blob: 020b570cea330432d4cc586fbbd1f121dedd23fb [file] [log] [blame]
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "node_buffer.h"
#include "allocated_buffer-inl.h"
#include "node.h"
#include "node_errors.h"
#include "node_internals.h"
#include "env-inl.h"
#include "string_bytes.h"
#include "string_search.h"
#include "util-inl.h"
#include "v8.h"
#include <cstring>
#include <climits>
#define THROW_AND_RETURN_UNLESS_BUFFER(env, obj) \
THROW_AND_RETURN_IF_NOT_BUFFER(env, obj, "argument") \
#define THROW_AND_RETURN_IF_OOB(r) \
do { \
if ((r).IsNothing()) return; \
if (!(r).FromJust()) \
return node::THROW_ERR_OUT_OF_RANGE(env, "Index out of range"); \
} while (0) \
namespace node {
namespace Buffer {
using v8::ArrayBuffer;
using v8::ArrayBufferView;
using v8::BackingStore;
using v8::Context;
using v8::EscapableHandleScope;
using v8::FunctionCallbackInfo;
using v8::Global;
using v8::HandleScope;
using v8::Int32;
using v8::Integer;
using v8::Isolate;
using v8::Just;
using v8::Local;
using v8::Maybe;
using v8::MaybeLocal;
using v8::Nothing;
using v8::Number;
using v8::Object;
using v8::String;
using v8::Uint32;
using v8::Uint32Array;
using v8::Uint8Array;
using v8::Value;
namespace {
class CallbackInfo {
public:
static inline Local<ArrayBuffer> CreateTrackedArrayBuffer(
Environment* env,
char* data,
size_t length,
FreeCallback callback,
void* hint);
CallbackInfo(const CallbackInfo&) = delete;
CallbackInfo& operator=(const CallbackInfo&) = delete;
private:
static void CleanupHook(void* data);
inline void OnBackingStoreFree();
inline void CallAndResetCallback();
inline CallbackInfo(Environment* env,
FreeCallback callback,
char* data,
void* hint);
Global<ArrayBuffer> persistent_;
Mutex mutex_; // Protects callback_.
FreeCallback callback_;
char* const data_;
void* const hint_;
Environment* const env_;
};
Local<ArrayBuffer> CallbackInfo::CreateTrackedArrayBuffer(
Environment* env,
char* data,
size_t length,
FreeCallback callback,
void* hint) {
CHECK_NOT_NULL(callback);
CHECK_IMPLIES(data == nullptr, length == 0);
CallbackInfo* self = new CallbackInfo(env, callback, data, hint);
std::unique_ptr<BackingStore> bs =
ArrayBuffer::NewBackingStore(data, length, [](void*, size_t, void* arg) {
static_cast<CallbackInfo*>(arg)->OnBackingStoreFree();
}, self);
Local<ArrayBuffer> ab = ArrayBuffer::New(env->isolate(), std::move(bs));
// V8 simply ignores the BackingStore deleter callback if data == nullptr,
// but our API contract requires it being called.
if (data == nullptr) {
ab->Detach();
self->OnBackingStoreFree(); // This calls `callback` asynchronously.
} else {
// Store the ArrayBuffer so that we can detach it later.
self->persistent_.Reset(env->isolate(), ab);
self->persistent_.SetWeak();
}
return ab;
}
CallbackInfo::CallbackInfo(Environment* env,
FreeCallback callback,
char* data,
void* hint)
: callback_(callback),
data_(data),
hint_(hint),
env_(env) {
env->AddCleanupHook(CleanupHook, this);
env->isolate()->AdjustAmountOfExternalAllocatedMemory(sizeof(*this));
}
void CallbackInfo::CleanupHook(void* data) {
CallbackInfo* self = static_cast<CallbackInfo*>(data);
{
HandleScope handle_scope(self->env_->isolate());
Local<ArrayBuffer> ab = self->persistent_.Get(self->env_->isolate());
if (!ab.IsEmpty() && ab->IsDetachable()) {
ab->Detach();
self->persistent_.Reset();
}
}
// Call the callback in this case, but don't delete `this` yet because the
// BackingStore deleter callback will do so later.
self->CallAndResetCallback();
}
void CallbackInfo::CallAndResetCallback() {
FreeCallback callback;
{
Mutex::ScopedLock lock(mutex_);
callback = callback_;
callback_ = nullptr;
}
if (callback != nullptr) {
// Clean up all Environment-related state and run the callback.
env_->RemoveCleanupHook(CleanupHook, this);
int64_t change_in_bytes = -static_cast<int64_t>(sizeof(*this));
env_->isolate()->AdjustAmountOfExternalAllocatedMemory(change_in_bytes);
callback(data_, hint_);
}
}
void CallbackInfo::OnBackingStoreFree() {
// This method should always release the memory for `this`.
std::unique_ptr<CallbackInfo> self { this };
Mutex::ScopedLock lock(mutex_);
// If callback_ == nullptr, that means that the callback has already run from
// the cleanup hook, and there is nothing left to do here besides to clean
// up the memory involved. In particular, the underlying `Environment` may
// be gone at this point, so don’t attempt to call SetImmediateThreadsafe().
if (callback_ == nullptr) return;
env_->SetImmediateThreadsafe([self = std::move(self)](Environment* env) {
CHECK_EQ(self->env_, env); // Consistency check.
self->CallAndResetCallback();
});
}
// Parse index for external array data. An empty Maybe indicates
// a pending exception. `false` indicates that the index is out-of-bounds.
inline MUST_USE_RESULT Maybe<bool> ParseArrayIndex(Environment* env,
Local<Value> arg,
size_t def,
size_t* ret) {
if (arg->IsUndefined()) {
*ret = def;
return Just(true);
}
int64_t tmp_i;
if (!arg->IntegerValue(env->context()).To(&tmp_i))
return Nothing<bool>();
if (tmp_i < 0)
return Just(false);
// Check that the result fits in a size_t.
const uint64_t kSizeMax = static_cast<uint64_t>(static_cast<size_t>(-1));
// coverity[pointless_expression]
if (static_cast<uint64_t>(tmp_i) > kSizeMax)
return Just(false);
*ret = static_cast<size_t>(tmp_i);
return Just(true);
}
} // anonymous namespace
// Buffer methods
bool HasInstance(Local<Value> val) {
return val->IsArrayBufferView();
}
bool HasInstance(Local<Object> obj) {
return obj->IsArrayBufferView();
}
char* Data(Local<Value> val) {
CHECK(val->IsArrayBufferView());
Local<ArrayBufferView> ui = val.As<ArrayBufferView>();
return static_cast<char*>(ui->Buffer()->GetBackingStore()->Data()) +
ui->ByteOffset();
}
char* Data(Local<Object> obj) {
return Data(obj.As<Value>());
}
size_t Length(Local<Value> val) {
CHECK(val->IsArrayBufferView());
Local<ArrayBufferView> ui = val.As<ArrayBufferView>();
return ui->ByteLength();
}
size_t Length(Local<Object> obj) {
CHECK(obj->IsArrayBufferView());
Local<ArrayBufferView> ui = obj.As<ArrayBufferView>();
return ui->ByteLength();
}
MaybeLocal<Uint8Array> New(Environment* env,
Local<ArrayBuffer> ab,
size_t byte_offset,
size_t length) {
CHECK(!env->buffer_prototype_object().IsEmpty());
Local<Uint8Array> ui = Uint8Array::New(ab, byte_offset, length);
Maybe<bool> mb =
ui->SetPrototype(env->context(), env->buffer_prototype_object());
if (mb.IsNothing())
return MaybeLocal<Uint8Array>();
return ui;
}
MaybeLocal<Uint8Array> New(Isolate* isolate,
Local<ArrayBuffer> ab,
size_t byte_offset,
size_t length) {
Environment* env = Environment::GetCurrent(isolate);
if (env == nullptr) {
THROW_ERR_BUFFER_CONTEXT_NOT_AVAILABLE(isolate);
return MaybeLocal<Uint8Array>();
}
return New(env, ab, byte_offset, length);
}
MaybeLocal<Object> New(Isolate* isolate,
Local<String> string,
enum encoding enc) {
EscapableHandleScope scope(isolate);
size_t length;
if (!StringBytes::Size(isolate, string, enc).To(&length))
return Local<Object>();
size_t actual = 0;
char* data = nullptr;
if (length > 0) {
data = UncheckedMalloc(length);
if (data == nullptr) {
THROW_ERR_MEMORY_ALLOCATION_FAILED(isolate);
return Local<Object>();
}
actual = StringBytes::Write(isolate, data, length, string, enc);
CHECK(actual <= length);
if (actual == 0) {
free(data);
data = nullptr;
} else if (actual < length) {
data = node::Realloc(data, actual);
}
}
return scope.EscapeMaybe(New(isolate, data, actual));
}
MaybeLocal<Object> New(Isolate* isolate, size_t length) {
EscapableHandleScope handle_scope(isolate);
Local<Object> obj;
Environment* env = Environment::GetCurrent(isolate);
if (env == nullptr) {
THROW_ERR_BUFFER_CONTEXT_NOT_AVAILABLE(isolate);
return MaybeLocal<Object>();
}
if (Buffer::New(env, length).ToLocal(&obj))
return handle_scope.Escape(obj);
return Local<Object>();
}
MaybeLocal<Object> New(Environment* env, size_t length) {
EscapableHandleScope scope(env->isolate());
// V8 currently only allows a maximum Typed Array index of max Smi.
if (length > kMaxLength) {
env->isolate()->ThrowException(ERR_BUFFER_TOO_LARGE(env->isolate()));
return Local<Object>();
}
return scope.EscapeMaybe(
AllocatedBuffer::AllocateManaged(env, length).ToBuffer());
}
MaybeLocal<Object> Copy(Isolate* isolate, const char* data, size_t length) {
EscapableHandleScope handle_scope(isolate);
Environment* env = Environment::GetCurrent(isolate);
if (env == nullptr) {
THROW_ERR_BUFFER_CONTEXT_NOT_AVAILABLE(isolate);
return MaybeLocal<Object>();
}
Local<Object> obj;
if (Buffer::Copy(env, data, length).ToLocal(&obj))
return handle_scope.Escape(obj);
return Local<Object>();
}
MaybeLocal<Object> Copy(Environment* env, const char* data, size_t length) {
EscapableHandleScope scope(env->isolate());
// V8 currently only allows a maximum Typed Array index of max Smi.
if (length > kMaxLength) {
env->isolate()->ThrowException(ERR_BUFFER_TOO_LARGE(env->isolate()));
return Local<Object>();
}
AllocatedBuffer ret = AllocatedBuffer::AllocateManaged(env, length);
if (length > 0) {
memcpy(ret.data(), data, length);
}
return scope.EscapeMaybe(ret.ToBuffer());
}
MaybeLocal<Object> New(Isolate* isolate,
char* data,
size_t length,
FreeCallback callback,
void* hint) {
EscapableHandleScope handle_scope(isolate);
Environment* env = Environment::GetCurrent(isolate);
if (env == nullptr) {
callback(data, hint);
THROW_ERR_BUFFER_CONTEXT_NOT_AVAILABLE(isolate);
return MaybeLocal<Object>();
}
return handle_scope.EscapeMaybe(
Buffer::New(env, data, length, callback, hint));
}
MaybeLocal<Object> New(Environment* env,
char* data,
size_t length,
FreeCallback callback,
void* hint) {
EscapableHandleScope scope(env->isolate());
if (length > kMaxLength) {
env->isolate()->ThrowException(ERR_BUFFER_TOO_LARGE(env->isolate()));
callback(data, hint);
return Local<Object>();
}
Local<ArrayBuffer> ab =
CallbackInfo::CreateTrackedArrayBuffer(env, data, length, callback, hint);
if (ab->SetPrivate(env->context(),
env->untransferable_object_private_symbol(),
True(env->isolate())).IsNothing()) {
return Local<Object>();
}
MaybeLocal<Uint8Array> ui = Buffer::New(env, ab, 0, length);
if (ui.IsEmpty())
return MaybeLocal<Object>();
return scope.Escape(ui.ToLocalChecked());
}
// Warning: This function needs `data` to be allocated with malloc() and not
// necessarily isolate's ArrayBuffer::Allocator.
MaybeLocal<Object> New(Isolate* isolate, char* data, size_t length) {
EscapableHandleScope handle_scope(isolate);
Environment* env = Environment::GetCurrent(isolate);
if (env == nullptr) {
free(data);
THROW_ERR_BUFFER_CONTEXT_NOT_AVAILABLE(isolate);
return MaybeLocal<Object>();
}
Local<Object> obj;
if (Buffer::New(env, data, length).ToLocal(&obj))
return handle_scope.Escape(obj);
return Local<Object>();
}
// The contract for this function is that `data` is allocated with malloc()
// and not necessarily isolate's ArrayBuffer::Allocator.
MaybeLocal<Object> New(Environment* env,
char* data,
size_t length) {
if (length > 0) {
CHECK_NOT_NULL(data);
CHECK(length <= kMaxLength);
}
auto free_callback = [](char* data, void* hint) { free(data); };
return New(env, data, length, free_callback, nullptr);
}
namespace {
void CreateFromString(const FunctionCallbackInfo<Value>& args) {
CHECK(args[0]->IsString());
CHECK(args[1]->IsInt32());
enum encoding enc = static_cast<enum encoding>(args[1].As<Int32>()->Value());
Local<Object> buf;
if (New(args.GetIsolate(), args[0].As<String>(), enc).ToLocal(&buf))
args.GetReturnValue().Set(buf);
}
template <encoding encoding>
void StringSlice(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
THROW_AND_RETURN_UNLESS_BUFFER(env, args.This());
ArrayBufferViewContents<char> buffer(args.This());
if (buffer.length() == 0)
return args.GetReturnValue().SetEmptyString();
size_t start = 0;
size_t end = 0;
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[0], 0, &start));
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[1], buffer.length(), &end));
if (end < start) end = start;
THROW_AND_RETURN_IF_OOB(Just(end <= buffer.length()));
size_t length = end - start;
Local<Value> error;
MaybeLocal<Value> ret =
StringBytes::Encode(isolate,
buffer.data() + start,
length,
encoding,
&error);
if (ret.IsEmpty()) {
CHECK(!error.IsEmpty());
isolate->ThrowException(error);
return;
}
args.GetReturnValue().Set(ret.ToLocalChecked());
}
// bytesCopied = copy(buffer, target[, targetStart][, sourceStart][, sourceEnd])
void Copy(const FunctionCallbackInfo<Value> &args) {
Environment* env = Environment::GetCurrent(args);
THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]);
THROW_AND_RETURN_UNLESS_BUFFER(env, args[1]);
ArrayBufferViewContents<char> source(args[0]);
Local<Object> target_obj = args[1].As<Object>();
SPREAD_BUFFER_ARG(target_obj, target);
size_t target_start = 0;
size_t source_start = 0;
size_t source_end = 0;
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[2], 0, &target_start));
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[3], 0, &source_start));
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[4], source.length(),
&source_end));
// Copy 0 bytes; we're done
if (target_start >= target_length || source_start >= source_end)
return args.GetReturnValue().Set(0);
if (source_start > source.length())
return THROW_ERR_OUT_OF_RANGE(
env, "The value of \"sourceStart\" is out of range.");
if (source_end - source_start > target_length - target_start)
source_end = source_start + target_length - target_start;
uint32_t to_copy = std::min(
std::min(source_end - source_start, target_length - target_start),
source.length() - source_start);
memmove(target_data + target_start, source.data() + source_start, to_copy);
args.GetReturnValue().Set(to_copy);
}
void Fill(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Local<Context> ctx = env->context();
THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]);
SPREAD_BUFFER_ARG(args[0], ts_obj);
size_t start;
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[2], 0, &start));
size_t end;
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[3], 0, &end));
size_t fill_length = end - start;
Local<String> str_obj;
size_t str_length;
enum encoding enc;
// OOB Check. Throw the error in JS.
if (start > end || fill_length + start > ts_obj_length)
return args.GetReturnValue().Set(-2);
// First check if Buffer has been passed.
if (Buffer::HasInstance(args[1])) {
SPREAD_BUFFER_ARG(args[1], fill_obj);
str_length = fill_obj_length;
memcpy(
ts_obj_data + start, fill_obj_data, std::min(str_length, fill_length));
goto start_fill;
}
// Then coerce everything that's not a string.
if (!args[1]->IsString()) {
uint32_t val;
if (!args[1]->Uint32Value(ctx).To(&val)) return;
int value = val & 255;
memset(ts_obj_data + start, value, fill_length);
return;
}
str_obj = args[1]->ToString(env->context()).ToLocalChecked();
enc = ParseEncoding(env->isolate(), args[4], UTF8);
// Can't use StringBytes::Write() in all cases. For example if attempting
// to write a two byte character into a one byte Buffer.
if (enc == UTF8) {
str_length = str_obj->Utf8Length(env->isolate());
node::Utf8Value str(env->isolate(), args[1]);
memcpy(ts_obj_data + start, *str, std::min(str_length, fill_length));
} else if (enc == UCS2) {
str_length = str_obj->Length() * sizeof(uint16_t);
node::TwoByteValue str(env->isolate(), args[1]);
if (IsBigEndian())
SwapBytes16(reinterpret_cast<char*>(&str[0]), str_length);
memcpy(ts_obj_data + start, *str, std::min(str_length, fill_length));
} else {
// Write initial String to Buffer, then use that memory to copy remainder
// of string. Correct the string length for cases like HEX where less than
// the total string length is written.
str_length = StringBytes::Write(env->isolate(),
ts_obj_data + start,
fill_length,
str_obj,
enc,
nullptr);
}
start_fill:
if (str_length >= fill_length)
return;
// If str_length is zero, then either an empty buffer was provided, or Write()
// indicated that no bytes could be written. If no bytes could be written,
// then return -1 because the fill value is invalid. This will trigger a throw
// in JavaScript. Silently failing should be avoided because it can lead to
// buffers with unexpected contents.
if (str_length == 0)
return args.GetReturnValue().Set(-1);
size_t in_there = str_length;
char* ptr = ts_obj_data + start + str_length;
while (in_there < fill_length - in_there) {
memcpy(ptr, ts_obj_data + start, in_there);
ptr += in_there;
in_there *= 2;
}
if (in_there < fill_length) {
memcpy(ptr, ts_obj_data + start, fill_length - in_there);
}
}
template <encoding encoding>
void StringWrite(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
THROW_AND_RETURN_UNLESS_BUFFER(env, args.This());
SPREAD_BUFFER_ARG(args.This(), ts_obj);
THROW_AND_RETURN_IF_NOT_STRING(env, args[0], "argument");
Local<String> str = args[0]->ToString(env->context()).ToLocalChecked();
size_t offset;
size_t max_length;
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[1], 0, &offset));
if (offset > ts_obj_length) {
return node::THROW_ERR_BUFFER_OUT_OF_BOUNDS(
env, "\"offset\" is outside of buffer bounds");
}
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[2], ts_obj_length - offset,
&max_length));
max_length = std::min(ts_obj_length - offset, max_length);
if (max_length == 0)
return args.GetReturnValue().Set(0);
uint32_t written = StringBytes::Write(env->isolate(),
ts_obj_data + offset,
max_length,
str,
encoding,
nullptr);
args.GetReturnValue().Set(written);
}
void ByteLengthUtf8(const FunctionCallbackInfo<Value> &args) {
Environment* env = Environment::GetCurrent(args);
CHECK(args[0]->IsString());
// Fast case: avoid StringBytes on UTF8 string. Jump to v8.
args.GetReturnValue().Set(args[0].As<String>()->Utf8Length(env->isolate()));
}
// Normalize val to be an integer in the range of [1, -1] since
// implementations of memcmp() can vary by platform.
static int normalizeCompareVal(int val, size_t a_length, size_t b_length) {
if (val == 0) {
if (a_length > b_length)
return 1;
else if (a_length < b_length)
return -1;
} else {
if (val > 0)
return 1;
else
return -1;
}
return val;
}
void CompareOffset(const FunctionCallbackInfo<Value> &args) {
Environment* env = Environment::GetCurrent(args);
THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]);
THROW_AND_RETURN_UNLESS_BUFFER(env, args[1]);
ArrayBufferViewContents<char> source(args[0]);
ArrayBufferViewContents<char> target(args[1]);
size_t target_start = 0;
size_t source_start = 0;
size_t source_end = 0;
size_t target_end = 0;
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[2], 0, &target_start));
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[3], 0, &source_start));
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[4], target.length(),
&target_end));
THROW_AND_RETURN_IF_OOB(ParseArrayIndex(env, args[5], source.length(),
&source_end));
if (source_start > source.length())
return THROW_ERR_OUT_OF_RANGE(
env, "The value of \"sourceStart\" is out of range.");
if (target_start > target.length())
return THROW_ERR_OUT_OF_RANGE(
env, "The value of \"targetStart\" is out of range.");
CHECK_LE(source_start, source_end);
CHECK_LE(target_start, target_end);
size_t to_cmp =
std::min(std::min(source_end - source_start, target_end - target_start),
source.length() - source_start);
int val = normalizeCompareVal(to_cmp > 0 ?
memcmp(source.data() + source_start,
target.data() + target_start,
to_cmp) : 0,
source_end - source_start,
target_end - target_start);
args.GetReturnValue().Set(val);
}
void Compare(const FunctionCallbackInfo<Value> &args) {
Environment* env = Environment::GetCurrent(args);
THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]);
THROW_AND_RETURN_UNLESS_BUFFER(env, args[1]);
ArrayBufferViewContents<char> a(args[0]);
ArrayBufferViewContents<char> b(args[1]);
size_t cmp_length = std::min(a.length(), b.length());
int val = normalizeCompareVal(cmp_length > 0 ?
memcmp(a.data(), b.data(), cmp_length) : 0,
a.length(), b.length());
args.GetReturnValue().Set(val);
}
// Computes the offset for starting an indexOf or lastIndexOf search.
// Returns either a valid offset in [0...<length - 1>], ie inside the Buffer,
// or -1 to signal that there is no possible match.
int64_t IndexOfOffset(size_t length,
int64_t offset_i64,
int64_t needle_length,
bool is_forward) {
int64_t length_i64 = static_cast<int64_t>(length);
if (offset_i64 < 0) {
if (offset_i64 + length_i64 >= 0) {
// Negative offsets count backwards from the end of the buffer.
return length_i64 + offset_i64;
} else if (is_forward || needle_length == 0) {
// indexOf from before the start of the buffer: search the whole buffer.
return 0;
} else {
// lastIndexOf from before the start of the buffer: no match.
return -1;
}
} else {
if (offset_i64 + needle_length <= length_i64) {
// Valid positive offset.
return offset_i64;
} else if (needle_length == 0) {
// Out of buffer bounds, but empty needle: point to end of buffer.
return length_i64;
} else if (is_forward) {
// indexOf from past the end of the buffer: no match.
return -1;
} else {
// lastIndexOf from past the end of the buffer: search the whole buffer.
return length_i64 - 1;
}
}
}
void IndexOfString(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
CHECK(args[1]->IsString());
CHECK(args[2]->IsNumber());
CHECK(args[3]->IsInt32());
CHECK(args[4]->IsBoolean());
enum encoding enc = static_cast<enum encoding>(args[3].As<Int32>()->Value());
THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]);
ArrayBufferViewContents<char> buffer(args[0]);
Local<String> needle = args[1].As<String>();
int64_t offset_i64 = args[2].As<Integer>()->Value();
bool is_forward = args[4]->IsTrue();
const char* haystack = buffer.data();
// Round down to the nearest multiple of 2 in case of UCS2.
const size_t haystack_length = (enc == UCS2) ?
buffer.length() &~ 1 : buffer.length(); // NOLINT(whitespace/operators)
size_t needle_length;
if (!StringBytes::Size(isolate, needle, enc).To(&needle_length)) return;
int64_t opt_offset = IndexOfOffset(haystack_length,
offset_i64,
needle_length,
is_forward);
if (needle_length == 0) {
// Match String#indexOf() and String#lastIndexOf() behavior.
args.GetReturnValue().Set(static_cast<double>(opt_offset));
return;
}
if (haystack_length == 0) {
return args.GetReturnValue().Set(-1);
}
if (opt_offset <= -1) {
return args.GetReturnValue().Set(-1);
}
size_t offset = static_cast<size_t>(opt_offset);
CHECK_LT(offset, haystack_length);
if ((is_forward && needle_length + offset > haystack_length) ||
needle_length > haystack_length) {
return args.GetReturnValue().Set(-1);
}
size_t result = haystack_length;
if (enc == UCS2) {
String::Value needle_value(isolate, needle);
if (*needle_value == nullptr)
return args.GetReturnValue().Set(-1);
if (haystack_length < 2 || needle_value.length() < 1) {
return args.GetReturnValue().Set(-1);
}
if (IsBigEndian()) {
StringBytes::InlineDecoder decoder;
if (decoder.Decode(env, needle, enc).IsNothing()) return;
const uint16_t* decoded_string =
reinterpret_cast<const uint16_t*>(decoder.out());
if (decoded_string == nullptr)
return args.GetReturnValue().Set(-1);
result = SearchString(reinterpret_cast<const uint16_t*>(haystack),
haystack_length / 2,
decoded_string,
decoder.size() / 2,
offset / 2,
is_forward);
} else {
result = SearchString(reinterpret_cast<const uint16_t*>(haystack),
haystack_length / 2,
reinterpret_cast<const uint16_t*>(*needle_value),
needle_value.length(),
offset / 2,
is_forward);
}
result *= 2;
} else if (enc == UTF8) {
String::Utf8Value needle_value(isolate, needle);
if (*needle_value == nullptr)
return args.GetReturnValue().Set(-1);
result = SearchString(reinterpret_cast<const uint8_t*>(haystack),
haystack_length,
reinterpret_cast<const uint8_t*>(*needle_value),
needle_length,
offset,
is_forward);
} else if (enc == LATIN1) {
uint8_t* needle_data = node::UncheckedMalloc<uint8_t>(needle_length);
if (needle_data == nullptr) {
return args.GetReturnValue().Set(-1);
}
needle->WriteOneByte(
isolate, needle_data, 0, needle_length, String::NO_NULL_TERMINATION);
result = SearchString(reinterpret_cast<const uint8_t*>(haystack),
haystack_length,
needle_data,
needle_length,
offset,
is_forward);
free(needle_data);
}
args.GetReturnValue().Set(
result == haystack_length ? -1 : static_cast<int>(result));
}
void IndexOfBuffer(const FunctionCallbackInfo<Value>& args) {
CHECK(args[1]->IsObject());
CHECK(args[2]->IsNumber());
CHECK(args[3]->IsInt32());
CHECK(args[4]->IsBoolean());
enum encoding enc = static_cast<enum encoding>(args[3].As<Int32>()->Value());
THROW_AND_RETURN_UNLESS_BUFFER(Environment::GetCurrent(args), args[0]);
THROW_AND_RETURN_UNLESS_BUFFER(Environment::GetCurrent(args), args[1]);
ArrayBufferViewContents<char> haystack_contents(args[0]);
ArrayBufferViewContents<char> needle_contents(args[1]);
int64_t offset_i64 = args[2].As<Integer>()->Value();
bool is_forward = args[4]->IsTrue();
const char* haystack = haystack_contents.data();
const size_t haystack_length = haystack_contents.length();
const char* needle = needle_contents.data();
const size_t needle_length = needle_contents.length();
int64_t opt_offset = IndexOfOffset(haystack_length,
offset_i64,
needle_length,
is_forward);
if (needle_length == 0) {
// Match String#indexOf() and String#lastIndexOf() behavior.
args.GetReturnValue().Set(static_cast<double>(opt_offset));
return;
}
if (haystack_length == 0) {
return args.GetReturnValue().Set(-1);
}
if (opt_offset <= -1) {
return args.GetReturnValue().Set(-1);
}
size_t offset = static_cast<size_t>(opt_offset);
CHECK_LT(offset, haystack_length);
if ((is_forward && needle_length + offset > haystack_length) ||
needle_length > haystack_length) {
return args.GetReturnValue().Set(-1);
}
size_t result = haystack_length;
if (enc == UCS2) {
if (haystack_length < 2 || needle_length < 2) {
return args.GetReturnValue().Set(-1);
}
result = SearchString(
reinterpret_cast<const uint16_t*>(haystack),
haystack_length / 2,
reinterpret_cast<const uint16_t*>(needle),
needle_length / 2,
offset / 2,
is_forward);
result *= 2;
} else {
result = SearchString(
reinterpret_cast<const uint8_t*>(haystack),
haystack_length,
reinterpret_cast<const uint8_t*>(needle),
needle_length,
offset,
is_forward);
}
args.GetReturnValue().Set(
result == haystack_length ? -1 : static_cast<int>(result));
}
void IndexOfNumber(const FunctionCallbackInfo<Value>& args) {
CHECK(args[1]->IsUint32());
CHECK(args[2]->IsNumber());
CHECK(args[3]->IsBoolean());
THROW_AND_RETURN_UNLESS_BUFFER(Environment::GetCurrent(args), args[0]);
ArrayBufferViewContents<char> buffer(args[0]);
uint32_t needle = args[1].As<Uint32>()->Value();
int64_t offset_i64 = args[2].As<Integer>()->Value();
bool is_forward = args[3]->IsTrue();
int64_t opt_offset =
IndexOfOffset(buffer.length(), offset_i64, 1, is_forward);
if (opt_offset <= -1 || buffer.length() == 0) {
return args.GetReturnValue().Set(-1);
}
size_t offset = static_cast<size_t>(opt_offset);
CHECK_LT(offset, buffer.length());
const void* ptr;
if (is_forward) {
ptr = memchr(buffer.data() + offset, needle, buffer.length() - offset);
} else {
ptr = node::stringsearch::MemrchrFill(buffer.data(), needle, offset + 1);
}
const char* ptr_char = static_cast<const char*>(ptr);
args.GetReturnValue().Set(ptr ? static_cast<int>(ptr_char - buffer.data())
: -1);
}
void Swap16(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]);
SPREAD_BUFFER_ARG(args[0], ts_obj);
SwapBytes16(ts_obj_data, ts_obj_length);
args.GetReturnValue().Set(args[0]);
}
void Swap32(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]);
SPREAD_BUFFER_ARG(args[0], ts_obj);
SwapBytes32(ts_obj_data, ts_obj_length);
args.GetReturnValue().Set(args[0]);
}
void Swap64(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
THROW_AND_RETURN_UNLESS_BUFFER(env, args[0]);
SPREAD_BUFFER_ARG(args[0], ts_obj);
SwapBytes64(ts_obj_data, ts_obj_length);
args.GetReturnValue().Set(args[0]);
}
// Encode a single string to a UTF-8 Uint8Array (not Buffer).
// Used in TextEncoder.prototype.encode.
static void EncodeUtf8String(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
CHECK_GE(args.Length(), 1);
CHECK(args[0]->IsString());
Local<String> str = args[0].As<String>();
size_t length = str->Utf8Length(isolate);
AllocatedBuffer buf = AllocatedBuffer::AllocateManaged(env, length);
str->WriteUtf8(isolate,
buf.data(),
-1, // We are certain that `data` is sufficiently large
nullptr,
String::NO_NULL_TERMINATION | String::REPLACE_INVALID_UTF8);
auto array = Uint8Array::New(buf.ToArrayBuffer(), 0, length);
args.GetReturnValue().Set(array);
}
static void EncodeInto(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
CHECK_GE(args.Length(), 3);
CHECK(args[0]->IsString());
CHECK(args[1]->IsUint8Array());
CHECK(args[2]->IsUint32Array());
Local<String> source = args[0].As<String>();
Local<Uint8Array> dest = args[1].As<Uint8Array>();
Local<ArrayBuffer> buf = dest->Buffer();
char* write_result =
static_cast<char*>(buf->GetBackingStore()->Data()) + dest->ByteOffset();
size_t dest_length = dest->ByteLength();
// results = [ read, written ]
Local<Uint32Array> result_arr = args[2].As<Uint32Array>();
uint32_t* results = reinterpret_cast<uint32_t*>(
static_cast<char*>(result_arr->Buffer()->GetBackingStore()->Data()) +
result_arr->ByteOffset());
int nchars;
int written = source->WriteUtf8(
isolate,
write_result,
dest_length,
&nchars,
String::NO_NULL_TERMINATION | String::REPLACE_INVALID_UTF8);
results[0] = nchars;
results[1] = written;
}
void SetBufferPrototype(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CHECK(args[0]->IsObject());
Local<Object> proto = args[0].As<Object>();
env->set_buffer_prototype_object(proto);
}
void Initialize(Local<Object> target,
Local<Value> unused,
Local<Context> context,
void* priv) {
Environment* env = Environment::GetCurrent(context);
env->SetMethod(target, "setBufferPrototype", SetBufferPrototype);
env->SetMethodNoSideEffect(target, "createFromString", CreateFromString);
env->SetMethodNoSideEffect(target, "byteLengthUtf8", ByteLengthUtf8);
env->SetMethod(target, "copy", Copy);
env->SetMethodNoSideEffect(target, "compare", Compare);
env->SetMethodNoSideEffect(target, "compareOffset", CompareOffset);
env->SetMethod(target, "fill", Fill);
env->SetMethodNoSideEffect(target, "indexOfBuffer", IndexOfBuffer);
env->SetMethodNoSideEffect(target, "indexOfNumber", IndexOfNumber);
env->SetMethodNoSideEffect(target, "indexOfString", IndexOfString);
env->SetMethod(target, "swap16", Swap16);
env->SetMethod(target, "swap32", Swap32);
env->SetMethod(target, "swap64", Swap64);
env->SetMethod(target, "encodeInto", EncodeInto);
env->SetMethodNoSideEffect(target, "encodeUtf8String", EncodeUtf8String);
target->Set(env->context(),
FIXED_ONE_BYTE_STRING(env->isolate(), "kMaxLength"),
Number::New(env->isolate(), kMaxLength)).Check();
target->Set(env->context(),
FIXED_ONE_BYTE_STRING(env->isolate(), "kStringMaxLength"),
Integer::New(env->isolate(), String::kMaxLength)).Check();
env->SetMethodNoSideEffect(target, "asciiSlice", StringSlice<ASCII>);
env->SetMethodNoSideEffect(target, "base64Slice", StringSlice<BASE64>);
env->SetMethodNoSideEffect(target, "latin1Slice", StringSlice<LATIN1>);
env->SetMethodNoSideEffect(target, "hexSlice", StringSlice<HEX>);
env->SetMethodNoSideEffect(target, "ucs2Slice", StringSlice<UCS2>);
env->SetMethodNoSideEffect(target, "utf8Slice", StringSlice<UTF8>);
env->SetMethod(target, "asciiWrite", StringWrite<ASCII>);
env->SetMethod(target, "base64Write", StringWrite<BASE64>);
env->SetMethod(target, "latin1Write", StringWrite<LATIN1>);
env->SetMethod(target, "hexWrite", StringWrite<HEX>);
env->SetMethod(target, "ucs2Write", StringWrite<UCS2>);
env->SetMethod(target, "utf8Write", StringWrite<UTF8>);
// It can be a nullptr when running inside an isolate where we
// do not own the ArrayBuffer allocator.
if (NodeArrayBufferAllocator* allocator =
env->isolate_data()->node_allocator()) {
uint32_t* zero_fill_field = allocator->zero_fill_field();
std::unique_ptr<BackingStore> backing =
ArrayBuffer::NewBackingStore(zero_fill_field,
sizeof(*zero_fill_field),
[](void*, size_t, void*){},
nullptr);
Local<ArrayBuffer> array_buffer =
ArrayBuffer::New(env->isolate(), std::move(backing));
array_buffer->SetPrivate(
env->context(),
env->untransferable_object_private_symbol(),
True(env->isolate())).Check();
CHECK(target
->Set(env->context(),
FIXED_ONE_BYTE_STRING(env->isolate(), "zeroFill"),
Uint32Array::New(array_buffer, 0, 1))
.FromJust());
}
}
} // anonymous namespace
} // namespace Buffer
} // namespace node
NODE_MODULE_CONTEXT_AWARE_INTERNAL(buffer, node::Buffer::Initialize)