blob: 9912e1e246b16a73207985c0b15cc928db3eee42 [file] [log] [blame]
 // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2011 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_TESTSPARSE_H #define EIGEN_TESTSPARSE_H #define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET #include "main.h" #if EIGEN_GNUC_AT_LEAST(4,0) && !defined __ICC && !defined(__clang__) #ifdef min #undef min #endif #ifdef max #undef max #endif #include #define EIGEN_UNORDERED_MAP_SUPPORT namespace std { using std::tr1::unordered_map; } #endif #ifdef EIGEN_GOOGLEHASH_SUPPORT #include #endif #include #include #include enum { ForceNonZeroDiag = 1, MakeLowerTriangular = 2, MakeUpperTriangular = 4, ForceRealDiag = 8 }; /* Initializes both a sparse and dense matrix with same random values, * and a ratio of \a density non zero entries. * \param flags is a union of ForceNonZeroDiag, MakeLowerTriangular and MakeUpperTriangular * allowing to control the shape of the matrix. * \param zeroCoords and nonzeroCoords allows to get the coordinate lists of the non zero, * and zero coefficients respectively. */ template void initSparse(double density, Matrix& refMat, SparseMatrix& sparseMat, int flags = 0, std::vector >* zeroCoords = 0, std::vector >* nonzeroCoords = 0) { enum { IsRowMajor = SparseMatrix::IsRowMajor }; sparseMat.setZero(); //sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); sparseMat.reserve(VectorXi::Constant(IsRowMajor ? refMat.rows() : refMat.cols(), int((1.5*density)*(IsRowMajor?refMat.cols():refMat.rows())))); for(Index j=0; j(0,1) < density) ? internal::random() : Scalar(0); if ((flags&ForceNonZeroDiag) && (i==j)) { // FIXME: the following is too conservative v = internal::random()*Scalar(3.); v = v*v; if(numext::real(v)>0) v += Scalar(5); else v -= Scalar(5); } if ((flags & MakeLowerTriangular) && aj>ai) v = Scalar(0); else if ((flags & MakeUpperTriangular) && ajpush_back(Matrix (ai,aj)); } else if (zeroCoords) { zeroCoords->push_back(Matrix (ai,aj)); } refMat(ai,aj) = v; } } //sparseMat.finalize(); } template void initSparse(double density, Matrix& refMat, DynamicSparseMatrix& sparseMat, int flags = 0, std::vector >* zeroCoords = 0, std::vector >* nonzeroCoords = 0) { enum { IsRowMajor = DynamicSparseMatrix::IsRowMajor }; sparseMat.setZero(); sparseMat.reserve(int(refMat.rows()*refMat.cols()*density)); for(int j=0; j(0,1) < density) ? internal::random() : Scalar(0); if ((flags&ForceNonZeroDiag) && (i==j)) { v = internal::random()*Scalar(3.); v = v*v + Scalar(5.); } if ((flags & MakeLowerTriangular) && aj>ai) v = Scalar(0); else if ((flags & MakeUpperTriangular) && ajpush_back(Matrix (ai,aj)); } else if (zeroCoords) { zeroCoords->push_back(Matrix (ai,aj)); } refMat(ai,aj) = v; } } sparseMat.finalize(); } template void initSparse(double density, Matrix& refVec, SparseVector& sparseVec, std::vector* zeroCoords = 0, std::vector* nonzeroCoords = 0) { sparseVec.reserve(int(refVec.size()*density)); sparseVec.setZero(); for(int i=0; i(0,1) < density) ? internal::random() : Scalar(0); if (v!=Scalar(0)) { sparseVec.insertBack(i) = v; if (nonzeroCoords) nonzeroCoords->push_back(i); } else if (zeroCoords) zeroCoords->push_back(i); refVec[i] = v; } } template void initSparse(double density, Matrix& refVec, SparseVector& sparseVec, std::vector* zeroCoords = 0, std::vector* nonzeroCoords = 0) { sparseVec.reserve(int(refVec.size()*density)); sparseVec.setZero(); for(int i=0; i(0,1) < density) ? internal::random() : Scalar(0); if (v!=Scalar(0)) { sparseVec.insertBack(i) = v; if (nonzeroCoords) nonzeroCoords->push_back(i); } else if (zeroCoords) zeroCoords->push_back(i); refVec[i] = v; } } #include #endif // EIGEN_TESTSPARSE_H