| // META: title=validation tests for WebNN API matmul operation |
| // META: global=window |
| // META: variant=?cpu |
| // META: variant=?gpu |
| // META: variant=?npu |
| // META: script=../resources/utils_validation.js |
| |
| 'use strict'; |
| |
| const label = 'matmul_123'; |
| validateTwoInputsFromMultipleBuilders('matmul'); |
| validateTwoBroadcastableInputsTensorLimit('matmul', label); |
| |
| const tests = [ |
| { |
| name: '[matmul] Throw if first input\'s rank is less than 2', |
| inputs: { |
| a: {dataType: 'float32', shape: [2]}, |
| b: {dataType: 'float32', shape: [2, 2]} |
| } |
| }, |
| { |
| name: '[matmul] Throw if second input\'s rank is less than 2', |
| inputs: { |
| a: {dataType: 'float32', shape: [2, 2]}, |
| b: {dataType: 'float32', shape: [2]} |
| } |
| }, |
| { |
| name: '[matmul] Test with 2-D input and 4-D input', |
| inputs: { |
| a: {dataType: 'float32', shape: [1, 4]}, |
| b: {dataType: 'float32', shape: [2, 2, 4, 2]} |
| }, |
| output: {dataType: 'float32', shape: [2, 2, 1, 2]} |
| }, |
| { |
| name: '[matmul] Test with 2-D input and 2-D input', |
| inputs: { |
| a: {dataType: 'float32', shape: [4, 2]}, |
| b: {dataType: 'float32', shape: [2, 3]} |
| }, |
| output: {dataType: 'float32', shape: [4, 3]} |
| }, |
| { |
| // batchShape is a clone of inputShape with the spatial dimensions |
| // (last 2 items) removed. |
| name: |
| '[matmul] Test with 3-D input and 3-D input of broadcastable batchShape', |
| inputs: { |
| a: {dataType: 'float32', shape: [2, 3, 4]}, |
| b: {dataType: 'float32', shape: [1, 4, 1]} |
| }, |
| output: {dataType: 'float32', shape: [2, 3, 1]} |
| }, |
| { |
| // batchShape is a clone of inputShape with the spatial dimensions |
| // (last 2 items) removed. |
| name: |
| '[matmul] Test with 4-D input and 3-D input of broadcastable batchShape', |
| inputs: { |
| a: {dataType: 'float32', shape: [2, 2, 3, 4]}, |
| b: {dataType: 'float32', shape: [1, 4, 5]} |
| }, |
| output: {dataType: 'float32', shape: [2, 2, 3, 5]} |
| }, |
| { |
| name: '[matmul] Test with 3-D input and 3-D input', |
| inputs: { |
| a: {dataType: 'float32', shape: [2, 3, 4]}, |
| b: {dataType: 'float32', shape: [2, 4, 5]} |
| }, |
| output: {dataType: 'float32', shape: [2, 3, 5]} |
| }, |
| { |
| name: '[matmul] Throw if the input data type is not floating point', |
| inputs: { |
| a: {dataType: 'uint32', shape: [2, 3, 4]}, |
| b: {dataType: 'uint32', shape: [2, 4, 5]} |
| } |
| }, |
| { |
| name: '[matmul] Throw if data type of two inputs don\'t match', |
| inputs: { |
| a: {dataType: 'float32', shape: [2, 3, 4]}, |
| b: {dataType: 'float16', shape: [2, 4, 5]} |
| } |
| }, |
| { |
| name: |
| '[matmul] Throw if columns of first input\'s shape doesn\'t match the rows of second input\'s shape', |
| inputs: { |
| a: {dataType: 'float32', shape: /* [rows, columns] */[2, 3]}, |
| b: {dataType: 'float32', shape: /* [rows, columns] */[2, 4]} |
| }, |
| }, |
| { |
| // batchShape is a clone of inputShape with the spatial dimensions |
| // (last 2 items) removed. |
| name: '[matmul] Throw if batchShapes aren\'t bidirectionally broadcastable', |
| inputs: { |
| a: {dataType: 'float32', shape: [3, 3, 4]}, |
| b: {dataType: 'float32', shape: [2, 4, 1]} |
| }, |
| }, |
| ]; |
| |
| tests.forEach(test => promise_test(async t => { |
| const builder = new MLGraphBuilder(context); |
| const inputA = builder.input('a', test.inputs.a); |
| const inputB = builder.input('b', test.inputs.b); |
| if (test.output) { |
| const output = builder.matmul(inputA, inputB); |
| assert_equals(output.dataType, test.output.dataType); |
| assert_array_equals(output.shape, test.output.shape); |
| } else { |
| const options = {label}; |
| const regrexp = new RegExp('\\[' + label + '\\]'); |
| assert_throws_with_label( |
| () => builder.matmul(inputA, inputB, options), regrexp); |
| } |
| }, test.name)); |