blob: 9564ff0be077f56e1e3abd8361f5c778b4ae0dfb [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Review notes:
//
// - The use of macros in these inline functions may seem superfluous
// but it is absolutely needed to make sure gcc generates optimal
// code. gcc is not happy when attempting to inline too deep.
//
#ifndef V8_OBJECTS_INL_H_
#define V8_OBJECTS_INL_H_
#include "src/base/atomicops.h"
#include "src/base/bits.h"
#include "src/contexts.h"
#include "src/conversions-inl.h"
#include "src/elements.h"
#include "src/factory.h"
#include "src/field-index-inl.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap.h"
#include "src/heap/incremental-marking.h"
#include "src/heap/objects-visiting.h"
#include "src/heap/spaces.h"
#include "src/heap/store-buffer.h"
#include "src/isolate.h"
#include "src/lookup.h"
#include "src/objects.h"
#include "src/property.h"
#include "src/prototype.h"
#include "src/transitions-inl.h"
#include "src/type-feedback-vector-inl.h"
#include "src/v8memory.h"
namespace v8 {
namespace internal {
PropertyDetails::PropertyDetails(Smi* smi) {
value_ = smi->value();
}
Smi* PropertyDetails::AsSmi() const {
// Ensure the upper 2 bits have the same value by sign extending it. This is
// necessary to be able to use the 31st bit of the property details.
int value = value_ << 1;
return Smi::FromInt(value >> 1);
}
PropertyDetails PropertyDetails::AsDeleted() const {
Smi* smi = Smi::FromInt(value_ | DeletedField::encode(1));
return PropertyDetails(smi);
}
#define TYPE_CHECKER(type, instancetype) \
bool Object::Is##type() const { \
return Object::IsHeapObject() && \
HeapObject::cast(this)->map()->instance_type() == instancetype; \
}
#define CAST_ACCESSOR(type) \
type* type::cast(Object* object) { \
SLOW_DCHECK(object->Is##type()); \
return reinterpret_cast<type*>(object); \
} \
const type* type::cast(const Object* object) { \
SLOW_DCHECK(object->Is##type()); \
return reinterpret_cast<const type*>(object); \
}
#define INT_ACCESSORS(holder, name, offset) \
int holder::name() const { return READ_INT_FIELD(this, offset); } \
void holder::set_##name(int value) { WRITE_INT_FIELD(this, offset, value); }
#define ACCESSORS(holder, name, type, offset) \
type* holder::name() const { return type::cast(READ_FIELD(this, offset)); } \
void holder::set_##name(type* value, WriteBarrierMode mode) { \
WRITE_FIELD(this, offset, value); \
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \
}
// Getter that returns a tagged Smi and setter that writes a tagged Smi.
#define ACCESSORS_TO_SMI(holder, name, offset) \
Smi* holder::name() const { return Smi::cast(READ_FIELD(this, offset)); } \
void holder::set_##name(Smi* value, WriteBarrierMode mode) { \
WRITE_FIELD(this, offset, value); \
}
// Getter that returns a Smi as an int and writes an int as a Smi.
#define SMI_ACCESSORS(holder, name, offset) \
int holder::name() const { \
Object* value = READ_FIELD(this, offset); \
return Smi::cast(value)->value(); \
} \
void holder::set_##name(int value) { \
WRITE_FIELD(this, offset, Smi::FromInt(value)); \
}
#define SYNCHRONIZED_SMI_ACCESSORS(holder, name, offset) \
int holder::synchronized_##name() const { \
Object* value = ACQUIRE_READ_FIELD(this, offset); \
return Smi::cast(value)->value(); \
} \
void holder::synchronized_set_##name(int value) { \
RELEASE_WRITE_FIELD(this, offset, Smi::FromInt(value)); \
}
#define NOBARRIER_SMI_ACCESSORS(holder, name, offset) \
int holder::nobarrier_##name() const { \
Object* value = NOBARRIER_READ_FIELD(this, offset); \
return Smi::cast(value)->value(); \
} \
void holder::nobarrier_set_##name(int value) { \
NOBARRIER_WRITE_FIELD(this, offset, Smi::FromInt(value)); \
}
#define BOOL_GETTER(holder, field, name, offset) \
bool holder::name() const { \
return BooleanBit::get(field(), offset); \
} \
#define BOOL_ACCESSORS(holder, field, name, offset) \
bool holder::name() const { \
return BooleanBit::get(field(), offset); \
} \
void holder::set_##name(bool value) { \
set_##field(BooleanBit::set(field(), offset, value)); \
}
bool Object::IsFixedArrayBase() const {
return IsFixedArray() || IsFixedDoubleArray() || IsConstantPoolArray() ||
IsFixedTypedArrayBase() || IsExternalArray();
}
// External objects are not extensible, so the map check is enough.
bool Object::IsExternal() const {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->external_map();
}
bool Object::IsAccessorInfo() const {
return IsExecutableAccessorInfo() || IsDeclaredAccessorInfo();
}
bool Object::IsSmi() const {
return HAS_SMI_TAG(this);
}
bool Object::IsHeapObject() const {
return Internals::HasHeapObjectTag(this);
}
TYPE_CHECKER(HeapNumber, HEAP_NUMBER_TYPE)
TYPE_CHECKER(MutableHeapNumber, MUTABLE_HEAP_NUMBER_TYPE)
TYPE_CHECKER(Symbol, SYMBOL_TYPE)
bool Object::IsString() const {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() < FIRST_NONSTRING_TYPE;
}
bool Object::IsName() const {
return IsString() || IsSymbol();
}
bool Object::IsUniqueName() const {
return IsInternalizedString() || IsSymbol();
}
bool Object::IsSpecObject() const {
return Object::IsHeapObject()
&& HeapObject::cast(this)->map()->instance_type() >= FIRST_SPEC_OBJECT_TYPE;
}
bool Object::IsSpecFunction() const {
if (!Object::IsHeapObject()) return false;
InstanceType type = HeapObject::cast(this)->map()->instance_type();
return type == JS_FUNCTION_TYPE || type == JS_FUNCTION_PROXY_TYPE;
}
bool Object::IsTemplateInfo() const {
return IsObjectTemplateInfo() || IsFunctionTemplateInfo();
}
bool Object::IsInternalizedString() const {
if (!this->IsHeapObject()) return false;
uint32_t type = HeapObject::cast(this)->map()->instance_type();
STATIC_ASSERT(kNotInternalizedTag != 0);
return (type & (kIsNotStringMask | kIsNotInternalizedMask)) ==
(kStringTag | kInternalizedTag);
}
bool Object::IsConsString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsCons();
}
bool Object::IsSlicedString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSliced();
}
bool Object::IsSeqString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential();
}
bool Object::IsSeqOneByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
String::cast(this)->IsOneByteRepresentation();
}
bool Object::IsSeqTwoByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsSequential() &&
String::cast(this)->IsTwoByteRepresentation();
}
bool Object::IsExternalString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal();
}
bool Object::IsExternalOneByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
String::cast(this)->IsOneByteRepresentation();
}
bool Object::IsExternalTwoByteString() const {
if (!IsString()) return false;
return StringShape(String::cast(this)).IsExternal() &&
String::cast(this)->IsTwoByteRepresentation();
}
bool Object::HasValidElements() {
// Dictionary is covered under FixedArray.
return IsFixedArray() || IsFixedDoubleArray() || IsExternalArray() ||
IsFixedTypedArrayBase();
}
Handle<Object> Object::NewStorageFor(Isolate* isolate,
Handle<Object> object,
Representation representation) {
if (representation.IsSmi() && object->IsUninitialized()) {
return handle(Smi::FromInt(0), isolate);
}
if (!representation.IsDouble()) return object;
double value;
if (object->IsUninitialized()) {
value = 0;
} else if (object->IsMutableHeapNumber()) {
value = HeapNumber::cast(*object)->value();
} else {
value = object->Number();
}
return isolate->factory()->NewHeapNumber(value, MUTABLE);
}
Handle<Object> Object::WrapForRead(Isolate* isolate,
Handle<Object> object,
Representation representation) {
DCHECK(!object->IsUninitialized());
if (!representation.IsDouble()) {
DCHECK(object->FitsRepresentation(representation));
return object;
}
return isolate->factory()->NewHeapNumber(HeapNumber::cast(*object)->value());
}
StringShape::StringShape(const String* str)
: type_(str->map()->instance_type()) {
set_valid();
DCHECK((type_ & kIsNotStringMask) == kStringTag);
}
StringShape::StringShape(Map* map)
: type_(map->instance_type()) {
set_valid();
DCHECK((type_ & kIsNotStringMask) == kStringTag);
}
StringShape::StringShape(InstanceType t)
: type_(static_cast<uint32_t>(t)) {
set_valid();
DCHECK((type_ & kIsNotStringMask) == kStringTag);
}
bool StringShape::IsInternalized() {
DCHECK(valid());
STATIC_ASSERT(kNotInternalizedTag != 0);
return (type_ & (kIsNotStringMask | kIsNotInternalizedMask)) ==
(kStringTag | kInternalizedTag);
}
bool String::IsOneByteRepresentation() const {
uint32_t type = map()->instance_type();
return (type & kStringEncodingMask) == kOneByteStringTag;
}
bool String::IsTwoByteRepresentation() const {
uint32_t type = map()->instance_type();
return (type & kStringEncodingMask) == kTwoByteStringTag;
}
bool String::IsOneByteRepresentationUnderneath() {
uint32_t type = map()->instance_type();
STATIC_ASSERT(kIsIndirectStringTag != 0);
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
DCHECK(IsFlat());
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
case kOneByteStringTag:
return true;
case kTwoByteStringTag:
return false;
default: // Cons or sliced string. Need to go deeper.
return GetUnderlying()->IsOneByteRepresentation();
}
}
bool String::IsTwoByteRepresentationUnderneath() {
uint32_t type = map()->instance_type();
STATIC_ASSERT(kIsIndirectStringTag != 0);
STATIC_ASSERT((kIsIndirectStringMask & kStringEncodingMask) == 0);
DCHECK(IsFlat());
switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
case kOneByteStringTag:
return false;
case kTwoByteStringTag:
return true;
default: // Cons or sliced string. Need to go deeper.
return GetUnderlying()->IsTwoByteRepresentation();
}
}
bool String::HasOnlyOneByteChars() {
uint32_t type = map()->instance_type();
return (type & kOneByteDataHintMask) == kOneByteDataHintTag ||
IsOneByteRepresentation();
}
bool StringShape::IsCons() {
return (type_ & kStringRepresentationMask) == kConsStringTag;
}
bool StringShape::IsSliced() {
return (type_ & kStringRepresentationMask) == kSlicedStringTag;
}
bool StringShape::IsIndirect() {
return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag;
}
bool StringShape::IsExternal() {
return (type_ & kStringRepresentationMask) == kExternalStringTag;
}
bool StringShape::IsSequential() {
return (type_ & kStringRepresentationMask) == kSeqStringTag;
}
StringRepresentationTag StringShape::representation_tag() {
uint32_t tag = (type_ & kStringRepresentationMask);
return static_cast<StringRepresentationTag>(tag);
}
uint32_t StringShape::encoding_tag() {
return type_ & kStringEncodingMask;
}
uint32_t StringShape::full_representation_tag() {
return (type_ & (kStringRepresentationMask | kStringEncodingMask));
}
STATIC_ASSERT((kStringRepresentationMask | kStringEncodingMask) ==
Internals::kFullStringRepresentationMask);
STATIC_ASSERT(static_cast<uint32_t>(kStringEncodingMask) ==
Internals::kStringEncodingMask);
bool StringShape::IsSequentialOneByte() {
return full_representation_tag() == (kSeqStringTag | kOneByteStringTag);
}
bool StringShape::IsSequentialTwoByte() {
return full_representation_tag() == (kSeqStringTag | kTwoByteStringTag);
}
bool StringShape::IsExternalOneByte() {
return full_representation_tag() == (kExternalStringTag | kOneByteStringTag);
}
STATIC_ASSERT((kExternalStringTag | kOneByteStringTag) ==
Internals::kExternalOneByteRepresentationTag);
STATIC_ASSERT(v8::String::ONE_BYTE_ENCODING == kOneByteStringTag);
bool StringShape::IsExternalTwoByte() {
return full_representation_tag() == (kExternalStringTag | kTwoByteStringTag);
}
STATIC_ASSERT((kExternalStringTag | kTwoByteStringTag) ==
Internals::kExternalTwoByteRepresentationTag);
STATIC_ASSERT(v8::String::TWO_BYTE_ENCODING == kTwoByteStringTag);
uc32 FlatStringReader::Get(int index) {
DCHECK(0 <= index && index <= length_);
if (is_one_byte_) {
return static_cast<const byte*>(start_)[index];
} else {
return static_cast<const uc16*>(start_)[index];
}
}
Handle<Object> StringTableShape::AsHandle(Isolate* isolate, HashTableKey* key) {
return key->AsHandle(isolate);
}
Handle<Object> CompilationCacheShape::AsHandle(Isolate* isolate,
HashTableKey* key) {
return key->AsHandle(isolate);
}
Handle<Object> CodeCacheHashTableShape::AsHandle(Isolate* isolate,
HashTableKey* key) {
return key->AsHandle(isolate);
}
template <typename Char>
class SequentialStringKey : public HashTableKey {
public:
explicit SequentialStringKey(Vector<const Char> string, uint32_t seed)
: string_(string), hash_field_(0), seed_(seed) { }
virtual uint32_t Hash() OVERRIDE {
hash_field_ = StringHasher::HashSequentialString<Char>(string_.start(),
string_.length(),
seed_);
uint32_t result = hash_field_ >> String::kHashShift;
DCHECK(result != 0); // Ensure that the hash value of 0 is never computed.
return result;
}
virtual uint32_t HashForObject(Object* other) OVERRIDE {
return String::cast(other)->Hash();
}
Vector<const Char> string_;
uint32_t hash_field_;
uint32_t seed_;
};
class OneByteStringKey : public SequentialStringKey<uint8_t> {
public:
OneByteStringKey(Vector<const uint8_t> str, uint32_t seed)
: SequentialStringKey<uint8_t>(str, seed) { }
virtual bool IsMatch(Object* string) OVERRIDE {
return String::cast(string)->IsOneByteEqualTo(string_);
}
virtual Handle<Object> AsHandle(Isolate* isolate) OVERRIDE;
};
class SeqOneByteSubStringKey : public HashTableKey {
public:
SeqOneByteSubStringKey(Handle<SeqOneByteString> string, int from, int length)
: string_(string), from_(from), length_(length) {
DCHECK(string_->IsSeqOneByteString());
}
virtual uint32_t Hash() OVERRIDE {
DCHECK(length_ >= 0);
DCHECK(from_ + length_ <= string_->length());
const uint8_t* chars = string_->GetChars() + from_;
hash_field_ = StringHasher::HashSequentialString(
chars, length_, string_->GetHeap()->HashSeed());
uint32_t result = hash_field_ >> String::kHashShift;
DCHECK(result != 0); // Ensure that the hash value of 0 is never computed.
return result;
}
virtual uint32_t HashForObject(Object* other) OVERRIDE {
return String::cast(other)->Hash();
}
virtual bool IsMatch(Object* string) OVERRIDE;
virtual Handle<Object> AsHandle(Isolate* isolate) OVERRIDE;
private:
Handle<SeqOneByteString> string_;
int from_;
int length_;
uint32_t hash_field_;
};
class TwoByteStringKey : public SequentialStringKey<uc16> {
public:
explicit TwoByteStringKey(Vector<const uc16> str, uint32_t seed)
: SequentialStringKey<uc16>(str, seed) { }
virtual bool IsMatch(Object* string) OVERRIDE {
return String::cast(string)->IsTwoByteEqualTo(string_);
}
virtual Handle<Object> AsHandle(Isolate* isolate) OVERRIDE;
};
// Utf8StringKey carries a vector of chars as key.
class Utf8StringKey : public HashTableKey {
public:
explicit Utf8StringKey(Vector<const char> string, uint32_t seed)
: string_(string), hash_field_(0), seed_(seed) { }
virtual bool IsMatch(Object* string) OVERRIDE {
return String::cast(string)->IsUtf8EqualTo(string_);
}
virtual uint32_t Hash() OVERRIDE {
if (hash_field_ != 0) return hash_field_ >> String::kHashShift;
hash_field_ = StringHasher::ComputeUtf8Hash(string_, seed_, &chars_);
uint32_t result = hash_field_ >> String::kHashShift;
DCHECK(result != 0); // Ensure that the hash value of 0 is never computed.
return result;
}
virtual uint32_t HashForObject(Object* other) OVERRIDE {
return String::cast(other)->Hash();
}
virtual Handle<Object> AsHandle(Isolate* isolate) OVERRIDE {
if (hash_field_ == 0) Hash();
return isolate->factory()->NewInternalizedStringFromUtf8(
string_, chars_, hash_field_);
}
Vector<const char> string_;
uint32_t hash_field_;
int chars_; // Caches the number of characters when computing the hash code.
uint32_t seed_;
};
bool Object::IsNumber() const {
return IsSmi() || IsHeapNumber();
}
TYPE_CHECKER(ByteArray, BYTE_ARRAY_TYPE)
TYPE_CHECKER(FreeSpace, FREE_SPACE_TYPE)
bool Object::IsFiller() const {
if (!Object::IsHeapObject()) return false;
InstanceType instance_type = HeapObject::cast(this)->map()->instance_type();
return instance_type == FREE_SPACE_TYPE || instance_type == FILLER_TYPE;
}
bool Object::IsExternalArray() const {
if (!Object::IsHeapObject())
return false;
InstanceType instance_type =
HeapObject::cast(this)->map()->instance_type();
return (instance_type >= FIRST_EXTERNAL_ARRAY_TYPE &&
instance_type <= LAST_EXTERNAL_ARRAY_TYPE);
}
#define TYPED_ARRAY_TYPE_CHECKER(Type, type, TYPE, ctype, size) \
TYPE_CHECKER(External##Type##Array, EXTERNAL_##TYPE##_ARRAY_TYPE) \
TYPE_CHECKER(Fixed##Type##Array, FIXED_##TYPE##_ARRAY_TYPE)
TYPED_ARRAYS(TYPED_ARRAY_TYPE_CHECKER)
#undef TYPED_ARRAY_TYPE_CHECKER
bool Object::IsFixedTypedArrayBase() const {
if (!Object::IsHeapObject()) return false;
InstanceType instance_type =
HeapObject::cast(this)->map()->instance_type();
return (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE &&
instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE);
}
bool Object::IsJSReceiver() const {
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
return IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_RECEIVER_TYPE;
}
bool Object::IsJSObject() const {
STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
return IsHeapObject() &&
HeapObject::cast(this)->map()->instance_type() >= FIRST_JS_OBJECT_TYPE;
}
bool Object::IsJSProxy() const {
if (!Object::IsHeapObject()) return false;
return HeapObject::cast(this)->map()->IsJSProxyMap();
}
TYPE_CHECKER(JSFunctionProxy, JS_FUNCTION_PROXY_TYPE)
TYPE_CHECKER(JSSet, JS_SET_TYPE)
TYPE_CHECKER(JSMap, JS_MAP_TYPE)
TYPE_CHECKER(JSSetIterator, JS_SET_ITERATOR_TYPE)
TYPE_CHECKER(JSMapIterator, JS_MAP_ITERATOR_TYPE)
TYPE_CHECKER(JSWeakMap, JS_WEAK_MAP_TYPE)
TYPE_CHECKER(JSWeakSet, JS_WEAK_SET_TYPE)
TYPE_CHECKER(JSContextExtensionObject, JS_CONTEXT_EXTENSION_OBJECT_TYPE)
TYPE_CHECKER(Map, MAP_TYPE)
TYPE_CHECKER(FixedArray, FIXED_ARRAY_TYPE)
TYPE_CHECKER(FixedDoubleArray, FIXED_DOUBLE_ARRAY_TYPE)
TYPE_CHECKER(ConstantPoolArray, CONSTANT_POOL_ARRAY_TYPE)
bool Object::IsJSWeakCollection() const {
return IsJSWeakMap() || IsJSWeakSet();
}
bool Object::IsDescriptorArray() const {
return IsFixedArray();
}
bool Object::IsTransitionArray() const {
return IsFixedArray();
}
bool Object::IsTypeFeedbackVector() const { return IsFixedArray(); }
bool Object::IsDeoptimizationInputData() const {
// Must be a fixed array.
if (!IsFixedArray()) return false;
// There's no sure way to detect the difference between a fixed array and
// a deoptimization data array. Since this is used for asserts we can
// check that the length is zero or else the fixed size plus a multiple of
// the entry size.
int length = FixedArray::cast(this)->length();
if (length == 0) return true;
length -= DeoptimizationInputData::kFirstDeoptEntryIndex;
return length >= 0 && length % DeoptimizationInputData::kDeoptEntrySize == 0;
}
bool Object::IsDeoptimizationOutputData() const {
if (!IsFixedArray()) return false;
// There's actually no way to see the difference between a fixed array and
// a deoptimization data array. Since this is used for asserts we can check
// that the length is plausible though.
if (FixedArray::cast(this)->length() % 2 != 0) return false;
return true;
}
bool Object::IsDependentCode() const {
if (!IsFixedArray()) return false;
// There's actually no way to see the difference between a fixed array and
// a dependent codes array.
return true;
}
bool Object::IsContext() const {
if (!Object::IsHeapObject()) return false;
Map* map = HeapObject::cast(this)->map();
Heap* heap = map->GetHeap();
return (map == heap->function_context_map() ||
map == heap->catch_context_map() ||
map == heap->with_context_map() ||
map == heap->native_context_map() ||
map == heap->block_context_map() ||
map == heap->module_context_map() ||
map == heap->global_context_map());
}
bool Object::IsNativeContext() const {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->native_context_map();
}
bool Object::IsGlobalContextTable() const {
if (!Object::IsHeapObject()) return false;
Map* map = HeapObject::cast(this)->map();
Heap* heap = map->GetHeap();
return map == heap->global_context_table_map();
}
bool Object::IsScopeInfo() const {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->scope_info_map();
}
TYPE_CHECKER(JSFunction, JS_FUNCTION_TYPE)
template <> inline bool Is<JSFunction>(Object* obj) {
return obj->IsJSFunction();
}
TYPE_CHECKER(Code, CODE_TYPE)
TYPE_CHECKER(Oddball, ODDBALL_TYPE)
TYPE_CHECKER(Cell, CELL_TYPE)
TYPE_CHECKER(PropertyCell, PROPERTY_CELL_TYPE)
TYPE_CHECKER(WeakCell, WEAK_CELL_TYPE)
TYPE_CHECKER(SharedFunctionInfo, SHARED_FUNCTION_INFO_TYPE)
TYPE_CHECKER(JSGeneratorObject, JS_GENERATOR_OBJECT_TYPE)
TYPE_CHECKER(JSModule, JS_MODULE_TYPE)
TYPE_CHECKER(JSValue, JS_VALUE_TYPE)
TYPE_CHECKER(JSDate, JS_DATE_TYPE)
TYPE_CHECKER(JSMessageObject, JS_MESSAGE_OBJECT_TYPE)
bool Object::IsStringWrapper() const {
return IsJSValue() && JSValue::cast(this)->value()->IsString();
}
TYPE_CHECKER(Foreign, FOREIGN_TYPE)
bool Object::IsBoolean() const {
return IsOddball() &&
((Oddball::cast(this)->kind() & Oddball::kNotBooleanMask) == 0);
}
TYPE_CHECKER(JSArray, JS_ARRAY_TYPE)
TYPE_CHECKER(JSArrayBuffer, JS_ARRAY_BUFFER_TYPE)
TYPE_CHECKER(JSTypedArray, JS_TYPED_ARRAY_TYPE)
TYPE_CHECKER(JSDataView, JS_DATA_VIEW_TYPE)
bool Object::IsJSArrayBufferView() const {
return IsJSDataView() || IsJSTypedArray();
}
TYPE_CHECKER(JSRegExp, JS_REGEXP_TYPE)
template <> inline bool Is<JSArray>(Object* obj) {
return obj->IsJSArray();
}
bool Object::IsHashTable() const {
return Object::IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->hash_table_map();
}
bool Object::IsWeakHashTable() const {
return IsHashTable();
}
bool Object::IsDictionary() const {
return IsHashTable() &&
this != HeapObject::cast(this)->GetHeap()->string_table();
}
bool Object::IsNameDictionary() const {
return IsDictionary();
}
bool Object::IsSeededNumberDictionary() const {
return IsDictionary();
}
bool Object::IsUnseededNumberDictionary() const {
return IsDictionary();
}
bool Object::IsStringTable() const {
return IsHashTable();
}
bool Object::IsJSFunctionResultCache() const {
if (!IsFixedArray()) return false;
const FixedArray* self = FixedArray::cast(this);
int length = self->length();
if (length < JSFunctionResultCache::kEntriesIndex) return false;
if ((length - JSFunctionResultCache::kEntriesIndex)
% JSFunctionResultCache::kEntrySize != 0) {
return false;
}
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
// TODO(svenpanne) We use const_cast here and below to break our dependency
// cycle between the predicates and the verifiers. This can be removed when
// the verifiers are const-correct, too.
reinterpret_cast<JSFunctionResultCache*>(const_cast<Object*>(this))->
JSFunctionResultCacheVerify();
}
#endif
return true;
}
bool Object::IsNormalizedMapCache() const {
return NormalizedMapCache::IsNormalizedMapCache(this);
}
int NormalizedMapCache::GetIndex(Handle<Map> map) {
return map->Hash() % NormalizedMapCache::kEntries;
}
bool NormalizedMapCache::IsNormalizedMapCache(const Object* obj) {
if (!obj->IsFixedArray()) return false;
if (FixedArray::cast(obj)->length() != NormalizedMapCache::kEntries) {
return false;
}
#ifdef VERIFY_HEAP
if (FLAG_verify_heap) {
reinterpret_cast<NormalizedMapCache*>(const_cast<Object*>(obj))->
NormalizedMapCacheVerify();
}
#endif
return true;
}
bool Object::IsCompilationCacheTable() const {
return IsHashTable();
}
bool Object::IsCodeCacheHashTable() const {
return IsHashTable();
}
bool Object::IsPolymorphicCodeCacheHashTable() const {
return IsHashTable();
}
bool Object::IsMapCache() const {
return IsHashTable();
}
bool Object::IsObjectHashTable() const {
return IsHashTable();
}
bool Object::IsOrderedHashTable() const {
return IsHeapObject() &&
HeapObject::cast(this)->map() ==
HeapObject::cast(this)->GetHeap()->ordered_hash_table_map();
}
bool Object::IsOrderedHashSet() const {
return IsOrderedHashTable();
}
bool Object::IsOrderedHashMap() const {
return IsOrderedHashTable();
}
bool Object::IsPrimitive() const {
return IsOddball() || IsNumber() || IsString();
}
bool Object::IsJSGlobalProxy() const {
bool result = IsHeapObject() &&
(HeapObject::cast(this)->map()->instance_type() ==
JS_GLOBAL_PROXY_TYPE);
DCHECK(!result ||
HeapObject::cast(this)->map()->is_access_check_needed());
return result;
}
bool Object::IsGlobalObject() const {
if (!IsHeapObject()) return false;
InstanceType type = HeapObject::cast(this)->map()->instance_type();
return type == JS_GLOBAL_OBJECT_TYPE ||
type == JS_BUILTINS_OBJECT_TYPE;
}
TYPE_CHECKER(JSGlobalObject, JS_GLOBAL_OBJECT_TYPE)
TYPE_CHECKER(JSBuiltinsObject, JS_BUILTINS_OBJECT_TYPE)
bool Object::IsUndetectableObject() const {
return IsHeapObject()
&& HeapObject::cast(this)->map()->is_undetectable();
}
bool Object::IsAccessCheckNeeded() const {
if (!IsHeapObject()) return false;
if (IsJSGlobalProxy()) {
const JSGlobalProxy* proxy = JSGlobalProxy::cast(this);
GlobalObject* global = proxy->GetIsolate()->context()->global_object();
return proxy->IsDetachedFrom(global);
}
return HeapObject::cast(this)->map()->is_access_check_needed();
}
bool Object::IsStruct() const {
if (!IsHeapObject()) return false;
switch (HeapObject::cast(this)->map()->instance_type()) {
#define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: return true;
STRUCT_LIST(MAKE_STRUCT_CASE)
#undef MAKE_STRUCT_CASE
default: return false;
}
}
#define MAKE_STRUCT_PREDICATE(NAME, Name, name) \
bool Object::Is##Name() const { \
return Object::IsHeapObject() \
&& HeapObject::cast(this)->map()->instance_type() == NAME##_TYPE; \
}
STRUCT_LIST(MAKE_STRUCT_PREDICATE)
#undef MAKE_STRUCT_PREDICATE
bool Object::IsUndefined() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUndefined;
}
bool Object::IsNull() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kNull;
}
bool Object::IsTheHole() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTheHole;
}
bool Object::IsException() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kException;
}
bool Object::IsUninitialized() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kUninitialized;
}
bool Object::IsTrue() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kTrue;
}
bool Object::IsFalse() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kFalse;
}
bool Object::IsArgumentsMarker() const {
return IsOddball() && Oddball::cast(this)->kind() == Oddball::kArgumentMarker;
}
double Object::Number() {
DCHECK(IsNumber());
return IsSmi()
? static_cast<double>(reinterpret_cast<Smi*>(this)->value())
: reinterpret_cast<HeapNumber*>(this)->value();
}
bool Object::IsNaN() const {
return this->IsHeapNumber() && std::isnan(HeapNumber::cast(this)->value());
}
bool Object::IsMinusZero() const {
return this->IsHeapNumber() &&
i::IsMinusZero(HeapNumber::cast(this)->value());
}
MaybeHandle<Smi> Object::ToSmi(Isolate* isolate, Handle<Object> object) {
if (object->IsSmi()) return Handle<Smi>::cast(object);
if (object->IsHeapNumber()) {
double value = Handle<HeapNumber>::cast(object)->value();
int int_value = FastD2I(value);
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
return handle(Smi::FromInt(int_value), isolate);
}
}
return Handle<Smi>();
}
MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate,
Handle<Object> object) {
return ToObject(
isolate, object, handle(isolate->context()->native_context(), isolate));
}
bool Object::HasSpecificClassOf(String* name) {
return this->IsJSObject() && (JSObject::cast(this)->class_name() == name);
}
MaybeHandle<Object> Object::GetProperty(Handle<Object> object,
Handle<Name> name) {
LookupIterator it(object, name);
return GetProperty(&it);
}
MaybeHandle<Object> Object::GetElement(Isolate* isolate,
Handle<Object> object,
uint32_t index) {
// GetElement can trigger a getter which can cause allocation.
// This was not always the case. This DCHECK is here to catch
// leftover incorrect uses.
DCHECK(AllowHeapAllocation::IsAllowed());
return Object::GetElementWithReceiver(isolate, object, object, index);
}
Handle<Object> Object::GetPrototypeSkipHiddenPrototypes(
Isolate* isolate, Handle<Object> receiver) {
PrototypeIterator iter(isolate, receiver);
while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) {
if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
return PrototypeIterator::GetCurrent(iter);
}
iter.Advance();
}
return PrototypeIterator::GetCurrent(iter);
}
MaybeHandle<Object> Object::GetPropertyOrElement(Handle<Object> object,
Handle<Name> name) {
uint32_t index;
Isolate* isolate = name->GetIsolate();
if (name->AsArrayIndex(&index)) return GetElement(isolate, object, index);
return GetProperty(object, name);
}
MaybeHandle<Object> Object::GetProperty(Isolate* isolate,
Handle<Object> object,
const char* name) {
Handle<String> str = isolate->factory()->InternalizeUtf8String(name);
DCHECK(!str.is_null());
#ifdef DEBUG
uint32_t index; // Assert that the name is not an array index.
DCHECK(!str->AsArrayIndex(&index));
#endif // DEBUG
return GetProperty(object, str);
}
MaybeHandle<Object> JSProxy::GetElementWithHandler(Handle<JSProxy> proxy,
Handle<Object> receiver,
uint32_t index) {
return GetPropertyWithHandler(
proxy, receiver, proxy->GetIsolate()->factory()->Uint32ToString(index));
}
MaybeHandle<Object> JSProxy::SetElementWithHandler(Handle<JSProxy> proxy,
Handle<JSReceiver> receiver,
uint32_t index,
Handle<Object> value,
StrictMode strict_mode) {
Isolate* isolate = proxy->GetIsolate();
Handle<String> name = isolate->factory()->Uint32ToString(index);
return SetPropertyWithHandler(proxy, receiver, name, value, strict_mode);
}
Maybe<bool> JSProxy::HasElementWithHandler(Handle<JSProxy> proxy,
uint32_t index) {
Isolate* isolate = proxy->GetIsolate();
Handle<String> name = isolate->factory()->Uint32ToString(index);
return HasPropertyWithHandler(proxy, name);
}
#define FIELD_ADDR(p, offset) \
(reinterpret_cast<byte*>(p) + offset - kHeapObjectTag)
#define FIELD_ADDR_CONST(p, offset) \
(reinterpret_cast<const byte*>(p) + offset - kHeapObjectTag)
#define READ_FIELD(p, offset) \
(*reinterpret_cast<Object* const*>(FIELD_ADDR_CONST(p, offset)))
#define ACQUIRE_READ_FIELD(p, offset) \
reinterpret_cast<Object*>(base::Acquire_Load( \
reinterpret_cast<const base::AtomicWord*>(FIELD_ADDR_CONST(p, offset))))
#define NOBARRIER_READ_FIELD(p, offset) \
reinterpret_cast<Object*>(base::NoBarrier_Load( \
reinterpret_cast<const base::AtomicWord*>(FIELD_ADDR_CONST(p, offset))))
#define WRITE_FIELD(p, offset, value) \
(*reinterpret_cast<Object**>(FIELD_ADDR(p, offset)) = value)
#define RELEASE_WRITE_FIELD(p, offset, value) \
base::Release_Store( \
reinterpret_cast<base::AtomicWord*>(FIELD_ADDR(p, offset)), \
reinterpret_cast<base::AtomicWord>(value));
#define NOBARRIER_WRITE_FIELD(p, offset, value) \
base::NoBarrier_Store( \
reinterpret_cast<base::AtomicWord*>(FIELD_ADDR(p, offset)), \
reinterpret_cast<base::AtomicWord>(value));
#define WRITE_BARRIER(heap, object, offset, value) \
heap->incremental_marking()->RecordWrite( \
object, HeapObject::RawField(object, offset), value); \
if (heap->InNewSpace(value)) { \
heap->RecordWrite(object->address(), offset); \
}
#define CONDITIONAL_WRITE_BARRIER(heap, object, offset, value, mode) \
if (mode == UPDATE_WRITE_BARRIER) { \
heap->incremental_marking()->RecordWrite( \
object, HeapObject::RawField(object, offset), value); \
if (heap->InNewSpace(value)) { \
heap->RecordWrite(object->address(), offset); \
} \
}
#ifndef V8_TARGET_ARCH_MIPS
#define READ_DOUBLE_FIELD(p, offset) \
(*reinterpret_cast<const double*>(FIELD_ADDR_CONST(p, offset)))
#else // V8_TARGET_ARCH_MIPS
// Prevent gcc from using load-double (mips ldc1) on (possibly)
// non-64-bit aligned HeapNumber::value.
static inline double read_double_field(const void* p, int offset) {
union conversion {
double d;
uint32_t u[2];
} c;
c.u[0] = (*reinterpret_cast<const uint32_t*>(
FIELD_ADDR_CONST(p, offset)));
c.u[1] = (*reinterpret_cast<const uint32_t*>(
FIELD_ADDR_CONST(p, offset + 4)));
return c.d;
}
#define READ_DOUBLE_FIELD(p, offset) read_double_field(p, offset)
#endif // V8_TARGET_ARCH_MIPS
#ifndef V8_TARGET_ARCH_MIPS
#define WRITE_DOUBLE_FIELD(p, offset, value) \
(*reinterpret_cast<double*>(FIELD_ADDR(p, offset)) = value)
#else // V8_TARGET_ARCH_MIPS
// Prevent gcc from using store-double (mips sdc1) on (possibly)
// non-64-bit aligned HeapNumber::value.
static inline void write_double_field(void* p, int offset,
double value) {
union conversion {
double d;
uint32_t u[2];
} c;
c.d = value;
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset))) = c.u[0];
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset + 4))) = c.u[1];
}
#define WRITE_DOUBLE_FIELD(p, offset, value) \
write_double_field(p, offset, value)
#endif // V8_TARGET_ARCH_MIPS
#define READ_INT_FIELD(p, offset) \
(*reinterpret_cast<const int*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_INT_FIELD(p, offset, value) \
(*reinterpret_cast<int*>(FIELD_ADDR(p, offset)) = value)
#define READ_INTPTR_FIELD(p, offset) \
(*reinterpret_cast<const intptr_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_INTPTR_FIELD(p, offset, value) \
(*reinterpret_cast<intptr_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_UINT32_FIELD(p, offset) \
(*reinterpret_cast<const uint32_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_UINT32_FIELD(p, offset, value) \
(*reinterpret_cast<uint32_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_INT32_FIELD(p, offset) \
(*reinterpret_cast<const int32_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_INT32_FIELD(p, offset, value) \
(*reinterpret_cast<int32_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_INT64_FIELD(p, offset) \
(*reinterpret_cast<const int64_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_INT64_FIELD(p, offset, value) \
(*reinterpret_cast<int64_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_SHORT_FIELD(p, offset) \
(*reinterpret_cast<const uint16_t*>(FIELD_ADDR_CONST(p, offset)))
#define WRITE_SHORT_FIELD(p, offset, value) \
(*reinterpret_cast<uint16_t*>(FIELD_ADDR(p, offset)) = value)
#define READ_BYTE_FIELD(p, offset) \
(*reinterpret_cast<const byte*>(FIELD_ADDR_CONST(p, offset)))
#define NOBARRIER_READ_BYTE_FIELD(p, offset) \
static_cast<byte>(base::NoBarrier_Load( \
reinterpret_cast<base::Atomic8*>(FIELD_ADDR(p, offset))))
#define WRITE_BYTE_FIELD(p, offset, value) \
(*reinterpret_cast<byte*>(FIELD_ADDR(p, offset)) = value)
#define NOBARRIER_WRITE_BYTE_FIELD(p, offset, value) \
base::NoBarrier_Store( \
reinterpret_cast<base::Atomic8*>(FIELD_ADDR(p, offset)), \
static_cast<base::Atomic8>(value));
Object** HeapObject::RawField(HeapObject* obj, int byte_offset) {
return reinterpret_cast<Object**>(FIELD_ADDR(obj, byte_offset));
}
int Smi::value() const {
return Internals::SmiValue(this);
}
Smi* Smi::FromInt(int value) {
DCHECK(Smi::IsValid(value));
return reinterpret_cast<Smi*>(Internals::IntToSmi(value));
}
Smi* Smi::FromIntptr(intptr_t value) {
DCHECK(Smi::IsValid(value));
int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
return reinterpret_cast<Smi*>((value << smi_shift_bits) | kSmiTag);
}
bool Smi::IsValid(intptr_t value) {
bool result = Internals::IsValidSmi(value);
DCHECK_EQ(result, value >= kMinValue && value <= kMaxValue);
return result;
}
MapWord MapWord::FromMap(const Map* map) {
return MapWord(reinterpret_cast<uintptr_t>(map));
}
Map* MapWord::ToMap() {
return reinterpret_cast<Map*>(value_);
}
bool MapWord::IsForwardingAddress() {
return HAS_SMI_TAG(reinterpret_cast<Object*>(value_));
}
MapWord MapWord::FromForwardingAddress(HeapObject* object) {
Address raw = reinterpret_cast<Address>(object) - kHeapObjectTag;
return MapWord(reinterpret_cast<uintptr_t>(raw));
}
HeapObject* MapWord::ToForwardingAddress() {
DCHECK(IsForwardingAddress());
return HeapObject::FromAddress(reinterpret_cast<Address>(value_));
}
#ifdef VERIFY_HEAP
void HeapObject::VerifyObjectField(int offset) {
VerifyPointer(READ_FIELD(this, offset));
}
void HeapObject::VerifySmiField(int offset) {
CHECK(READ_FIELD(this, offset)->IsSmi());
}
#endif
Heap* HeapObject::GetHeap() const {
Heap* heap =
MemoryChunk::FromAddress(reinterpret_cast<const byte*>(this))->heap();
SLOW_DCHECK(heap != NULL);
return heap;
}
Isolate* HeapObject::GetIsolate() const {
return GetHeap()->isolate();
}
Map* HeapObject::map() const {
#ifdef DEBUG
// Clear mark potentially added by PathTracer.
uintptr_t raw_value =
map_word().ToRawValue() & ~static_cast<uintptr_t>(PathTracer::kMarkTag);
return MapWord::FromRawValue(raw_value).ToMap();
#else
return map_word().ToMap();
#endif
}
void HeapObject::set_map(Map* value) {
set_map_word(MapWord::FromMap(value));
if (value != NULL) {
// TODO(1600) We are passing NULL as a slot because maps can never be on
// evacuation candidate.
value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value);
}
}
Map* HeapObject::synchronized_map() {
return synchronized_map_word().ToMap();
}
void HeapObject::synchronized_set_map(Map* value) {
synchronized_set_map_word(MapWord::FromMap(value));
if (value != NULL) {
// TODO(1600) We are passing NULL as a slot because maps can never be on
// evacuation candidate.
value->GetHeap()->incremental_marking()->RecordWrite(this, NULL, value);
}
}
void HeapObject::synchronized_set_map_no_write_barrier(Map* value) {
synchronized_set_map_word(MapWord::FromMap(value));
}
// Unsafe accessor omitting write barrier.
void HeapObject::set_map_no_write_barrier(Map* value) {
set_map_word(MapWord::FromMap(value));
}
MapWord HeapObject::map_word() const {
return MapWord(
reinterpret_cast<uintptr_t>(NOBARRIER_READ_FIELD(this, kMapOffset)));
}
void HeapObject::set_map_word(MapWord map_word) {
NOBARRIER_WRITE_FIELD(
this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
}
MapWord HeapObject::synchronized_map_word() const {
return MapWord(
reinterpret_cast<uintptr_t>(ACQUIRE_READ_FIELD(this, kMapOffset)));
}
void HeapObject::synchronized_set_map_word(MapWord map_word) {
RELEASE_WRITE_FIELD(
this, kMapOffset, reinterpret_cast<Object*>(map_word.value_));
}
HeapObject* HeapObject::FromAddress(Address address) {
DCHECK_TAG_ALIGNED(address);
return reinterpret_cast<HeapObject*>(address + kHeapObjectTag);
}
Address HeapObject::address() {
return reinterpret_cast<Address>(this) - kHeapObjectTag;
}
int HeapObject::Size() {
return SizeFromMap(map());
}
bool HeapObject::MayContainRawValues() {
InstanceType type = map()->instance_type();
if (type <= LAST_NAME_TYPE) {
if (type == SYMBOL_TYPE) {
return false;
}
DCHECK(type < FIRST_NONSTRING_TYPE);
// There are four string representations: sequential strings, external
// strings, cons strings, and sliced strings.
// Only the former two contain raw values and no heap pointers (besides the
// map-word).
return ((type & kIsIndirectStringMask) != kIsIndirectStringTag);
}
// The ConstantPoolArray contains heap pointers, but also raw values.
if (type == CONSTANT_POOL_ARRAY_TYPE) return true;
return (type <= LAST_DATA_TYPE);
}
void HeapObject::IteratePointers(ObjectVisitor* v, int start, int end) {
v->VisitPointers(reinterpret_cast<Object**>(FIELD_ADDR(this, start)),
reinterpret_cast<Object**>(FIELD_ADDR(this, end)));
}
void HeapObject::IteratePointer(ObjectVisitor* v, int offset) {
v->VisitPointer(reinterpret_cast<Object**>(FIELD_ADDR(this, offset)));
}
void HeapObject::IterateNextCodeLink(ObjectVisitor* v, int offset) {
v->VisitNextCodeLink(reinterpret_cast<Object**>(FIELD_ADDR(this, offset)));
}
double HeapNumber::value() const {
return READ_DOUBLE_FIELD(this, kValueOffset);
}
void HeapNumber::set_value(double value) {
WRITE_DOUBLE_FIELD(this, kValueOffset, value);
}
int HeapNumber::get_exponent() {
return ((READ_INT_FIELD(this, kExponentOffset) & kExponentMask) >>
kExponentShift) - kExponentBias;
}
int HeapNumber::get_sign() {
return READ_INT_FIELD(this, kExponentOffset) & kSignMask;
}
ACCESSORS(JSObject, properties, FixedArray, kPropertiesOffset)
Object** FixedArray::GetFirstElementAddress() {
return reinterpret_cast<Object**>(FIELD_ADDR(this, OffsetOfElementAt(0)));
}
bool FixedArray::ContainsOnlySmisOrHoles() {
Object* the_hole = GetHeap()->the_hole_value();
Object** current = GetFirstElementAddress();
for (int i = 0; i < length(); ++i) {
Object* candidate = *current++;
if (!candidate->IsSmi() && candidate != the_hole) return false;
}
return true;
}
FixedArrayBase* JSObject::elements() const {
Object* array = READ_FIELD(this, kElementsOffset);
return static_cast<FixedArrayBase*>(array);
}
void JSObject::ValidateElements(Handle<JSObject> object) {
#ifdef ENABLE_SLOW_DCHECKS
if (FLAG_enable_slow_asserts) {
ElementsAccessor* accessor = object->GetElementsAccessor();
accessor->Validate(object);
}
#endif
}
void AllocationSite::Initialize() {
set_transition_info(Smi::FromInt(0));
SetElementsKind(GetInitialFastElementsKind());
set_nested_site(Smi::FromInt(0));
set_pretenure_data(Smi::FromInt(0));
set_pretenure_create_count(Smi::FromInt(0));
set_dependent_code(DependentCode::cast(GetHeap()->empty_fixed_array()),
SKIP_WRITE_BARRIER);
}
void AllocationSite::MarkZombie() {
DCHECK(!IsZombie());
Initialize();
set_pretenure_decision(kZombie);
}
// Heuristic: We only need to create allocation site info if the boilerplate
// elements kind is the initial elements kind.
AllocationSiteMode AllocationSite::GetMode(
ElementsKind boilerplate_elements_kind) {
if (FLAG_pretenuring_call_new ||
IsFastSmiElementsKind(boilerplate_elements_kind)) {
return TRACK_ALLOCATION_SITE;
}
return DONT_TRACK_ALLOCATION_SITE;
}
AllocationSiteMode AllocationSite::GetMode(ElementsKind from,
ElementsKind to) {
if (FLAG_pretenuring_call_new ||
(IsFastSmiElementsKind(from) &&
IsMoreGeneralElementsKindTransition(from, to))) {
return TRACK_ALLOCATION_SITE;
}
return DONT_TRACK_ALLOCATION_SITE;
}
inline bool AllocationSite::CanTrack(InstanceType type) {
if (FLAG_allocation_site_pretenuring) {
return type == JS_ARRAY_TYPE ||
type == JS_OBJECT_TYPE ||
type < FIRST_NONSTRING_TYPE;
}
return type == JS_ARRAY_TYPE;
}
inline DependentCode::DependencyGroup AllocationSite::ToDependencyGroup(
Reason reason) {
switch (reason) {
case TENURING:
return DependentCode::kAllocationSiteTenuringChangedGroup;
break;
case TRANSITIONS:
return DependentCode::kAllocationSiteTransitionChangedGroup;
break;
}
UNREACHABLE();
return DependentCode::kAllocationSiteTransitionChangedGroup;
}
inline void AllocationSite::set_memento_found_count(int count) {
int value = pretenure_data()->value();
// Verify that we can count more mementos than we can possibly find in one
// new space collection.
DCHECK((GetHeap()->MaxSemiSpaceSize() /
(StaticVisitorBase::kMinObjectSizeInWords * kPointerSize +
AllocationMemento::kSize)) < MementoFoundCountBits::kMax);
DCHECK(count < MementoFoundCountBits::kMax);
set_pretenure_data(
Smi::FromInt(MementoFoundCountBits::update(value, count)),
SKIP_WRITE_BARRIER);
}
inline bool AllocationSite::IncrementMementoFoundCount() {
if (IsZombie()) return false;
int value = memento_found_count();
set_memento_found_count(value + 1);
return memento_found_count() == kPretenureMinimumCreated;
}
inline void AllocationSite::IncrementMementoCreateCount() {
DCHECK(FLAG_allocation_site_pretenuring);
int value = memento_create_count();
set_memento_create_count(value + 1);
}
inline bool AllocationSite::MakePretenureDecision(
PretenureDecision current_decision,
double ratio,
bool maximum_size_scavenge) {
// Here we just allow state transitions from undecided or maybe tenure
// to don't tenure, maybe tenure, or tenure.
if ((current_decision == kUndecided || current_decision == kMaybeTenure)) {
if (ratio >= kPretenureRatio) {
// We just transition into tenure state when the semi-space was at
// maximum capacity.
if (maximum_size_scavenge) {
set_deopt_dependent_code(true);
set_pretenure_decision(kTenure);
// Currently we just need to deopt when we make a state transition to
// tenure.
return true;
}
set_pretenure_decision(kMaybeTenure);
} else {
set_pretenure_decision(kDontTenure);
}
}
return false;
}
inline bool AllocationSite::DigestPretenuringFeedback(
bool maximum_size_scavenge) {
bool deopt = false;
int create_count = memento_create_count();
int found_count = memento_found_count();
bool minimum_mementos_created = create_count >= kPretenureMinimumCreated;
double ratio =
minimum_mementos_created || FLAG_trace_pretenuring_statistics ?
static_cast<double>(found_count) / create_count : 0.0;
PretenureDecision current_decision = pretenure_decision();
if (minimum_mementos_created) {
deopt = MakePretenureDecision(
current_decision, ratio, maximum_size_scavenge);
}
if (FLAG_trace_pretenuring_statistics) {
PrintF(
"AllocationSite(%p): (created, found, ratio) (%d, %d, %f) %s => %s\n",
static_cast<void*>(this), create_count, found_count, ratio,
PretenureDecisionName(current_decision),
PretenureDecisionName(pretenure_decision()));
}
// Clear feedback calculation fields until the next gc.
set_memento_found_count(0);
set_memento_create_count(0);
return deopt;
}
void JSObject::EnsureCanContainHeapObjectElements(Handle<JSObject> object) {
JSObject::ValidateElements(object);
ElementsKind elements_kind = object->map()->elements_kind();
if (!IsFastObjectElementsKind(elements_kind)) {
if (IsFastHoleyElementsKind(elements_kind)) {
TransitionElementsKind(object, FAST_HOLEY_ELEMENTS);
} else {
TransitionElementsKind(object, FAST_ELEMENTS);
}
}
}
void JSObject::EnsureCanContainElements(Handle<JSObject> object,
Object** objects,
uint32_t count,
EnsureElementsMode mode) {
ElementsKind current_kind = object->map()->elements_kind();
ElementsKind target_kind = current_kind;
{
DisallowHeapAllocation no_allocation;
DCHECK(mode != ALLOW_COPIED_DOUBLE_ELEMENTS);
bool is_holey = IsFastHoleyElementsKind(current_kind);
if (current_kind == FAST_HOLEY_ELEMENTS) return;
Heap* heap = object->GetHeap();
Object* the_hole = heap->the_hole_value();
for (uint32_t i = 0; i < count; ++i) {
Object* current = *objects++;
if (current == the_hole) {
is_holey = true;
target_kind = GetHoleyElementsKind(target_kind);
} else if (!current->IsSmi()) {
if (mode == ALLOW_CONVERTED_DOUBLE_ELEMENTS && current->IsNumber()) {
if (IsFastSmiElementsKind(target_kind)) {
if (is_holey) {
target_kind = FAST_HOLEY_DOUBLE_ELEMENTS;
} else {
target_kind = FAST_DOUBLE_ELEMENTS;
}
}
} else if (is_holey) {
target_kind = FAST_HOLEY_ELEMENTS;
break;
} else {
target_kind = FAST_ELEMENTS;
}
}
}
}
if (target_kind != current_kind) {
TransitionElementsKind(object, target_kind);
}
}
void JSObject::EnsureCanContainElements(Handle<JSObject> object,
Handle<FixedArrayBase> elements,
uint32_t length,
EnsureElementsMode mode) {
Heap* heap = object->GetHeap();
if (elements->map() != heap->fixed_double_array_map()) {
DCHECK(elements->map() == heap->fixed_array_map() ||
elements->map() == heap->fixed_cow_array_map());
if (mode == ALLOW_COPIED_DOUBLE_ELEMENTS) {
mode = DONT_ALLOW_DOUBLE_ELEMENTS;
}
Object** objects =
Handle<FixedArray>::cast(elements)->GetFirstElementAddress();
EnsureCanContainElements(object, objects, length, mode);
return;
}
DCHECK(mode == ALLOW_COPIED_DOUBLE_ELEMENTS);
if (object->GetElementsKind() == FAST_HOLEY_SMI_ELEMENTS) {
TransitionElementsKind(object, FAST_HOLEY_DOUBLE_ELEMENTS);
} else if (object->GetElementsKind() == FAST_SMI_ELEMENTS) {
Handle<FixedDoubleArray> double_array =
Handle<FixedDoubleArray>::cast(elements);
for (uint32_t i = 0; i < length; ++i) {
if (double_array->is_the_hole(i)) {
TransitionElementsKind(object, FAST_HOLEY_DOUBLE_ELEMENTS);
return;
}
}
TransitionElementsKind(object, FAST_DOUBLE_ELEMENTS);
}
}
void JSObject::SetMapAndElements(Handle<JSObject> object,
Handle<Map> new_map,
Handle<FixedArrayBase> value) {
JSObject::MigrateToMap(object, new_map);
DCHECK((object->map()->has_fast_smi_or_object_elements() ||
(*value == object->GetHeap()->empty_fixed_array())) ==
(value->map() == object->GetHeap()->fixed_array_map() ||
value->map() == object->GetHeap()->fixed_cow_array_map()));
DCHECK((*value == object->GetHeap()->empty_fixed_array()) ||
(object->map()->has_fast_double_elements() ==
value->IsFixedDoubleArray()));
object->set_elements(*value);
}
void JSObject::set_elements(FixedArrayBase* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kElementsOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kElementsOffset, value, mode);
}
void JSObject::initialize_properties() {
DCHECK(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
WRITE_FIELD(this, kPropertiesOffset, GetHeap()->empty_fixed_array());
}
void JSObject::initialize_elements() {
FixedArrayBase* elements = map()->GetInitialElements();
WRITE_FIELD(this, kElementsOffset, elements);
}
Handle<String> Map::ExpectedTransitionKey(Handle<Map> map) {
DisallowHeapAllocation no_gc;
if (!map->HasTransitionArray()) return Handle<String>::null();
TransitionArray* transitions = map->transitions();
if (!transitions->IsSimpleTransition()) return Handle<String>::null();
int transition = TransitionArray::kSimpleTransitionIndex;
PropertyDetails details = transitions->GetTargetDetails(transition);
Name* name = transitions->GetKey(transition);
if (details.type() != FIELD) return Handle<String>::null();
if (details.attributes() != NONE) return Handle<String>::null();
if (!name->IsString()) return Handle<String>::null();
return Handle<String>(String::cast(name));
}
Handle<Map> Map::ExpectedTransitionTarget(Handle<Map> map) {
DCHECK(!ExpectedTransitionKey(map).is_null());
return Handle<Map>(map->transitions()->GetTarget(
TransitionArray::kSimpleTransitionIndex));
}
Handle<Map> Map::FindTransitionToField(Handle<Map> map, Handle<Name> key) {
DisallowHeapAllocation no_allocation;
if (!map->HasTransitionArray()) return Handle<Map>::null();
TransitionArray* transitions = map->transitions();
int transition = transitions->Search(FIELD, *key, NONE);
if (transition == TransitionArray::kNotFound) return Handle<Map>::null();
PropertyDetails details = transitions->GetTargetDetails(transition);
if (details.type() != FIELD) return Handle<Map>::null();
DCHECK_EQ(NONE, details.attributes());
return Handle<Map>(transitions->GetTarget(transition));
}
ACCESSORS(Oddball, to_string, String, kToStringOffset)
ACCESSORS(Oddball, to_number, Object, kToNumberOffset)
byte Oddball::kind() const {
return Smi::cast(READ_FIELD(this, kKindOffset))->value();
}
void Oddball::set_kind(byte value) {
WRITE_FIELD(this, kKindOffset, Smi::FromInt(value));
}
Object* Cell::value() const {
return READ_FIELD(this, kValueOffset);
}
void Cell::set_value(Object* val, WriteBarrierMode ignored) {
// The write barrier is not used for global property cells.
DCHECK(!val->IsPropertyCell() && !val->IsCell());
WRITE_FIELD(this, kValueOffset, val);
}
ACCESSORS(PropertyCell, dependent_code, DependentCode, kDependentCodeOffset)
Object* PropertyCell::type_raw() const {
return READ_FIELD(this, kTypeOffset);
}
void PropertyCell::set_type_raw(Object* val, WriteBarrierMode ignored) {
WRITE_FIELD(this, kTypeOffset, val);
}
Object* WeakCell::value() const { return READ_FIELD(this, kValueOffset); }
void WeakCell::clear() {
DCHECK(GetHeap()->gc_state() == Heap::MARK_COMPACT);
WRITE_FIELD(this, kValueOffset, Smi::FromInt(0));
}
void WeakCell::initialize(HeapObject* val) {
WRITE_FIELD(this, kValueOffset, val);
WRITE_BARRIER(GetHeap(), this, kValueOffset, val);
}
bool WeakCell::cleared() const { return value() == Smi::FromInt(0); }
Object* WeakCell::next() const { return READ_FIELD(this, kNextOffset); }
void WeakCell::set_next(Object* val, WriteBarrierMode mode) {
WRITE_FIELD(this, kNextOffset, val);
if (mode == UPDATE_WRITE_BARRIER) {
WRITE_BARRIER(GetHeap(), this, kNextOffset, val);
}
}
int JSObject::GetHeaderSize() {
InstanceType type = map()->instance_type();
// Check for the most common kind of JavaScript object before
// falling into the generic switch. This speeds up the internal
// field operations considerably on average.
if (type == JS_OBJECT_TYPE) return JSObject::kHeaderSize;
switch (type) {
case JS_GENERATOR_OBJECT_TYPE:
return JSGeneratorObject::kSize;
case JS_MODULE_TYPE:
return JSModule::kSize;
case JS_GLOBAL_PROXY_TYPE:
return JSGlobalProxy::kSize;
case JS_GLOBAL_OBJECT_TYPE:
return JSGlobalObject::kSize;
case JS_BUILTINS_OBJECT_TYPE:
return JSBuiltinsObject::kSize;
case JS_FUNCTION_TYPE:
return JSFunction::kSize;
case JS_VALUE_TYPE:
return JSValue::kSize;
case JS_DATE_TYPE:
return JSDate::kSize;
case JS_ARRAY_TYPE:
return JSArray::kSize;
case JS_ARRAY_BUFFER_TYPE:
return JSArrayBuffer::kSize;
case JS_TYPED_ARRAY_TYPE:
return JSTypedArray::kSize;
case JS_DATA_VIEW_TYPE:
return JSDataView::kSize;
case JS_SET_TYPE:
return JSSet::kSize;
case JS_MAP_TYPE:
return JSMap::kSize;
case JS_SET_ITERATOR_TYPE:
return JSSetIterator::kSize;
case JS_MAP_ITERATOR_TYPE:
return JSMapIterator::kSize;
case JS_WEAK_MAP_TYPE:
return JSWeakMap::kSize;
case JS_WEAK_SET_TYPE:
return JSWeakSet::kSize;
case JS_REGEXP_TYPE:
return JSRegExp::kSize;
case JS_CONTEXT_EXTENSION_OBJECT_TYPE:
return JSObject::kHeaderSize;
case JS_MESSAGE_OBJECT_TYPE:
return JSMessageObject::kSize;
default:
// TODO(jkummerow): Re-enable this. Blink currently hits this
// from its CustomElementConstructorBuilder.
// UNREACHABLE();
return 0;
}
}
int JSObject::GetInternalFieldCount() {
DCHECK(1 << kPointerSizeLog2 == kPointerSize);
// Make sure to adjust for the number of in-object properties. These
// properties do contribute to the size, but are not internal fields.
return ((Size() - GetHeaderSize()) >> kPointerSizeLog2) -
map()->inobject_properties();
}
int JSObject::GetInternalFieldOffset(int index) {
DCHECK(index < GetInternalFieldCount() && index >= 0);
return GetHeaderSize() + (kPointerSize * index);
}
Object* JSObject::GetInternalField(int index) {
DCHECK(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
return READ_FIELD(this, GetHeaderSize() + (kPointerSize * index));
}
void JSObject::SetInternalField(int index, Object* value) {
DCHECK(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
int offset = GetHeaderSize() + (kPointerSize * index);
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(GetHeap(), this, offset, value);
}
void JSObject::SetInternalField(int index, Smi* value) {
DCHECK(index < GetInternalFieldCount() && index >= 0);
// Internal objects do follow immediately after the header, whereas in-object
// properties are at the end of the object. Therefore there is no need
// to adjust the index here.
int offset = GetHeaderSize() + (kPointerSize * index);
WRITE_FIELD(this, offset, value);
}
// Access fast-case object properties at index. The use of these routines
// is needed to correctly distinguish between properties stored in-object and
// properties stored in the properties array.
Object* JSObject::RawFastPropertyAt(FieldIndex index) {
if (index.is_inobject()) {
return READ_FIELD(this, index.offset());
} else {
return properties()->get(index.outobject_array_index());
}
}
void JSObject::FastPropertyAtPut(FieldIndex index, Object* value) {
if (index.is_inobject()) {
int offset = index.offset();
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(GetHeap(), this, offset, value);
} else {
properties()->set(index.outobject_array_index(), value);
}
}
int JSObject::GetInObjectPropertyOffset(int index) {
return map()->GetInObjectPropertyOffset(index);
}
Object* JSObject::InObjectPropertyAt(int index) {
int offset = GetInObjectPropertyOffset(index);
return READ_FIELD(this, offset);
}
Object* JSObject::InObjectPropertyAtPut(int index,
Object* value,
WriteBarrierMode mode) {
// Adjust for the number of properties stored in the object.
int offset = GetInObjectPropertyOffset(index);
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);
return value;
}
void JSObject::InitializeBody(Map* map,
Object* pre_allocated_value,
Object* filler_value) {
DCHECK(!filler_value->IsHeapObject() ||
!GetHeap()->InNewSpace(filler_value));
DCHECK(!pre_allocated_value->IsHeapObject() ||
!GetHeap()->InNewSpace(pre_allocated_value));
int size = map->instance_size();
int offset = kHeaderSize;
if (filler_value != pre_allocated_value) {
int pre_allocated = map->pre_allocated_property_fields();
DCHECK(pre_allocated * kPointerSize + kHeaderSize <= size);
for (int i = 0; i < pre_allocated; i++) {
WRITE_FIELD(this, offset, pre_allocated_value);
offset += kPointerSize;
}
}
while (offset < size) {
WRITE_FIELD(this, offset, filler_value);
offset += kPointerSize;
}
}
bool JSObject::HasFastProperties() {
DCHECK(properties()->IsDictionary() == map()->is_dictionary_map());
return !properties()->IsDictionary();
}
bool Map::TooManyFastProperties(StoreFromKeyed store_mode) {
if (unused_property_fields() != 0) return false;
if (is_prototype_map()) return false;
int minimum = store_mode == CERTAINLY_NOT_STORE_FROM_KEYED ? 128 : 12;
int limit = Max(minimum, inobject_properties());
int external = NumberOfFields() - inobject_properties();
return external > limit;
}
void Struct::InitializeBody(int object_size) {
Object* value = GetHeap()->undefined_value();
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
WRITE_FIELD(this, offset, value);
}
}
bool Object::ToArrayIndex(uint32_t* index) {
if (IsSmi()) {
int value = Smi::cast(this)->value();
if (value < 0) return false;
*index = value;
return true;
}
if (IsHeapNumber()) {
double value = HeapNumber::cast(this)->value();
uint32_t uint_value = static_cast<uint32_t>(value);
if (value == static_cast<double>(uint_value)) {
*index = uint_value;
return true;
}
}
return false;
}
bool Object::IsStringObjectWithCharacterAt(uint32_t index) {
if (!this->IsJSValue()) return false;
JSValue* js_value = JSValue::cast(this);
if (!js_value->value()->IsString()) return false;
String* str = String::cast(js_value->value());
if (index >= static_cast<uint32_t>(str->length())) return false;
return true;
}
void Object::VerifyApiCallResultType() {
#if ENABLE_EXTRA_CHECKS
if (!(IsSmi() ||
IsString() ||
IsSymbol() ||
IsSpecObject() ||
IsHeapNumber() ||
IsUndefined() ||
IsTrue() ||
IsFalse() ||
IsNull())) {
FATAL("API call returned invalid object");
}
#endif // ENABLE_EXTRA_CHECKS
}
Object* FixedArray::get(int index) const {
SLOW_DCHECK(index >= 0 && index < this->length());
return READ_FIELD(this, kHeaderSize + index * kPointerSize);
}
Handle<Object> FixedArray::get(Handle<FixedArray> array, int index) {
return handle(array->get(index), array->GetIsolate());
}
bool FixedArray::is_the_hole(int index) {
return get(index) == GetHeap()->the_hole_value();
}
void FixedArray::set(int index, Smi* value) {
DCHECK(map() != GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < this->length());
DCHECK(reinterpret_cast<Object*>(value)->IsSmi());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
}
void FixedArray::set(int index, Object* value) {
DCHECK_NE(GetHeap()->fixed_cow_array_map(), map());
DCHECK_EQ(FIXED_ARRAY_TYPE, map()->instance_type());
DCHECK(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(GetHeap(), this, offset, value);
}
inline bool FixedDoubleArray::is_the_hole_nan(double value) {
return bit_cast<uint64_t, double>(value) == kHoleNanInt64;
}
inline double FixedDoubleArray::hole_nan_as_double() {
return bit_cast<double, uint64_t>(kHoleNanInt64);
}
inline double FixedDoubleArray::canonical_not_the_hole_nan_as_double() {
DCHECK(bit_cast<uint64_t>(base::OS::nan_value()) != kHoleNanInt64);
DCHECK((bit_cast<uint64_t>(base::OS::nan_value()) >> 32) != kHoleNanUpper32);
return base::OS::nan_value();
}
double FixedDoubleArray::get_scalar(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
DCHECK(index >= 0 && index < this->length());
double result = READ_DOUBLE_FIELD(this, kHeaderSize + index * kDoubleSize);
DCHECK(!is_the_hole_nan(result));
return result;
}
int64_t FixedDoubleArray::get_representation(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
DCHECK(index >= 0 && index < this->length());
return READ_INT64_FIELD(this, kHeaderSize + index * kDoubleSize);
}
Handle<Object> FixedDoubleArray::get(Handle<FixedDoubleArray> array,
int index) {
if (array->is_the_hole(index)) {
return array->GetIsolate()->factory()->the_hole_value();
} else {
return array->GetIsolate()->factory()->NewNumber(array->get_scalar(index));
}
}
void FixedDoubleArray::set(int index, double value) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
int offset = kHeaderSize + index * kDoubleSize;
if (std::isnan(value)) value = canonical_not_the_hole_nan_as_double();
WRITE_DOUBLE_FIELD(this, offset, value);
}
void FixedDoubleArray::set_the_hole(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map() &&
map() != GetHeap()->fixed_array_map());
int offset = kHeaderSize + index * kDoubleSize;
WRITE_DOUBLE_FIELD(this, offset, hole_nan_as_double());
}
bool FixedDoubleArray::is_the_hole(int index) {
int offset = kHeaderSize + index * kDoubleSize;
return is_the_hole_nan(READ_DOUBLE_FIELD(this, offset));
}
double* FixedDoubleArray::data_start() {
return reinterpret_cast<double*>(FIELD_ADDR(this, kHeaderSize));
}
void FixedDoubleArray::FillWithHoles(int from, int to) {
for (int i = from; i < to; i++) {
set_the_hole(i);
}
}
void ConstantPoolArray::NumberOfEntries::increment(Type type) {
DCHECK(type < NUMBER_OF_TYPES);
element_counts_[type]++;
}
int ConstantPoolArray::NumberOfEntries::equals(
const ConstantPoolArray::NumberOfEntries& other) const {
for (int i = 0; i < NUMBER_OF_TYPES; i++) {
if (element_counts_[i] != other.element_counts_[i]) return false;
}
return true;
}
bool ConstantPoolArray::NumberOfEntries::is_empty() const {
return total_count() == 0;
}
int ConstantPoolArray::NumberOfEntries::count_of(Type type) const {
DCHECK(type < NUMBER_OF_TYPES);
return element_counts_[type];
}
int ConstantPoolArray::NumberOfEntries::base_of(Type type) const {
int base = 0;
DCHECK(type < NUMBER_OF_TYPES);
for (int i = 0; i < type; i++) {
base += element_counts_[i];
}
return base;
}
int ConstantPoolArray::NumberOfEntries::total_count() const {
int count = 0;
for (int i = 0; i < NUMBER_OF_TYPES; i++) {
count += element_counts_[i];
}
return count;
}
int ConstantPoolArray::NumberOfEntries::are_in_range(int min, int max) const {
for (int i = FIRST_TYPE; i < NUMBER_OF_TYPES; i++) {
if (element_counts_[i] < min || element_counts_[i] > max) {
return false;
}
}
return true;
}
int ConstantPoolArray::Iterator::next_index() {
DCHECK(!is_finished());
int ret = next_index_++;
update_section();
return ret;
}
bool ConstantPoolArray::Iterator::is_finished() {
return next_index_ > array_->last_index(type_, final_section_);
}
void ConstantPoolArray::Iterator::update_section() {
if (next_index_ > array_->last_index(type_, current_section_) &&
current_section_ != final_section_) {
DCHECK(final_section_ == EXTENDED_SECTION);
current_section_ = EXTENDED_SECTION;
next_index_ = array_->first_index(type_, EXTENDED_SECTION);
}
}
bool ConstantPoolArray::is_extended_layout() {
uint32_t small_layout_1 = READ_UINT32_FIELD(this, kSmallLayout1Offset);
return IsExtendedField::decode(small_layout_1);
}
ConstantPoolArray::LayoutSection ConstantPoolArray::final_section() {
return is_extended_layout() ? EXTENDED_SECTION : SMALL_SECTION;
}
int ConstantPoolArray::first_extended_section_index() {
DCHECK(is_extended_layout());
uint32_t small_layout_2 = READ_UINT32_FIELD(this, kSmallLayout2Offset);
return TotalCountField::decode(small_layout_2);
}
int ConstantPoolArray::get_extended_section_header_offset() {
return RoundUp(SizeFor(NumberOfEntries(this, SMALL_SECTION)), kInt64Size);
}
ConstantPoolArray::WeakObjectState ConstantPoolArray::get_weak_object_state() {
uint32_t small_layout_2 = READ_UINT32_FIELD(this, kSmallLayout2Offset);
return WeakObjectStateField::decode(small_layout_2);
}
void ConstantPoolArray::set_weak_object_state(
ConstantPoolArray::WeakObjectState state) {
uint32_t small_layout_2 = READ_UINT32_FIELD(this, kSmallLayout2Offset);
small_layout_2 = WeakObjectStateField::update(small_layout_2, state);
WRITE_INT32_FIELD(this, kSmallLayout2Offset, small_layout_2);
}
int ConstantPoolArray::first_index(Type type, LayoutSection section) {
int index = 0;
if (section == EXTENDED_SECTION) {
DCHECK(is_extended_layout());
index += first_extended_section_index();
}
for (Type type_iter = FIRST_TYPE; type_iter < type;
type_iter = next_type(type_iter)) {
index += number_of_entries(type_iter, section);
}
return index;
}
int ConstantPoolArray::last_index(Type type, LayoutSection section) {
return first_index(type, section) + number_of_entries(type, section) - 1;
}
int ConstantPoolArray::number_of_entries(Type type, LayoutSection section) {
if (section == SMALL_SECTION) {
uint32_t small_layout_1 = READ_UINT32_FIELD(this, kSmallLayout1Offset);
uint32_t small_layout_2 = READ_UINT32_FIELD(this, kSmallLayout2Offset);
switch (type) {
case INT64:
return Int64CountField::decode(small_layout_1);
case CODE_PTR:
return CodePtrCountField::decode(small_layout_1);
case HEAP_PTR:
return HeapPtrCountField::decode(small_layout_1);
case INT32:
return Int32CountField::decode(small_layout_2);
default:
UNREACHABLE();
return 0;
}
} else {
DCHECK(section == EXTENDED_SECTION && is_extended_layout());
int offset = get_extended_section_header_offset();
switch (type) {
case INT64:
offset += kExtendedInt64CountOffset;
break;
case CODE_PTR:
offset += kExtendedCodePtrCountOffset;
break;
case HEAP_PTR:
offset += kExtendedHeapPtrCountOffset;
break;
case INT32:
offset += kExtendedInt32CountOffset;
break;
default:
UNREACHABLE();
}
return READ_INT_FIELD(this, offset);
}
}
bool ConstantPoolArray::offset_is_type(int offset, Type type) {
return (offset >= OffsetOfElementAt(first_index(type, SMALL_SECTION)) &&
offset <= OffsetOfElementAt(last_index(type, SMALL_SECTION))) ||
(is_extended_layout() &&
offset >= OffsetOfElementAt(first_index(type, EXTENDED_SECTION)) &&
offset <= OffsetOfElementAt(last_index(type, EXTENDED_SECTION)));
}
ConstantPoolArray::Type ConstantPoolArray::get_type(int index) {
LayoutSection section;
if (is_extended_layout() && index >= first_extended_section_index()) {
section = EXTENDED_SECTION;
} else {
section = SMALL_SECTION;
}
Type type = FIRST_TYPE;
while (index > last_index(type, section)) {
type = next_type(type);
}
DCHECK(type <= LAST_TYPE);
return type;
}
int64_t ConstantPoolArray::get_int64_entry(int index) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(get_type(index) == INT64);
return READ_INT64_FIELD(this, OffsetOfElementAt(index));
}
double ConstantPoolArray::get_int64_entry_as_double(int index) {
STATIC_ASSERT(kDoubleSize == kInt64Size);
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(get_type(index) == INT64);
return READ_DOUBLE_FIELD(this, OffsetOfElementAt(index));
}
Address ConstantPoolArray::get_code_ptr_entry(int index) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(get_type(index) == CODE_PTR);
return reinterpret_cast<Address>(READ_FIELD(this, OffsetOfElementAt(index)));
}
Object* ConstantPoolArray::get_heap_ptr_entry(int index) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(get_type(index) == HEAP_PTR);
return READ_FIELD(this, OffsetOfElementAt(index));
}
int32_t ConstantPoolArray::get_int32_entry(int index) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(get_type(index) == INT32);
return READ_INT32_FIELD(this, OffsetOfElementAt(index));
}
void ConstantPoolArray::set(int index, int64_t value) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(get_type(index) == INT64);
WRITE_INT64_FIELD(this, OffsetOfElementAt(index), value);
}
void ConstantPoolArray::set(int index, double value) {
STATIC_ASSERT(kDoubleSize == kInt64Size);
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(get_type(index) == INT64);
WRITE_DOUBLE_FIELD(this, OffsetOfElementAt(index), value);
}
void ConstantPoolArray::set(int index, Address value) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(get_type(index) == CODE_PTR);
WRITE_FIELD(this, OffsetOfElementAt(index), reinterpret_cast<Object*>(value));
}
void ConstantPoolArray::set(int index, Object* value) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(!GetHeap()->InNewSpace(value));
DCHECK(get_type(index) == HEAP_PTR);
WRITE_FIELD(this, OffsetOfElementAt(index), value);
WRITE_BARRIER(GetHeap(), this, OffsetOfElementAt(index), value);
}
void ConstantPoolArray::set(int index, int32_t value) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(get_type(index) == INT32);
WRITE_INT32_FIELD(this, OffsetOfElementAt(index), value);
}
void ConstantPoolArray::set_at_offset(int offset, int32_t value) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(offset_is_type(offset, INT32));
WRITE_INT32_FIELD(this, offset, value);
}
void ConstantPoolArray::set_at_offset(int offset, int64_t value) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(offset_is_type(offset, INT64));
WRITE_INT64_FIELD(this, offset, value);
}
void ConstantPoolArray::set_at_offset(int offset, double value) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(offset_is_type(offset, INT64));
WRITE_DOUBLE_FIELD(this, offset, value);
}
void ConstantPoolArray::set_at_offset(int offset, Address value) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(offset_is_type(offset, CODE_PTR));
WRITE_FIELD(this, offset, reinterpret_cast<Object*>(value));
WRITE_BARRIER(GetHeap(), this, offset, reinterpret_cast<Object*>(value));
}
void ConstantPoolArray::set_at_offset(int offset, Object* value) {
DCHECK(map() == GetHeap()->constant_pool_array_map());
DCHECK(!GetHeap()->InNewSpace(value));
DCHECK(offset_is_type(offset, HEAP_PTR));
WRITE_FIELD(this, offset, value);
WRITE_BARRIER(GetHeap(), this, offset, value);
}
void ConstantPoolArray::Init(const NumberOfEntries& small) {
uint32_t small_layout_1 =
Int64CountField::encode(small.count_of(INT64)) |
CodePtrCountField::encode(small.count_of(CODE_PTR)) |
HeapPtrCountField::encode(small.count_of(HEAP_PTR)) |
IsExtendedField::encode(false);
uint32_t small_layout_2 =
Int32CountField::encode(small.count_of(INT32)) |
TotalCountField::encode(small.total_count()) |
WeakObjectStateField::encode(NO_WEAK_OBJECTS);
WRITE_UINT32_FIELD(this, kSmallLayout1Offset, small_layout_1);
WRITE_UINT32_FIELD(this, kSmallLayout2Offset, small_layout_2);
if (kHeaderSize != kFirstEntryOffset) {
DCHECK(kFirstEntryOffset - kHeaderSize == kInt32Size);
WRITE_UINT32_FIELD(this, kHeaderSize, 0); // Zero out header padding.
}
}
void ConstantPoolArray::InitExtended(const NumberOfEntries& small,
const NumberOfEntries& extended) {
// Initialize small layout fields first.
Init(small);
// Set is_extended_layout field.
uint32_t small_layout_1 = READ_UINT32_FIELD(this, kSmallLayout1Offset);
small_layout_1 = IsExtendedField::update(small_layout_1, true);
WRITE_INT32_FIELD(this, kSmallLayout1Offset, small_layout_1);
// Initialize the extended layout fields.
int extended_header_offset = get_extended_section_header_offset();
WRITE_INT32_FIELD(this, extended_header_offset + kExtendedInt64CountOffset,
extended.count_of(INT64));
WRITE_INT32_FIELD(this, extended_header_offset + kExtendedCodePtrCountOffset,
extended.count_of(CODE_PTR));
WRITE_INT32_FIELD(this, extended_header_offset + kExtendedHeapPtrCountOffset,
extended.count_of(HEAP_PTR));
WRITE_INT32_FIELD(this, extended_header_offset + kExtendedInt32CountOffset,
extended.count_of(INT32));
}
int ConstantPoolArray::size() {
NumberOfEntries small(this, SMALL_SECTION);
if (!is_extended_layout()) {
return SizeFor(small);
} else {
NumberOfEntries extended(this, EXTENDED_SECTION);
return SizeForExtended(small, extended);
}
}
int ConstantPoolArray::length() {
uint32_t small_layout_2 = READ_UINT32_FIELD(this, kSmallLayout2Offset);
int length = TotalCountField::decode(small_layout_2);
if (is_extended_layout()) {
length += number_of_entries(INT64, EXTENDED_SECTION) +
number_of_entries(CODE_PTR, EXTENDED_SECTION) +
number_of_entries(HEAP_PTR, EXTENDED_SECTION) +
number_of_entries(INT32, EXTENDED_SECTION);
}
return length;
}
WriteBarrierMode HeapObject::GetWriteBarrierMode(
const DisallowHeapAllocation& promise) {
Heap* heap = GetHeap();
if (heap->incremental_marking()->IsMarking()) return UPDATE_WRITE_BARRIER;
if (heap->InNewSpace(this)) return SKIP_WRITE_BARRIER;
return UPDATE_WRITE_BARRIER;
}
void FixedArray::set(int index,
Object* value,
WriteBarrierMode mode) {
DCHECK(map() != GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < this->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(this, offset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode);
}
void FixedArray::NoIncrementalWriteBarrierSet(FixedArray* array,
int index,
Object* value) {
DCHECK(array->map() != array->GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < array->length());
int offset = kHeaderSize + index * kPointerSize;
WRITE_FIELD(array, offset, value);
Heap* heap = array->GetHeap();
if (heap->InNewSpace(value)) {
heap->RecordWrite(array->address(), offset);
}
}
void FixedArray::NoWriteBarrierSet(FixedArray* array,
int index,
Object* value) {
DCHECK(array->map() != array->GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < array->length());
DCHECK(!array->GetHeap()->InNewSpace(value));
WRITE_FIELD(array, kHeaderSize + index * kPointerSize, value);
}
void FixedArray::set_undefined(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < this->length());
DCHECK(!GetHeap()->InNewSpace(GetHeap()->undefined_value()));
WRITE_FIELD(this,
kHeaderSize + index * kPointerSize,
GetHeap()->undefined_value());
}
void FixedArray::set_null(int index) {
DCHECK(index >= 0 && index < this->length());
DCHECK(!GetHeap()->InNewSpace(GetHeap()->null_value()));
WRITE_FIELD(this,
kHeaderSize + index * kPointerSize,
GetHeap()->null_value());
}
void FixedArray::set_the_hole(int index) {
DCHECK(map() != GetHeap()->fixed_cow_array_map());
DCHECK(index >= 0 && index < this->length());
DCHECK(!GetHeap()->InNewSpace(GetHeap()->the_hole_value()));
WRITE_FIELD(this,
kHeaderSize + index * kPointerSize,
GetHeap()->the_hole_value());
}
void FixedArray::FillWithHoles(int from, int to) {
for (int i = from; i < to; i++) {
set_the_hole(i);
}
}
Object** FixedArray::data_start() {
return HeapObject::RawField(this, kHeaderSize);
}
bool DescriptorArray::IsEmpty() {
DCHECK(length() >= kFirstIndex ||
this == GetHeap()->empty_descriptor_array());
return length() < kFirstIndex;
}
void DescriptorArray::SetNumberOfDescriptors(int number_of_descriptors) {
WRITE_FIELD(
this, kDescriptorLengthOffset, Smi::FromInt(number_of_descriptors));
}
// Perform a binary search in a fixed array. Low and high are entry indices. If
// there are three entries in this array it should be called with low=0 and
// high=2.
template <SearchMode search_mode, typename T>
int BinarySearch(T* array, Name* name, int low, int high, int valid_entries,
int* out_insertion_index) {
DCHECK(search_mode == ALL_ENTRIES || out_insertion_index == NULL);
uint32_t hash = name->Hash();
int limit = high;
DCHECK(low <= high);
while (low != high) {
int mid = (low + high) / 2;
Name* mid_name = array->GetSortedKey(mid);
uint32_t mid_hash = mid_name->Hash();
if (mid_hash >= hash) {
high = mid;
} else {
low = mid + 1;
}
}
for (; low <= limit; ++low) {
int sort_index = array->GetSortedKeyIndex(low);
Name* entry = array->GetKey(sort_index);
uint32_t current_hash = entry->Hash();
if (current_hash != hash) {
if (out_insertion_index != NULL) {
*out_insertion_index = sort_index + (current_hash > hash ? 0 : 1);
}
return T::kNotFound;
}
if (entry->Equals(name)) {
if (search_mode == ALL_ENTRIES || sort_index < valid_entries) {
return sort_index;
}
return T::kNotFound;
}
}
if (out_insertion_index != NULL) *out_insertion_index = limit + 1;
return T::kNotFound;
}
// Perform a linear search in this fixed array. len is the number of entry
// indices that are valid.
template <SearchMode search_mode, typename T>
int LinearSearch(T* array, Name* name, int len, int valid_entries,
int* out_insertion_index) {
uint32_t hash = name->Hash();
if (search_mode == ALL_ENTRIES) {
for (int number = 0; number < len; number++) {
int sorted_index = array->GetSortedKeyIndex(number);
Name* entry = array->GetKey(sorted_index);
uint32_t current_hash = entry->Hash();
if (current_hash > hash) {
if (out_insertion_index != NULL) *out_insertion_index = sorted_index;
return T::kNotFound;
}
if (current_hash == hash && entry->Equals(name)) return sorted_index;
}
if (out_insertion_index != NULL) *out_insertion_index = len;
return T::kNotFound;
} else {
DCHECK(len >= valid_entries);
DCHECK_EQ(NULL, out_insertion_index); // Not supported here.
for (int number = 0; number < valid_entries; number++) {
Name* entry = array->GetKey(number);
uint32_t current_hash = entry->Hash();
if (current_hash == hash && entry->Equals(name)) return number;
}
return T::kNotFound;
}
}
template <SearchMode search_mode, typename T>
int Search(T* array, Name* name, int valid_entries, int* out_insertion_index) {
if (search_mode == VALID_ENTRIES) {
SLOW_DCHECK(array->IsSortedNoDuplicates(valid_entries));
} else {
SLOW_DCHECK(array->IsSortedNoDuplicates());
}
int nof = array->number_of_entries();
if (nof == 0) {
if (out_insertion_index != NULL) *out_insertion_index = 0;
return T::kNotFound;
}
// Fast case: do linear search for small arrays.
const int kMaxElementsForLinearSearch = 8;
if ((search_mode == ALL_ENTRIES &&
nof <= kMaxElementsForLinearSearch) ||
(search_mode == VALID_ENTRIES &&
valid_entries <= (kMaxElementsForLinearSearch * 3))) {
return LinearSearch<search_mode>(array, name, nof, valid_entries,
out_insertion_index);
}
// Slow case: perform binary search.
return BinarySearch<search_mode>(array, name, 0, nof - 1, valid_entries,
out_insertion_index);
}
int DescriptorArray::Search(Name* name, int valid_descriptors) {
return internal::Search<VALID_ENTRIES>(this, name, valid_descriptors, NULL);
}
int DescriptorArray::SearchWithCache(Name* name, Map* map) {
int number_of_own_descriptors = map->NumberOfOwnDescriptors();
if (number_of_own_descriptors == 0) return kNotFound;
DescriptorLookupCache* cache = GetIsolate()->descriptor_lookup_cache();
int number = cache->Lookup(map, name);
if (number == DescriptorLookupCache::kAbsent) {
number = Search(name, number_of_own_descriptors);
cache->Update(map, name, number);
}
return number;
}
PropertyDetails Map::GetLastDescriptorDetails() {
return instance_descriptors()->GetDetails(LastAdded());
}
void Map::LookupDescriptor(JSObject* holder,
Name* name,
LookupResult* result) {
DescriptorArray* descriptors = this->instance_descriptors();
int number = descriptors->SearchWithCache(name, this);
if (number == DescriptorArray::kNotFound) return result->NotFound();
result->DescriptorResult(holder, descriptors->GetDetails(number), number);
}
void Map::LookupTransition(JSObject* holder, Name* name,
PropertyAttributes attributes,
LookupResult* result) {
int transition_index = this->SearchTransition(FIELD, name, attributes);
if (transition_index == TransitionArray::kNotFound) return result->NotFound();
result->TransitionResult(holder, this->GetTransition(transition_index));
}
FixedArrayBase* Map::GetInitialElements() {
if (has_fast_smi_or_object_elements() ||
has_fast_double_elements()) {
DCHECK(!GetHeap()->InNewSpace(GetHeap()->empty_fixed_array()));
return GetHeap()->empty_fixed_array();
} else if (has_external_array_elements()) {
ExternalArray* empty_array = GetHeap()->EmptyExternalArrayForMap(this);
DCHECK(!GetHeap()->InNewSpace(empty_array));
return empty_array;
} else if (has_fixed_typed_array_elements()) {
FixedTypedArrayBase* empty_array =
GetHeap()->EmptyFixedTypedArrayForMap(this);
DCHECK(!GetHeap()->InNewSpace(empty_array));
return empty_array;
} else {
UNREACHABLE();
}
return NULL;
}
Object** DescriptorArray::GetKeySlot(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
return RawFieldOfElementAt(ToKeyIndex(descriptor_number));
}
Object** DescriptorArray::GetDescriptorStartSlot(int descriptor_number) {
return GetKeySlot(descriptor_number);
}
Object** DescriptorArray::GetDescriptorEndSlot(int descriptor_number) {
return GetValueSlot(descriptor_number - 1) + 1;
}
Name* DescriptorArray::GetKey(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
return Name::cast(get(ToKeyIndex(descriptor_number)));
}
int DescriptorArray::GetSortedKeyIndex(int descriptor_number) {
return GetDetails(descriptor_number).pointer();
}
Name* DescriptorArray::GetSortedKey(int descriptor_number) {
return GetKey(GetSortedKeyIndex(descriptor_number));
}
void DescriptorArray::SetSortedKey(int descriptor_index, int pointer) {
PropertyDetails details = GetDetails(descriptor_index);
set(ToDetailsIndex(descriptor_index), details.set_pointer(pointer).AsSmi());
}
void DescriptorArray::SetRepresentation(int descriptor_index,
Representation representation) {
DCHECK(!representation.IsNone());
PropertyDetails details = GetDetails(descriptor_index);
set(ToDetailsIndex(descriptor_index),
details.CopyWithRepresentation(representation).AsSmi());
}
Object** DescriptorArray::GetValueSlot(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
return RawFieldOfElementAt(ToValueIndex(descriptor_number));
}
int DescriptorArray::GetValueOffset(int descriptor_number) {
return OffsetOfElementAt(ToValueIndex(descriptor_number));
}
Object* DescriptorArray::GetValue(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
return get(ToValueIndex(descriptor_number));
}
void DescriptorArray::SetValue(int descriptor_index, Object* value) {
set(ToValueIndex(descriptor_index), value);
}
PropertyDetails DescriptorArray::GetDetails(int descriptor_number) {
DCHECK(descriptor_number < number_of_descriptors());
Object* details = get(ToDetailsIndex(descriptor_number));
return PropertyDetails(Smi::cast(details));
}
PropertyType DescriptorArray::GetType(int descriptor_number) {
return GetDetails(descriptor_number).type();
}
int DescriptorArray::GetFieldIndex(int descriptor_number) {
DCHECK(GetDetails(descriptor_number).type() == FIELD);
return GetDetails(descriptor_number).field_index();
}
HeapType* DescriptorArray::GetFieldType(int descriptor_number) {
DCHECK(GetDetails(descriptor_number).type() == FIELD);
return HeapType::cast(GetValue(descriptor_number));
}
Object* DescriptorArray::GetConstant(int descriptor_number) {
return GetValue(descriptor_number);
}
Object* DescriptorArray::GetCallbacksObject(int descriptor_number) {
DCHECK(GetType(descriptor_number) == CALLBACKS);
return GetValue(descriptor_number);
}
AccessorDescriptor* DescriptorArray::GetCallbacks(int descriptor_number) {
DCHECK(GetType(descriptor_number) == CALLBACKS);
Foreign* p = Foreign::cast(GetCallbacksObject(descriptor_number));
return reinterpret_cast<AccessorDescriptor*>(p->foreign_address());
}
void DescriptorArray::Get(int descriptor_number, Descriptor* desc) {
desc->Init(handle(GetKey(descriptor_number), GetIsolate()),
handle(GetValue(descriptor_number), GetIsolate()),
GetDetails(descriptor_number));
}
void DescriptorArray::Set(int descriptor_number,
Descriptor* desc,
const WhitenessWitness&) {
// Range check.
DCHECK(descriptor_number < number_of_descriptors());
NoIncrementalWriteBarrierSet(this,
ToKeyIndex(descriptor_number),
*desc->GetKey());
NoIncrementalWriteBarrierSet(this,
ToValueIndex(descriptor_number),
*desc->GetValue());
NoIncrementalWriteBarrierSet(this,
ToDetailsIndex(descriptor_number),
desc->GetDetails().AsSmi());
}
void DescriptorArray::Set(int descriptor_number, Descriptor* desc) {
// Range check.
DCHECK(descriptor_number < number_of_descriptors());
set(ToKeyIndex(descriptor_number), *desc->GetKey());
set(ToValueIndex(descriptor_number), *desc->GetValue());
set(ToDetailsIndex(descriptor_number), desc->GetDetails().AsSmi());
}
void DescriptorArray::Append(Descriptor* desc) {
DisallowHeapAllocation no_gc;
int descriptor_number = number_of_descriptors();
SetNumberOfDescriptors(descriptor_number + 1);
Set(descriptor_number, desc);
uint32_t hash = desc->GetKey()->Hash();
int insertion;
for (insertion = descriptor_number; insertion > 0; --insertion) {
Name* key = GetSortedKey(insertion - 1);
if (key->Hash() <= hash) break;
SetSortedKey(insertion, GetSortedKeyIndex(insertion - 1));
}
SetSortedKey(insertion, descriptor_number);
}
void DescriptorArray::SwapSortedKeys(int first, int second) {
int first_key = GetSortedKeyIndex(first);
SetSortedKey(first, GetSortedKeyIndex(second));
SetSortedKey(second, first_key);
}
DescriptorArray::WhitenessWitness::WhitenessWitness(DescriptorArray* array)
: marking_(array->GetHeap()->incremental_marking()) {
marking_->EnterNoMarkingScope();
DCHECK(!marking_->IsMarking() ||
Marking::Color(array) == Marking::WHITE_OBJECT);
}
DescriptorArray::WhitenessWitness::~WhitenessWitness() {
marking_->LeaveNoMarkingScope();
}
template<typename Derived, typename Shape, typename Key>
int HashTable<Derived, Shape, Key>::ComputeCapacity(int at_least_space_for) {
const int kMinCapacity = 32;
int capacity = base::bits::RoundUpToPowerOfTwo32(at_least_space_for * 2);
if (capacity < kMinCapacity) {
capacity = kMinCapacity; // Guarantee min capacity.
}
return capacity;
}
template<typename Derived, typename Shape, typename Key>
int HashTable<Derived, Shape, Key>::FindEntry(Key key) {
return FindEntry(GetIsolate(), key);
}
// Find entry for key otherwise return kNotFound.
template<typename Derived, typename Shape, typename Key>
int HashTable<Derived, Shape, Key>::FindEntry(Isolate* isolate, Key key) {
uint32_t capacity = Capacity();
uint32_t entry = FirstProbe(HashTable::Hash(key), capacity);
uint32_t count = 1;
// EnsureCapacity will guarantee the hash table is never full.
while (true) {
Object* element = KeyAt(entry);
// Empty entry. Uses raw unchecked accessors because it is called by the
// string table during bootstrapping.
if (element == isolate->heap()->raw_unchecked_undefined_value()) break;
if (element != isolate->heap()->raw_unchecked_the_hole_value() &&
Shape::IsMatch(key, element)) return entry;
entry = NextProbe(entry, count++, capacity);
}
return kNotFound;
}
bool SeededNumberDictionary::requires_slow_elements() {
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return false;
return 0 !=
(Smi::cast(max_index_object)->value() & kRequiresSlowElementsMask);
}
uint32_t SeededNumberDictionary::max_number_key() {
DCHECK(!requires_slow_elements());
Object* max_index_object = get(kMaxNumberKeyIndex);
if (!max_index_object->IsSmi()) return 0;
uint32_t value = static_cast<uint32_t>(Smi::cast(max_index_object)->value());
return value >> kRequiresSlowElementsTagSize;
}
void SeededNumberDictionary::set_requires_slow_elements() {
set(kMaxNumberKeyIndex, Smi::FromInt(kRequiresSlowElementsMask));
}
// ------------------------------------
// Cast operations
CAST_ACCESSOR(AccessorInfo)
CAST_ACCESSOR(ByteArray)
CAST_ACCESSOR(Cell)
CAST_ACCESSOR(Code)
CAST_ACCESSOR(CodeCacheHashTable)
CAST_ACCESSOR(CompilationCacheTable)
CAST_ACCESSOR(ConsString)
CAST_ACCESSOR(ConstantPoolArray)
CAST_ACCESSOR(DeoptimizationInputData)
CAST_ACCESSOR(DeoptimizationOutputData)
CAST_ACCESSOR(DependentCode)
CAST_ACCESSOR(DescriptorArray)
CAST_ACCESSOR(ExternalArray)
CAST_ACCESSOR(ExternalOneByteString)
CAST_ACCESSOR(ExternalFloat32Array)
CAST_ACCESSOR(ExternalFloat64Array)
CAST_ACCESSOR(ExternalInt16Array)
CAST_ACCESSOR(ExternalInt32Array)
CAST_ACCESSOR(ExternalInt8Array)
CAST_ACCESSOR(ExternalString)
CAST_ACCESSOR(ExternalTwoByteString)
CAST_ACCESSOR(ExternalUint16Array)
CAST_ACCESSOR(ExternalUint32Array)
CAST_ACCESSOR(ExternalUint8Array)
CAST_ACCESSOR(ExternalUint8ClampedArray)
CAST_ACCESSOR(FixedArray)
CAST_ACCESSOR(FixedArrayBase)
CAST_ACCESSOR(FixedDoubleArray)
CAST_ACCESSOR(FixedTypedArrayBase)
CAST_ACCESSOR(Foreign)
CAST_ACCESSOR(FreeSpace)
CAST_ACCESSOR(GlobalObject)
CAST_ACCESSOR(HeapObject)
CAST_ACCESSOR(JSArray)
CAST_ACCESSOR(JSArrayBuffer)
CAST_ACCESSOR(JSArrayBufferView)
CAST_ACCESSOR(JSBuiltinsObject)
CAST_ACCESSOR(JSDataView)
CAST_ACCESSOR(JSDate)
CAST_ACCESSOR(JSFunction)
CAST_ACCESSOR(JSFunctionProxy)
CAST_ACCESSOR(JSFunctionResultCache)
CAST_ACCESSOR(JSGeneratorObject)
CAST_ACCESSOR(JSGlobalObject)
CAST_ACCESSOR(JSGlobalProxy)
CAST_ACCESSOR(JSMap)
CAST_ACCESSOR(JSMapIterator)
CAST_ACCESSOR(JSMessageObject)
CAST_ACCESSOR(JSModule)
CAST_ACCESSOR(JSObject)
CAST_ACCESSOR(JSProxy)
CAST_ACCESSOR(JSReceiver)
CAST_ACCESSOR(JSRegExp)
CAST_ACCESSOR(JSSet)
CAST_ACCESSOR(JSSetIterator)
CAST_ACCESSOR(JSTypedArray)
CAST_ACCESSOR(JSValue)
CAST_ACCESSOR(JSWeakMap)
CAST_ACCESSOR(JSWeakSet)
CAST_ACCESSOR(Map)
CAST_ACCESSOR(Name)
CAST_ACCESSOR(NameDictionary)
CAST_ACCESSOR(NormalizedMapCache)
CAST_ACCESSOR(Object)
CAST_ACCESSOR(ObjectHashTable)
CAST_ACCESSOR(Oddball)
CAST_ACCESSOR(OrderedHashMap)
CAST_ACCESSOR(OrderedHashSet)
CAST_ACCESSOR(PolymorphicCodeCacheHashTable)
CAST_ACCESSOR(PropertyCell)
CAST_ACCESSOR(ScopeInfo)
CAST_ACCESSOR(SeededNumberDictionary)
CAST_ACCESSOR(SeqOneByteString)
CAST_ACCESSOR(SeqString)
CAST_ACCESSOR(SeqTwoByteString)
CAST_ACCESSOR(SharedFunctionInfo)
CAST_ACCESSOR(SlicedString)
CAST_ACCESSOR(Smi)
CAST_ACCESSOR(String)
CAST_ACCESSOR(StringTable)
CAST_ACCESSOR(Struct)
CAST_ACCESSOR(Symbol)
CAST_ACCESSOR(UnseededNumberDictionary)
CAST_ACCESSOR(WeakCell)
CAST_ACCESSOR(WeakHashTable)
template <class Traits>
FixedTypedArray<Traits>* FixedTypedArray<Traits>::cast(Object* object) {
SLOW_DCHECK(object->IsHeapObject() &&
HeapObject::cast(object)->map()->instance_type() ==
Traits::kInstanceType);
return reinterpret_cast<FixedTypedArray<Traits>*>(object);
}
template <class Traits>
const FixedTypedArray<Traits>*
FixedTypedArray<Traits>::cast(const Object* object) {
SLOW_DCHECK(object->IsHeapObject() &&
HeapObject::cast(object)->map()->instance_type() ==
Traits::kInstanceType);
return reinterpret_cast<FixedTypedArray<Traits>*>(object);
}
#define MAKE_STRUCT_CAST(NAME, Name, name) CAST_ACCESSOR(Name)
STRUCT_LIST(MAKE_STRUCT_CAST)
#undef MAKE_STRUCT_CAST
template <typename Derived, typename Shape, typename Key>
HashTable<Derived, Shape, Key>*
HashTable<Derived, Shape, Key>::cast(Object* obj) {
SLOW_DCHECK(obj->IsHashTable());
return reinterpret_cast<HashTable*>(obj);
}
template <typename Derived, typename Shape, typename Key>
const HashTable<Derived, Shape, Key>*
HashTable<Derived, Shape, Key>::cast(const Object* obj) {
SLOW_DCHECK(obj->IsHashTable());
return reinterpret_cast<const HashTable*>(obj);
}
SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
SYNCHRONIZED_SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset)
SMI_ACCESSORS(FreeSpace, size, kSizeOffset)
NOBARRIER_SMI_ACCESSORS(FreeSpace, size, kSizeOffset)
SMI_ACCESSORS(String, length, kLengthOffset)
SYNCHRONIZED_SMI_ACCESSORS(String, length, kLengthOffset)
uint32_t Name::hash_field() {
return READ_UINT32_FIELD(this, kHashFieldOffset);
}
void Name::set_hash_field(uint32_t value) {
WRITE_UINT32_FIELD(this, kHashFieldOffset, value);
#if V8_HOST_ARCH_64_BIT
#if V8_TARGET_LITTLE_ENDIAN
WRITE_UINT32_FIELD(this, kHashFieldSlot + kIntSize, 0);
#else
WRITE_UINT32_FIELD(this, kHashFieldSlot, 0);
#endif
#endif
}
bool Name::Equals(Name* other) {
if (other == this) return true;
if ((this->IsInternalizedString() && other->IsInternalizedString()) ||
this->IsSymbol() || other->IsSymbol()) {
return false;
}
return String::cast(this)->SlowEquals(String::cast(other));
}
bool Name::Equals(Handle<Name> one, Handle<Name> two) {
if (one.is_identical_to(two)) return true;
if ((one->IsInternalizedString() && two->IsInternalizedString()) ||
one->IsSymbol() || two->IsSymbol()) {
return false;
}
return String::SlowEquals(Handle<String>::cast(one),
Handle<String>::cast(two));
}
ACCESSORS(Symbol, name, Object, kNameOffset)
ACCESSORS(Symbol, flags, Smi, kFlagsOffset)
BOOL_ACCESSORS(Symbol, flags, is_private, kPrivateBit)
BOOL_ACCESSORS(Symbol, flags, is_own, kOwnBit)
bool String::Equals(String* other) {
if (other == this) return true;
if (this->IsInternalizedString() && other->IsInternalizedString()) {
return false;
}
return SlowEquals(other);
}
bool String::Equals(Handle<String> one, Handle<String> two) {
if (one.is_identical_to(two)) return true;
if (one->IsInternalizedString() && two->IsInternalizedString()) {
return false;
}
return SlowEquals(one, two);
}
Handle<String> String::Flatten(Handle<String> string, PretenureFlag pretenure) {
if (!string->IsConsString()) return string;
Handle<ConsString> cons = Handle<ConsString>::cast(string);
if (cons->IsFlat()) return handle(cons->first());
return SlowFlatten(cons, pretenure);
}
uint16_t String::Get(int index) {
DCHECK(index >= 0 && index < length());
switch (StringShape(this).full_representation_tag()) {
case kSeqStringTag | kOneByteStringTag:
return SeqOneByteString::cast(this)->SeqOneByteStringGet(index);
case kSeqStringTag | kTwoByteStringTag:
return SeqTwoByteString::cast(this)->SeqTwoByteStringGet(index);
case kConsStringTag | kOneByteStringTag:
case kConsStringTag | kTwoByteStringTag:
return ConsString::cast(this)->ConsStringGet(index);
case kExternalStringTag | kOneByteStringTag:
return ExternalOneByteString::cast(this)->ExternalOneByteStringGet(index);
case kExternalStringTag | kTwoByteStringTag:
return ExternalTwoByteString::cast(this)->ExternalTwoByteStringGet(index);
case kSlicedStringTag | kOneByteStringTag:
case kSlicedStringTag | kTwoByteStringTag:
return SlicedString::cast(this)->SlicedStringGet(index);
default:
break;
}
UNREACHABLE();
return 0;
}
void String::Set(int index, uint16_t value) {
DCHECK(index >= 0 && index < length());
DCHECK(StringShape(this).IsSequential());
return this->IsOneByteRepresentation()
? SeqOneByteString::cast(this)->SeqOneByteStringSet(index, value)
: SeqTwoByteString::cast(this)->SeqTwoByteStringSet(index, value);
}
bool String::IsFlat() {
if (!StringShape(this).IsCons()) return true;
return ConsString::cast(this)->second()->length() == 0;
}
String* String::GetUnderlying() {
// Giving direct access to underlying string only makes sense if the
// wrapping string is already flattened.
DCHECK(this->IsFlat());
DCHECK(StringShape(this).IsIndirect());
STATIC_ASSERT(ConsString::kFirstOffset == SlicedString::kParentOffset);
const int kUnderlyingOffset = SlicedString::kParentOffset;
return String::cast(READ_FIELD(this, kUnderlyingOffset));
}
template<class Visitor>
ConsString* String::VisitFlat(Visitor* visitor,
String* string,
const int offset) {
int slice_offset = offset;
const int length = string->length();
DCHECK(offset <= length);
while (true) {
int32_t type = string->map()->instance_type();
switch (type & (kStringRepresentationMask | kStringEncodingMask)) {
case kSeqStringTag | kOneByteStringTag:
visitor->VisitOneByteString(
SeqOneByteString::cast(string)->GetChars() + slice_offset,
length - offset);
return NULL;
case kSeqStringTag | kTwoByteStringTag:
visitor->VisitTwoByteString(
SeqTwoByteString::cast(string)->GetChars() + slice_offset,
length - offset);
return NULL;
case kExternalStringTag | kOneByteStringTag:
visitor->VisitOneByteString(
ExternalOneByteString::cast(string)->GetChars() + slice_offset,
length - offset);
return NULL;
case kExternalStringTag | kTwoByteStringTag:
visitor->VisitTwoByteString(
ExternalTwoByteString::cast(string)->GetChars() + slice_offset,
length - offset);
return NULL;
case kSlicedStringTag | kOneByteStringTag:
case kSlicedStringTag | kTwoByteStringTag: {
SlicedString* slicedString = SlicedString::cast(string);
slice_offset += slicedString->offset();
string = slicedString->parent();
continue;
}
case kConsStringTag | kOneByteStringTag:
case kConsStringTag | kTwoByteStringTag:
return ConsString::cast(string);
default:
UNREACHABLE();
return NULL;
}
}
}
uint16_t SeqOneByteString::SeqOneByteStringGet(int index) {
DCHECK(index >= 0 && index < length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void SeqOneByteString::SeqOneByteStringSet(int index, uint16_t value) {
DCHECK(index >= 0 && index < length() && value <= kMaxOneByteCharCode);
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize,
static_cast<byte>(value));
}
Address SeqOneByteString::GetCharsAddress() {
return FIELD_ADDR(this, kHeaderSize);
}
uint8_t* SeqOneByteString::GetChars() {
return reinterpret_cast<uint8_t*>(GetCharsAddress());
}
Address SeqTwoByteString::GetCharsAddress() {
return FIELD_ADDR(this, kHeaderSize);
}
uc16* SeqTwoByteString::GetChars() {
return reinterpret_cast<uc16*>(FIELD_ADDR(this, kHeaderSize));
}
uint16_t SeqTwoByteString::SeqTwoByteStringGet(int index) {
DCHECK(index >= 0 && index < length());
return READ_SHORT_FIELD(this, kHeaderSize + index * kShortSize);
}
void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
DCHECK(index >= 0 && index < length());
WRITE_SHORT_FIELD(this, kHeaderSize + index * kShortSize, value);
}
int SeqTwoByteString::SeqTwoByteStringSize(InstanceType instance_type) {
return SizeFor(length());
}
int SeqOneByteString::SeqOneByteStringSize(InstanceType instance_type) {
return SizeFor(length());
}
String* SlicedString::parent() {
return String::cast(READ_FIELD(this, kParentOffset));
}
void SlicedString::set_parent(String* parent, WriteBarrierMode mode) {
DCHECK(parent->IsSeqString() || parent->IsExternalString());
WRITE_FIELD(this, kParentOffset, parent);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kParentOffset, parent, mode);
}
SMI_ACCESSORS(SlicedString, offset, kOffsetOffset)
String* ConsString::first() {
return String::cast(READ_FIELD(this, kFirstOffset));
}
Object* ConsString::unchecked_first() {
return READ_FIELD(this, kFirstOffset);
}
void ConsString::set_first(String* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kFirstOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kFirstOffset, value, mode);
}
String* ConsString::second() {
return String::cast(READ_FIELD(this, kSecondOffset));
}
Object* ConsString::unchecked_second() {
return READ_FIELD(this, kSecondOffset);
}
void ConsString::set_second(String* value, WriteBarrierMode mode) {
WRITE_FIELD(this, kSecondOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kSecondOffset, value, mode);
}
bool ExternalString::is_short() {
InstanceType type = map()->instance_type();
return (type & kShortExternalStringMask) == kShortExternalStringTag;
}
const ExternalOneByteString::Resource* ExternalOneByteString::resource() {
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}
void ExternalOneByteString::update_data_cache() {
if (is_short()) return;
const char** data_field =
reinterpret_cast<const char**>(FIELD_ADDR(this, kResourceDataOffset));
*data_field = resource()->data();
}
void ExternalOneByteString::set_resource(
const ExternalOneByteString::Resource* resource) {
DCHECK(IsAligned(reinterpret_cast<intptr_t>(resource), kPointerSize));
*reinterpret_cast<const Resource**>(
FIELD_ADDR(this, kResourceOffset)) = resource;
if (resource != NULL) update_data_cache();
}
const uint8_t* ExternalOneByteString::GetChars() {
return reinterpret_cast<const uint8_t*>(resource()->data());
}
uint16_t ExternalOneByteString::ExternalOneByteStringGet(int index) {
DCHECK(index >= 0 && index < length());
return GetChars()[index];
}
const ExternalTwoByteString::Resource* ExternalTwoByteString::resource() {
return *reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset));
}
void ExternalTwoByteString::update_data_cache() {
if (is_short()) return;
const uint16_t** data_field =
reinterpret_cast<const uint16_t**>(FIELD_ADDR(this, kResourceDataOffset));
*data_field = resource()->data();
}
void ExternalTwoByteString::set_resource(
const ExternalTwoByteString::Resource* resource) {
*reinterpret_cast<const Resource**>(
FIELD_ADDR(this, kResourceOffset)) = resource;
if (resource != NULL) update_data_cache();
}
const uint16_t* ExternalTwoByteString::GetChars() {
return resource()->data();
}
uint16_t ExternalTwoByteString::ExternalTwoByteStringGet(int index) {
DCHECK(index >= 0 && index < length());
return GetChars()[index];
}
const uint16_t* ExternalTwoByteString::ExternalTwoByteStringGetData(
unsigned start) {
return GetChars() + start;
}
int ConsStringIterator::OffsetForDepth(int depth) { return depth & kDepthMask; }
void ConsStringIterator::PushLeft(ConsString* string) {
frames_[depth_++ & kDepthMask] = string;
}
void ConsStringIterator::PushRight(ConsString* string) {
// Inplace update.
frames_[(depth_-1) & kDepthMask] = string;
}
void ConsStringIterator::AdjustMaximumDepth() {
if (depth_ > maximum_depth_) maximum_depth_ = depth_;
}
void ConsStringIterator::Pop() {
DCHECK(depth_ > 0);
DCHECK(depth_ <= maximum_depth_);
depth_--;
}
uint16_t StringCharacterStream::GetNext() {
DCHECK(buffer8_ != NULL && end_ != NULL);
// Advance cursor if needed.
if (buffer8_ == end_) HasMore();
DCHECK(buffer8_ < end_);
return is_one_byte_ ? *buffer8_++ : *buffer16_++;
}
StringCharacterStream::StringCharacterStream(String* string, int offset)
: is_one_byte_(false) {
Reset(string, offset);
}
void StringCharacterStream::Reset(String* string, int offset) {
buffer8_ = NULL;
end_ = NULL;
ConsString* cons_string = String::VisitFlat(this, string, offset);
iter_.Reset(cons_string, offset);
if (cons_string != NULL) {
string = iter_.Next(&offset);
if (string != NULL) String::VisitFlat(this, string, offset);
}
}
bool StringCharacterStream::HasMore() {
if (buffer8_ != end_) return true;
int offset;
String* string = iter_.Next(&offset);
DCHECK_EQ(offset, 0);
if (string == NULL) return false;
String::VisitFlat(this, string);
DCHECK(buffer8_ != end_);
return true;
}
void StringCharacterStream::VisitOneByteString(
const uint8_t* chars, int length) {
is_one_byte_ = true;
buffer8_ = chars;
end_ = chars + length;
}
void StringCharacterStream::VisitTwoByteString(
const uint16_t* chars, int length) {
is_one_byte_ = false;
buffer16_ = chars;
end_ = reinterpret_cast<const uint8_t*>(chars + length);
}
void JSFunctionResultCache::MakeZeroSize() {
set_finger_index(kEntriesIndex);
set_size(kEntriesIndex);
}
void JSFunctionResultCache::Clear() {
int cache_size = size();
Object** entries_start = RawFieldOfElementAt(kEntriesIndex);
MemsetPointer(entries_start,
GetHeap()->the_hole_value(),
cache_size - kEntriesIndex);
MakeZeroSize();
}
int JSFunctionResultCache::size() {
return Smi::cast(get(kCacheSizeIndex))->value();
}
void JSFunctionResultCache::set_size(int size) {
set(kCacheSizeIndex, Smi::FromInt(size));
}
int JSFunctionResultCache::finger_index() {
return Smi::cast(get(kFingerIndex))->value();
}
void JSFunctionResultCache::set_finger_index(int finger_index) {
set(kFingerIndex, Smi::FromInt(finger_index));
}
byte ByteArray::get(int index) {
DCHECK(index >= 0 && index < this->length());
return READ_BYTE_FIELD(this, kHeaderSize + index * kCharSize);
}
void ByteArray::set(int index, byte value) {
DCHECK(index >= 0 && index < this->length());
WRITE_BYTE_FIELD(this, kHeaderSize + index * kCharSize, value);
}
int ByteArray::get_int(int index) {
DCHECK(index >= 0 && (index * kIntSize) < this->length());
return READ_INT_FIELD(this, kHeaderSize + index * kIntSize);
}
ByteArray* ByteArray::FromDataStartAddress(Address address) {
DCHECK_TAG_ALIGNED(address);
return reinterpret_cast<ByteArray*>(address - kHeaderSize + kHeapObjectTag);
}
Address ByteArray::GetDataStartAddress() {
return reinterpret_cast<Address>(this) - kHeapObjectTag + kHeaderSize;
}
uint8_t* ExternalUint8ClampedArray::external_uint8_clamped_pointer() {
return reinterpret_cast<uint8_t*>(external_pointer());
}
uint8_t ExternalUint8ClampedArray::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
uint8_t* ptr = external_uint8_clamped_pointer();
return ptr[index];
}
Handle<Object> ExternalUint8ClampedArray::get(
Handle<ExternalUint8ClampedArray> array,
int index) {
return Handle<Smi>(Smi::FromInt(array->get_scalar(index)),
array->GetIsolate());
}
void ExternalUint8ClampedArray::set(int index, uint8_t value) {
DCHECK((index >= 0) && (index < this->length()));
uint8_t* ptr = external_uint8_clamped_pointer();
ptr[index] = value;
}
void* ExternalArray::external_pointer() const {
intptr_t ptr = READ_INTPTR_FIELD(this, kExternalPointerOffset);
return reinterpret_cast<void*>(ptr);
}
void ExternalArray::set_external_pointer(void* value, WriteBarrierMode mode) {
intptr_t ptr = reinterpret_cast<intptr_t>(value);
WRITE_INTPTR_FIELD(this, kExternalPointerOffset, ptr);
}
int8_t ExternalInt8Array::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
int8_t* ptr = static_cast<int8_t*>(external_pointer());
return ptr[index];
}
Handle<Object> ExternalInt8Array::get(Handle<ExternalInt8Array> array,
int index) {
return Handle<Smi>(Smi::FromInt(array->get_scalar(index)),
array->GetIsolate());
}
void ExternalInt8Array::set(int index, int8_t value) {
DCHECK((index >= 0) && (index < this->length()));
int8_t* ptr = static_cast<int8_t*>(external_pointer());
ptr[index] = value;
}
uint8_t ExternalUint8Array::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
return ptr[index];
}
Handle<Object> ExternalUint8Array::get(Handle<ExternalUint8Array> array,
int index) {
return Handle<Smi>(Smi::FromInt(array->get_scalar(index)),
array->GetIsolate());
}
void ExternalUint8Array::set(int index, uint8_t value) {
DCHECK((index >= 0) && (index < this->length()));
uint8_t* ptr = static_cast<uint8_t*>(external_pointer());
ptr[index] = value;
}
int16_t ExternalInt16Array::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
int16_t* ptr = static_cast<int16_t*>(external_pointer());
return ptr[index];
}
Handle<Object> ExternalInt16Array::get(Handle<ExternalInt16Array> array,
int index) {
return Handle<Smi>(Smi::FromInt(array->get_scalar(index)),
array->GetIsolate());
}
void ExternalInt16Array::set(int index, int16_t value) {
DCHECK((index >= 0) && (index < this->length()));
int16_t* ptr = static_cast<int16_t*>(external_pointer());
ptr[index] = value;
}
uint16_t ExternalUint16Array::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
return ptr[index];
}
Handle<Object> ExternalUint16Array::get(Handle<ExternalUint16Array> array,
int index) {
return Handle<Smi>(Smi::FromInt(array->get_scalar(index)),
array->GetIsolate());
}
void ExternalUint16Array::set(int index, uint16_t value) {
DCHECK((index >= 0) && (index < this->length()));
uint16_t* ptr = static_cast<uint16_t*>(external_pointer());
ptr[index] = value;
}
int32_t ExternalInt32Array::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
int32_t* ptr = static_cast<int32_t*>(external_pointer());
return ptr[index];
}
Handle<Object> ExternalInt32Array::get(Handle<ExternalInt32Array> array,
int index) {
return array->GetIsolate()->factory()->
NewNumberFromInt(array->get_scalar(index));
}
void ExternalInt32Array::set(int index, int32_t value) {
DCHECK((index >= 0) && (index < this->length()));
int32_t* ptr = static_cast<int32_t*>(external_pointer());
ptr[index] = value;
}
uint32_t ExternalUint32Array::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
return ptr[index];
}
Handle<Object> ExternalUint32Array::get(Handle<ExternalUint32Array> array,
int index) {
return array->GetIsolate()->factory()->
NewNumberFromUint(array->get_scalar(index));
}
void ExternalUint32Array::set(int index, uint32_t value) {
DCHECK((index >= 0) && (index < this->length()));
uint32_t* ptr = static_cast<uint32_t*>(external_pointer());
ptr[index] = value;
}
float ExternalFloat32Array::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
float* ptr = static_cast<float*>(external_pointer());
return ptr[index];
}
Handle<Object> ExternalFloat32Array::get(Handle<ExternalFloat32Array> array,
int index) {
return array->GetIsolate()->factory()->NewNumber(array->get_scalar(index));
}
void ExternalFloat32Array::set(int index, float value) {
DCHECK((index >= 0) && (index < this->length()));
float* ptr = static_cast<float*>(external_pointer());
ptr[index] = value;
}
double ExternalFloat64Array::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
double* ptr = static_cast<double*>(external_pointer());
return ptr[index];
}
Handle<Object> ExternalFloat64Array::get(Handle<ExternalFloat64Array> array,
int index) {
return array->GetIsolate()->factory()->NewNumber(array->get_scalar(index));
}
void ExternalFloat64Array::set(int index, double value) {
DCHECK((index >= 0) && (index < this->length()));
double* ptr = static_cast<double*>(external_pointer());
ptr[index] = value;
}
void* FixedTypedArrayBase::DataPtr() {
return FIELD_ADDR(this, kDataOffset);
}
int FixedTypedArrayBase::DataSize(InstanceType type) {
int element_size;
switch (type) {
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
case FIXED_##TYPE##_ARRAY_TYPE: \
element_size = size; \
break;
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
default:
UNREACHABLE();
return 0;
}
return length() * element_size;
}
int FixedTypedArrayBase::DataSize() {
return DataSize(map()->instance_type());
}
int FixedTypedArrayBase::size() {
return OBJECT_POINTER_ALIGN(kDataOffset + DataSize());
}
int FixedTypedArrayBase::TypedArraySize(InstanceType type) {
return OBJECT_POINTER_ALIGN(kDataOffset + DataSize(type));
}
uint8_t Uint8ArrayTraits::defaultValue() { return 0; }
uint8_t Uint8ClampedArrayTraits::defaultValue() { return 0; }
int8_t Int8ArrayTraits::defaultValue() { return 0; }
uint16_t Uint16ArrayTraits::defaultValue() { return 0; }
int16_t Int16ArrayTraits::defaultValue() { return 0; }
uint32_t Uint32ArrayTraits::defaultValue() { return 0; }
int32_t Int32ArrayTraits::defaultValue() { return 0; }
float Float32ArrayTraits::defaultValue() {
return static_cast<float>(base::OS::nan_value());
}
double Float64ArrayTraits::defaultValue() { return base::OS::nan_value(); }
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
ElementType* ptr = reinterpret_cast<ElementType*>(
FIELD_ADDR(this, kDataOffset));
return ptr[index];
}
template<> inline
FixedTypedArray<Float64ArrayTraits>::ElementType
FixedTypedArray<Float64ArrayTraits>::get_scalar(int index) {
DCHECK((index >= 0) && (index < this->length()));
return READ_DOUBLE_FIELD(this, ElementOffset(index));
}
template <class Traits>
void FixedTypedArray<Traits>::set(int index, ElementType value) {
DCHECK((index >= 0) && (index < this->length()));
ElementType* ptr = reinterpret_cast<ElementType*>(
FIELD_ADDR(this, kDataOffset));
ptr[index] = value;
}
template<> inline
void FixedTypedArray<Float64ArrayTraits>::set(
int index, Float64ArrayTraits::ElementType value) {
DCHECK((index >= 0) && (index < this->length()));
WRITE_DOUBLE_FIELD(this, ElementOffset(index), value);
}
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from_int(int value) {
return static_cast<ElementType>(value);
}
template <> inline
uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from_int(int value) {
if (value < 0) return 0;
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(value);
}
template <class Traits>
typename Traits::ElementType FixedTypedArray<Traits>::from_double(
double value) {
return static_cast<ElementType>(DoubleToInt32(value));
}
template<> inline
uint8_t FixedTypedArray<Uint8ClampedArrayTraits>::from_double(double value) {
// Handle NaNs and less than zero values which clamp to zero.
if (!(value > 0)) return 0;
if (value > 0xFF) return 0xFF;
return static_cast<uint8_t>(lrint(value));
}
template<> inline
float FixedTypedArray<Float32ArrayTraits>::from_double(double value) {
return static_cast<float>(value);
}
template<> inline
double FixedTypedArray<Float64ArrayTraits>::from_double(double value) {
return value;
}
template <class Traits>
Handle<Object> FixedTypedArray<Traits>::get(
Handle<FixedTypedArray<Traits> > array,
int index) {
return Traits::ToHandle(array->GetIsolate(), array->get_scalar(index));
}
template <class Traits>
Handle<Object> FixedTypedArray<Traits>::SetValue(
Handle<FixedTypedArray<Traits> > array,
uint32_t index,
Handle<Object> value) {
ElementType cast_value = Traits::defaultValue();
if (index < static_cast<uint32_t>(array->length())) {
if (value->IsSmi()) {
int int_value = Handle<Smi>::cast(value)->value();
cast_value = from_int(int_value);
} else if (value->IsHeapNumber()) {
double double_value = Handle<HeapNumber>::cast(value)->value();
cast_value = from_double(double_value);
} else {
// Clamp undefined to the default value. All other types have been
// converted to a number type further up in the call chain.
DCHECK(value->IsUndefined());
}
array->set(index, cast_value);
}
return Traits::ToHandle(array->GetIsolate(), cast_value);
}
Handle<Object> Uint8ArrayTraits::ToHandle(Isolate* isolate, uint8_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Uint8ClampedArrayTraits::ToHandle(Isolate* isolate,
uint8_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Int8ArrayTraits::ToHandle(Isolate* isolate, int8_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Uint16ArrayTraits::ToHandle(Isolate* isolate, uint16_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Int16ArrayTraits::ToHandle(Isolate* isolate, int16_t scalar) {
return handle(Smi::FromInt(scalar), isolate);
}
Handle<Object> Uint32ArrayTraits::ToHandle(Isolate* isolate, uint32_t scalar) {
return isolate->factory()->NewNumberFromUint(scalar);
}
Handle<Object> Int32ArrayTraits::ToHandle(Isolate* isolate, int32_t scalar) {
return isolate->factory()->NewNumberFromInt(scalar);
}
Handle<Object> Float32ArrayTraits::ToHandle(Isolate* isolate, float scalar) {
return isolate->factory()->NewNumber(scalar);
}
Handle<Object> Float64ArrayTraits::ToHandle(Isolate* isolate, double scalar) {
return isolate->factory()->NewNumber(scalar);
}
int Map::visitor_id() {
return READ_BYTE_FIELD(this, kVisitorIdOffset);
}
void Map::set_visitor_id(int id) {
DCHECK(0 <= id && id < 256);
WRITE_BYTE_FIELD(this, kVisitorIdOffset, static_cast<byte>(id));
}
int Map::instance_size() {
return NOBARRIER_READ_BYTE_FIELD(
this, kInstanceSizeOffset) << kPointerSizeLog2;
}
int Map::inobject_properties() {
return READ_BYTE_FIELD(this, kInObjectPropertiesOffset);
}
int Map::pre_allocated_property_fields() {
return READ_BYTE_FIELD(this, kPreAllocatedPropertyFieldsOffset);
}
int Map::GetInObjectPropertyOffset(int index) {
// Adjust for the number of properties stored in the object.
index -= inobject_properties();
DCHECK(index <= 0);
return instance_size() + (index * kPointerSize);
}
int HeapObject::SizeFromMap(Map* map) {
int instance_size = map->instance_size();
if (instance_size != kVariableSizeSentinel) return instance_size;
// Only inline the most frequent cases.
InstanceType instance_type = map->instance_type();
if (instance_type == FIXED_ARRAY_TYPE) {
return FixedArray::BodyDescriptor::SizeOf(map, this);
}
if (instance_type == ONE_BYTE_STRING_TYPE ||
instance_type == ONE_BYTE_INTERNALIZED_STRING_TYPE) {
// Strings may get concurrently truncated, hence we have to access its
// length synchronized.
return SeqOneByteString::SizeFor(
reinterpret_cast<SeqOneByteString*>(this)->synchronized_length());
}
if (instance_type == BYTE_ARRAY_TYPE) {
return reinterpret_cast<ByteArray*>(this)->ByteArraySize();
}
if (instance_type == FREE_SPACE_TYPE) {
return reinterpret_cast<FreeSpace*>(this)->nobarrier_size();
}
if (instance_type == STRING_TYPE ||
instance_type == INTERNALIZED_STRING_TYPE) {
// Strings may get concurrently truncated, hence we have to access its
// length synchronized.
return SeqTwoByteString::SizeFor(
reinterpret_cast<SeqTwoByteString*>(this)->synchronized_length());
}
if (instance_type == FIXED_DOUBLE_ARRAY_TYPE) {
return FixedDoubleArray::SizeFor(
reinterpret_cast<FixedDoubleArray*>(this)->length());
}
if (instance_type == CONSTANT_POOL_ARRAY_TYPE) {
return reinterpret_cast<ConstantPoolArray*>(this)->size();
}
if (instance_type >= FIRST_FIXED_TYPED_ARRAY_TYPE &&
instance_type <= LAST_FIXED_TYPED_ARRAY_TYPE) {
return reinterpret_cast<FixedTypedArrayBase*>(
this)->TypedArraySize(instance_type);
}
DCHECK(instance_type == CODE_TYPE);
return reinterpret_cast<Code*>(this)->CodeSize();
}
void Map::set_instance_size(int value) {
DCHECK_EQ(0, value & (kPointerSize - 1));
value >>= kPointerSizeLog2;
DCHECK(0 <= value && value < 256);
NOBARRIER_WRITE_BYTE_FIELD(
this, kInstanceSizeOffset, static_cast<byte>(value));
}
void Map::set_inobject_properties(int value) {
DCHECK(0 <= value && value < 256);
WRITE_BYTE_FIELD(this, kInObjectPropertiesOffset, static_cast<byte>(value));
}
void Map::set_pre_allocated_property_fields(int value) {
DCHECK(0 <= value && value < 256);
WRITE_BYTE_FIELD(this,
kPreAllocatedPropertyFieldsOffset,
static_cast<byte>(value));
}
InstanceType Map::instance_type() {
return static_cast<InstanceType>(READ_BYTE_FIELD(this, kInstanceTypeOffset));
}
void Map::set_instance_type(InstanceType value) {
WRITE_BYTE_FIELD(this, kInstanceTypeOffset, value);
}
int Map::unused_property_fields() {
return READ_BYTE_FIELD(this, kUnusedPropertyFieldsOffset);
}
void Map::set_unused_property_fields(int value) {
WRITE_BYTE_FIELD(this, kUnusedPropertyFieldsOffset, Min(value, 255));
}
byte Map::bit_field() {
return READ_BYTE_FIELD(this, kBitFieldOffset);
}
void Map::set_bit_field(byte value) {
WRITE_BYTE_FIELD(this, kBitFieldOffset, value);
}
byte Map::bit_field2() {
return READ_BYTE_FIELD(this, kBitField2Offset);
}
void Map::set_bit_field2(byte value) {
WRITE_BYTE_FIELD(this, kBitField2Offset, value);
}
void Map::set_non_instance_prototype(bool value) {
if (value) {
set_bit_field(bit_field() | (1 << kHasNonInstancePrototype));
} else {
set_bit_field(bit_field() & ~(1 << kHasNonInstancePrototype));
}
}
bool Map::has_non_instance_prototype() {
return ((1 << kHasNonInstancePrototype) & bit_field()) != 0;
}
void Map::set_function_with_prototype(bool value) {
set_bit_field(FunctionWithPrototype::update(bit_field(), value));
}
bool Map::function_with_prototype() {
return FunctionWithPrototype::decode(bit_field());
}
void Map::set_is_access_check_needed(bool access_check_needed) {
if (access_check_needed) {
set_bit_field(bit_field() | (1 << kIsAccessCheckNeeded));
} else {
set_bit_field(bit_field() & ~(1 << kIsAccessCheckNeeded));
}
}
bool Map::is_access_check_needed() {
return ((1 << kIsAccessCheckNeeded) & bit_field()) != 0;
}
void Map::set_is_extensible(bool value) {
if (value) {
set_bit_field2(bit_field2() | (1 << kIsExtensible));
} else {
set_bit_field2(bit_field2() & ~(1 << kIsExtensible));
}
}
bool Map::is_extensible() {
return ((1 << kIsExtensible) & bit_field2()) != 0;
}
void Map::set_is_prototype_map(bool value) {
set_bit_field2(IsPrototypeMapBits::update(bit_field2(), value));
}
bool Map::is_prototype_map() {
return IsPrototypeMapBits::decode(bit_field2());
}
void Map::set_dictionary_map(bool value) {
uint32_t new_bit_field3 = DictionaryMap::update(bit_field3(), value);
new_bit_field3 = IsUnstable::update(new_bit_field3, value);
set_bit_field3(new_bit_field3);
}
bool Map::is_dictionary_map() {
return DictionaryMap::decode(bit_field3());
}
Code::Flags Code::flags() {
return static_cast<Flags>(READ_INT_FIELD(this, kFlagsOffset));
}
void Map::set_owns_descriptors(bool owns_descriptors) {
set_bit_field3(OwnsDescriptors::update(bit_field3(), owns_descriptors));
}
bool Map::owns_descriptors() {
return OwnsDescriptors::decode(bit_field3());
}
void Map::set_has_instance_call_handler() {
set_bit_field3(HasInstanceCallHandler::update(bit_field3(), true));
}
bool Map::has_instance_call_handler() {
return HasInstanceCallHandler::decode(bit_field3());
}
void Map::deprecate() {
set_bit_field3(Deprecated::update(bit_field3(), true));
}
bool Map::is_deprecated() {
return Deprecated::decode(bit_field3());
}
void Map::set_migration_target(bool value) {
set_bit_field3(IsMigrationTarget::update(bit_field3(), value));
}
bool Map::is_migration_target() {
return IsMigrationTarget::decode(bit_field3());
}
void Map::set_done_inobject_slack_tracking(bool value) {
set_bit_field3(DoneInobjectSlackTracking::update(bit_field3(), value));
}
bool Map::done_inobject_slack_tracking() {
return DoneInobjectSlackTracking::decode(bit_field3());
}
void Map::set_construction_count(int value) {
set_bit_field3(ConstructionCount::update(bit_field3(), value));
}
int Map::construction_count() {
return ConstructionCount::decode(bit_field3());
}
void Map::freeze() {
set_bit_field3(IsFrozen::update(bit_field3(), true));
}
bool Map::is_frozen() {
return IsFrozen::decode(bit_field3());
}
void Map::mark_unstable() {
set_bit_field3(IsUnstable::update(bit_field3(), true));
}
bool Map::is_stable() {
return !IsUnstable::decode(bit_field3());
}
bool Map::has_code_cache() {
return code_cache() != GetIsolate()->heap()->empty_fixed_array();
}
bool Map::CanBeDeprecated() {
int descriptor = LastAdded();
for (int i = 0; i <= descriptor; i++) {
PropertyDetails details = instance_descriptors()->GetDetails(i);
if (details.representation().IsNone()) return true;
if (details.representation().IsSmi()) return true;
if (details.representation().IsDouble()) return true;
if (details.representation().IsHeapObject()) return true;
if (details.type() == CONSTANT) return true;
}
return false;
}
void Map::NotifyLeafMapLayoutChange() {
if (is_stable()) {
mark_unstable();
dependent_code()->DeoptimizeDependentCodeGroup(
GetIsolate(),
DependentCode::kPrototypeCheckGroup);
}
}
bool Map::CanOmitMapChecks() {
return is_stable() && FLAG_omit_map_checks_for_leaf_maps;
}
int DependentCode::number_of_entries(DependencyGroup group) {
if (length() == 0) return 0;
return Smi::cast(get(group))->value();
}
void DependentCode::set_number_of_entries(DependencyGroup group, int value) {
set(group, Smi::FromInt(value));
}
bool DependentCode::is_code_at(int i) {
return get(kCodesStartIndex + i)->IsCode();
}
Code* DependentCode::code_at(int i) {
return Code::cast(get(kCodesStartIndex + i));
}
CompilationInfo* DependentCode::compilation_info_at(int i) {
return reinterpret_cast<CompilationInfo*>(
Foreign::cast(get(kCodesStartIndex + i))->foreign_address());
}
void DependentCode::set_object_at(int i, Object* object) {
set(kCodesStartIndex + i, object);
}
Object* DependentCode::object_at(int i) {
return get(kCodesStartIndex + i);
}
Object** DependentCode::slot_at(int i) {
return RawFieldOfElementAt(kCodesStartIndex + i);
}
void DependentCode::clear_at(int i) {
set_undefined(kCodesStartIndex + i);
}
void DependentCode::copy(int from, int to) {
set(kCodesStartIndex + to, get(kCodesStartIndex + from));
}
void DependentCode::ExtendGroup(DependencyGroup group) {
GroupStartIndexes starts(this);
for (int g = kGroupCount - 1; g > group; g--) {
if (starts.at(g) < starts.at(g + 1)) {
copy(starts.at(g), starts.at(g + 1));
}
}
}
void Code::set_flags(Code::Flags flags) {
STATIC_ASSERT(Code::NUMBER_OF_KINDS <= KindField::kMax + 1);
WRITE_INT_FIELD(this, kFlagsOffset, flags);
}
Code::Kind Code::kind() {
return ExtractKindFromFlags(flags());
}
bool Code::IsCodeStubOrIC() {
return kind() == STUB || kind() == HANDLER || kind() == LOAD_IC ||
kind() == KEYED_LOAD_IC || kind() == CALL_IC || kind() == STORE_IC ||
kind() == KEYED_STORE_IC || kind() == BINARY_OP_IC ||
kind() == COMPARE_IC || kind() == COMPARE_NIL_IC ||
kind() == TO_BOOLEAN_IC;
}
InlineCacheState Code::ic_state() {
InlineCacheState result = ExtractICStateFromFlags(flags());
// Only allow uninitialized or debugger states for non-IC code
// objects. This is used in the debugger to determine whether or not
// a call to code object has been replaced with a debug break call.
DCHECK(is_inline_cache_stub() ||
result == UNINITIALIZED ||
result == DEBUG_STUB);
return result;
}
ExtraICState Code::extra_ic_state() {
DCHECK(is_inline_cache_stub() || ic_state() == DEBUG_STUB);
return ExtractExtraICStateFromFlags(flags());
}
Code::StubType Code::type() {
return ExtractTypeFromFlags(flags());
}
// For initialization.
void Code::set_raw_kind_specific_flags1(int value) {
WRITE_INT_FIELD(this, kKindSpecificFlags1Offset, value);
}
void Code::set_raw_kind_specific_flags2(int value) {
WRITE_INT_FIELD(this, kKindSpecificFlags2Offset, value);
}
inline bool Code::is_crankshafted() {
return IsCrankshaftedField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
}
inline bool Code::is_hydrogen_stub() {
return is_crankshafted() && kind() != OPTIMIZED_FUNCTION;
}
inline void Code::set_is_crankshafted(bool value) {
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
int updated = IsCrankshaftedField::update(previous, value);
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
}
inline bool Code::is_turbofanned() {
DCHECK(kind() == OPTIMIZED_FUNCTION || kind() == STUB);
return IsTurbofannedField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
inline void Code::set_is_turbofanned(bool value) {
DCHECK(kind() == OPTIMIZED_FUNCTION || kind() == STUB);
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = IsTurbofannedField::update(previous, value);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
bool Code::optimizable() {
DCHECK_EQ(FUNCTION, kind());
return READ_BYTE_FIELD(this, kOptimizableOffset) == 1;
}
void Code::set_optimizable(bool value) {
DCHECK_EQ(FUNCTION, kind());
WRITE_BYTE_FIELD(this, kOptimizableOffset, value ? 1 : 0);
}
bool Code::has_deoptimization_support() {
DCHECK_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
return FullCodeFlagsHasDeoptimizationSupportField::decode(flags);
}
void Code::set_has_deoptimization_support(bool value) {
DCHECK_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
flags = FullCodeFlagsHasDeoptimizationSupportField::update(flags, value);
WRITE_BYTE_FIELD(this, kFullCodeFlags, flags);
}
bool Code::has_debug_break_slots() {
DCHECK_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
return FullCodeFlagsHasDebugBreakSlotsField::decode(flags);
}
void Code::set_has_debug_break_slots(bool value) {
DCHECK_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
flags = FullCodeFlagsHasDebugBreakSlotsField::update(flags, value);
WRITE_BYTE_FIELD(this, kFullCodeFlags, flags);
}
bool Code::is_compiled_optimizable() {
DCHECK_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
return FullCodeFlagsIsCompiledOptimizable::decode(flags);
}
void Code::set_compiled_optimizable(bool value) {
DCHECK_EQ(FUNCTION, kind());
byte flags = READ_BYTE_FIELD(this, kFullCodeFlags);
flags = FullCodeFlagsIsCompiledOptimizable::update(flags, value);
WRITE_BYTE_FIELD(this, kFullCodeFlags, flags);
}
int Code::allow_osr_at_loop_nesting_level() {
DCHECK_EQ(FUNCTION, kind());
int fields = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
return AllowOSRAtLoopNestingLevelField::decode(fields);
}
void Code::set_allow_osr_at_loop_nesting_level(int level) {
DCHECK_EQ(FUNCTION, kind());
DCHECK(level >= 0 && level <= kMaxLoopNestingMarker);
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
int updated = AllowOSRAtLoopNestingLevelField::update(previous, level);
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
}
int Code::profiler_ticks() {
DCHECK_EQ(FUNCTION, kind());
return READ_BYTE_FIELD(this, kProfilerTicksOffset);
}
void Code::set_profiler_ticks(int ticks) {
DCHECK(ticks < 256);
if (kind() == FUNCTION) {
WRITE_BYTE_FIELD(this, kProfilerTicksOffset, ticks);
}
}
int Code::builtin_index() {
return READ_INT32_FIELD(this, kKindSpecificFlags1Offset);
}
void Code::set_builtin_index(int index) {
WRITE_INT32_FIELD(this, kKindSpecificFlags1Offset, index);
}
unsigned Code::stack_slots() {
DCHECK(is_crankshafted());
return StackSlotsField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_stack_slots(unsigned slots) {
CHECK(slots <= (1 << kStackSlotsBitCount));
DCHECK(is_crankshafted());
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = StackSlotsField::update(previous, slots);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
unsigned Code::safepoint_table_offset() {
DCHECK(is_crankshafted());
return SafepointTableOffsetField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset));
}
void Code::set_safepoint_table_offset(unsigned offset) {
CHECK(offset <= (1 << kSafepointTableOffsetBitCount));
DCHECK(is_crankshafted());
DCHECK(IsAligned(offset, static_cast<unsigned>(kIntSize)));
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
int updated = SafepointTableOffsetField::update(previous, offset);
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
}
unsigned Code::back_edge_table_offset() {
DCHECK_EQ(FUNCTION, kind());
return BackEdgeTableOffsetField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags2Offset)) << kPointerSizeLog2;
}
void Code::set_back_edge_table_offset(unsigned offset) {
DCHECK_EQ(FUNCTION, kind());
DCHECK(IsAligned(offset, static_cast<unsigned>(kPointerSize)));
offset = offset >> kPointerSizeLog2;
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags2Offset);
int updated = BackEdgeTableOffsetField::update(previous, offset);
WRITE_UINT32_FIELD(this, kKindSpecificFlags2Offset, updated);
}
bool Code::back_edges_patched_for_osr() {
DCHECK_EQ(FUNCTION, kind());
return allow_osr_at_loop_nesting_level() > 0;
}
byte Code::to_boolean_state() {
return extra_ic_state();
}
bool Code::has_function_cache() {
DCHECK(kind() == STUB);
return HasFunctionCacheField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_has_function_cache(bool flag) {
DCHECK(kind() == STUB);
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = HasFunctionCacheField::update(previous, flag);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
bool Code::marked_for_deoptimization() {
DCHECK(kind() == OPTIMIZED_FUNCTION);
return MarkedForDeoptimizationField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::set_marked_for_deoptimization(bool flag) {
DCHECK(kind() == OPTIMIZED_FUNCTION);
DCHECK(!flag || AllowDeoptimization::IsAllowed(GetIsolate()));
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = MarkedForDeoptimizationField::update(previous, flag);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
bool Code::is_weak_stub() {
return CanBeWeakStub() && WeakStubField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::mark_as_weak_stub() {
DCHECK(CanBeWeakStub());
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = WeakStubField::update(previous, true);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
bool Code::is_invalidated_weak_stub() {
return is_weak_stub() && InvalidatedWeakStubField::decode(
READ_UINT32_FIELD(this, kKindSpecificFlags1Offset));
}
void Code::mark_as_invalidated_weak_stub() {
DCHECK(is_inline_cache_stub());
int previous = READ_UINT32_FIELD(this, kKindSpecificFlags1Offset);
int updated = InvalidatedWeakStubField::update(previous, true);
WRITE_UINT32_FIELD(this, kKindSpecificFlags1Offset, updated);
}
bool Code::is_inline_cache_stub() {
Kind kind = this->kind();
switch (kind) {
#define CASE(name) case name: return true;
IC_KIND_LIST(CASE)
#undef CASE
default: return false;
}
}
bool Code::is_keyed_stub() {
return is_keyed_load_stub() || is_keyed_store_stub();
}
bool Code::is_debug_stub() {
return ic_state() == DEBUG_STUB;
}
ConstantPoolArray* Code::constant_pool() {
return ConstantPoolArray::cast(READ_FIELD(this, kConstantPoolOffset));
}
void Code::set_constant_pool(Object* value) {
DCHECK(value->IsConstantPoolArray());
WRITE_FIELD(this, kConstantPoolOffset, value);
WRITE_BARRIER(GetHeap(), this, kConstantPoolOffset, value);
}
Code::Flags Code::ComputeFlags(Kind kind, InlineCacheState ic_state,
ExtraICState extra_ic_state, StubType type,
CacheHolderFlag holder) {
// Compute the bit mask.
unsigned int bits = KindField::encode(kind)
| ICStateField::encode(ic_state)
| TypeField::encode(type)
| ExtraICStateField::encode(extra_ic_state)
| CacheHolderField::encode(holder);
return static_cast<Flags>(bits);
}
Code::Flags Code::ComputeMonomorphicFlags(Kind kind,
ExtraICState extra_ic_state,
CacheHolderFlag holder,
StubType type) {
return ComputeFlags(kind, MONOMORPHIC, extra_ic_state, type, holder);
}
Code::Flags Code::ComputeHandlerFlags(Kind handler_kind, StubType type,
CacheHolderFlag holder) {
return ComputeFlags(Code::HANDLER, MONOMORPHIC, handler_kind, type, holder);
}
Code::Kind Code::ExtractKindFromFlags(Flags flags) {
return KindField::decode(flags);
}
InlineCacheState Code::ExtractICStateFromFlags(Flags flags) {
return ICStateField::decode(flags);
}
ExtraICState Code::ExtractExtraICStateFromFlags(Flags flags) {
return ExtraICStateField::decode(flags);
}
Code::StubType Code::ExtractTypeFromFlags(Flags flags) {
return TypeField::decode(flags);
}
CacheHolderFlag Code::ExtractCacheHolderFromFlags(Flags flags) {
return CacheHolderField::decode(flags);
}
Code::Flags Code::RemoveTypeFromFlags(Flags flags) {
int bits = flags & ~TypeField::kMask;
return static_cast<Flags>(bits);
}
Code::Flags Code::RemoveTypeAndHolderFromFlags(Flags flags) {
int bits = flags & ~TypeField::kMask & ~CacheHolderField::kMask;
return static_cast<Flags>(bits);
}
Code* Code::GetCodeFromTargetAddress(Address address) {
HeapObject* code = HeapObject::FromAddress(address - Code::kHeaderSize);
// GetCodeFromTargetAddress might be called when marking objects during mark
// sweep. reinterpret_cast is therefore used instead of the more appropriate
// Code::cast. Code::cast does not work when the object's map is
// marked.
Code* result = reinterpret_cast<Code*>(code);
return result;
}
Object* Code::GetObjectFromEntryAddress(Address location_of_address) {
return HeapObject::
FromAddress(Memory::Address_at(location_of_address) - Code::kHeaderSize);
}
bool Code::IsWeakObjectInOptimizedCode(Object* object) {
if (!FLAG_collect_maps) return false;
if (object->IsMap()) {
return Map::cast(object)->CanTransition() &&
FLAG_weak_embedded_maps_in_optimized_code;
}
if (object->IsJSObject() ||
(object->IsCell() && Cell::cast(object)->value()->IsJSObject())) {
return FLAG_weak_embedded_objects_in_optimized_code;
}
return false;
}
class Code::FindAndReplacePattern {
public:
FindAndReplacePattern() : count_(0) { }
void Add(Handle<Map> map_to_find, Handle<Object> obj_to_replace) {
DCHECK(count_ < kMaxCount);
find_[count_] = map_to_find;
replace_[count_] = obj_to_replace;
++count_;
}
private:
static const int kMaxCount = 4;
int count_;
Handle<Map> find_[kMaxCount];
Handle<Object> replace_[kMaxCount];
friend class Code;
};
bool Code::IsWeakObjectInIC(Object* object) {
return object->IsMap() && Map::cast(object)->CanTransition() &&
FLAG_collect_maps &&
FLAG_weak_embedded_maps_in_ic;
}
Object* Map::prototype() const {
return READ_FIELD(this, kPrototypeOffset);
}
void Map::set_prototype(Object* value, WriteBarrierMode mode) {
DCHECK(value->IsNull() || value->IsJSReceiver());
WRITE_FIELD(this, kPrototypeOffset, value);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kPrototypeOffset, value, mode);
}
// If the descriptor is using the empty transition array, install a new empty
// transition array that will have place for an element transition.
static void EnsureHasTransitionArray(Handle<Map> map) {
Handle<TransitionArray> transitions;
if (!map->HasTransitionArray()) {
transitions = TransitionArray::Allocate(map->GetIsolate(), 0);
transitions->set_back_pointer_storage(map->GetBackPointer());
} else if (!map->transitions()->IsFullTransitionArray()) {
transitions = TransitionArray::ExtendToFullTransitionArray(map);
} else {
return;
}
map->set_transitions(*transitions);
}
void Map::InitializeDescriptors(DescriptorArray* descriptors) {
int len = descriptors->number_of_descriptors();
set_instance_descriptors(descriptors);
SetNumberOfOwnDescriptors(len);
}
ACCESSORS(Map, instance_descriptors, DescriptorArray, kDescriptorsOffset)
void Map::set_bit_field3(uint32_t bits) {
if (kInt32Size != kPointerSize) {
WRITE_UINT32_FIELD(this, kBitField3Offset + kInt32Size, 0);
}
WRITE_UINT32_FIELD(this, kBitField3Offset, bits);
}
uint32_t Map::bit_field3() {
return READ_UINT32_FIELD(this, kBitField3Offset);
}
void Map::AppendDescriptor(Descriptor* desc) {
DescriptorArray* descriptors = instance_descriptors();
int number_of_own_descriptors = NumberOfOwnDescriptors();
DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors);
descriptors->Append(desc);
SetNumberOfOwnDescriptors(number_of_own_descriptors + 1);
}
Object* Map::GetBackPointer() {
Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset);
if (object->IsDescriptorArray()) {
return TransitionArray::cast(object)->back_pointer_storage();
} else {
DCHECK(object->IsMap() || object->IsUndefined());
return object;
}
}
bool Map::HasElementsTransition() {
return HasTransitionArray() && transitions()->HasElementsTransition();
}
bool Map::HasTransitionArray() const {
Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset);
return object->IsTransitionArray();
}
Map* Map::elements_transition_map() {
int index =
transitions()->SearchSpecial(GetHeap()->elements_transition_symbol());
return transitions()->GetTarget(index);
}
bool Map::CanHaveMoreTransitions() {
if (!HasTransitionArray()) return true;
return transitions()->number_of_transitions() <
TransitionArray::kMaxNumberOfTransitions;
}
Map* Map::GetTransition(int transition_index) {
return transitions()->GetTarget(transition_index);
}
int Map::SearchSpecialTransition(Symbol* name) {
if (HasTransitionArray()) {
return transitions()->SearchSpecial(name);
}
return TransitionArray::kNotFound;
}
int Map::SearchTransition(PropertyType type, Name* name,
PropertyAttributes attributes) {
if (HasTransitionArray()) {
return transitions()->Search(type, name, attributes);
}
return TransitionArray::kNotFound;
}
FixedArray* Map::GetPrototypeTransitions() {
if (!HasTransitionArray()) return GetHeap()->empty_fixed_array();
if (!transitions()->HasPrototypeTransitions()) {
return GetHeap()->empty_fixed_array();
}
return transitions()->GetPrototypeTransitions();
}
void Map::SetPrototypeTransitions(
Handle<Map> map, Handle<FixedArray> proto_transitions) {
EnsureHasTransitionArray(map);
int old_number_of_transitions = map->NumberOfProtoTransitions();
#ifdef DEBUG
if (map->HasPrototypeTransitions()) {
DCHECK(map->GetPrototypeTransitions() != *proto_transitions);
map->ZapPrototypeTransitions();
}
#endif
map->transitions()->SetPrototypeTransitions(*proto_transitions);
map->SetNumberOfProtoTransitions(old_number_of_transitions);
}
bool Map::HasPrototypeTransitions() {
return HasTransitionArray() && transitions()->HasPrototypeTransitions();
}
TransitionArray* Map::transitions() const {
DCHECK(HasTransitionArray());
Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset);
return TransitionArray::cast(object);
}
void Map::set_transitions(TransitionArray* transition_array,
WriteBarrierMode mode) {
// Transition arrays are not shared. When one is replaced, it should not
// keep referenced objects alive, so we zap it.
// When there is another reference to the array somewhere (e.g. a handle),
// not zapping turns from a waste of memory into a source of crashes.
if (HasTransitionArray()) {
#ifdef DEBUG
for (int i = 0; i < transitions()->number_of_transitions(); i++) {
Map* target = transitions()->GetTarget(i);
if (target->instance_descriptors() == instance_descriptors()) {
Name* key = transitions()->GetKey(i);
int new_target_index;
if (TransitionArray::IsSpecialTransition(key)) {
new_target_index = transition_array->SearchSpecial(Symbol::cast(key));
} else {
PropertyDetails details =
TransitionArray::GetTargetDetails(key, target);
new_target_index = transition_array->Search(details.type(), key,
details.attributes());
}
DCHECK_NE(TransitionArray::kNotFound, new_target_index);
DCHECK_EQ(target, transition_array->GetTarget(new_target_index));
}
}
#endif
DCHECK(transitions() != transition_array);
ZapTransitions();
}
WRITE_FIELD(this, kTransitionsOrBackPointerOffset, transition_array);
CONDITIONAL_WRITE_BARRIER(
GetHeap(), this, kTransitionsOrBackPointerOffset, transition_array, mode);
}
void Map::init_back_pointer(Object* undefined) {
DCHECK(undefined->IsUndefined());
WRITE_FIELD(this, kTransitionsOrBackPointerOffset, undefined);
}
void Map::SetBackPointer(Object* value, WriteBarrierMode mode) {
DCHECK(instance_type() >= FIRST_JS_RECEIVER_TYPE);
DCHECK((value->IsUndefined() && GetBackPointer()->IsMap()) ||
(value->IsMap() && GetBackPointer()->IsUndefined()));
Object* object = READ_FIELD(this, kTransitionsOrBackPointerOffset);
if (object->IsTransitionArray()) {
TransitionArray::cast(object)->set_back_pointer_storage(value);
} else {
WRITE_FIELD(this, kTransitionsOrBackPointerOffset, value);
CONDITIONAL_WRITE_BARRIER(
GetHeap(), this, kTransitionsOrBackPointerOffset, value, mode);
}
}
ACCESSORS(Map, code_cache, Object, kCodeCacheOffset)
ACCESSORS(Map, dependent_code, DependentCode, kDependentCodeOffset)
ACCESSORS(Map, constructor, Object, kConstructorOffset)
ACCESSORS(JSFunction, shared, SharedFunctionInfo, kSharedFunctionInfoOffset)
ACCESSORS(JSFunction, literals_or_bindings, FixedArray, kLiteralsOffset)
ACCESSORS(JSFunction, next_function_link, Object, kNextFunctionLinkOffset)
ACCESSORS(GlobalObject, builtins, JSBuiltinsObject, kBuiltinsOffset)
ACCESSORS(GlobalObject, native_context, Context, kNativeContextOffset)
ACCESSORS(GlobalObject, global_context, Context, kGlobalContextOffset)
ACCESSORS(GlobalObject, global_proxy, JSObject, kGlobalProxyOffset)
ACCESSORS(JSGlobalProxy, native_context, Object, kNativeContextOffset)
ACCESSORS(JSGlobalProxy, hash, Object, kHashOffset)
ACCESSORS(AccessorInfo, name, Object, kNameOffset)
ACCESSORS_TO_SMI(AccessorInfo, flag, kFlagOffset)
ACCESSORS(AccessorInfo, expected_receiver_type, Object,
kExpectedReceiverTypeOffset)
ACCESSORS(DeclaredAccessorDescriptor, serialized_data, ByteArray,
kSerializedDataOffset)
ACCESSORS(DeclaredAccessorInfo, descriptor, DeclaredAccessorDescriptor,
kDescriptorOffset)
ACCESSORS(ExecutableAccessorInfo, getter, Object, kGetterOffset)
ACCESSORS(ExecutableAccessorInfo, setter, Object, kSetterOffset)
ACCESSORS(ExecutableAccessorInfo, data, Object, kDataOffset)
ACCESSORS(Box, value, Object, kValueOffset)
ACCESSORS(AccessorPair, getter, Object, kGetterOffset)
ACCESSORS(AccessorPair, setter, Object, kSetterOffset)
ACCESSORS(AccessCheckInfo, named_callback, Object, kNamedCallbackOffset)
ACCESSORS(AccessCheckInfo, indexed_callback, Object, kIndexedCallbackOffset)
ACCESSORS(AccessCheckInfo, data, Object, kDataOffset)
ACCESSORS(InterceptorInfo, getter, Object, kGetterOffset)
ACCESSORS(InterceptorInfo, setter, Object, kSetterOffset)
ACCESSORS(InterceptorInfo, query, Object, kQueryOffset)
ACCESSORS(InterceptorInfo, deleter, Object, kDeleterOffset)
ACCESSORS(InterceptorInfo, enumerator, Object, kEnumeratorOffset)
ACCESSORS(InterceptorInfo, data, Object, kDataOffset)
ACCESSORS(CallHandlerInfo, callback, Object, kCallbackOffset)
ACCESSORS(CallHandlerInfo, data, Object, kDataOffset)
ACCESSORS(TemplateInfo, tag, Object, kTagOffset)
ACCESSORS(TemplateInfo, property_list, Object, kPropertyListOffset)
ACCESSORS(TemplateInfo, property_accessors, Object, kPropertyAccessorsOffset)
ACCESSORS(FunctionTemplateInfo, serial_number, Object, kSerialNumberOffset)
ACCESSORS(FunctionTemplateInfo, call_code, Object, kCallCodeOffset)
ACCESSORS(FunctionTemplateInfo, prototype_template, Object,
kPrototypeTemplateOffset)
ACCESSORS(FunctionTemplateInfo, parent_template, Object, kParentTemplateOffset)
ACCESSORS(FunctionTemplateInfo, named_property_handler, Object,
kNamedPropertyHandlerOffset)
ACCESSORS(FunctionTemplateInfo, indexed_property_handler, Object,
kIndexedPropertyHandlerOffset)
ACCESSORS(FunctionTemplateInfo, instance_template, Object,
kInstanceTemplateOffset)
ACCESSORS(FunctionTemplateInfo, class_name, Object, kClassNameOffset)
ACCESSORS(FunctionTemplateInfo, signature, Object, kSignatureOffset)
ACCESSORS(FunctionTemplateInfo, instance_call_handler, Object,
kInstanceCallHandlerOffset)
ACCESSORS(FunctionTemplateInfo, access_check_info, Object,
kAccessCheckInfoOffset)
ACCESSORS_TO_SMI(FunctionTemplateInfo, flag, kFlagOffset)
ACCESSORS(ObjectTemplateInfo, constructor, Object, kConstructorOffset)
ACCESSORS(ObjectTemplateInfo, internal_field_count, Object,
kInternalFieldCountOffset)
ACCESSORS(SignatureInfo, receiver, Object, kReceiverOffset)
ACCESSORS(SignatureInfo, args, Object, kArgsOffset)
ACCESSORS(TypeSwitchInfo, types, Object, kTypesOffset)
ACCESSORS(AllocationSite, transition_info, Object, kTransitionInfoOffset)
ACCESSORS(AllocationSite, nested_site, Object, kNestedSiteOffset)
ACCESSORS_TO_SMI(AllocationSite, pretenure_data, kPretenureDataOffset)
ACCESSORS_TO_SMI(AllocationSite, pretenure_create_count,
kPretenureCreateCountOffset)
ACCESSORS(AllocationSite, dependent_code, DependentCode,
kDependentCodeOffset)
ACCESSORS(AllocationSite, weak_next, Object, kWeakNextOffset)
ACCESSORS(AllocationMemento, allocation_site, Object, kAllocationSiteOffset)
ACCESSORS(Script, source, Object, kSourceOffset)
ACCESSORS(Script, name, Object, kNameOffset)
ACCESSORS(Script, id, Smi, kIdOffset)
ACCESSORS_TO_SMI(Script, line_offset, kLineOffsetOffset)
ACCESSORS_TO_SMI(Script, column_offset, kColumnOffsetOffset)
ACCESSORS(Script, context_data, Object, kContextOffset)
ACCESSORS(Script, wrapper, HeapObject, kWrapperOffset)
ACCESSORS_TO_SMI(Script, type, kTypeOffset)
ACCESSORS(Script, line_ends, Object, kLineEndsOffset)
ACCESSORS(Script, eval_from_shared, Object, kEvalFromSharedOffset)
ACCESSORS_TO_SMI(Script, eval_from_instructions_offset,
kEvalFrominstructionsOffsetOffset)
ACCESSORS_TO_SMI(Script, flags, kFlagsOffset)
BOOL_ACCESSORS(Script, flags, is_shared_cross_origin, kIsSharedCrossOriginBit)
ACCESSORS(Script, source_url, Object, kSourceUrlOffset)
ACCESSORS(Script, source_mapping_url, Object, kSourceMappingUrlOffset)
Script::CompilationType Script::compilation_type() {
return BooleanBit::get(flags(), kCompilationTypeBit) ?
COMPILATION_TYPE_EVAL : COMPILATION_TYPE_HOST;
}
void Script::set_compilation_type(CompilationType type) {
set_flags(BooleanBit::set(flags(), kCompilationTypeBit,
type == COMPILATION_TYPE_EVAL));
}
Script::CompilationState Script::compilation_state() {
return BooleanBit::get(flags(), kCompilationStateBit) ?
COMPILATION_STATE_COMPILED : COMPILATION_STATE_INITIAL;
}
void Script::set_compilation_state(CompilationState state) {
set_flags(BooleanBit::set(flags(), kCompilationStateBit,
state == COMPILATION_STATE_COMPILED));
}
ACCESSORS(DebugInfo, shared, SharedFunctionInfo, kSharedFunctionInfoIndex)
ACCESSORS(DebugInfo, original_code, Code, kOriginalCodeIndex)
ACCESSORS(DebugInfo, code, Code, kPatchedCodeIndex)
ACCESSORS(DebugInfo, break_points, FixedArray, kBreakPointsStateIndex)
ACCESSORS_TO_SMI(BreakPointInfo, code_position, kCodePositionIndex)
ACCESSORS_TO_SMI(BreakPointInfo, source_position, kSourcePositionIndex)
ACCESSORS_TO_SMI(BreakPointInfo, statement_position, kStatementPositionIndex)
ACCESSORS(BreakPointInfo, break_point_objects, Object, kBreakPointObjectsIndex)
ACCESSORS(SharedFunctionInfo, name, Object, kNameOffset)
ACCESSORS(SharedFunctionInfo, optimized_code_map, Object,
kOptimizedCodeMapOffset)
ACCESSORS(SharedFunctionInfo, construct_stub, Code, kConstructStubOffset)
ACCESSORS(SharedFunctionInfo, feedback_vector, TypeFeedbackVector,
kFeedbackVectorOffset)
#if TRACE_MAPS
SMI_ACCESSORS(SharedFunctionInfo, unique_id, kUniqueIdOffset)
#endif
ACCESSORS(SharedFunctionInfo, instance_class_name, Object,
kInstanceClassNameOffset)
ACCESSORS(SharedFunctionInfo, function_data, Object, kFunctionDataOffset)
ACCESSORS(SharedFunctionInfo, script, Object, kScriptOffset)
ACCESSORS(SharedFunctionInfo, debug_info, Object, kDebugInfoOffset)
ACCESSORS(SharedFunctionInfo, inferred_name, String, kInferredNameOffset)
SMI_ACCESSORS(FunctionTemplateInfo, length, kLengthOffset)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, hidden_prototype,
kHiddenPrototypeBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, undetectable, kUndetectableBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, needs_access_check,
kNeedsAccessCheckBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, read_only_prototype,
kReadOnlyPrototypeBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, remove_prototype,
kRemovePrototypeBit)
BOOL_ACCESSORS(FunctionTemplateInfo, flag, do_not_cache,
kDoNotCacheBit)
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_expression,
kIsExpressionBit)
BOOL_ACCESSORS(SharedFunctionInfo, start_position_and_type, is_toplevel,
kIsTopLevelBit)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
allows_lazy_compilation,
kAllowLazyCompilation)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
allows_lazy_compilation_without_context,
kAllowLazyCompilationWithoutContext)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
uses_arguments,
kUsesArguments)
BOOL_ACCESSORS(SharedFunctionInfo,
compiler_hints,
has_duplicate_parameters,
kHasDuplicateParameters)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, asm_function, kIsAsmFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, deserialized, kDeserialized)
#if V8_HOST_ARCH_32_BIT
SMI_ACCESSORS(SharedFunctionInfo, length, kLengthOffset)
SMI_ACCESSORS(SharedFunctionInfo, formal_parameter_count,
kFormalParameterCountOffset)
SMI_ACCESSORS(SharedFunctionInfo, expected_nof_properties,
kExpectedNofPropertiesOffset)
SMI_ACCESSORS(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
SMI_ACCESSORS(SharedFunctionInfo, start_position_and_type,
kStartPositionAndTypeOffset)
SMI_ACCESSORS(SharedFunctionInfo, end_position, kEndPositionOffset)
SMI_ACCESSORS(SharedFunctionInfo, function_token_position,
kFunctionTokenPositionOffset)
SMI_ACCESSORS(SharedFunctionInfo, compiler_hints,
kCompilerHintsOffset)
SMI_ACCESSORS(SharedFunctionInfo, opt_count_and_bailout_reason,
kOptCountAndBailoutReasonOffset)
SMI_ACCESSORS(SharedFunctionInfo, counters, kCountersOffset)
SMI_ACCESSORS(SharedFunctionInfo, ast_node_count, kAstNodeCountOffset)
SMI_ACCESSORS(SharedFunctionInfo, profiler_ticks, kProfilerTicksOffset)
#else
#if V8_TARGET_LITTLE_ENDIAN
#define PSEUDO_SMI_LO_ALIGN 0
#define PSEUDO_SMI_HI_ALIGN kIntSize
#else
#define PSEUDO_SMI_LO_ALIGN kIntSize
#define PSEUDO_SMI_HI_ALIGN 0
#endif
#define PSEUDO_SMI_ACCESSORS_LO(holder, name, offset) \
STATIC_ASSERT(holder::offset % kPointerSize == PSEUDO_SMI_LO_ALIGN); \
int holder::name() const { \
int value = READ_INT_FIELD(this, offset); \
DCHECK(kHeapObjectTag == 1); \
DCHECK((value & kHeapObjectTag) == 0); \
return value >> 1; \
} \
void holder::set_##name(int value) { \
DCHECK(kHeapObjectTag == 1); \
DCHECK((value & 0xC0000000) == 0xC0000000 || (value & 0xC0000000) == 0x0); \
WRITE_INT_FIELD(this, offset, (value << 1) & ~kHeapObjectTag); \
}
#define PSEUDO_SMI_ACCESSORS_HI(holder, name, offset) \
STATIC_ASSERT(holder::offset % kPointerSize == PSEUDO_SMI_HI_ALIGN); \
INT_ACCESSORS(holder, name, offset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, length, kLengthOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
formal_parameter_count,
kFormalParameterCountOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
expected_nof_properties,
kExpectedNofPropertiesOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, num_literals, kNumLiteralsOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo, end_position, kEndPositionOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
start_position_and_type,
kStartPositionAndTypeOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
function_token_position,
kFunctionTokenPositionOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
compiler_hints,
kCompilerHintsOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
opt_count_and_bailout_reason,
kOptCountAndBailoutReasonOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo, counters, kCountersOffset)
PSEUDO_SMI_ACCESSORS_LO(SharedFunctionInfo,
ast_node_count,
kAstNodeCountOffset)
PSEUDO_SMI_ACCESSORS_HI(SharedFunctionInfo,
profiler_ticks,
kProfilerTicksOffset)
#endif
BOOL_GETTER(SharedFunctionInfo,
compiler_hints,
optimization_disabled,
kOptimizationDisabled)
void SharedFunctionInfo::set_optimization_disabled(bool disable) {
set_compiler_hints(BooleanBit::set(compiler_hints(),
kOptimizationDisabled,
disable));
// If disabling optimizations we reflect that in the code object so
// it will not be counted as optimizable code.
if ((code()->kind() == Code::FUNCTION) && disable) {
code()->set_optimizable(false);
}
}
StrictMode SharedFunctionInfo::strict_mode() {
return BooleanBit::get(compiler_hints(), kStrictModeFunction)
? STRICT : SLOPPY;
}
void SharedFunctionInfo::set_strict_mode(StrictMode strict_mode) {
// We only allow mode transitions from sloppy to strict.
DCHECK(this->strict_mode() == SLOPPY || this->strict_mode() == strict_mode);
int hints = compiler_hints();
hints = BooleanBit::set(hints, kStrictModeFunction, strict_mode == STRICT);
set_compiler_hints(hints);
}
FunctionKind SharedFunctionInfo::kind() {
return FunctionKindBits::decode(compiler_hints());
}
void SharedFunctionInfo::set_kind(FunctionKind kind) {
DCHECK(IsValidFunctionKind(kind));
int hints = compiler_hints();
hints = FunctionKindBits::update(hints, kind);
set_compiler_hints(hints);
}
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, native, kNative)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, inline_builtin,
kInlineBuiltin)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints,
name_should_print_as_anonymous,
kNameShouldPrintAsAnonymous)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, bound, kBoundFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_anonymous, kIsAnonymous)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_function, kIsFunction)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_cache, kDontCache)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, dont_flush, kDontFlush)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_arrow, kIsArrow)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_generator, kIsGenerator)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_concise_method,
kIsConciseMethod)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints, is_default_constructor,
kIsDefaultConstructor)
BOOL_ACCESSORS(SharedFunctionInfo, compiler_hints,
is_default_constructor_call_super,
kIsDefaultConstructorCallSuper)
ACCESSORS(CodeCache, default_cache, FixedArray, kDefaultCacheOffset)
ACCESSORS(CodeCache, normal_type_cache, Object, kNormalTypeCacheOffset)
ACCESSORS(PolymorphicCodeCache, cache, Object, kCacheOffset)
bool Script::HasValidSource() {
Object* src = this->source();
if (!src->IsString()) return true;
String* src_str = String::cast(src);
if (!StringShape(src_str).IsExternal()) return true;
if (src_str->IsOneByteRepresentation()) {
return ExternalOneByteString::cast(src)->resource() != NULL;
} else if (src_str->IsTwoByteRepresentation()) {
return ExternalTwoByteString::cast(src)->resource() != NULL;
}
return true;
}
void SharedFunctionInfo::DontAdaptArguments() {
DCHECK(code()->kind() == Code::BUILTIN);
set_formal_parameter_count(kDontAdaptArgumentsSentinel);
}
int SharedFunctionInfo::start_position() const {
return start_position_and_type() >> kStartPositionShift;
}
void SharedFunctionInfo::set_start_position(int start_position) {
set_start_position_and_type((start_position << kStartPositionShift)
| (start_position_and_type() & ~kStartPositionMask));
}
Code* SharedFunctionInfo::code() const {
return Code::cast(READ_FIELD(this, kCodeOffset));
}
void SharedFunctionInfo::set_code(Code* value, WriteBarrierMode mode) {
DCHECK(value->kind() != Code::OPTIMIZED_FUNCTION);
WRITE_FIELD(this, kCodeOffset, value);
CONDITIONAL_WRITE_BARRIER(value->GetHeap(), this, kCodeOffset, value, mode);
}
void SharedFunctionInfo::ReplaceCode(Code* value) {
// If the GC metadata field is already used then the function was
// enqueued as a code flushing candidate and we remove it now.
if (code()->gc_metadata() != NULL) {
CodeFlusher* flusher = GetHeap()->mark_compact_collector()->code_flusher();
flusher->EvictCandidate(this);
}
DCHECK(code()->gc_metadata() == NULL && value->gc_metadata() == NULL);
set_code(value);
}
ScopeInfo* SharedFunctionInfo::scope_info() const {
return reinterpret_cast<ScopeInfo*>(READ_FIELD(this, kScopeInfoOffset));
}
void SharedFunctionInfo::set_scope_info(ScopeInfo* value,
WriteBarrierMode mode) {
WRITE_FIELD(this, kScopeInfoOffset, reinterpret_cast<Object*>(value));
CONDITIONAL_WRITE_BARRIER(GetHeap(),
this,
kScopeInfoOffset,
reinterpret_cast<Object*>(value),
mode);
}
bool SharedFunctionInfo::is_compiled() {
return code() != GetIsolate()->builtins()->builtin(Builtins::kCompileLazy);
}
bool SharedFunctionInfo::IsApiFunction() {
return function_data()->IsFunctionTemplateInfo();
}
FunctionTemplateInfo* SharedFunctionInfo::get_api_func_data() {
DCHECK(IsApiFunction());
return FunctionTemplateInfo::cast(function_data());
}
bool SharedFunctionInfo::HasBuiltinFunctionId() {
return function_data()->IsSmi();
}
BuiltinFunctionId SharedFunctionInfo::builtin_function_id() {
DCHECK(HasBuiltinFunctionId());
return static_cast<BuiltinFunctionId>(Smi::cast(function_data())->value());
}
int SharedFunctionInfo::ic_age() {
return ICAgeBits::decode(counters());
}
void SharedFunctionInfo::set_ic_age(int ic_age) {
set_counters(ICAgeBits::update(counters(), ic_age));
}
int SharedFunctionInfo::deopt_count() {
return DeoptCountBits::decode(counters());
}
void SharedFunctionInfo::set_deopt_count(int deopt_count) {
set_counters(DeoptCountBits::update(counters(), deopt_count));
}
void SharedFunctionInfo::increment_deopt_count() {
int value = counters();
int deopt_count = DeoptCountBits::decode(value);
deopt_count = (deopt_count + 1) & DeoptCountBits::kMax;
set_counters(DeoptCountBits::update(value, deopt_count));
}
int SharedFunctionInfo::opt_reenable_tries() {
return OptReenableTriesBits::decode(counters());
}
void SharedFunctionInfo::set_opt_reenable_tries(int tries) {
set_counters(OptReenableTriesBits::update(counters(), tries));
}
int SharedFunctionInfo::opt_count() {
return OptCountBits::decode(opt_count_and_bailout_reason());
}
void SharedFunctionInfo::set_opt_count(int opt_count) {
set_opt_count_and_bailout_reason(
OptCountBits::update(opt_count_and_bailout_reason(), opt_count));
}
BailoutReason SharedFunctionInfo::DisableOptimizationReason() {
BailoutReason reason = static_cast<BailoutReason>(
DisabledOptimizationReasonBits::decode(opt_count_and_bailout_reason()));
return reason;
}
bool SharedFunctionInfo::has_deoptimization_support() {
Code* code = this->code();
return code->kind() == Code::FUNCTION && code->has_deoptimization_support();
}
void SharedFunctionInfo::TryReenableOptimization() {
int tries = opt_reenable_tries();
set_opt_reenable_tries((tries + 1) & OptReenableTriesBits::kMax);
// We reenable optimization whenever the number of tries is a large
// enough power of 2.
if (tries >= 16 && (((tries - 1) & tries) == 0)) {
set_optimization_disabled(false);
set_opt_count(0);
set_deopt_count(0);
code()->set_optimizable(true);
}
}
bool JSFunction::IsBuiltin() {
return context()->global_object()->IsJSBuiltinsObject();
}
bool JSFunction::IsFromNativeScript() {
Object* script = shared()->script();
bool native = script->IsScript() &&
Script::cast(script)->type()->value() == Script::TYPE_NATIVE;
DCHECK(!IsBuiltin() || native); // All builtins are also native.
return native;
}
bool JSFunction::IsFromExtensionScript() {
Object* script = shared()->script();
return script->IsScript() &&
Script::cast(script)->type()->value() == Script::TYPE_EXTENSION;
}
bool JSFunction::NeedsArgumentsAdaption() {
return shared()->formal_parameter_count() !=
SharedFunctionInfo::kDontAdaptArgumentsSentinel;
}
bool JSFunction::IsOptimized() {
return code()->kind() == Code::OPTIMIZED_FUNCTION;
}
bool JSFunction::IsOptimizable() {
return code()->kind() == Code::FUNCTION && code()->optimizable();
}
bool JSFunction::IsMarkedForOptimization() {
return code() == GetIsolate()->builtins()->builtin(
Builtins::kCompileOptimized);
}
bool JSFunction::IsMarkedForConcurrentOptimization() {
return code() == GetIsolate()->builtins()->builtin(
Builtins::kCompileOptimizedConcurrent);
}
bool JSFunction::IsInOptimizationQueue() {
return code() == GetIsolate()->builtins()->builtin(
Builtins::kInOptimizationQueue);
}
bool JSFunction::IsInobjectSlackTrackingInProgress() {
return has_initial_map() &&
initial_map()->construction_count() != JSFunction::kNoSlackTracking;
}
Code* JSFunction::code() {
return Code::cast(
Code::GetObjectFromEntryAddress(FIELD_ADDR(this, kCodeEntryOffset)));
}
void JSFunction::set_code(Code* value) {
DCHECK(!GetHeap()->InNewSpace(value));
Address entry = value->entry();
WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry));
GetHeap()->incremental_marking()->RecordWriteOfCodeEntry(
this,
HeapObject::RawField(this, kCodeEntryOffset),
value);
}
void JSFunction::set_code_no_write_barrier(Code* value) {
DCHECK(!GetHeap()->InNewSpace(value));
Address entry = value->entry();
WRITE_INTPTR_FIELD(this, kCodeEntryOffset, reinterpret_cast<intptr_t>(entry));
}
void JSFunction::ReplaceCode(Code* code) {
bool was_optimized = IsOptimized();
bool is_optimized = code->kind() == Code::OPTIMIZED_FUNCTION;
if (was_optimized && is_optimized) {
shared()->EvictFromOptimizedCodeMap(this->code(),
"Replacing with another optimized code");
}
set_code(code);
// Add/remove the function from the list of optimized functions for this
// context based on the state change.
if (!was_optimized && is_optimized) {
context()->native_context()->AddOptimizedFunction(this);
}
if (was_optimized && !is_optimized) {
// TODO(titzer): linear in the number of optimized functions; fix!
context()->native_context()->RemoveOptimizedFunction(this);
}
}
Context* JSFunction::context() {
return Context::cast(READ_FIELD(this, kContextOffset));
}
JSObject* JSFunction::global_proxy() {
return context()->global_proxy();
}
void JSFunction::set_context(Object* value) {
DCHECK(value->IsUndefined() || value->IsContext());
WRITE_FIELD(this, kContextOffset, value);
WRITE_BARRIER(GetHeap(), this, kContextOffset, value);
}
ACCESSORS(JSFunction, prototype_or_initial_map, Object,
kPrototypeOrInitialMapOffset)
Map* JSFunction::initial_map() {
return Map::cast(prototype_or_initial_map());
}
bool JSFunction::has_initial_map() {
return prototype_or_initial_map()->IsMap();
}
bool JSFunction::has_instance_prototype() {
return has_initial_map() || !prototype_or_initial_map()->IsTheHole();
}
bool JSFunction::has_prototype() {
return map()->has_non_instance_prototype() || has_instance_prototype();
}
Object* JSFunction::instance_prototype() {
DCHECK(has_instance_prototype());
if (has_initial_map()) return initial_map()->prototype();
// When there is no initial map and the prototype is a JSObject, the
// initial map field is used for the prototype field.
return prototype_or_initial_map();
}
Object* JSFunction::prototype() {
DCHECK(has_prototype());
// If the function's prototype property has been set to a non-JSObject
// value, that value is stored in the constructor field of the map.
if (map()->has_non_instance_prototype()) return map()->constructor();
return instance_prototype();
}
bool JSFunction::should_have_prototype() {
return map()->function_with_prototype();
}
bool JSFunction::is_compiled() {
return code() != GetIsolate()->builtins()->builtin(Builtins::kCompileLazy);
}
FixedArray* JSFunction::literals() {
DCHECK(!shared()->bound());
return literals_or_bindings();
}
void JSFunction::set_literals(FixedArray* literals) {
DCHECK(!shared()->bound());
set_literals_or_bindings(literals);
}
FixedArray* JSFunction::function_bindings() {
DCHECK(shared()->bound());
return literals_or_bindings();
}
void JSFunction::set_function_bindings(FixedArray* bindings) {
DCHECK(shared()->bound());
// Bound function literal may be initialized to the empty fixed array
// before the bindings are set.
DCHECK(bindings == GetHeap()->empty_fixed_array() ||
bindings->map() == GetHeap()->fixed_cow_array_map());
set_literals_or_bindings(bindings);
}
int JSFunction::NumberOfLiterals() {
DCHECK(!shared()->bound());
return literals()->length();
}
Object* JSBuiltinsObject::javascript_builtin(Builtins::JavaScript id) {
DCHECK(id < kJSBuiltinsCount); // id is unsigned.
return READ_FIELD(this, OffsetOfFunctionWithId(id));
}
void JSBuiltinsObject::set_javascript_builtin(Builtins::JavaScript id,
Object* value) {
DCHECK(id < kJSBuiltinsCount); // id is unsigned.
WRITE_FIELD(this, OffsetOfFunctionWithId(id), value);
WRITE_BARRIER(GetHeap(), this, OffsetOfFunctionWithId(id), value);
}
Code* JSBuiltinsObject::javascript_builtin_code(Builtins::JavaScript id) {
DCHECK(id < kJSBuiltinsCount); // id is unsigned.
return Code::cast(READ_FIELD(this, OffsetOfCodeWithId(id)));
}
void JSBuiltinsObject::set_javascript_builtin_code(Builtins::JavaScript id,
Code* value) {
DCHECK(id < kJSBuiltinsCount); // id is unsigned.
WRITE_FIELD(this, OffsetOfCodeWithId(id), value);
DCHECK(!GetHeap()->InNewSpace(value));
}
ACCESSORS(JSProxy, handler, Object, kHandlerOffset)
ACCESSORS(JSProxy, hash, Object, kHashOffset)
ACCESSORS(JSFunctionProxy, call_trap, Object, kCallTrapOffset)
ACCESSORS(JSFunctionProxy, construct_trap, Object, kConstructTrapOffset)
void JSProxy::InitializeBody(int object_size, Object* value) {
DCHECK(!value->IsHeapObject() || !GetHeap()->InNewSpace(value));
for (int offset = kHeaderSize; offset < object_size; offset += kPointerSize) {
WRITE_FIELD(this, offset, value);
}
}
ACCESSORS(JSCollection, table, Object, kTableOffset)
#define ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(name, type, offset) \
template<class Derived, class TableType> \
type* OrderedHashTableIterator<Derived, TableType>::name() const { \
return type::cast(READ_FIELD(this, offset)); \
} \
template<class Derived, class TableType> \
void OrderedHashTableIterator<Derived, TableType>::set_##name( \
type* value, WriteBarrierMode mode) { \
WRITE_FIELD(this, offset, value); \
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, offset, value, mode); \
}
ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(table, Object, kTableOffset)
ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(index, Object, kIndexOffset)
ORDERED_HASH_TABLE_ITERATOR_ACCESSORS(kind, Object, kKindOffset)
#undef ORDERED_HASH_TABLE_ITERATOR_ACCESSORS
ACCESSORS(JSWeakCollection, table, Object, kTableOffset)
ACCESSORS(JSWeakCollection, next, Object, kNextOffset)
Address Foreign::foreign_address() {
return AddressFrom<Address>(READ_INTPTR_FIELD(this, kForeignAddressOffset));
}
void Foreign::set_foreign_address(Address value) {
WRITE_INTPTR_FIELD(this, kForeignAddressOffset, OffsetFrom(value));
}
ACCESSORS(JSGeneratorObject, function, JSFunction, kFunctionOffset)
ACCESSORS(JSGeneratorObject, context, Context, kContextOffset)
ACCESSORS(JSGeneratorObject, receiver, Object, kReceiverOffset)
SMI_ACCESSORS(JSGeneratorObject, continuation, kContinuationOffset)
ACCESSORS(JSGeneratorObject, operand_stack, FixedArray, kOperandStackOffset)
SMI_ACCESSORS(JSGeneratorObject, stack_handler_index, kStackHandlerIndexOffset)
bool JSGeneratorObject::is_suspended() {
DCHECK_LT(kGeneratorExecuting, kGeneratorClosed);
DCHECK_EQ(kGeneratorClosed, 0);
return continuation() > 0;
}
bool JSGeneratorObject::is_closed() {
return continuation() == kGeneratorClosed;
}
bool JSGeneratorObject::is_executing() {
return continuation() == kGeneratorExecuting;
}
ACCESSORS(JSModule, context, Object, kContextOffset)
ACCESSORS(JSModule, scope_info, ScopeInfo, kScopeInfoOffset)
ACCESSORS(JSValue, value, Object, kValueOffset)
HeapNumber* HeapNumber::cast(Object* object) {
SLOW_DCHECK(object->IsHeapNumber() || object->IsMutableHeapNumber());
return reinterpret_cast<HeapNumber*>(object);
}
const HeapNumber* HeapNumber::cast(const Object* object) {
SLOW_DCHECK(object->IsHeapNumber() || object->IsMutableHeapNumber());
return reinterpret_cast<const HeapNumber*>(object);
}
ACCESSORS(JSDate, value, Object, kValueOffset)
ACCESSORS(JSDate, cache_stamp, Object, kCacheStampOffset)
ACCESSORS(JSDate, year, Object, kYearOffset)
ACCESSORS(JSDate, month, Object, kMonthOffset)
ACCESSORS(JSDate, day, Object, kDayOffset)
ACCESSORS(JSDate, weekday, Object, kWeekdayOffset)
ACCESSORS(JSDate, hour, Object, kHourOffset)
ACCESSORS(JSDate, min, Object, kMinOffset)
ACCESSORS(JSDate, sec, Object, kSecOffset)
ACCESSORS(JSMessageObject, type, String, kTypeOffset)
ACCESSORS(JSMessageObject, arguments, JSArray, kArgumentsOffset)
ACCESSORS(JSMessageObject, script, Object, kScriptOffset)
ACCESSORS(JSMessageObject, stack_frames, Object, kStackFramesOffset)
SMI_ACCESSORS(JSMessageObject, start_position, kStartPositionOffset)
SMI_ACCESSORS(JSMessageObject, end_position, kEndPositionOffset)
INT_ACCESSORS(Code, instruction_size, kInstructionSizeOffset)
INT_ACCESSORS(Code, prologue_offset, kPrologueOffset)
ACCESSORS(Code, relocation_info, ByteArray, kRelocationInfoOffset)
ACCESSORS(Code, handler_table, FixedArray, kHandlerTableOffset)
ACCESSORS(Code, deoptimization_data, FixedArray, kDeoptimizationDataOffset)
ACCESSORS(Code, raw_type_feedback_info, Object, kTypeFeedbackInfoOffset)
ACCESSORS(Code, next_code_link, Object, kNextCodeLinkOffset)
void Code::WipeOutHeader() {
WRITE_FIELD(this, kRelocationInfoOffset, NULL);
WRITE_FIELD(this, kHandlerTableOffset, NULL);
WRITE_FIELD(this, kDeoptimizationDataOffset, NULL);
WRITE_FIELD(this, kConstantPoolOffset, NULL);
// Do not wipe out major/minor keys on a code stub or IC
if (!READ_FIELD(this, kTypeFeedbackInfoOffset)->IsSmi()) {
WRITE_FIELD(this, kTypeFeedbackInfoOffset, NULL);
}
}
Object* Code::type_feedback_info() {
DCHECK(kind() == FUNCTION);
return raw_type_feedback_info();
}
void Code::set_type_feedback_info(Object* value, WriteBarrierMode mode) {
DCHECK(kind() == FUNCTION);
set_raw_type_feedback_info(value, mode);
CONDITIONAL_WRITE_BARRIER(GetHeap(), this, kTypeFeedbackInfoOffset,
value, mode);
}
uint32_t Code::stub_key() {
DCHECK(IsCodeStubOrIC());
Smi* smi_key = Smi::cast(raw_type_feedback_info());
return static_cast<uint32_t>(smi_key->value());
}
void Code::set_stub_key(uint32_t key) {
DCHECK(IsCodeStubOrIC());
set_raw_type_feedback_info(Smi::FromInt(key));
}
ACCESSORS(Code, gc_metadata, Object, kGCMetadataOffset)
INT_ACCESSORS(Code, ic_age, kICAgeOffset)
byte* Code::instruction_start() {
return FIELD_ADDR(this, kHeaderSize);
}
byte* Code::instruction_end() {
return instruction_start() + instruction_size();
}
int Code::body_size() {
return RoundUp(instruction_size(), kObjectAlignment);
}
ByteArray* Code::unchecked_relocation_info() {
return reinterpret_cast<ByteArray*>(READ_FIELD(this, kRelocationInfoOffset));
}
byte* Code::relocation_start() {
return unchecked_relocation_info()->GetDataStartAddress();
}
int Code::relocation_size() {
return unchecked_relocation_info()->length();
}
byte* Code::entry() {
return instruction_start();
}
bool Code::contains(byte* inner_pointer) {
return (address() <= inner_pointer) && (inner_pointer <= address() + Size());
}
ACCESSORS(JSArray, length, Object, kLengthOffset)
void* JSArrayBuffer::backing_store() const {
intptr_t ptr = READ_INTPTR_FIELD(this, kBackingStoreOffset);
return reinterpret_cast<void*>(ptr);
}
void JSArrayBuffer::set_backing_store(void* value, WriteBarrierMode mode) {
intptr_t ptr = reinterpret_cast<intptr_t>(value);
WRITE_INTPTR_FIELD(this, kBackingStoreOffset, ptr);
}
ACCESSORS(JSArrayBuffer, byte_length, Object, kByteLengthOffset)
ACCESSORS_TO_SMI(JSArrayBuffer, flag, kFlagOffset)
bool JSArrayBuffer::is_external() {
return BooleanBit::get(flag(), kIsExternalBit);
}
void JSArrayBuffer::set_is_external(bool value) {
set_flag(BooleanBit::set(flag(), kIsExternalBit, value));
}
bool JSArrayBuffer::should_be_freed() {
return BooleanBit::get(flag(), kShouldBeFreed);
}
void JSArrayBuffer::set_should_be_freed(bool value) {
set_flag(BooleanBit::set(flag(), kShouldBeFreed, value));
}
bool JSArrayBuffer::is_neuterable() {
return BooleanBit::get(flag(), kIsNeuterableBit);
}
void JSArrayBuffer::set_is_neuterable(bool value) {
set_flag(BooleanBit::set(flag(), kIsNeuterableBit, value));
}
ACCESSORS(JSArrayBuffer, weak_next, Object, kWeakNextOffset)
ACCESSORS(JSArrayBuffer, weak_first_view, Object, kWeakFirstViewOffset)
ACCESSORS(JSArrayBufferView, buffer, Object, kBufferOffset)
ACCESSORS(JSArrayBufferView, byte_offset, Object, kByteOffsetOffset)
ACCESSORS(JSArrayBufferView, byte_length, Object, kByteLengthOffset)
ACCESSORS(JSArrayBufferView, weak_next, Object, kWeakNextOffset)
ACCESSORS(JSTypedArray, length, Object, kLengthOffset)
ACCESSORS(JSRegExp, data, Object, kDataOffset)
JSRegExp::Type JSRegExp::TypeTag() {
Object* data = this->data();
if (data->IsUndefined()) return JSRegExp::NOT_COMPILED;
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kTagIndex));
return static_cast<JSRegExp::Type>(smi->value());
}
int JSRegExp::CaptureCount() {
switch (TypeTag()) {
case ATOM:
return 0;
case IRREGEXP:
return Smi::cast(DataAt(kIrregexpCaptureCountIndex))->value();
default:
UNREACHABLE();
return -1;
}
}
JSRegExp::Flags JSRegExp::GetFlags() {
DCHECK(this->data()->IsFixedArray());
Object* data = this->data();
Smi* smi = Smi::cast(FixedArray::cast(data)->get(kFlagsIndex));
return Flags(smi->value());
}
String* JSRegExp::Pattern() {
DCHECK(this->data()->IsFixedArray());
Object* data = this->data();
String* pattern= String::cast(FixedArray::cast(data)->get(kSourceIndex));
return pattern;
}
Object* JSRegExp::DataAt(int index) {
DCHECK(TypeTag() != NOT_COMPILED);
return FixedArray::cast(data())->get(index);
}
void JSRegExp::SetDataAt(int index, Object* value) {
DCHECK(TypeTag() != NOT_COMPILED);
DCHECK(index >= kDataIndex); // Only implementation data can be set this way.
FixedArray::cast(data())->set(index, value);
}
ElementsKind JSObject::GetElementsKind() {
ElementsKind kind = map()->elements_kind();
#if DEBUG
FixedArrayBase* fixed_array =
reinterpret_cast<FixedArrayBase*>(READ_FIELD(this, kElementsOffset));
// If a GC was caused while constructing this object, the elements
// pointer may point to a one pointer filler map.
if (ElementsAreSafeToExamine()) {
Map* map = fixed_array->map();
DCHECK((IsFastSmiOrObjectElementsKind(kind) &&
(map == GetHeap()->fixed_array_map() ||
map == GetHeap()->fixed_cow_array_map())) ||
(IsFastDoubleElementsKind(kind) &&
(fixed_array->IsFixedDoubleArray() ||
fixed_array == GetHeap()->empty_fixed_array())) ||
(kind == DICTIONARY_ELEMENTS &&
fixed_array->IsFixedArray() &&
fixed_array->IsDictionary()) ||
(kind > DICTIONARY_ELEMENTS));
DCHECK((kind != SLOPPY_ARGUMENTS_ELEMENTS) ||
(elements()->IsFixedArray() && elements()->length() >= 2));
}
#endif
return kind;
}
ElementsAccessor* JSObject::GetElementsAccessor() {
return ElementsAccessor::ForKind(GetElementsKind());
}
bool JSObject::HasFastObjectElements() {
return IsFastObjectElementsKind(GetElementsKind());
}
bool JSObject::HasFastSmiElements() {
return IsFastSmiElementsKind(GetElementsKind());
}
bool JSObject::HasFastSmiOrObjectElements() {
return IsFastSmiOrObjectElementsKind(GetElementsKind());
}
bool JSObject::HasFastDoubleElements() {
return IsFastDoubleElementsKind(GetElementsKind());
}
bool JSObject::HasFastHoleyElements() {
return IsFastHoleyElementsKind(GetElementsKind());
}
bool JSObject::HasFastElements() {
return IsFastElementsKind(GetElementsKind());
}
bool JSObject::HasDictionaryElements() {
return GetElementsKind() == DICTIONARY_ELEMENTS;
}
bool JSObject::HasSloppyArgumentsElements() {
return GetElementsKind() == SLOPPY_ARGUMENTS_ELEMENTS;
}
bool JSObject::HasExternalArrayElements() {
HeapObject* array = elements();
DCHECK(array != NULL);
return array->IsExternalArray();
}
#define EXTERNAL_ELEMENTS_CHECK(Type, type, TYPE, ctype, size) \
bool JSObject::HasExternal##Type##Elements() { \
HeapObject* array = elements(); \
DCHECK(array != NULL); \
if (!array->IsHeapObject()) \
return false; \
return array->map()->instance_type() == EXTERNAL_##TYPE##_ARRAY_TYPE; \
}
TYPED_ARRAYS(EXTERNAL_ELEMENTS_CHECK)
#undef EXTERNAL_ELEMENTS_CHECK
bool JSObject::HasFixedTypedArrayElements() {
HeapObject* array = elements();
DCHECK(array != NULL);
return array->IsFixedTypedArrayBase();
}
#define FIXED_TYPED_ELEMENTS_CHECK(Type, type, TYPE, ctype, size) \
bool JSObject::HasFixed##Type##Elements() { \
HeapObject* array = elements(); \
DCHECK(array != NULL); \
if (!array->IsHeapObject()) \
return false; \
return array->map()->instance_type() == FIXED_##TYPE##_ARRAY_TYPE; \
}
TYPED_ARRAYS(FIXED_TYPED_ELEMENTS_CHECK)
#undef FIXED_TYPED_ELEMENTS_CHECK
bool JSObject::HasNamedInterceptor() {
return map()->has_named_interceptor();
}
bool JSObject::HasIndexedInterceptor() {
return map()->has_indexed_interceptor();
}
NameDictionary* JSObject::property_dictionary() {
DCHECK(!HasFastProperties());
return NameDictionary::cast(properties());
}
SeededNumberDictionary* JSObject::element_dictionary() {
DCHECK(HasDictionaryElements());
return SeededNumberDictionary::cast(elements());
}
bool Name::IsHashFieldComputed(uint32_t field) {
return (field & kHashNotComputedMask) == 0;
}
bool Name::HasHashCode() {
return IsHashFieldComputed(hash_field());
}
uint32_t Name::Hash() {
// Fast case: has hash code already been computed?
uint32_t field = hash_field();
if (IsHashFieldComputed(field)) return field >> kHashShift;
// Slow case: compute hash code and set it. Has to be a string.
return String::cast(this)->ComputeAndSetHash();
}
bool Name::IsOwn() {
return this->IsSymbol() && Symbol::cast(this)->is_own();
}
StringHasher::StringHasher(int length, uint32_t seed)
: length_(length),
raw_running_hash_(seed),
array_index_(0),
is_array_index_(0 < length_ && length_ <= String::kMaxArrayIndexSize),
is_first_char_(true) {
DCHECK(FLAG_randomize_hashes || raw_running_hash_ == 0);
}
bool StringHasher::has_trivial_hash() {
return length_ > String::kMaxHashCalcLength;
}
uint32_t StringHasher::AddCharacterCore(uint32_t running_hash, uint16_t c) {
running_hash += c;
running_hash += (running_hash << 10);
running_hash ^= (running_hash >> 6);
return running_hash;
}
uint32_t StringHasher::GetHashCore(uint32_t running_hash) {
running_hash += (running_hash << 3);
running_hash ^= (running_hash >> 11);
running_hash += (running_hash << 15);
if ((running_hash & String::kHashBitMask) == 0) {
return kZeroHash;
}
return running_hash;
}
void StringHasher::AddCharacter(uint16_t c) {
// Use the Jenkins one-at-a-time hash function to update the hash
// for the given character.
raw_running_hash_ = AddCharacterCore(raw_running_hash_, c);
}
bool StringHasher::UpdateIndex(uint16_t c) {
DCHECK(is_array_index_);
if (c < '0' || c > '9') {
is_array_index_ = false;
return false;
}
int d = c - '0';
if (is_first_char_) {
is_first_char_ = false;
if (c == '0' && length_ > 1) {
is_array_index_ = false;
return false;
}
}
if (array_index_ > 429496729U - ((d + 2) >> 3)) {
is_array_index_ = false;
return false;
}
array_index_ = array_index_ * 10 + d;
return true;
}
template<typename Char>
inline void StringHasher::AddCharacters(const Char* chars, int length) {
DCHECK(sizeof(Char) == 1 || sizeof(Char) == 2);
int i = 0;
if (is_array_index_) {
for (; i < length; i++) {
AddCharacter(chars[i]);
if (!UpdateIndex(chars[i])) {
i++;
break;
}
}
}
for (; i < length; i++) {
DCHECK(!is_array_index_);
AddCharacter(chars[i]);
}
}
template <typename schar>
uint32_t StringHasher::HashSequentialString(const schar* chars,
int length,
uint32_t seed) {
StringHasher hasher(length, seed);
if (!hasher.has_trivial_hash()) hasher.AddCharacters(chars, length);
return hasher.GetHashField();
}
uint32_t IteratingStringHasher::Hash(String* string, uint32_t seed) {
IteratingStringHasher hasher(string->length(), seed);
// Nothing to do.
if (hasher.has_trivial_hash()) return hasher.GetHashField();
ConsString* cons_string = String::VisitFlat(&hasher, string);
// The string was flat.
if (cons_string == NULL) return hasher.GetHashField();
// This is a ConsString, iterate across it.
ConsStringIterator iter(cons_string);
int offset;
while (NULL != (string = iter.Next(&offset))) {
String::VisitFlat(&hasher, string, offset);
}
return hasher.GetHashField();
}
void IteratingStringHasher::VisitOneByteString(const uint8_t* chars,
int length) {
AddCharacters(chars, length);
}
void IteratingStringHasher::VisitTwoByteString(const uint16_t* chars,
int length) {
AddCharacters(chars, length);
}
bool Name::AsArrayIndex(uint32_t* index) {
return IsString() && String::cast(this)->AsArrayIndex(index);
}
bool String::AsArrayIndex(uint32_t* index) {
uint32_t field = hash_field();
if (IsHashFieldComputed(field) && (field & kIsNotArrayIndexMask)) {
return false;
}
return SlowAsArrayIndex(index);
}
void String::SetForwardedInternalizedString(String* canonical) {
DCHECK(IsInternalizedString());
DCHECK(HasHashCode());
if (canonical == this) return; // No need to forward.
DCHECK(SlowEquals(canonical));
DCHECK(canonical->IsInternalizedString());
DCHECK(canonical->HasHashCode());
WRITE_FIELD(this, kHashFieldSlot, canonical);
// Setting the hash field to a tagged value sets the LSB, causing the hash
// code to be interpreted as uninitialized. We use this fact to recognize
// that we have a forwarded string.
DCHECK(!HasHashCode());
}
String* String::GetForwardedInternalizedString() {
DCHECK(IsInternalizedString());
if (HasHashCode()) return this;
String* canonical = String::cast(READ_FIELD(this, kHashFieldSlot));
DCHECK(canonical->IsInternalizedString());
DCHECK(SlowEquals(canonical));
DCHECK(canonical->HasHashCode());
return canonical;
}
Maybe<bool> JSReceiver::HasProperty(Handle<JSReceiver> object,
Handle<Name> name) {
if (object->IsJSProxy()) {
Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
return JSProxy::HasPropertyWithHandler(proxy, name);
}
Maybe<PropertyAttributes> result = GetPropertyAttributes(object, name);
if (!result.has_value) return Maybe<bool>();
return maybe(result.value != ABSENT);
}
Maybe<bool> JSReceiver::HasOwnProperty(Handle<JSReceiver> object,
Handle<Name> name) {
if (object->IsJSProxy()) {
Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
return JSProxy::HasPropertyWithHandler(proxy, name);
}
Maybe<PropertyAttributes> result = GetOwnPropertyAttributes(object, name);
if (!result.has_value) return Maybe<bool>();
return maybe(result.value != ABSENT);
}
Maybe<PropertyAttributes> JSReceiver::GetPropertyAttributes(
Handle<JSReceiver> object, Handle<Name> key) {
uint32_t index;
if (object->IsJSObject() && key->AsArrayIndex(&index)) {
return GetElementAttribute(object, index);
}
LookupIterator it(object, key);
return GetPropertyAttributes(&it);
}
Maybe<PropertyAttributes> JSReceiver::GetElementAttribute(
Handle<JSReceiver> object, uint32_t index) {
if (object->IsJSProxy()) {
return JSProxy::GetElementAttributeWithHandler(
Handle<JSProxy>::cast(object), object, index);
}
return JSObject::GetElementAttributeWithReceiver(
Handle<JSObject>::cast(object), object, index, true);
}
bool JSGlobalObject::IsDetached() {
return JSGlobalProxy::cast(global_proxy())->IsDetachedFrom(this);
}
bool JSGlobalProxy::IsDetachedFrom(GlobalObject* global) const {
const PrototypeIterator iter(this->GetIsolate(),
const_cast<JSGlobalProxy*>(this));
return iter.GetCurrent() != global;
}
Handle<Smi> JSReceiver::GetOrCreateIdentityHash(Handle<JSReceiver> object) {
return object->IsJSProxy()
? JSProxy::GetOrCreateIdentityHash(Handle<JSProxy>::cast(object))
: JSObject::GetOrCreateIdentityHash(Handle<JSObject>::cast(object));
}
Object* JSReceiver::GetIdentityHash() {
return IsJSProxy()
? JSProxy::cast(this)->GetIdentityHash()
: JSObject::cast(this)->GetIdentityHash();
}
Maybe<bool> JSReceiver::HasElement(Handle<JSReceiver> object, uint32_t index) {
if (object->IsJSProxy()) {
Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
return JSProxy::HasElementWithHandler(proxy, index);
}
Maybe<PropertyAttributes> result = JSObject::GetElementAttributeWithReceiver(
Handle<JSObject>::cast(object), object, index, true);
if (!result.has_value) return Maybe<bool>();
return maybe(result.value != ABSENT);
}
Maybe<bool> JSReceiver::HasOwnElement(Handle<JSReceiver> object,
uint32_t index) {
if (object->IsJSProxy()) {
Handle<JSProxy> proxy = Handle<JSProxy>::cast(object);
return JSProxy::HasElementWithHandler(proxy, index);
}
Maybe<PropertyAttributes> result = JSObject::GetElementAttributeWithReceiver(
Handle<JSObject>::cast(object), object, index, false);
if (!result.has_value) return Maybe<bool>();
return maybe(result.value != ABSENT);
}
Maybe<PropertyAttributes> JSReceiver::GetOwnElementAttribute(
Handle<JSReceiver> object, uint32_t index) {
if (object->IsJSProxy()) {
return JSProxy::GetElementAttributeWithHandler(
Handle<JSProxy>::cast(object), object, index);
}
return JSObject::GetElementAttributeWithReceiver(
Handle<JSObject>::cast(object), object, index, false);
}
bool AccessorInfo::all_can_read() {
return BooleanBit::get(flag(), kAllCanReadBit);
}
void AccessorInfo::set_all_can_read(bool value) {
set_flag(BooleanBit::set(flag(), kAllCanReadBit, value));
}
bool AccessorInfo::all_can_write() {
return BooleanBit::get(flag(), kAllCanWriteBit);
}
void AccessorInfo::set_all_can_write(bool value) {
set_flag(BooleanBit::set(flag(), kAllCanWriteBit, value));
}
PropertyAttributes AccessorInfo::property_attributes() {
return AttributesField::decode(static_cast<uint32_t>(flag()->value()));
}
void AccessorInfo::set_property_attributes(PropertyAttributes attributes) {
set_flag(Smi::FromInt(AttributesField::update(flag()->value(), attributes)));
}
bool AccessorInfo::IsCompatibleReceiver(Object* receiver) {
if (!HasExpectedReceiverType()) return true;
if (!receiver->IsJSObject()) return false;
return FunctionTemplateInfo::cast(expected_receiver_type())
->IsTemplateFor(JSObject::cast(receiver)->map());
}
void ExecutableAccessorInfo::clear_setter() {
set_setter(GetIsolate()->heap()->undefined_value(), SKIP_WRITE_BARRIER);
}
template<typename Derived, typename Shape, typename Key>
void Dictionary<Derived, Shape, Key>::SetEntry(int entry,
Handle<Object> key,
Handle<Object> value) {
SetEntry(entry, key, value, PropertyDetails(Smi::FromInt(0)));
}
template<typename Derived, typename Shape, typename Key>
void Dictionary<Derived, Shape, Key>::SetEntry(int entry,
Handle<Object> key,
Handle<Object> value,
PropertyDetails details) {
DCHECK(!key->IsName() ||
details.IsDeleted() ||
details.dictionary_index() > 0);
int index = DerivedHashTable::EntryToIndex(entry);
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = FixedArray::GetWriteBarrierMode(no_gc);
FixedArray::set(index, *key, mode);
FixedArray::set(index+1, *value, mode);
FixedArray::set(index+2, details.AsSmi());
}
bool NumberDictionaryShape::IsMatch(uint32_t key, Object* other) {
DCHECK(other->IsNumber());
return key == static_cast<uint32_t>(other->Number());
}
uint32_t UnseededNumberDictionaryShape::Hash(uint32_t key) {
return ComputeIntegerHash(key, 0);
}
uint32_t UnseededNumberDictionaryShape::HashForObject(uint32_t key,
Object* other) {
DCHECK(other->IsNumber());
return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), 0);
}
uint32_t SeededNumberDictionaryShape::SeededHash(uint32_t key, uint32_t seed) {
return ComputeIntegerHash(key, seed);
}
uint32_t SeededNumberDictionaryShape::SeededHashForObject(uint32_t key,
uint32_t seed,
Object* other) {
DCHECK(other->IsNumber());
return ComputeIntegerHash(static_cast<uint32_t>(other->Number()), seed);
}
Handle<Object> NumberDictionaryShape::AsHandle(Isolate* isolate, uint32_t key) {
return isolate->factory()->NewNumberFromUint(key);
}
bool NameDictionaryShape::IsMatch(Handle<Name> key, Object* other) {
// We know that all entries in a hash table had their hash keys created.
// Use that knowledge to have fast failure.
if (key->Hash() != Name::cast(other)->Hash()) return false;
return key->Equals(Name::cast(other));
}
uint32_t NameDictionaryShape::Hash(Handle<Name> key) {
return key->Hash();
}
uint32_t NameDictionaryShape::HashForObject(Handle<Name> key, Object* other) {
return Name::cast(other)->Hash();
}
Handle<Object> NameDictionaryShape::AsHandle(Isolate* isolate,
Handle<Name> key) {
DCHECK(key->IsUniqueName());
return key;
}
Handle<FixedArray> NameDictionary::DoGenerateNewEnumerationIndices(
Handle<NameDictionary> dictionary) {
return DerivedDictionary::GenerateNewEnumerationIndices(dictionary);
}
bool ObjectHashTableShape::IsMatch(Handle<Object> key, Object* other) {
return key->SameValue(other);
}
uint32_t ObjectHashTableShape::Hash(Handle<Object> key) {
return Smi::cast(key->GetHash())->value();
}
uint32_t ObjectHashTableShape::HashForObject(Handle<Object> key,
Object* other) {
return Smi::cast(other->GetHash())->value();
}
Handle<Object> ObjectHashTableShape::AsHandle(Isolate* isolate,
Handle<Object> key) {
return key;
}
Handle<ObjectHashTable> ObjectHashTable::Shrink(
Handle<ObjectHashTable> table, Handle<Object> key) {
return DerivedHashTable::Shrink(table, key);
}
template <int entrysize>
bool WeakHashTableShape<entrysize>::IsMatch(Handle<Object> key, Object* other) {
return key->SameValue(other);
}
template <int entrysize>
uint32_t WeakHashTableShape<entrysize>::Hash(Handle<Object> key) {
intptr_t hash = reinterpret_cast<intptr_t>(*key);
return (uint32_t)(hash & 0xFFFFFFFF);
}
template <int entrysize>
uint32_t WeakHashTableShape<entrysize>::HashForObject(Handle<Object> key,
Object* other) {
intptr_t hash = reinterpret_cast<intptr_t>(other);
return (uint32_t)(hash & 0xFFFFFFFF);
}
template <int entrysize>
Handle<Object> WeakHashTableShape<entrysize>::AsHandle(Isolate* isolate,
Handle<Object> key) {
return key;
}
void Map::ClearCodeCache(Heap* heap) {
// No write barrier is needed since empty_fixed_array is not in new space.
// Please note this function is used during marking:
// - MarkCompactCollector::MarkUnmarkedObject
// - IncrementalMarking::Step
DCHECK(!heap->InNewSpace(heap->empty_fixed_array()));
WRITE_FIELD(this, kCodeCacheOffset, heap->empty_fixed_array());
}
int Map::SlackForArraySize(int old_size, int size_limit) {
const int max_slack = size_limit - old_size;
CHECK(max_slack >= 0);
if (old_size < 4) return Min(max_slack, 1);
return Min(max_slack, old_size / 2);
}
void JSArray::EnsureSize(Handle<JSArray> array, int required_size) {
DCHECK(array->HasFastSmiOrObjectElements());
Handle<FixedArray> elts = handle(FixedArray::cast(array->elements()));
const int kArraySizeThatFitsComfortablyInNewSpace = 128;
if (elts->length() < required_size) {
// Doubling in size would be overkill, but leave some slack to avoid
// constantly growing.
Expand(array, required_size + (required_size >> 3));
// It's a performance benefit to keep a frequently used array in new-space.
} else if (!array->GetHeap()->new_space()->Contains(*elts) &&
required_size < kArraySizeThatFitsComfortablyInNewSpace) {
// Expand will allocate a new backing store in new space even if the size
// we asked for isn't larger than what we had before.
Expand(array, required_size);
}
}
void JSArray::set_length(Smi* length) {
// Don't need a write barrier for a Smi.
set_length(static_cast<Object*>(length), SKIP_WRITE_BARRIER);
}
bool JSArray::AllowsSetElementsLength() {
bool result = elements()->IsFixedArray() || elements()->IsFixedDoubleArray();
DCHECK(result == !HasExternalArrayElements());
return result;
}
void JSArray::SetContent(Handle<JSArray> array,
Handle<FixedArrayBase> storage) {
EnsureCanContainElements(array, storage, storage->length(),
ALLOW_COPIED_DOUBLE_ELEMENTS);
DCHECK((storage->map() == array->GetHeap()->fixed_double_array_map() &&
IsFastDoubleElementsKind(array->GetElementsKind())) ||
((storage->map() != array->GetHeap()->fixed_double_array_map()) &&
(IsFastObjectElementsKind(array->GetElementsKind()) ||
(IsFastSmiElementsKind(array->GetElementsKind()) &&
Handle<FixedArray>::cast(storage)->ContainsOnlySmisOrHoles()))));
array->set_elements(*storage);
array->set_length(Smi::FromInt(storage->length()));
}
int TypeFeedbackInfo::ic_total_count() {
int current = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
return ICTotalCountField::decode(current);
}
void TypeFeedbackInfo::set_ic_total_count(int count) {
int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
value = ICTotalCountField::update(value,
ICTotalCountField::decode(count));
WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value));
}
int TypeFeedbackInfo::ic_with_type_info_count() {
int current = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
return ICsWithTypeInfoCountField::decode(current);
}
void TypeFeedbackInfo::change_ic_with_type_info_count(int delta) {
if (delta == 0) return;
int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
int new_count = ICsWithTypeInfoCountField::decode(value) + delta;
// We can get negative count here when the type-feedback info is
// shared between two code objects. The can only happen when
// the debugger made a shallow copy of code object (see Heap::CopyCode).
// Since we do not optimize when the debugger is active, we can skip
// this counter update.
if (new_count >= 0) {
new_count &= ICsWithTypeInfoCountField::kMask;
value = ICsWithTypeInfoCountField::update(value, new_count);
WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value));
}
}
int TypeFeedbackInfo::ic_generic_count() {
return Smi::cast(READ_FIELD(this, kStorage3Offset))->value();
}
void TypeFeedbackInfo::change_ic_generic_count(int delta) {
if (delta == 0) return;
int new_count = ic_generic_count() + delta;
if (new_count >= 0) {
new_count &= ~Smi::kMinValue;
WRITE_FIELD(this, kStorage3Offset, Smi::FromInt(new_count));
}
}
void TypeFeedbackInfo::initialize_storage() {
WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(0));
WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(0));
WRITE_FIELD(this, kStorage3Offset, Smi::FromInt(0));
}
void TypeFeedbackInfo::change_own_type_change_checksum() {
int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
int checksum = OwnTypeChangeChecksum::decode(value);
checksum = (checksum + 1) % (1 << kTypeChangeChecksumBits);
value = OwnTypeChangeChecksum::update(value, checksum);
// Ensure packed bit field is in Smi range.
if (value > Smi::kMaxValue) value |= Smi::kMinValue;
if (value < Smi::kMinValue) value &= ~Smi::kMinValue;
WRITE_FIELD(this, kStorage1Offset, Smi::FromInt(value));
}
void TypeFeedbackInfo::set_inlined_type_change_checksum(int checksum) {
int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
int mask = (1 << kTypeChangeChecksumBits) - 1;
value = InlinedTypeChangeChecksum::update(value, checksum & mask);
// Ensure packed bit field is in Smi range.
if (value > Smi::kMaxValue) value |= Smi::kMinValue;
if (value < Smi::kMinValue) value &= ~Smi::kMinValue;
WRITE_FIELD(this, kStorage2Offset, Smi::FromInt(value));
}
int TypeFeedbackInfo::own_type_change_checksum() {
int value = Smi::cast(READ_FIELD(this, kStorage1Offset))->value();
return OwnTypeChangeChecksum::decode(value);
}
bool TypeFeedbackInfo::matches_inlined_type_change_checksum(int checksum) {
int value = Smi::cast(READ_FIELD(this, kStorage2Offset))->value();
int mask = (1 << kTypeChangeChecksumBits) - 1;
return InlinedTypeChangeChecksum::decode(value) == (checksum & mask);
}
SMI_ACCESSORS(AliasedArgumentsEntry, aliased_context_slot, kAliasedContextSlot)
Relocatable::Relocatable(Isolate* isolate) {
isolate_ = isolate;
prev_ = isolate->relocatable_top();
isolate->set_relocatable_top(this);
}
Relocatable::~Relocatable() {
DCHECK_EQ(isolate_->relocatable_top(), this);
isolate_->set_relocatable_top(prev_);
}
int JSObject::BodyDescriptor::SizeOf(Map* map, HeapObject* object) {
return map->instance_size();
}
void Foreign::ForeignIterateBody(ObjectVisitor* v) {
v->VisitExternalReference(
reinterpret_cast<Address*>(FIELD_ADDR(this, kForeignAddressOffset)));
}
template<typename StaticVisitor>
void Foreign::ForeignIterateBody() {
StaticVisitor::VisitExternalReference(
reinterpret_cast<Address*>(FIELD_ADDR(this, kForeignAddressOffset)));
}
void ExternalOneByteString::ExternalOneByteStringIterateBody(ObjectVisitor* v) {
typedef v8::String::ExternalOneByteStringResource Resource;
v->VisitExternalOneByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
template <typename StaticVisitor>
void ExternalOneByteString::ExternalOneByteStringIterateBody() {
typedef v8::String::ExternalOneByteStringResource Resource;
StaticVisitor::VisitExternalOneByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
void ExternalTwoByteString::ExternalTwoByteStringIterateBody(ObjectVisitor* v) {
typedef v8::String::ExternalStringResource Resource;
v->VisitExternalTwoByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
template<typename StaticVisitor>
void ExternalTwoByteString::ExternalTwoByteStringIterateBody() {
typedef v8::String::ExternalStringResource Resource;
StaticVisitor::VisitExternalTwoByteString(
reinterpret_cast<Resource**>(FIELD_ADDR(this, kResourceOffset)));
}
template<int start_offset, int end_offset, int size>
void FixedBodyDescriptor<start_offset, end_offset, size>::IterateBody(
HeapObject* obj,
ObjectVisitor* v) {
v->VisitPointers(HeapObject::RawField(obj, start_offset),
HeapObject::RawField(obj, end_offset));
}
template<int start_offset>
void FlexibleBodyDescriptor<start_offset>::IterateBody(HeapObject* obj,
int object_size,
ObjectVisitor* v) {
v->VisitPointers(HeapObject::RawField(obj, start_offset),
HeapObject::RawField(obj, object_size));
}
template<class Derived, class TableType>
Object* OrderedHashTableIterator<Derived, TableType>::CurrentKey() {
TableType* table(TableType::cast(this->table()));
int index = Smi::cast(this->index())->value();
Object* key = table->KeyAt(index);
DCHECK(!key->IsTheHole());
return key;
}
void JSSetIterator::PopulateValueArray(FixedArray* array) {
array->set(0, CurrentKey());
}
void JSMapIterator::PopulateValueArray(FixedArray* array) {
array->set(0, CurrentKey());
array->set(1, CurrentValue());
}
Object* JSMapIterator::CurrentValue() {
OrderedHashMap* table(OrderedHashMap::cast(this->table()));
int index = Smi::cast(this->index())->value();
Object* value = table->ValueAt(index);
DCHECK(!value->IsTheHole());
return value;
}
#undef TYPE_CHECKER
#undef CAST_ACCESSOR
#undef INT_ACCESSORS
#undef ACCESSORS
#undef ACCESSORS_TO_SMI
#undef SMI_ACCESSORS
#undef SYNCHRONIZED_SMI_ACCESSORS
#undef NOBARRIER_SMI_ACCESSORS
#undef BOOL_GETTER
#undef BOOL_ACCESSORS
#undef FIELD_ADDR
#undef FIELD_ADDR_CONST
#undef READ_FIELD
#undef NOBARRIER_READ_FIELD
#undef WRITE_FIELD
#undef NOBARRIER_WRITE_FIELD
#undef WRITE_BARRIER
#undef CONDITIONAL_WRITE_BARRIER
#undef READ_DOUBLE_FIELD
#undef WRITE_DOUBLE_FIELD
#undef READ_INT_FIELD
#undef WRITE_INT_FIELD
#undef READ_INTPTR_FIELD
#undef WRITE_INTPTR_FIELD
#undef READ_UINT32_FIELD
#undef WRITE_UINT32_FIELD
#undef READ_SHORT_FIELD
#undef WRITE_SHORT_FIELD
#undef READ_BYTE_FIELD
#undef WRITE_BYTE_FIELD
#undef NOBARRIER_READ_BYTE_FIELD
#undef NOBARRIER_WRITE_BYTE_FIELD
} } // namespace v8::internal
#endif // V8_OBJECTS_INL_H_