blob: 93743cd513239fa50b337cd907c695bacffe4845 [file] [log] [blame]
//===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "gwp_asan/guarded_pool_allocator.h"
#include "gwp_asan/options.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
using AllocationMetadata = gwp_asan::GuardedPoolAllocator::AllocationMetadata;
using Error = gwp_asan::GuardedPoolAllocator::Error;
namespace gwp_asan {
namespace {
// Forward declare the pointer to the singleton version of this class.
// Instantiated during initialisation, this allows the signal handler
// to find this class in order to deduce the root cause of failures. Must not be
// referenced by users outside this translation unit, in order to avoid
// init-order-fiasco.
GuardedPoolAllocator *SingletonPtr = nullptr;
} // anonymous namespace
// Gets the singleton implementation of this class. Thread-compatible until
// init() is called, thread-safe afterwards.
GuardedPoolAllocator *getSingleton() { return SingletonPtr; }
void GuardedPoolAllocator::AllocationMetadata::RecordAllocation(
uintptr_t AllocAddr, size_t AllocSize) {
Addr = AllocAddr;
Size = AllocSize;
IsDeallocated = false;
// TODO(hctim): Implement stack trace collection.
// TODO(hctim): Ask the caller to provide the thread ID, so we don't waste
// other thread's time getting the thread ID under lock.
AllocationTrace.ThreadID = getThreadID();
DeallocationTrace.ThreadID = kInvalidThreadID;
AllocationTrace.Trace[0] = 0;
DeallocationTrace.Trace[0] = 0;
}
void GuardedPoolAllocator::AllocationMetadata::RecordDeallocation() {
IsDeallocated = true;
// TODO(hctim): Implement stack trace collection.
DeallocationTrace.ThreadID = getThreadID();
}
void GuardedPoolAllocator::init(const options::Options &Opts) {
// Note: We return from the constructor here if GWP-ASan is not available.
// This will stop heap-allocation of class members, as well as mmap() of the
// guarded slots.
if (!Opts.Enabled || Opts.SampleRate == 0 ||
Opts.MaxSimultaneousAllocations == 0)
return;
// TODO(hctim): Add a death unit test for this.
if (SingletonPtr) {
(*SingletonPtr->Printf)(
"GWP-ASan Error: init() has already been called.\n");
exit(EXIT_FAILURE);
}
if (Opts.SampleRate < 0) {
Opts.Printf("GWP-ASan Error: SampleRate is < 0.\n");
exit(EXIT_FAILURE);
}
if (Opts.SampleRate > INT32_MAX) {
Opts.Printf("GWP-ASan Error: SampleRate is > 2^31.\n");
exit(EXIT_FAILURE);
}
if (Opts.MaxSimultaneousAllocations < 0) {
Opts.Printf("GWP-ASan Error: MaxSimultaneousAllocations is < 0.\n");
exit(EXIT_FAILURE);
}
SingletonPtr = this;
MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations;
PageSize = getPlatformPageSize();
PerfectlyRightAlign = Opts.PerfectlyRightAlign;
Printf = Opts.Printf;
size_t PoolBytesRequired =
PageSize * (1 + MaxSimultaneousAllocations) +
MaxSimultaneousAllocations * maximumAllocationSize();
void *GuardedPoolMemory = mapMemory(PoolBytesRequired);
size_t BytesRequired = MaxSimultaneousAllocations * sizeof(*Metadata);
Metadata = reinterpret_cast<AllocationMetadata *>(mapMemory(BytesRequired));
markReadWrite(Metadata, BytesRequired);
// Allocate memory and set up the free pages queue.
BytesRequired = MaxSimultaneousAllocations * sizeof(*FreeSlots);
FreeSlots = reinterpret_cast<size_t *>(mapMemory(BytesRequired));
markReadWrite(FreeSlots, BytesRequired);
// Multiply the sample rate by 2 to give a good, fast approximation for (1 /
// SampleRate) chance of sampling.
if (Opts.SampleRate != 1)
AdjustedSampleRate = static_cast<uint32_t>(Opts.SampleRate) * 2;
else
AdjustedSampleRate = 1;
GuardedPagePool = reinterpret_cast<uintptr_t>(GuardedPoolMemory);
GuardedPagePoolEnd =
reinterpret_cast<uintptr_t>(GuardedPoolMemory) + PoolBytesRequired;
// Ensure that signal handlers are installed as late as possible, as the class
// is not thread-safe until init() is finished, and thus a SIGSEGV may cause a
// race to members if recieved during init().
if (Opts.InstallSignalHandlers)
installSignalHandlers();
}
void *GuardedPoolAllocator::allocate(size_t Size) {
if (Size == 0 || Size > maximumAllocationSize())
return nullptr;
size_t Index;
{
ScopedLock L(PoolMutex);
Index = reserveSlot();
}
if (Index == kInvalidSlotID)
return nullptr;
uintptr_t Ptr = slotToAddr(Index);
Ptr += allocationSlotOffset(Size);
AllocationMetadata *Meta = addrToMetadata(Ptr);
// If a slot is multiple pages in size, and the allocation takes up a single
// page, we can improve overflow detection by leaving the unused pages as
// unmapped.
markReadWrite(reinterpret_cast<void *>(getPageAddr(Ptr)), Size);
Meta->RecordAllocation(Ptr, Size);
return reinterpret_cast<void *>(Ptr);
}
void GuardedPoolAllocator::deallocate(void *Ptr) {
assert(pointerIsMine(Ptr) && "Pointer is not mine!");
uintptr_t UPtr = reinterpret_cast<uintptr_t>(Ptr);
uintptr_t SlotStart = slotToAddr(addrToSlot(UPtr));
AllocationMetadata *Meta = addrToMetadata(UPtr);
if (Meta->Addr != UPtr) {
reportError(UPtr, Error::INVALID_FREE);
exit(EXIT_FAILURE);
}
// Intentionally scope the mutex here, so that other threads can access the
// pool during the expensive markInaccessible() call.
{
ScopedLock L(PoolMutex);
if (Meta->IsDeallocated) {
reportError(UPtr, Error::DOUBLE_FREE);
exit(EXIT_FAILURE);
}
// Ensure that the deallocation is recorded before marking the page as
// inaccessible. Otherwise, a racy use-after-free will have inconsistent
// metadata.
Meta->RecordDeallocation();
}
markInaccessible(reinterpret_cast<void *>(SlotStart),
maximumAllocationSize());
// And finally, lock again to release the slot back into the pool.
ScopedLock L(PoolMutex);
freeSlot(addrToSlot(UPtr));
}
size_t GuardedPoolAllocator::getSize(const void *Ptr) {
assert(pointerIsMine(Ptr));
ScopedLock L(PoolMutex);
AllocationMetadata *Meta = addrToMetadata(reinterpret_cast<uintptr_t>(Ptr));
assert(Meta->Addr == reinterpret_cast<uintptr_t>(Ptr));
return Meta->Size;
}
size_t GuardedPoolAllocator::maximumAllocationSize() const { return PageSize; }
AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const {
return &Metadata[addrToSlot(Ptr)];
}
size_t GuardedPoolAllocator::addrToSlot(uintptr_t Ptr) const {
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
size_t ByteOffsetFromPoolStart = Ptr - GuardedPagePool;
return ByteOffsetFromPoolStart / (maximumAllocationSize() + PageSize);
}
uintptr_t GuardedPoolAllocator::slotToAddr(size_t N) const {
return GuardedPagePool + (PageSize * (1 + N)) + (maximumAllocationSize() * N);
}
uintptr_t GuardedPoolAllocator::getPageAddr(uintptr_t Ptr) const {
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
return Ptr & ~(static_cast<uintptr_t>(PageSize) - 1);
}
bool GuardedPoolAllocator::isGuardPage(uintptr_t Ptr) const {
assert(pointerIsMine(reinterpret_cast<void *>(Ptr)));
size_t PageOffsetFromPoolStart = (Ptr - GuardedPagePool) / PageSize;
size_t PagesPerSlot = maximumAllocationSize() / PageSize;
return (PageOffsetFromPoolStart % (PagesPerSlot + 1)) == 0;
}
size_t GuardedPoolAllocator::reserveSlot() {
// Avoid potential reuse of a slot before we have made at least a single
// allocation in each slot. Helps with our use-after-free detection.
if (NumSampledAllocations < MaxSimultaneousAllocations)
return NumSampledAllocations++;
if (FreeSlotsLength == 0)
return kInvalidSlotID;
size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength;
size_t SlotIndex = FreeSlots[ReservedIndex];
FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength];
return SlotIndex;
}
void GuardedPoolAllocator::freeSlot(size_t SlotIndex) {
assert(FreeSlotsLength < MaxSimultaneousAllocations);
FreeSlots[FreeSlotsLength++] = SlotIndex;
}
uintptr_t GuardedPoolAllocator::allocationSlotOffset(size_t Size) const {
assert(Size > 0);
bool ShouldRightAlign = getRandomUnsigned32() % 2 == 0;
if (!ShouldRightAlign)
return 0;
uintptr_t Offset = maximumAllocationSize();
if (!PerfectlyRightAlign) {
if (Size == 3)
Size = 4;
else if (Size > 4 && Size <= 8)
Size = 8;
else if (Size > 8 && (Size % 16) != 0)
Size += 16 - (Size % 16);
}
Offset -= Size;
return Offset;
}
void GuardedPoolAllocator::reportError(uintptr_t AccessPtr, Error E) {
if (SingletonPtr)
SingletonPtr->reportErrorInternal(AccessPtr, E);
}
size_t GuardedPoolAllocator::getNearestSlot(uintptr_t Ptr) const {
if (Ptr <= GuardedPagePool + PageSize)
return 0;
if (Ptr > GuardedPagePoolEnd - PageSize)
return MaxSimultaneousAllocations - 1;
if (!isGuardPage(Ptr))
return addrToSlot(Ptr);
if (Ptr % PageSize <= PageSize / 2)
return addrToSlot(Ptr - PageSize); // Round down.
return addrToSlot(Ptr + PageSize); // Round up.
}
Error GuardedPoolAllocator::diagnoseUnknownError(uintptr_t AccessPtr,
AllocationMetadata **Meta) {
// Let's try and figure out what the source of this error is.
if (isGuardPage(AccessPtr)) {
size_t Slot = getNearestSlot(AccessPtr);
AllocationMetadata *SlotMeta = addrToMetadata(slotToAddr(Slot));
// Ensure that this slot was allocated once upon a time.
if (!SlotMeta->Addr)
return Error::UNKNOWN;
*Meta = SlotMeta;
if (SlotMeta->Addr < AccessPtr)
return Error::BUFFER_OVERFLOW;
return Error::BUFFER_UNDERFLOW;
}
// Access wasn't a guard page, check for use-after-free.
AllocationMetadata *SlotMeta = addrToMetadata(AccessPtr);
if (SlotMeta->IsDeallocated) {
*Meta = SlotMeta;
return Error::USE_AFTER_FREE;
}
// If we have reached here, the error is still unknown. There is no metadata
// available.
return Error::UNKNOWN;
}
// Prints the provided error and metadata information. Returns true if there is
// additional context that can be provided, false otherwise (i.e. returns false
// if Error == {UNKNOWN, INVALID_FREE without metadata}).
bool printErrorType(Error E, uintptr_t AccessPtr, AllocationMetadata *Meta,
options::Printf_t Printf) {
switch (E) {
case Error::UNKNOWN:
Printf("GWP-ASan couldn't automatically determine the source of the "
"memory error when accessing 0x%zx. It was likely caused by a wild "
"memory access into the GWP-ASan pool.\n",
AccessPtr);
return false;
case Error::USE_AFTER_FREE:
Printf("Use after free occurred when accessing memory at: 0x%zx\n",
AccessPtr);
break;
case Error::DOUBLE_FREE:
Printf("Double free occurred when trying to free memory at: 0x%zx\n",
AccessPtr);
break;
case Error::INVALID_FREE:
Printf(
"Invalid (wild) free occurred when trying to free memory at: 0x%zx\n",
AccessPtr);
// It's possible for an invalid free to fall onto a slot that has never been
// allocated. If this is the case, there is no valid metadata.
if (Meta == nullptr)
return false;
break;
case Error::BUFFER_OVERFLOW:
Printf("Buffer overflow occurred when accessing memory at: 0x%zx\n",
AccessPtr);
break;
case Error::BUFFER_UNDERFLOW:
Printf("Buffer underflow occurred when accessing memory at: 0x%zx\n",
AccessPtr);
break;
}
Printf("0x%zx is ", AccessPtr);
if (AccessPtr < Meta->Addr)
Printf("located %zu bytes to the left of a %zu-byte allocation located at "
"0x%zx\n",
Meta->Addr - AccessPtr, Meta->Size, Meta->Addr);
else if (AccessPtr > Meta->Addr)
Printf("located %zu bytes to the right of a %zu-byte allocation located at "
"0x%zx\n",
AccessPtr - Meta->Addr, Meta->Size, Meta->Addr);
else
Printf("a %zu-byte allocation\n", Meta->Size);
return true;
}
void printThreadInformation(Error E, uintptr_t AccessPtr,
AllocationMetadata *Meta,
options::Printf_t Printf) {
Printf("0x%zx was allocated by thread ", AccessPtr);
if (Meta->AllocationTrace.ThreadID == UINT64_MAX)
Printf("UNKNOWN.\n");
else
Printf("%zu.\n", Meta->AllocationTrace.ThreadID);
if (E == Error::USE_AFTER_FREE || E == Error::DOUBLE_FREE) {
Printf("0x%zx was freed by thread ", AccessPtr);
if (Meta->AllocationTrace.ThreadID == UINT64_MAX)
Printf("UNKNOWN.\n");
else
Printf("%zu.\n", Meta->AllocationTrace.ThreadID);
}
}
struct ScopedEndOfReportDecorator {
ScopedEndOfReportDecorator(options::Printf_t Printf) : Printf(Printf) {}
~ScopedEndOfReportDecorator() { Printf("*** End GWP-ASan report ***\n"); }
options::Printf_t Printf;
};
void GuardedPoolAllocator::reportErrorInternal(uintptr_t AccessPtr,
Error E) {
if (!pointerIsMine(reinterpret_cast<void *>(AccessPtr))) {
return;
}
// Attempt to prevent races to re-use the same slot that triggered this error.
// This does not guarantee that there are no races, because another thread can
// take the locks during the time that the signal handler is being called.
PoolMutex.tryLock();
Printf("*** GWP-ASan detected a memory error ***\n");
ScopedEndOfReportDecorator Decorator(Printf);
AllocationMetadata *Meta = nullptr;
if (E == Error::UNKNOWN) {
E = diagnoseUnknownError(AccessPtr, &Meta);
} else {
size_t Slot = getNearestSlot(AccessPtr);
Meta = addrToMetadata(slotToAddr(Slot));
// Ensure that this slot has been previously allocated.
if (!Meta->Addr)
Meta = nullptr;
}
// Print the error information, and if there is no valid metadata, stop here.
if (!printErrorType(E, AccessPtr, Meta, Printf)) {
return;
}
// Ensure that we have a valid metadata pointer from this point forward.
if (Meta == nullptr) {
Printf("GWP-ASan internal unreachable error. Metadata is not null.\n");
return;
}
printThreadInformation(E, AccessPtr, Meta, Printf);
// TODO(hctim): Implement stack unwinding here. Ask the caller to provide us
// with the base pointer, and we unwind the stack to give a stack trace for
// the access.
// TODO(hctim): Implement dumping here of allocation/deallocation traces.
}
TLS_INITIAL_EXEC uint64_t GuardedPoolAllocator::NextSampleCounter = 0;
} // namespace gwp_asan