blob: 96bc19e2edfe90f044ee9ec8048e4015a7e454f1 [file] [log] [blame]
 // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud // Copyright (C) 2010 Jitse Niesen // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include template void hessenberg(int size = Size) { typedef Matrix MatrixType; // Test basic functionality: A = U H U* and H is Hessenberg for(int counter = 0; counter < g_repeat; ++counter) { MatrixType m = MatrixType::Random(size,size); HessenbergDecomposition hess(m); MatrixType Q = hess.matrixQ(); MatrixType H = hess.matrixH(); VERIFY_IS_APPROX(m, Q * H * Q.adjoint()); for(int row = 2; row < size; ++row) { for(int col = 0; col < row-1; ++col) { VERIFY(H(row,col) == (typename MatrixType::Scalar)0); } } } // Test whether compute() and constructor returns same result MatrixType A = MatrixType::Random(size, size); HessenbergDecomposition cs1; cs1.compute(A); HessenbergDecomposition cs2(A); VERIFY_IS_EQUAL(cs1.matrixH().eval(), cs2.matrixH().eval()); MatrixType cs1Q = cs1.matrixQ(); MatrixType cs2Q = cs2.matrixQ(); VERIFY_IS_EQUAL(cs1Q, cs2Q); // Test assertions for when used uninitialized HessenbergDecomposition hessUninitialized; VERIFY_RAISES_ASSERT( hessUninitialized.matrixH() ); VERIFY_RAISES_ASSERT( hessUninitialized.matrixQ() ); VERIFY_RAISES_ASSERT( hessUninitialized.householderCoefficients() ); VERIFY_RAISES_ASSERT( hessUninitialized.packedMatrix() ); // TODO: Add tests for packedMatrix() and householderCoefficients() } void test_hessenberg() { CALL_SUBTEST_1(( hessenberg,1>() )); CALL_SUBTEST_2(( hessenberg,2>() )); CALL_SUBTEST_3(( hessenberg,4>() )); CALL_SUBTEST_4(( hessenberg(internal::random(1,EIGEN_TEST_MAX_SIZE)) )); CALL_SUBTEST_5(( hessenberg,Dynamic>(internal::random(1,EIGEN_TEST_MAX_SIZE)) )); // Test problem size constructors CALL_SUBTEST_6(HessenbergDecomposition(10)); }