
case 4: { /* 4-byte signed integer */
y = FOUR_BYTE_UINT(aKey);
lhs = (i64)*(int*)&y;
testcase( lhs<0 );
break;
}
case 5: { /* 6-byte signed integer */
lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
testcase( lhs<0 );
break;
}
case 6: { /* 8-byte signed integer */
x = FOUR_BYTE_UINT(aKey);
x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
lhs = *(i64*)&x;
testcase( lhs<0 );
break;
}
case 8:
lhs = 0;
break;
case 9:
lhs = 1;
break;
/* This case could be removed without changing the results of running
** this code. Including it causes gcc to generate a faster switch
** statement (since the range of switch targets now starts at zero and
** is contiguous) but does not cause any duplicate code to be generated
** (as gcc is clever enough to combine the two like cases). Other
** compilers might be similar. */
case 0: case 7:
return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
default:
return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
}
v = pPKey2->aMem[0].u.i;
if( v>lhs ){
res = pPKey2->r1;
}else if( v<lhs ){
res = pPKey2->r2;
}else if( pPKey2->nField>1 ){
/* The first fields of the two keys are equal. Compare the trailing
** fields. */
res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
}else{
/* The first fields of the two keys are equal and there are no trailing
** fields. Return pPKey2->default_rc in this case. */
res = pPKey2->default_rc;
pPKey2->eqSeen = 1;
}
assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
return res;
}
/*
** This function is an optimized version of sqlite3VdbeRecordCompare()
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
int nKey1, const void *pKey1, /* Left key */
UnpackedRecord *pPKey2 /* Right key */
){
const u8 *aKey1 = (const u8*)pKey1;
int serial_type;
int res;
assert( pPKey2->aMem[0].flags & MEM_Str );
vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
getVarint32(&aKey1[1], serial_type);
if( serial_type<12 ){
res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
}else if( !(serial_type & 0x01) ){
res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
}else{
int nCmp;
int nStr;
int szHdr = aKey1[0];
nStr = (serial_type-12) / 2;
if( (szHdr + nStr) > nKey1 ){
pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
return 0; /* Corruption */
}
nCmp = MIN( pPKey2->aMem[0].n, nStr );
res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
if( res>0 ){
res = pPKey2->r2;
}else if( res<0 ){
res = pPKey2->r1;
}else{
res = nStr - pPKey2->aMem[0].n;
if( res==0 ){
if( pPKey2->nField>1 ){
res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
}else{
res = pPKey2->default_rc;
pPKey2->eqSeen = 1;
}
}else if( res>0 ){
res = pPKey2->r2;
}else{
res = pPKey2->r1;
}
}
}
assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
|| CORRUPT_DB
|| pPKey2->pKeyInfo->db->mallocFailed
);
return res;
}
/*
** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
** suitable for comparing serialized records to the unpacked record passed
** as the only argument.
*/
RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
/* varintRecordCompareInt() and varintRecordCompareString() both assume
** that the size-of-header varint that occurs at the start of each record
** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
** also assumes that it is safe to overread a buffer by at least the
** maximum possible legal header size plus 8 bytes. Because there is
** guaranteed to be at least 74 (but not 136) bytes of padding following each
** buffer passed to varintRecordCompareInt() this makes it convenient to
** limit the size of the header to 64 bytes in cases where the first field
** is an integer.
**
** The easiest way to enforce this limit is to consider only records with
** 13 fields or less. If the first field is an integer, the maximum legal
** header size is (12*5 + 1 + 1) bytes. */
if( p->pKeyInfo->nAllField<=13 ){
int flags = p->aMem[0].flags;
if( p->pKeyInfo->aSortFlags[0] ){
if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
return sqlite3VdbeRecordCompare;
}
p->r1 = 1;
p->r2 = -1;
}else{
p->r1 = -1;
p->r2 = 1;
}
if( (flags & MEM_Int) ){
return vdbeRecordCompareInt;
}
testcase( flags & MEM_Real );
testcase( flags & MEM_Null );
testcase( flags & MEM_Blob );
if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
&& p->pKeyInfo->aColl[0]==0
){
assert( flags & MEM_Str );
return vdbeRecordCompareString;
}
}
return sqlite3VdbeRecordCompare;
}
/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
**
** pCur might be pointing to text obtained from a corrupt database file.
** So the content cannot be trusted. Do appropriate checks on the content.
*/
int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
i64 nCellKey = 0;
int rc;
u32 szHdr; /* Size of the header */
u32 typeRowid; /* Serial type of the rowid */
u32 lenRowid; /* Size of the rowid */
Mem m, v;
/* Get the size of the index entry. Only indices entries of less
** than 2GiB are support - anything large must be database corruption.
** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
** this code can safely assume that nCellKey is 32-bits
*/
assert( sqlite3BtreeCursorIsValid(pCur) );
nCellKey = sqlite3BtreePayloadSize(pCur);
assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
/* Read in the complete content of the index entry */
sqlite3VdbeMemInit(&m, db, 0);
rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
if( rc ){
return rc;
}
/* The index entry must begin with a header size */
(void)getVarint32((u8*)m.z, szHdr);
testcase( szHdr==3 );
testcase( szHdr==m.n );
testcase( szHdr>0x7fffffff );
assert( m.n>=0 );
if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
goto idx_rowid_corruption;
}
/* The last field of the index should be an integer - the ROWID.
** Verify that the last entry really is an integer. */
(void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
testcase( typeRowid==1 );
testcase( typeRowid==2 );
testcase( typeRowid==3 );
testcase( typeRowid==4 );
testcase( typeRowid==5 );
testcase( typeRowid==6 );
testcase( typeRowid==8 );
testcase( typeRowid==9 );
if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
goto idx_rowid_corruption;
}
lenRowid = sqlite3SmallTypeSizes[typeRowid];
testcase( (u32)m.n==szHdr+lenRowid );
if( unlikely((u32)m.n<szHdr+lenRowid) ){
goto idx_rowid_corruption;
}
/* Fetch the integer off the end of the index record */
sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
*rowid = v.u.i;
sqlite3VdbeMemRelease(&m);
return SQLITE_OK;
/* Jump here if database corruption is detected after m has been
** allocated. Free the m object and return SQLITE_CORRUPT. */
idx_rowid_corruption:
testcase( m.szMalloc!=0 );
sqlite3VdbeMemRelease(&m);
return SQLITE_CORRUPT_BKPT;
}
/*
** Compare the key of the index entry that cursor pC is pointing to against
** the key string in pUnpacked. Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
** or greater than pUnpacked. Return SQLITE_OK on success.
**
** pUnpacked is either created without a rowid or is truncated so that it
** omits the rowid at the end. The rowid at the end of the index entry
** is ignored as well. Hence, this routine only compares the prefixes
** of the keys prior to the final rowid, not the entire key.
*/
int sqlite3VdbeIdxKeyCompare(
sqlite3 *db, /* Database connection */
VdbeCursor *pC, /* The cursor to compare against */
UnpackedRecord *pUnpacked, /* Unpacked version of key */
int *res /* Write the comparison result here */
){
i64 nCellKey = 0;
int rc;
BtCursor *pCur;
Mem m;
assert( pC->eCurType==CURTYPE_BTREE );
pCur = pC->uc.pCursor;
assert( sqlite3BtreeCursorIsValid(pCur) );
nCellKey = sqlite3BtreePayloadSize(pCur);
/* nCellKey will always be between 0 and 0xffffffff because of the way
** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
if( nCellKey<=0 || nCellKey>0x7fffffff ){
*res = 0;
return SQLITE_CORRUPT_BKPT;
}
sqlite3VdbeMemInit(&m, db, 0);
rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
if( rc ){
return rc;
}
*res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
sqlite3VdbeMemRelease(&m);
return SQLITE_OK;
}
/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'.
*/
void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
assert( sqlite3_mutex_held(db->mutex) );
db->nChange = nChange;
db->nTotalChange += nChange;
}
/*
** Set a flag in the vdbe to update the change counter when it is finalised
** or reset.
*/
void sqlite3VdbeCountChanges(Vdbe *v){
v->changeCntOn = 1;
}
/*
** Mark every prepared statement associated with a database connection
** as expired.
**
** An expired statement means that recompilation of the statement is
** recommend. Statements expire when things happen that make their
** programs obsolete. Removing user-defined functions or collating
** sequences, or changing an authorization function are the types of
** things that make prepared statements obsolete.
**
** If iCode is 1, then expiration is advisory. The statement should
** be reprepared before being restarted, but if it is already running
** it is allowed to run to completion.
**
** Internally, this function just sets the Vdbe.expired flag on all
** prepared statements. The flag is set to 1 for an immediate expiration
** and set to 2 for an advisory expiration.
*/
void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
Vdbe *p;
for(p = db->pVdbe; p; p=p->pNext){
p->expired = iCode+1;
}
}
/*
** Return the database associated with the Vdbe.
*/
sqlite3 *sqlite3VdbeDb(Vdbe *v){
return v->db;
}
/*
** Return the SQLITE_PREPARE flags for a Vdbe.
*/
u8 sqlite3VdbePrepareFlags(Vdbe *v){
return v->prepFlags;
}
/*
** Return a pointer to an sqlite3_value structure containing the value bound
** parameter iVar of VM v. Except, if the value is an SQL NULL, return
** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
** constants) to the value before returning it.
**
** The returned value must be freed by the caller using sqlite3ValueFree().
*/
sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
assert( iVar>0 );
if( v ){
Mem *pMem = &v->aVar[iVar-1];
assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
if( 0==(pMem->flags & MEM_Null) ){
sqlite3_value *pRet = sqlite3ValueNew(v->db);
if( pRet ){
sqlite3VdbeMemCopy((Mem *)pRet, pMem);
sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
}
return pRet;
}
}
return 0;
}
/*
** Configure SQL variable iVar so that binding a new value to it signals
** to sqlite3_reoptimize() that re-preparing the statement may result
** in a better query plan.
*/
void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
assert( iVar>0 );
assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
if( iVar>=32 ){
v->expmask |= 0x80000000;
}else{
v->expmask |= ((u32)1 << (iVar-1));
}
}
/*
** Cause a function to throw an error if it was call from OP_PureFunc
** rather than OP_Function.
**
** OP_PureFunc means that the function must be deterministic, and should
** throw an error if it is given inputs that would make it non-deterministic.
** This routine is invoked by date/time functions that use non-deterministic
** features such as 'now'.
*/
int sqlite3NotPureFunc(sqlite3_context *pCtx){
#ifdef SQLITE_ENABLE_STAT4
if( pCtx->pVdbe==0 ) return 1;
#endif
if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){
sqlite3_result_error(pCtx,
"non-deterministic function in index expression or CHECK constraint",
-1);
return 0;
}
return 1;
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
** in memory obtained from sqlite3DbMalloc).
*/
void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
if( pVtab->zErrMsg ){
sqlite3 *db = p->db;
sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
sqlite3_free(pVtab->zErrMsg);
pVtab->zErrMsg = 0;
}
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** If the second argument is not NULL, release any allocations associated
** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
** structure itself, using sqlite3DbFree().
**
** This function is used to free UnpackedRecord structures allocated by
** the vdbeUnpackRecord() function found in vdbeapi.c.
*/
static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
if( p ){
int i;
for(i=0; i<nField; i++){
Mem *pMem = &p->aMem[i];
if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
}
sqlite3DbFreeNN(db, p);
}
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
** then cursor passed as the second argument should point to the row about
** to be update or deleted. If the application calls sqlite3_preupdate_old(),
** the required value will be read from the row the cursor points to.
*/
void sqlite3VdbePreUpdateHook(
Vdbe *v, /* Vdbe pre-update hook is invoked by */
VdbeCursor *pCsr, /* Cursor to grab old.* values from */
int op, /* SQLITE_INSERT, UPDATE or DELETE */
const char *zDb, /* Database name */
Table *pTab, /* Modified table */
i64 iKey1, /* Initial key value */
int iReg /* Register for new.* record */
){
sqlite3 *db = v->db;
i64 iKey2;
PreUpdate preupdate;
const char *zTbl = pTab->zName;
static const u8 fakeSortOrder = 0;
assert( db->pPreUpdate==0 );
memset(&preupdate, 0, sizeof(PreUpdate));
if( HasRowid(pTab)==0 ){
iKey1 = iKey2 = 0;
preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
}else{
if( op==SQLITE_UPDATE ){
iKey2 = v->aMem[iReg].u.i;
}else{
iKey2 = iKey1;
}
}
assert( pCsr->nField==pTab->nCol
|| (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
);
preupdate.v = v;
preupdate.pCsr = pCsr;
preupdate.op = op;
preupdate.iNewReg = iReg;
preupdate.keyinfo.db = db;
preupdate.keyinfo.enc = ENC(db);
preupdate.keyinfo.nKeyField = pTab->nCol;
preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
preupdate.iKey1 = iKey1;
preupdate.iKey2 = iKey2;
preupdate.pTab = pTab;
db->pPreUpdate = &preupdate;
db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
db->pPreUpdate = 0;
sqlite3DbFree(db, preupdate.aRecord);
vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
if( preupdate.aNew ){
int i;
for(i=0; i<pCsr->nField; i++){
sqlite3VdbeMemRelease(&preupdate.aNew[i]);
}
sqlite3DbFreeNN(db, preupdate.aNew);
}
}
#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */