blob: 0c6d34e4c4bc0918b57d955d0a8bfd5115eb9ac0 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#pragma warning(disable: 4995) // name was marked as #pragma deprecated
#if (_MSC_VER >= 1310) && (_MSC_VER < 1400)
// Reports the major and minor versions of the compiler.
// For example, 1310 for Microsoft Visual C++ .NET 2003. 1310 represents version 13 and a 1.0 point release.
// The Visual C++ 2005 compiler version is 1400.
// Type cl /? at the command line to see the major and minor versions of your compiler along with the build number.
#pragma message(">> INFO: Windows Core Audio is not supported in VS 2003")
#endif
#include "webrtc/modules/audio_device/audio_device_config.h"
#ifdef WEBRTC_WINDOWS_CORE_AUDIO_BUILD
#include "webrtc/modules/audio_device/win/audio_device_core_win.h"
#include <assert.h>
#include <string.h>
#include <windows.h>
#include <comdef.h>
#include <dmo.h>
#include <Functiondiscoverykeys_devpkey.h>
#include <mmsystem.h>
#include <strsafe.h>
#include <uuids.h>
#include <iomanip>
#include "webrtc/rtc_base/logging.h"
#include "webrtc/rtc_base/platform_thread.h"
#include "webrtc/system_wrappers/include/sleep.h"
// Macro that calls a COM method returning HRESULT value.
#define EXIT_ON_ERROR(hres) do { if (FAILED(hres)) goto Exit; } while(0)
// Macro that continues to a COM error.
#define CONTINUE_ON_ERROR(hres) do { if (FAILED(hres)) goto Next; } while(0)
// Macro that releases a COM object if not NULL.
#define SAFE_RELEASE(p) do { if ((p)) { (p)->Release(); (p) = NULL; } } while(0)
#define ROUND(x) ((x) >=0 ? (int)((x) + 0.5) : (int)((x) - 0.5))
// REFERENCE_TIME time units per millisecond
#define REFTIMES_PER_MILLISEC 10000
typedef struct tagTHREADNAME_INFO
{
DWORD dwType; // must be 0x1000
LPCSTR szName; // pointer to name (in user addr space)
DWORD dwThreadID; // thread ID (-1=caller thread)
DWORD dwFlags; // reserved for future use, must be zero
} THREADNAME_INFO;
namespace webrtc {
namespace {
enum { COM_THREADING_MODEL = COINIT_MULTITHREADED };
enum
{
kAecCaptureStreamIndex = 0,
kAecRenderStreamIndex = 1
};
// An implementation of IMediaBuffer, as required for
// IMediaObject::ProcessOutput(). After consuming data provided by
// ProcessOutput(), call SetLength() to update the buffer availability.
//
// Example implementation:
// http://msdn.microsoft.com/en-us/library/dd376684(v=vs.85).aspx
class MediaBufferImpl : public IMediaBuffer
{
public:
explicit MediaBufferImpl(DWORD maxLength)
: _data(new BYTE[maxLength]),
_length(0),
_maxLength(maxLength),
_refCount(0)
{}
// IMediaBuffer methods.
STDMETHOD(GetBufferAndLength(BYTE** ppBuffer, DWORD* pcbLength))
{
if (!ppBuffer || !pcbLength)
{
return E_POINTER;
}
*ppBuffer = _data;
*pcbLength = _length;
return S_OK;
}
STDMETHOD(GetMaxLength(DWORD* pcbMaxLength))
{
if (!pcbMaxLength)
{
return E_POINTER;
}
*pcbMaxLength = _maxLength;
return S_OK;
}
STDMETHOD(SetLength(DWORD cbLength))
{
if (cbLength > _maxLength)
{
return E_INVALIDARG;
}
_length = cbLength;
return S_OK;
}
// IUnknown methods.
STDMETHOD_(ULONG, AddRef())
{
return InterlockedIncrement(&_refCount);
}
STDMETHOD(QueryInterface(REFIID riid, void** ppv))
{
if (!ppv)
{
return E_POINTER;
}
else if (riid != IID_IMediaBuffer && riid != IID_IUnknown)
{
return E_NOINTERFACE;
}
*ppv = static_cast<IMediaBuffer*>(this);
AddRef();
return S_OK;
}
STDMETHOD_(ULONG, Release())
{
LONG refCount = InterlockedDecrement(&_refCount);
if (refCount == 0)
{
delete this;
}
return refCount;
}
private:
~MediaBufferImpl()
{
delete [] _data;
}
BYTE* _data;
DWORD _length;
const DWORD _maxLength;
LONG _refCount;
};
} // namespace
// ============================================================================
// Static Methods
// ============================================================================
// ----------------------------------------------------------------------------
// CoreAudioIsSupported
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::CoreAudioIsSupported()
{
LOG(LS_VERBOSE) << __FUNCTION__;
bool MMDeviceIsAvailable(false);
bool coreAudioIsSupported(false);
HRESULT hr(S_OK);
TCHAR buf[MAXERRORLENGTH];
TCHAR errorText[MAXERRORLENGTH];
// 1) Check if Windows version is Vista SP1 or later.
//
// CoreAudio is only available on Vista SP1 and later.
//
OSVERSIONINFOEX osvi;
DWORDLONG dwlConditionMask = 0;
int op = VER_LESS_EQUAL;
// Initialize the OSVERSIONINFOEX structure.
ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
osvi.dwMajorVersion = 6;
osvi.dwMinorVersion = 0;
osvi.wServicePackMajor = 0;
osvi.wServicePackMinor = 0;
osvi.wProductType = VER_NT_WORKSTATION;
// Initialize the condition mask.
VER_SET_CONDITION(dwlConditionMask, VER_MAJORVERSION, op);
VER_SET_CONDITION(dwlConditionMask, VER_MINORVERSION, op);
VER_SET_CONDITION(dwlConditionMask, VER_SERVICEPACKMAJOR, op);
VER_SET_CONDITION(dwlConditionMask, VER_SERVICEPACKMINOR, op);
VER_SET_CONDITION(dwlConditionMask, VER_PRODUCT_TYPE, VER_EQUAL);
DWORD dwTypeMask = VER_MAJORVERSION | VER_MINORVERSION |
VER_SERVICEPACKMAJOR | VER_SERVICEPACKMINOR |
VER_PRODUCT_TYPE;
// Perform the test.
BOOL isVistaRTMorXP = VerifyVersionInfo(&osvi, dwTypeMask,
dwlConditionMask);
if (isVistaRTMorXP != 0)
{
LOG(LS_VERBOSE)
<< "*** Windows Core Audio is only supported on Vista SP1 or later"
<< " => will revert to the Wave API ***";
return false;
}
// 2) Initializes the COM library for use by the calling thread.
// The COM init wrapper sets the thread's concurrency model to MTA,
// and creates a new apartment for the thread if one is required. The
// wrapper also ensures that each call to CoInitializeEx is balanced
// by a corresponding call to CoUninitialize.
//
ScopedCOMInitializer comInit(ScopedCOMInitializer::kMTA);
if (!comInit.succeeded()) {
// Things will work even if an STA thread is calling this method but we
// want to ensure that MTA is used and therefore return false here.
return false;
}
// 3) Check if the MMDevice API is available.
//
// The Windows Multimedia Device (MMDevice) API enables audio clients to
// discover audio endpoint devices, determine their capabilities, and create
// driver instances for those devices.
// Header file Mmdeviceapi.h defines the interfaces in the MMDevice API.
// The MMDevice API consists of several interfaces. The first of these is the
// IMMDeviceEnumerator interface. To access the interfaces in the MMDevice API,
// a client obtains a reference to the IMMDeviceEnumerator interface of a
// device-enumerator object by calling the CoCreateInstance function.
//
// Through the IMMDeviceEnumerator interface, the client can obtain references
// to the other interfaces in the MMDevice API. The MMDevice API implements
// the following interfaces:
//
// IMMDevice Represents an audio device.
// IMMDeviceCollection Represents a collection of audio devices.
// IMMDeviceEnumerator Provides methods for enumerating audio devices.
// IMMEndpoint Represents an audio endpoint device.
//
IMMDeviceEnumerator* pIMMD(NULL);
const CLSID CLSID_MMDeviceEnumerator = __uuidof(MMDeviceEnumerator);
const IID IID_IMMDeviceEnumerator = __uuidof(IMMDeviceEnumerator);
hr = CoCreateInstance(
CLSID_MMDeviceEnumerator, // GUID value of MMDeviceEnumerator coclass
NULL,
CLSCTX_ALL,
IID_IMMDeviceEnumerator, // GUID value of the IMMDeviceEnumerator interface
(void**)&pIMMD );
if (FAILED(hr))
{
LOG(LS_ERROR) << "AudioDeviceWindowsCore::CoreAudioIsSupported()"
<< " Failed to create the required COM object (hr="
<< hr << ")";
LOG(LS_VERBOSE) << "AudioDeviceWindowsCore::CoreAudioIsSupported()"
<< " CoCreateInstance(MMDeviceEnumerator) failed (hr="
<< hr << ")";
const DWORD dwFlags = FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS;
const DWORD dwLangID = MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US);
// Gets the system's human readable message string for this HRESULT.
// All error message in English by default.
DWORD messageLength = ::FormatMessageW(dwFlags,
0,
hr,
dwLangID,
errorText,
MAXERRORLENGTH,
NULL);
assert(messageLength <= MAXERRORLENGTH);
// Trims tailing white space (FormatMessage() leaves a trailing cr-lf.).
for (; messageLength && ::isspace(errorText[messageLength - 1]);
--messageLength)
{
errorText[messageLength - 1] = '\0';
}
StringCchPrintf(buf, MAXERRORLENGTH, TEXT("Error details: "));
StringCchCat(buf, MAXERRORLENGTH, errorText);
LOG(LS_VERBOSE) << buf;
}
else
{
MMDeviceIsAvailable = true;
LOG(LS_VERBOSE) << "AudioDeviceWindowsCore::CoreAudioIsSupported()"
<< " CoCreateInstance(MMDeviceEnumerator) succeeded (hr=" << hr
<< ")";
SAFE_RELEASE(pIMMD);
}
// 4) Verify that we can create and initialize our Core Audio class.
//
// Also, perform a limited "API test" to ensure that Core Audio is supported for all devices.
//
if (MMDeviceIsAvailable)
{
coreAudioIsSupported = false;
AudioDeviceWindowsCore* p = new AudioDeviceWindowsCore();
if (p == NULL)
{
return false;
}
int ok(0);
int temp_ok(0);
bool available(false);
if (p->Init() != InitStatus::OK) {
ok |= -1;
}
int16_t numDevsRec = p->RecordingDevices();
for (uint16_t i = 0; i < numDevsRec; i++)
{
ok |= p->SetRecordingDevice(i);
temp_ok = p->RecordingIsAvailable(available);
ok |= temp_ok;
ok |= (available == false);
if (available)
{
ok |= p->InitMicrophone();
}
if (ok)
{
LOG(LS_WARNING)
<< "AudioDeviceWindowsCore::CoreAudioIsSupported()"
<< " Failed to use Core Audio Recording for device id="
<< i;
}
}
int16_t numDevsPlay = p->PlayoutDevices();
for (uint16_t i = 0; i < numDevsPlay; i++)
{
ok |= p->SetPlayoutDevice(i);
temp_ok = p->PlayoutIsAvailable(available);
ok |= temp_ok;
ok |= (available == false);
if (available)
{
ok |= p->InitSpeaker();
}
if (ok)
{
LOG(LS_WARNING)
<< "AudioDeviceWindowsCore::CoreAudioIsSupported()"
<< " Failed to use Core Audio Playout for device id=" << i;
}
}
ok |= p->Terminate();
if (ok == 0)
{
coreAudioIsSupported = true;
}
delete p;
}
if (coreAudioIsSupported)
{
LOG(LS_VERBOSE) << "*** Windows Core Audio is supported ***";
}
else
{
LOG(LS_VERBOSE) << "*** Windows Core Audio is NOT supported"
<< " => will revert to the Wave API ***";
}
return (coreAudioIsSupported);
}
// ============================================================================
// Construction & Destruction
// ============================================================================
// ----------------------------------------------------------------------------
// AudioDeviceWindowsCore() - ctor
// ----------------------------------------------------------------------------
AudioDeviceWindowsCore::AudioDeviceWindowsCore()
: _comInit(ScopedCOMInitializer::kMTA),
_ptrAudioBuffer(NULL),
_ptrEnumerator(NULL),
_ptrRenderCollection(NULL),
_ptrCaptureCollection(NULL),
_ptrDeviceOut(NULL),
_ptrDeviceIn(NULL),
_ptrClientOut(NULL),
_ptrClientIn(NULL),
_ptrRenderClient(NULL),
_ptrCaptureClient(NULL),
_ptrCaptureVolume(NULL),
_ptrRenderSimpleVolume(NULL),
_dmo(NULL),
_mediaBuffer(NULL),
_builtInAecEnabled(false),
_playAudioFrameSize(0),
_playSampleRate(0),
_playBlockSizeInFrames(0),
_playBlockSizeInSamples(0),
_playChannels(2),
_sndCardPlayDelay(0),
_sndCardRecDelay(0),
_writtenSamples(0),
_readSamples(0),
_recAudioFrameSize(0),
_recSampleRate(0),
_recBlockSize(0),
_recChannels(2),
_avrtLibrary(NULL),
_winSupportAvrt(false),
_hRenderSamplesReadyEvent(NULL),
_hPlayThread(NULL),
_hCaptureSamplesReadyEvent(NULL),
_hRecThread(NULL),
_hShutdownRenderEvent(NULL),
_hShutdownCaptureEvent(NULL),
_hRenderStartedEvent(NULL),
_hCaptureStartedEvent(NULL),
_hGetCaptureVolumeThread(NULL),
_hSetCaptureVolumeThread(NULL),
_hSetCaptureVolumeEvent(NULL),
_hMmTask(NULL),
_initialized(false),
_recording(false),
_playing(false),
_recIsInitialized(false),
_playIsInitialized(false),
_speakerIsInitialized(false),
_microphoneIsInitialized(false),
_AGC(false),
_playWarning(0),
_playError(0),
_recWarning(0),
_recError(0),
_playBufDelay(80),
_usingInputDeviceIndex(false),
_usingOutputDeviceIndex(false),
_inputDevice(AudioDeviceModule::kDefaultCommunicationDevice),
_outputDevice(AudioDeviceModule::kDefaultCommunicationDevice),
_inputDeviceIndex(0),
_outputDeviceIndex(0),
_newMicLevel(0) {
LOG(LS_INFO) << __FUNCTION__ << " created";
assert(_comInit.succeeded());
// Try to load the Avrt DLL
if (!_avrtLibrary) {
// Get handle to the Avrt DLL module.
_avrtLibrary = LoadLibrary(TEXT("Avrt.dll"));
if (_avrtLibrary) {
// Handle is valid (should only happen if OS larger than vista & win7).
// Try to get the function addresses.
LOG(LS_VERBOSE) << "AudioDeviceWindowsCore::AudioDeviceWindowsCore()"
<< " The Avrt DLL module is now loaded";
_PAvRevertMmThreadCharacteristics =
(PAvRevertMmThreadCharacteristics)GetProcAddress(
_avrtLibrary, "AvRevertMmThreadCharacteristics");
_PAvSetMmThreadCharacteristicsA =
(PAvSetMmThreadCharacteristicsA)GetProcAddress(
_avrtLibrary, "AvSetMmThreadCharacteristicsA");
_PAvSetMmThreadPriority = (PAvSetMmThreadPriority)GetProcAddress(
_avrtLibrary, "AvSetMmThreadPriority");
if (_PAvRevertMmThreadCharacteristics &&
_PAvSetMmThreadCharacteristicsA && _PAvSetMmThreadPriority) {
LOG(LS_VERBOSE) << "AudioDeviceWindowsCore::AudioDeviceWindowsCore()"
<< " AvRevertMmThreadCharacteristics() is OK";
LOG(LS_VERBOSE) << "AudioDeviceWindowsCore::AudioDeviceWindowsCore()"
<< " AvSetMmThreadCharacteristicsA() is OK";
LOG(LS_VERBOSE) << "AudioDeviceWindowsCore::AudioDeviceWindowsCore()"
<< " AvSetMmThreadPriority() is OK";
_winSupportAvrt = true;
}
}
}
// Create our samples ready events - we want auto reset events that start in
// the not-signaled state. The state of an auto-reset event object remains
// signaled until a single waiting thread is released, at which time the
// system automatically sets the state to nonsignaled. If no threads are
// waiting, the event object's state remains signaled. (Except for
// _hShutdownCaptureEvent, which is used to shutdown multiple threads).
_hRenderSamplesReadyEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
_hCaptureSamplesReadyEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
_hShutdownRenderEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
_hShutdownCaptureEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
_hRenderStartedEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
_hCaptureStartedEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
_hSetCaptureVolumeEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
_perfCounterFreq.QuadPart = 1;
_perfCounterFactor = 0.0;
// list of number of channels to use on recording side
_recChannelsPrioList[0] = 2; // stereo is prio 1
_recChannelsPrioList[1] = 1; // mono is prio 2
_recChannelsPrioList[2] = 4; // quad is prio 3
// list of number of channels to use on playout side
_playChannelsPrioList[0] = 2; // stereo is prio 1
_playChannelsPrioList[1] = 1; // mono is prio 2
HRESULT hr;
// We know that this API will work since it has already been verified in
// CoreAudioIsSupported, hence no need to check for errors here as well.
// Retrive the IMMDeviceEnumerator API (should load the MMDevAPI.dll)
// TODO(henrika): we should probably move this allocation to Init() instead
// and deallocate in Terminate() to make the implementation more symmetric.
CoCreateInstance(__uuidof(MMDeviceEnumerator), NULL, CLSCTX_ALL,
__uuidof(IMMDeviceEnumerator),
reinterpret_cast<void**>(&_ptrEnumerator));
assert(NULL != _ptrEnumerator);
// DMO initialization for built-in WASAPI AEC.
{
IMediaObject* ptrDMO = NULL;
hr = CoCreateInstance(CLSID_CWMAudioAEC, NULL, CLSCTX_INPROC_SERVER,
IID_IMediaObject, reinterpret_cast<void**>(&ptrDMO));
if (FAILED(hr) || ptrDMO == NULL) {
// Since we check that _dmo is non-NULL in EnableBuiltInAEC(), the
// feature is prevented from being enabled.
_builtInAecEnabled = false;
_TraceCOMError(hr);
}
_dmo = ptrDMO;
SAFE_RELEASE(ptrDMO);
}
}
// ----------------------------------------------------------------------------
// AudioDeviceWindowsCore() - dtor
// ----------------------------------------------------------------------------
AudioDeviceWindowsCore::~AudioDeviceWindowsCore()
{
LOG(LS_INFO) << __FUNCTION__ << " destroyed";
Terminate();
// The IMMDeviceEnumerator is created during construction. Must release
// it here and not in Terminate() since we don't recreate it in Init().
SAFE_RELEASE(_ptrEnumerator);
_ptrAudioBuffer = NULL;
if (NULL != _hRenderSamplesReadyEvent)
{
CloseHandle(_hRenderSamplesReadyEvent);
_hRenderSamplesReadyEvent = NULL;
}
if (NULL != _hCaptureSamplesReadyEvent)
{
CloseHandle(_hCaptureSamplesReadyEvent);
_hCaptureSamplesReadyEvent = NULL;
}
if (NULL != _hRenderStartedEvent)
{
CloseHandle(_hRenderStartedEvent);
_hRenderStartedEvent = NULL;
}
if (NULL != _hCaptureStartedEvent)
{
CloseHandle(_hCaptureStartedEvent);
_hCaptureStartedEvent = NULL;
}
if (NULL != _hShutdownRenderEvent)
{
CloseHandle(_hShutdownRenderEvent);
_hShutdownRenderEvent = NULL;
}
if (NULL != _hShutdownCaptureEvent)
{
CloseHandle(_hShutdownCaptureEvent);
_hShutdownCaptureEvent = NULL;
}
if (NULL != _hSetCaptureVolumeEvent)
{
CloseHandle(_hSetCaptureVolumeEvent);
_hSetCaptureVolumeEvent = NULL;
}
if (_avrtLibrary)
{
BOOL freeOK = FreeLibrary(_avrtLibrary);
if (!freeOK)
{
LOG(LS_WARNING)
<< "AudioDeviceWindowsCore::~AudioDeviceWindowsCore()"
<< " failed to free the loaded Avrt DLL module correctly";
}
else
{
LOG(LS_WARNING)
<< "AudioDeviceWindowsCore::~AudioDeviceWindowsCore()"
<< " the Avrt DLL module is now unloaded";
}
}
}
// ============================================================================
// API
// ============================================================================
// ----------------------------------------------------------------------------
// AttachAudioBuffer
// ----------------------------------------------------------------------------
void AudioDeviceWindowsCore::AttachAudioBuffer(AudioDeviceBuffer* audioBuffer)
{
_ptrAudioBuffer = audioBuffer;
// Inform the AudioBuffer about default settings for this implementation.
// Set all values to zero here since the actual settings will be done by
// InitPlayout and InitRecording later.
_ptrAudioBuffer->SetRecordingSampleRate(0);
_ptrAudioBuffer->SetPlayoutSampleRate(0);
_ptrAudioBuffer->SetRecordingChannels(0);
_ptrAudioBuffer->SetPlayoutChannels(0);
}
// ----------------------------------------------------------------------------
// ActiveAudioLayer
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::ActiveAudioLayer(AudioDeviceModule::AudioLayer& audioLayer) const
{
audioLayer = AudioDeviceModule::kWindowsCoreAudio;
return 0;
}
// ----------------------------------------------------------------------------
// Init
// ----------------------------------------------------------------------------
AudioDeviceGeneric::InitStatus AudioDeviceWindowsCore::Init() {
rtc::CritScope lock(&_critSect);
if (_initialized) {
return InitStatus::OK;
}
_playWarning = 0;
_playError = 0;
_recWarning = 0;
_recError = 0;
// Enumerate all audio rendering and capturing endpoint devices.
// Note that, some of these will not be able to select by the user.
// The complete collection is for internal use only.
_EnumerateEndpointDevicesAll(eRender);
_EnumerateEndpointDevicesAll(eCapture);
_initialized = true;
return InitStatus::OK;
}
// ----------------------------------------------------------------------------
// Terminate
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::Terminate()
{
rtc::CritScope lock(&_critSect);
if (!_initialized) {
return 0;
}
_initialized = false;
_speakerIsInitialized = false;
_microphoneIsInitialized = false;
_playing = false;
_recording = false;
SAFE_RELEASE(_ptrRenderCollection);
SAFE_RELEASE(_ptrCaptureCollection);
SAFE_RELEASE(_ptrDeviceOut);
SAFE_RELEASE(_ptrDeviceIn);
SAFE_RELEASE(_ptrClientOut);
SAFE_RELEASE(_ptrClientIn);
SAFE_RELEASE(_ptrRenderClient);
SAFE_RELEASE(_ptrCaptureClient);
SAFE_RELEASE(_ptrCaptureVolume);
SAFE_RELEASE(_ptrRenderSimpleVolume);
return 0;
}
// ----------------------------------------------------------------------------
// Initialized
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::Initialized() const
{
return (_initialized);
}
// ----------------------------------------------------------------------------
// InitSpeaker
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::InitSpeaker()
{
rtc::CritScope lock(&_critSect);
if (_playing)
{
return -1;
}
if (_ptrDeviceOut == NULL)
{
return -1;
}
if (_usingOutputDeviceIndex)
{
int16_t nDevices = PlayoutDevices();
if (_outputDeviceIndex > (nDevices - 1))
{
LOG(LS_ERROR) << "current device selection is invalid => unable to"
<< " initialize";
return -1;
}
}
int32_t ret(0);
SAFE_RELEASE(_ptrDeviceOut);
if (_usingOutputDeviceIndex)
{
// Refresh the selected rendering endpoint device using current index
ret = _GetListDevice(eRender, _outputDeviceIndex, &_ptrDeviceOut);
}
else
{
ERole role;
(_outputDevice == AudioDeviceModule::kDefaultDevice) ? role = eConsole : role = eCommunications;
// Refresh the selected rendering endpoint device using role
ret = _GetDefaultDevice(eRender, role, &_ptrDeviceOut);
}
if (ret != 0 || (_ptrDeviceOut == NULL))
{
LOG(LS_ERROR) << "failed to initialize the rendering enpoint device";
SAFE_RELEASE(_ptrDeviceOut);
return -1;
}
IAudioSessionManager* pManager = NULL;
ret = _ptrDeviceOut->Activate(__uuidof(IAudioSessionManager),
CLSCTX_ALL,
NULL,
(void**)&pManager);
if (ret != 0 || pManager == NULL)
{
LOG(LS_ERROR) << "failed to initialize the render manager";
SAFE_RELEASE(pManager);
return -1;
}
SAFE_RELEASE(_ptrRenderSimpleVolume);
ret = pManager->GetSimpleAudioVolume(NULL, FALSE, &_ptrRenderSimpleVolume);
if (ret != 0 || _ptrRenderSimpleVolume == NULL)
{
LOG(LS_ERROR) << "failed to initialize the render simple volume";
SAFE_RELEASE(pManager);
SAFE_RELEASE(_ptrRenderSimpleVolume);
return -1;
}
SAFE_RELEASE(pManager);
_speakerIsInitialized = true;
return 0;
}
// ----------------------------------------------------------------------------
// InitMicrophone
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::InitMicrophone()
{
rtc::CritScope lock(&_critSect);
if (_recording)
{
return -1;
}
if (_ptrDeviceIn == NULL)
{
return -1;
}
if (_usingInputDeviceIndex)
{
int16_t nDevices = RecordingDevices();
if (_inputDeviceIndex > (nDevices - 1))
{
LOG(LS_ERROR) << "current device selection is invalid => unable to"
<< " initialize";
return -1;
}
}
int32_t ret(0);
SAFE_RELEASE(_ptrDeviceIn);
if (_usingInputDeviceIndex)
{
// Refresh the selected capture endpoint device using current index
ret = _GetListDevice(eCapture, _inputDeviceIndex, &_ptrDeviceIn);
}
else
{
ERole role;
(_inputDevice == AudioDeviceModule::kDefaultDevice) ? role = eConsole : role = eCommunications;
// Refresh the selected capture endpoint device using role
ret = _GetDefaultDevice(eCapture, role, &_ptrDeviceIn);
}
if (ret != 0 || (_ptrDeviceIn == NULL))
{
LOG(LS_ERROR) << "failed to initialize the capturing enpoint device";
SAFE_RELEASE(_ptrDeviceIn);
return -1;
}
SAFE_RELEASE(_ptrCaptureVolume);
ret = _ptrDeviceIn->Activate(__uuidof(IAudioEndpointVolume),
CLSCTX_ALL,
NULL,
reinterpret_cast<void **>(&_ptrCaptureVolume));
if (ret != 0 || _ptrCaptureVolume == NULL)
{
LOG(LS_ERROR) << "failed to initialize the capture volume";
SAFE_RELEASE(_ptrCaptureVolume);
return -1;
}
_microphoneIsInitialized = true;
return 0;
}
// ----------------------------------------------------------------------------
// SpeakerIsInitialized
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::SpeakerIsInitialized() const
{
return (_speakerIsInitialized);
}
// ----------------------------------------------------------------------------
// MicrophoneIsInitialized
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::MicrophoneIsInitialized() const
{
return (_microphoneIsInitialized);
}
// ----------------------------------------------------------------------------
// SpeakerVolumeIsAvailable
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SpeakerVolumeIsAvailable(bool& available)
{
rtc::CritScope lock(&_critSect);
if (_ptrDeviceOut == NULL)
{
return -1;
}
HRESULT hr = S_OK;
IAudioSessionManager* pManager = NULL;
ISimpleAudioVolume* pVolume = NULL;
hr = _ptrDeviceOut->Activate(__uuidof(IAudioSessionManager), CLSCTX_ALL, NULL, (void**)&pManager);
EXIT_ON_ERROR(hr);
hr = pManager->GetSimpleAudioVolume(NULL, FALSE, &pVolume);
EXIT_ON_ERROR(hr);
float volume(0.0f);
hr = pVolume->GetMasterVolume(&volume);
if (FAILED(hr))
{
available = false;
}
available = true;
SAFE_RELEASE(pManager);
SAFE_RELEASE(pVolume);
return 0;
Exit:
_TraceCOMError(hr);
SAFE_RELEASE(pManager);
SAFE_RELEASE(pVolume);
return -1;
}
// ----------------------------------------------------------------------------
// SetSpeakerVolume
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SetSpeakerVolume(uint32_t volume)
{
{
rtc::CritScope lock(&_critSect);
if (!_speakerIsInitialized)
{
return -1;
}
if (_ptrDeviceOut == NULL)
{
return -1;
}
}
if (volume < (uint32_t)MIN_CORE_SPEAKER_VOLUME ||
volume > (uint32_t)MAX_CORE_SPEAKER_VOLUME)
{
return -1;
}
HRESULT hr = S_OK;
// scale input volume to valid range (0.0 to 1.0)
const float fLevel = (float)volume/MAX_CORE_SPEAKER_VOLUME;
_volumeMutex.Enter();
hr = _ptrRenderSimpleVolume->SetMasterVolume(fLevel,NULL);
_volumeMutex.Leave();
EXIT_ON_ERROR(hr);
return 0;
Exit:
_TraceCOMError(hr);
return -1;
}
// ----------------------------------------------------------------------------
// SpeakerVolume
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SpeakerVolume(uint32_t& volume) const
{
{
rtc::CritScope lock(&_critSect);
if (!_speakerIsInitialized)
{
return -1;
}
if (_ptrDeviceOut == NULL)
{
return -1;
}
}
HRESULT hr = S_OK;
float fLevel(0.0f);
_volumeMutex.Enter();
hr = _ptrRenderSimpleVolume->GetMasterVolume(&fLevel);
_volumeMutex.Leave();
EXIT_ON_ERROR(hr);
// scale input volume range [0.0,1.0] to valid output range
volume = static_cast<uint32_t> (fLevel*MAX_CORE_SPEAKER_VOLUME);
return 0;
Exit:
_TraceCOMError(hr);
return -1;
}
// ----------------------------------------------------------------------------
// MaxSpeakerVolume
//
// The internal range for Core Audio is 0.0 to 1.0, where 0.0 indicates
// silence and 1.0 indicates full volume (no attenuation).
// We add our (webrtc-internal) own max level to match the Wave API and
// how it is used today in VoE.
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::MaxSpeakerVolume(uint32_t& maxVolume) const
{
if (!_speakerIsInitialized)
{
return -1;
}
maxVolume = static_cast<uint32_t> (MAX_CORE_SPEAKER_VOLUME);
return 0;
}
// ----------------------------------------------------------------------------
// MinSpeakerVolume
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::MinSpeakerVolume(uint32_t& minVolume) const
{
if (!_speakerIsInitialized)
{
return -1;
}
minVolume = static_cast<uint32_t> (MIN_CORE_SPEAKER_VOLUME);
return 0;
}
// ----------------------------------------------------------------------------
// SpeakerMuteIsAvailable
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SpeakerMuteIsAvailable(bool& available)
{
rtc::CritScope lock(&_critSect);
if (_ptrDeviceOut == NULL)
{
return -1;
}
HRESULT hr = S_OK;
IAudioEndpointVolume* pVolume = NULL;
// Query the speaker system mute state.
hr = _ptrDeviceOut->Activate(__uuidof(IAudioEndpointVolume),
CLSCTX_ALL, NULL, reinterpret_cast<void**>(&pVolume));
EXIT_ON_ERROR(hr);
BOOL mute;
hr = pVolume->GetMute(&mute);
if (FAILED(hr))
available = false;
else
available = true;
SAFE_RELEASE(pVolume);
return 0;
Exit:
_TraceCOMError(hr);
SAFE_RELEASE(pVolume);
return -1;
}
// ----------------------------------------------------------------------------
// SetSpeakerMute
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SetSpeakerMute(bool enable)
{
rtc::CritScope lock(&_critSect);
if (!_speakerIsInitialized)
{
return -1;
}
if (_ptrDeviceOut == NULL)
{
return -1;
}
HRESULT hr = S_OK;
IAudioEndpointVolume* pVolume = NULL;
// Set the speaker system mute state.
hr = _ptrDeviceOut->Activate(__uuidof(IAudioEndpointVolume), CLSCTX_ALL, NULL, reinterpret_cast<void**>(&pVolume));
EXIT_ON_ERROR(hr);
const BOOL mute(enable);
hr = pVolume->SetMute(mute, NULL);
EXIT_ON_ERROR(hr);
SAFE_RELEASE(pVolume);
return 0;
Exit:
_TraceCOMError(hr);
SAFE_RELEASE(pVolume);
return -1;
}
// ----------------------------------------------------------------------------
// SpeakerMute
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SpeakerMute(bool& enabled) const
{
if (!_speakerIsInitialized)
{
return -1;
}
if (_ptrDeviceOut == NULL)
{
return -1;
}
HRESULT hr = S_OK;
IAudioEndpointVolume* pVolume = NULL;
// Query the speaker system mute state.
hr = _ptrDeviceOut->Activate(__uuidof(IAudioEndpointVolume), CLSCTX_ALL, NULL, reinterpret_cast<void**>(&pVolume));
EXIT_ON_ERROR(hr);
BOOL mute;
hr = pVolume->GetMute(&mute);
EXIT_ON_ERROR(hr);
enabled = (mute == TRUE) ? true : false;
SAFE_RELEASE(pVolume);
return 0;
Exit:
_TraceCOMError(hr);
SAFE_RELEASE(pVolume);
return -1;
}
// ----------------------------------------------------------------------------
// MicrophoneMuteIsAvailable
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::MicrophoneMuteIsAvailable(bool& available)
{
rtc::CritScope lock(&_critSect);
if (_ptrDeviceIn == NULL)
{
return -1;
}
HRESULT hr = S_OK;
IAudioEndpointVolume* pVolume = NULL;
// Query the microphone system mute state.
hr = _ptrDeviceIn->Activate(__uuidof(IAudioEndpointVolume), CLSCTX_ALL, NULL, reinterpret_cast<void**>(&pVolume));
EXIT_ON_ERROR(hr);
BOOL mute;
hr = pVolume->GetMute(&mute);
if (FAILED(hr))
available = false;
else
available = true;
SAFE_RELEASE(pVolume);
return 0;
Exit:
_TraceCOMError(hr);
SAFE_RELEASE(pVolume);
return -1;
}
// ----------------------------------------------------------------------------
// SetMicrophoneMute
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SetMicrophoneMute(bool enable)
{
if (!_microphoneIsInitialized)
{
return -1;
}
if (_ptrDeviceIn == NULL)
{
return -1;
}
HRESULT hr = S_OK;
IAudioEndpointVolume* pVolume = NULL;
// Set the microphone system mute state.
hr = _ptrDeviceIn->Activate(__uuidof(IAudioEndpointVolume), CLSCTX_ALL, NULL, reinterpret_cast<void**>(&pVolume));
EXIT_ON_ERROR(hr);
const BOOL mute(enable);
hr = pVolume->SetMute(mute, NULL);
EXIT_ON_ERROR(hr);
SAFE_RELEASE(pVolume);
return 0;
Exit:
_TraceCOMError(hr);
SAFE_RELEASE(pVolume);
return -1;
}
// ----------------------------------------------------------------------------
// MicrophoneMute
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::MicrophoneMute(bool& enabled) const
{
if (!_microphoneIsInitialized)
{
return -1;
}
HRESULT hr = S_OK;
IAudioEndpointVolume* pVolume = NULL;
// Query the microphone system mute state.
hr = _ptrDeviceIn->Activate(__uuidof(IAudioEndpointVolume), CLSCTX_ALL, NULL, reinterpret_cast<void**>(&pVolume));
EXIT_ON_ERROR(hr);
BOOL mute;
hr = pVolume->GetMute(&mute);
EXIT_ON_ERROR(hr);
enabled = (mute == TRUE) ? true : false;
SAFE_RELEASE(pVolume);
return 0;
Exit:
_TraceCOMError(hr);
SAFE_RELEASE(pVolume);
return -1;
}
// ----------------------------------------------------------------------------
// StereoRecordingIsAvailable
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::StereoRecordingIsAvailable(bool& available)
{
available = true;
return 0;
}
// ----------------------------------------------------------------------------
// SetStereoRecording
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SetStereoRecording(bool enable)
{
rtc::CritScope lock(&_critSect);
if (enable)
{
_recChannelsPrioList[0] = 2; // try stereo first
_recChannelsPrioList[1] = 1;
_recChannels = 2;
}
else
{
_recChannelsPrioList[0] = 1; // try mono first
_recChannelsPrioList[1] = 2;
_recChannels = 1;
}
return 0;
}
// ----------------------------------------------------------------------------
// StereoRecording
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::StereoRecording(bool& enabled) const
{
if (_recChannels == 2)
enabled = true;
else
enabled = false;
return 0;
}
// ----------------------------------------------------------------------------
// StereoPlayoutIsAvailable
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::StereoPlayoutIsAvailable(bool& available)
{
available = true;
return 0;
}
// ----------------------------------------------------------------------------
// SetStereoPlayout
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SetStereoPlayout(bool enable)
{
rtc::CritScope lock(&_critSect);
if (enable)
{
_playChannelsPrioList[0] = 2; // try stereo first
_playChannelsPrioList[1] = 1;
_playChannels = 2;
}
else
{
_playChannelsPrioList[0] = 1; // try mono first
_playChannelsPrioList[1] = 2;
_playChannels = 1;
}
return 0;
}
// ----------------------------------------------------------------------------
// StereoPlayout
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::StereoPlayout(bool& enabled) const
{
if (_playChannels == 2)
enabled = true;
else
enabled = false;
return 0;
}
// ----------------------------------------------------------------------------
// SetAGC
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SetAGC(bool enable)
{
rtc::CritScope lock(&_critSect);
_AGC = enable;
return 0;
}
// ----------------------------------------------------------------------------
// AGC
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::AGC() const
{
rtc::CritScope lock(&_critSect);
return _AGC;
}
// ----------------------------------------------------------------------------
// MicrophoneVolumeIsAvailable
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::MicrophoneVolumeIsAvailable(bool& available)
{
rtc::CritScope lock(&_critSect);
if (_ptrDeviceIn == NULL)
{
return -1;
}
HRESULT hr = S_OK;
IAudioEndpointVolume* pVolume = NULL;
hr = _ptrDeviceIn->Activate(__uuidof(IAudioEndpointVolume), CLSCTX_ALL, NULL, reinterpret_cast<void**>(&pVolume));
EXIT_ON_ERROR(hr);
float volume(0.0f);
hr = pVolume->GetMasterVolumeLevelScalar(&volume);
if (FAILED(hr))
{
available = false;
}
available = true;
SAFE_RELEASE(pVolume);
return 0;
Exit:
_TraceCOMError(hr);
SAFE_RELEASE(pVolume);
return -1;
}
// ----------------------------------------------------------------------------
// SetMicrophoneVolume
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SetMicrophoneVolume(uint32_t volume)
{
LOG(LS_VERBOSE) << "AudioDeviceWindowsCore::SetMicrophoneVolume(volume="
<< volume << ")";
{
rtc::CritScope lock(&_critSect);
if (!_microphoneIsInitialized)
{
return -1;
}
if (_ptrDeviceIn == NULL)
{
return -1;
}
}
if (volume < static_cast<uint32_t>(MIN_CORE_MICROPHONE_VOLUME) ||
volume > static_cast<uint32_t>(MAX_CORE_MICROPHONE_VOLUME))
{
return -1;
}
HRESULT hr = S_OK;
// scale input volume to valid range (0.0 to 1.0)
const float fLevel = static_cast<float>(volume)/MAX_CORE_MICROPHONE_VOLUME;
_volumeMutex.Enter();
_ptrCaptureVolume->SetMasterVolumeLevelScalar(fLevel, NULL);
_volumeMutex.Leave();
EXIT_ON_ERROR(hr);
return 0;
Exit:
_TraceCOMError(hr);
return -1;
}
// ----------------------------------------------------------------------------
// MicrophoneVolume
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::MicrophoneVolume(uint32_t& volume) const
{
{
rtc::CritScope lock(&_critSect);
if (!_microphoneIsInitialized)
{
return -1;
}
if (_ptrDeviceIn == NULL)
{
return -1;
}
}
HRESULT hr = S_OK;
float fLevel(0.0f);
volume = 0;
_volumeMutex.Enter();
hr = _ptrCaptureVolume->GetMasterVolumeLevelScalar(&fLevel);
_volumeMutex.Leave();
EXIT_ON_ERROR(hr);
// scale input volume range [0.0,1.0] to valid output range
volume = static_cast<uint32_t> (fLevel*MAX_CORE_MICROPHONE_VOLUME);
return 0;
Exit:
_TraceCOMError(hr);
return -1;
}
// ----------------------------------------------------------------------------
// MaxMicrophoneVolume
//
// The internal range for Core Audio is 0.0 to 1.0, where 0.0 indicates
// silence and 1.0 indicates full volume (no attenuation).
// We add our (webrtc-internal) own max level to match the Wave API and
// how it is used today in VoE.
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::MaxMicrophoneVolume(uint32_t& maxVolume) const
{
LOG(LS_VERBOSE) << __FUNCTION__;
if (!_microphoneIsInitialized)
{
return -1;
}
maxVolume = static_cast<uint32_t> (MAX_CORE_MICROPHONE_VOLUME);
return 0;
}
// ----------------------------------------------------------------------------
// MinMicrophoneVolume
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::MinMicrophoneVolume(uint32_t& minVolume) const
{
if (!_microphoneIsInitialized)
{
return -1;
}
minVolume = static_cast<uint32_t> (MIN_CORE_MICROPHONE_VOLUME);
return 0;
}
// ----------------------------------------------------------------------------
// PlayoutDevices
// ----------------------------------------------------------------------------
int16_t AudioDeviceWindowsCore::PlayoutDevices()
{
rtc::CritScope lock(&_critSect);
if (_RefreshDeviceList(eRender) != -1)
{
return (_DeviceListCount(eRender));
}
return -1;
}
// ----------------------------------------------------------------------------
// SetPlayoutDevice I (II)
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SetPlayoutDevice(uint16_t index)
{
if (_playIsInitialized)
{
return -1;
}
// Get current number of available rendering endpoint devices and refresh the rendering collection.
UINT nDevices = PlayoutDevices();
if (index < 0 || index > (nDevices-1))
{
LOG(LS_ERROR) << "device index is out of range [0," << (nDevices-1)
<< "]";
return -1;
}
rtc::CritScope lock(&_critSect);
HRESULT hr(S_OK);
assert(_ptrRenderCollection != NULL);
// Select an endpoint rendering device given the specified index
SAFE_RELEASE(_ptrDeviceOut);
hr = _ptrRenderCollection->Item(
index,
&_ptrDeviceOut);
if (FAILED(hr))
{
_TraceCOMError(hr);
SAFE_RELEASE(_ptrDeviceOut);
return -1;
}
WCHAR szDeviceName[MAX_PATH];
const int bufferLen = sizeof(szDeviceName)/sizeof(szDeviceName)[0];
// Get the endpoint device's friendly-name
if (_GetDeviceName(_ptrDeviceOut, szDeviceName, bufferLen) == 0)
{
LOG(LS_VERBOSE) << "friendly name: \"" << szDeviceName << "\"";
}
_usingOutputDeviceIndex = true;
_outputDeviceIndex = index;
return 0;
}
// ----------------------------------------------------------------------------
// SetPlayoutDevice II (II)
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SetPlayoutDevice(AudioDeviceModule::WindowsDeviceType device)
{
if (_playIsInitialized)
{
return -1;
}
ERole role(eCommunications);
if (device == AudioDeviceModule::kDefaultDevice)
{
role = eConsole;
}
else if (device == AudioDeviceModule::kDefaultCommunicationDevice)
{
role = eCommunications;
}
rtc::CritScope lock(&_critSect);
// Refresh the list of rendering endpoint devices
_RefreshDeviceList(eRender);
HRESULT hr(S_OK);
assert(_ptrEnumerator != NULL);
// Select an endpoint rendering device given the specified role
SAFE_RELEASE(_ptrDeviceOut);
hr = _ptrEnumerator->GetDefaultAudioEndpoint(
eRender,
role,
&_ptrDeviceOut);
if (FAILED(hr))
{
_TraceCOMError(hr);
SAFE_RELEASE(_ptrDeviceOut);
return -1;
}
WCHAR szDeviceName[MAX_PATH];
const int bufferLen = sizeof(szDeviceName)/sizeof(szDeviceName)[0];
// Get the endpoint device's friendly-name
if (_GetDeviceName(_ptrDeviceOut, szDeviceName, bufferLen) == 0)
{
LOG(LS_VERBOSE) << "friendly name: \"" << szDeviceName << "\"";
}
_usingOutputDeviceIndex = false;
_outputDevice = device;
return 0;
}
// ----------------------------------------------------------------------------
// PlayoutDeviceName
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::PlayoutDeviceName(
uint16_t index,
char name[kAdmMaxDeviceNameSize],
char guid[kAdmMaxGuidSize])
{
bool defaultCommunicationDevice(false);
const int16_t nDevices(PlayoutDevices()); // also updates the list of devices
// Special fix for the case when the user selects '-1' as index (<=> Default Communication Device)
if (index == (uint16_t)(-1))
{
defaultCommunicationDevice = true;
index = 0;
LOG(LS_VERBOSE) << "Default Communication endpoint device will be used";
}
if ((index > (nDevices-1)) || (name == NULL))
{
return -1;
}
memset(name, 0, kAdmMaxDeviceNameSize);
if (guid != NULL)
{
memset(guid, 0, kAdmMaxGuidSize);
}
rtc::CritScope lock(&_critSect);
int32_t ret(-1);
WCHAR szDeviceName[MAX_PATH];
const int bufferLen = sizeof(szDeviceName)/sizeof(szDeviceName)[0];
// Get the endpoint device's friendly-name
if (defaultCommunicationDevice)
{
ret = _GetDefaultDeviceName(eRender, eCommunications, szDeviceName, bufferLen);
}
else
{
ret = _GetListDeviceName(eRender, index, szDeviceName, bufferLen);
}
if (ret == 0)
{
// Convert the endpoint device's friendly-name to UTF-8
if (WideCharToMultiByte(CP_UTF8, 0, szDeviceName, -1, name, kAdmMaxDeviceNameSize, NULL, NULL) == 0)
{
LOG(LS_ERROR)
<< "WideCharToMultiByte(CP_UTF8) failed with error code "
<< GetLastError();
}
}
// Get the endpoint ID string (uniquely identifies the device among all audio endpoint devices)
if (defaultCommunicationDevice)
{
ret = _GetDefaultDeviceID(eRender, eCommunications, szDeviceName, bufferLen);
}
else
{
ret = _GetListDeviceID(eRender, index, szDeviceName, bufferLen);
}
if (guid != NULL && ret == 0)
{
// Convert the endpoint device's ID string to UTF-8
if (WideCharToMultiByte(CP_UTF8, 0, szDeviceName, -1, guid, kAdmMaxGuidSize, NULL, NULL) == 0)
{
LOG(LS_ERROR)
<< "WideCharToMultiByte(CP_UTF8) failed with error code "
<< GetLastError();
}
}
return ret;
}
// ----------------------------------------------------------------------------
// RecordingDeviceName
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::RecordingDeviceName(
uint16_t index,
char name[kAdmMaxDeviceNameSize],
char guid[kAdmMaxGuidSize])
{
bool defaultCommunicationDevice(false);
const int16_t nDevices(RecordingDevices()); // also updates the list of devices
// Special fix for the case when the user selects '-1' as index (<=> Default Communication Device)
if (index == (uint16_t)(-1))
{
defaultCommunicationDevice = true;
index = 0;
LOG(LS_VERBOSE) << "Default Communication endpoint device will be used";
}
if ((index > (nDevices-1)) || (name == NULL))
{
return -1;
}
memset(name, 0, kAdmMaxDeviceNameSize);
if (guid != NULL)
{
memset(guid, 0, kAdmMaxGuidSize);
}
rtc::CritScope lock(&_critSect);
int32_t ret(-1);
WCHAR szDeviceName[MAX_PATH];
const int bufferLen = sizeof(szDeviceName)/sizeof(szDeviceName)[0];
// Get the endpoint device's friendly-name
if (defaultCommunicationDevice)
{
ret = _GetDefaultDeviceName(eCapture, eCommunications, szDeviceName, bufferLen);
}
else
{
ret = _GetListDeviceName(eCapture, index, szDeviceName, bufferLen);
}
if (ret == 0)
{
// Convert the endpoint device's friendly-name to UTF-8
if (WideCharToMultiByte(CP_UTF8, 0, szDeviceName, -1, name, kAdmMaxDeviceNameSize, NULL, NULL) == 0)
{
LOG(LS_ERROR)
<< "WideCharToMultiByte(CP_UTF8) failed with error code "
<< GetLastError();
}
}
// Get the endpoint ID string (uniquely identifies the device among all audio endpoint devices)
if (defaultCommunicationDevice)
{
ret = _GetDefaultDeviceID(eCapture, eCommunications, szDeviceName, bufferLen);
}
else
{
ret = _GetListDeviceID(eCapture, index, szDeviceName, bufferLen);
}
if (guid != NULL && ret == 0)
{
// Convert the endpoint device's ID string to UTF-8
if (WideCharToMultiByte(CP_UTF8, 0, szDeviceName, -1, guid, kAdmMaxGuidSize, NULL, NULL) == 0)
{
LOG(LS_ERROR)
<< "WideCharToMultiByte(CP_UTF8) failed with error code "
<< GetLastError();
}
}
return ret;
}
// ----------------------------------------------------------------------------
// RecordingDevices
// ----------------------------------------------------------------------------
int16_t AudioDeviceWindowsCore::RecordingDevices()
{
rtc::CritScope lock(&_critSect);
if (_RefreshDeviceList(eCapture) != -1)
{
return (_DeviceListCount(eCapture));
}
return -1;
}
// ----------------------------------------------------------------------------
// SetRecordingDevice I (II)
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SetRecordingDevice(uint16_t index)
{
if (_recIsInitialized)
{
return -1;
}
// Get current number of available capture endpoint devices and refresh the capture collection.
UINT nDevices = RecordingDevices();
if (index < 0 || index > (nDevices-1))
{
LOG(LS_ERROR) << "device index is out of range [0," << (nDevices-1)
<< "]";
return -1;
}
rtc::CritScope lock(&_critSect);
HRESULT hr(S_OK);
assert(_ptrCaptureCollection != NULL);
// Select an endpoint capture device given the specified index
SAFE_RELEASE(_ptrDeviceIn);
hr = _ptrCaptureCollection->Item(
index,
&_ptrDeviceIn);
if (FAILED(hr))
{
_TraceCOMError(hr);
SAFE_RELEASE(_ptrDeviceIn);
return -1;
}
WCHAR szDeviceName[MAX_PATH];
const int bufferLen = sizeof(szDeviceName)/sizeof(szDeviceName)[0];
// Get the endpoint device's friendly-name
if (_GetDeviceName(_ptrDeviceIn, szDeviceName, bufferLen) == 0)
{
LOG(LS_VERBOSE) << "friendly name: \"" << szDeviceName << "\"";
}
_usingInputDeviceIndex = true;
_inputDeviceIndex = index;
return 0;
}
// ----------------------------------------------------------------------------
// SetRecordingDevice II (II)
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::SetRecordingDevice(AudioDeviceModule::WindowsDeviceType device)
{
if (_recIsInitialized)
{
return -1;
}
ERole role(eCommunications);
if (device == AudioDeviceModule::kDefaultDevice)
{
role = eConsole;
}
else if (device == AudioDeviceModule::kDefaultCommunicationDevice)
{
role = eCommunications;
}
rtc::CritScope lock(&_critSect);
// Refresh the list of capture endpoint devices
_RefreshDeviceList(eCapture);
HRESULT hr(S_OK);
assert(_ptrEnumerator != NULL);
// Select an endpoint capture device given the specified role
SAFE_RELEASE(_ptrDeviceIn);
hr = _ptrEnumerator->GetDefaultAudioEndpoint(
eCapture,
role,
&_ptrDeviceIn);
if (FAILED(hr))
{
_TraceCOMError(hr);
SAFE_RELEASE(_ptrDeviceIn);
return -1;
}
WCHAR szDeviceName[MAX_PATH];
const int bufferLen = sizeof(szDeviceName)/sizeof(szDeviceName)[0];
// Get the endpoint device's friendly-name
if (_GetDeviceName(_ptrDeviceIn, szDeviceName, bufferLen) == 0)
{
LOG(LS_VERBOSE) << "friendly name: \"" << szDeviceName << "\"";
}
_usingInputDeviceIndex = false;
_inputDevice = device;
return 0;
}
// ----------------------------------------------------------------------------
// PlayoutIsAvailable
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::PlayoutIsAvailable(bool& available)
{
available = false;
// Try to initialize the playout side
int32_t res = InitPlayout();
// Cancel effect of initialization
StopPlayout();
if (res != -1)
{
available = true;
}
return 0;
}
// ----------------------------------------------------------------------------
// RecordingIsAvailable
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::RecordingIsAvailable(bool& available)
{
available = false;
// Try to initialize the recording side
int32_t res = InitRecording();
// Cancel effect of initialization
StopRecording();
if (res != -1)
{
available = true;
}
return 0;
}
// ----------------------------------------------------------------------------
// InitPlayout
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::InitPlayout()
{
rtc::CritScope lock(&_critSect);
if (_playing)
{
return -1;
}
if (_playIsInitialized)
{
return 0;
}
if (_ptrDeviceOut == NULL)
{
return -1;
}
// Initialize the speaker (devices might have been added or removed)
if (InitSpeaker() == -1)
{
LOG(LS_WARNING) << "InitSpeaker() failed";
}
// Ensure that the updated rendering endpoint device is valid
if (_ptrDeviceOut == NULL)
{
return -1;
}
if (_builtInAecEnabled && _recIsInitialized)
{
// Ensure the correct render device is configured in case
// InitRecording() was called before InitPlayout().
if (SetDMOProperties() == -1)
{
return -1;
}
}
HRESULT hr = S_OK;
WAVEFORMATEX* pWfxOut = NULL;
WAVEFORMATEX Wfx = WAVEFORMATEX();
WAVEFORMATEX* pWfxClosestMatch = NULL;
// Create COM object with IAudioClient interface.
SAFE_RELEASE(_ptrClientOut);
hr = _ptrDeviceOut->Activate(
__uuidof(IAudioClient),
CLSCTX_ALL,
NULL,
(void**)&_ptrClientOut);
EXIT_ON_ERROR(hr);
// Retrieve the stream format that the audio engine uses for its internal
// processing (mixing) of shared-mode streams.
hr = _ptrClientOut->GetMixFormat(&pWfxOut);
if (SUCCEEDED(hr))
{
LOG(LS_VERBOSE) << "Audio Engine's current rendering mix format:";
// format type
LOG(LS_VERBOSE) << "wFormatTag : 0x" << std::hex
<< pWfxOut->wFormatTag << std::dec << " ("
<< pWfxOut->wFormatTag << ")";
// number of channels (i.e. mono, stereo...)
LOG(LS_VERBOSE) << "nChannels : " << pWfxOut->nChannels;
// sample rate
LOG(LS_VERBOSE) << "nSamplesPerSec : " << pWfxOut->nSamplesPerSec;
// for buffer estimation
LOG(LS_VERBOSE) << "nAvgBytesPerSec: " << pWfxOut->nAvgBytesPerSec;
// block size of data
LOG(LS_VERBOSE) << "nBlockAlign : " << pWfxOut->nBlockAlign;
// number of bits per sample of mono data
LOG(LS_VERBOSE) << "wBitsPerSample : " << pWfxOut->wBitsPerSample;
LOG(LS_VERBOSE) << "cbSize : " << pWfxOut->cbSize;
}
// Set wave format
Wfx.wFormatTag = WAVE_FORMAT_PCM;
Wfx.wBitsPerSample = 16;
Wfx.cbSize = 0;
const int freqs[] = {48000, 44100, 16000, 96000, 32000, 8000};
hr = S_FALSE;
// Iterate over frequencies and channels, in order of priority
for (unsigned int freq = 0; freq < sizeof(freqs)/sizeof(freqs[0]); freq++)
{
for (unsigned int chan = 0; chan < sizeof(_playChannelsPrioList)/sizeof(_playChannelsPrioList[0]); chan++)
{
Wfx.nChannels = _playChannelsPrioList[chan];
Wfx.nSamplesPerSec = freqs[freq];
Wfx.nBlockAlign = Wfx.nChannels * Wfx.wBitsPerSample / 8;
Wfx.nAvgBytesPerSec = Wfx.nSamplesPerSec * Wfx.nBlockAlign;
// If the method succeeds and the audio endpoint device supports the specified stream format,
// it returns S_OK. If the method succeeds and provides a closest match to the specified format,
// it returns S_FALSE.
hr = _ptrClientOut->IsFormatSupported(
AUDCLNT_SHAREMODE_SHARED,
&Wfx,
&pWfxClosestMatch);
if (hr == S_OK)
{
break;
}
else
{
if (pWfxClosestMatch)
{
LOG(INFO) << "nChannels=" << Wfx.nChannels <<
", nSamplesPerSec=" << Wfx.nSamplesPerSec <<
" is not supported. Closest match: " <<
"nChannels=" << pWfxClosestMatch->nChannels <<
", nSamplesPerSec=" << pWfxClosestMatch->nSamplesPerSec;
CoTaskMemFree(pWfxClosestMatch);
pWfxClosestMatch = NULL;
}
else
{
LOG(INFO) << "nChannels=" << Wfx.nChannels <<
", nSamplesPerSec=" << Wfx.nSamplesPerSec <<
" is not supported. No closest match.";
}
}
}
if (hr == S_OK)
break;
}
// TODO(andrew): what happens in the event of failure in the above loop?
// Is _ptrClientOut->Initialize expected to fail?
// Same in InitRecording().
if (hr == S_OK)
{
_playAudioFrameSize = Wfx.nBlockAlign;
// Block size in frames is the number of samples each channel in 10ms.
_playBlockSizeInFrames = Wfx.nSamplesPerSec / 100;
// Block size in samples is block size in frames times number of
// channels.
_playBlockSizeInSamples = _playBlockSizeInFrames * Wfx.nChannels;
_playSampleRate = Wfx.nSamplesPerSec;
_devicePlaySampleRate = Wfx.nSamplesPerSec; // The device itself continues to run at 44.1 kHz.
_devicePlayBlockSize = Wfx.nSamplesPerSec/100;
_playChannels = Wfx.nChannels;
LOG(LS_VERBOSE) << "VoE selected this rendering format:";
LOG(LS_VERBOSE) << "wFormatTag : 0x" << std::hex
<< Wfx.wFormatTag << std::dec << " (" << Wfx.wFormatTag
<< ")";
LOG(LS_VERBOSE) << "nChannels : " << Wfx.nChannels;
LOG(LS_VERBOSE) << "nSamplesPerSec : " << Wfx.nSamplesPerSec;
LOG(LS_VERBOSE) << "nAvgBytesPerSec : " << Wfx.nAvgBytesPerSec;
LOG(LS_VERBOSE) << "nBlockAlign : " << Wfx.nBlockAlign;
LOG(LS_VERBOSE) << "wBitsPerSample : " << Wfx.wBitsPerSample;
LOG(LS_VERBOSE) << "cbSize : " << Wfx.cbSize;
LOG(LS_VERBOSE) << "Additional settings:";
LOG(LS_VERBOSE) << "_playAudioFrameSize: " << _playAudioFrameSize;
LOG(LS_VERBOSE) << "_playBlockSizeInFrames : "
<< _playBlockSizeInFrames;
LOG(LS_VERBOSE) << "_playChannels : " << _playChannels;
}
// Create a rendering stream.
//
// ****************************************************************************
// For a shared-mode stream that uses event-driven buffering, the caller must
// set both hnsPeriodicity and hnsBufferDuration to 0. The Initialize method
// determines how large a buffer to allocate based on the scheduling period
// of the audio engine. Although the client's buffer processing thread is
// event driven, the basic buffer management process, as described previously,
// is unaltered.
// Each time the thread awakens, it should call IAudioClient::GetCurrentPadding
// to determine how much data to write to a rendering buffer or read from a capture
// buffer. In contrast to the two buffers that the Initialize method allocates
// for an exclusive-mode stream that uses event-driven buffering, a shared-mode
// stream requires a single buffer.
// ****************************************************************************
//
REFERENCE_TIME hnsBufferDuration = 0; // ask for minimum buffer size (default)
if (_devicePlaySampleRate == 44100)
{
// Ask for a larger buffer size (30ms) when using 44.1kHz as render rate.
// There seems to be a larger risk of underruns for 44.1 compared
// with the default rate (48kHz). When using default, we set the requested
// buffer duration to 0, which sets the buffer to the minimum size
// required by the engine thread. The actual buffer size can then be
// read by GetBufferSize() and it is 20ms on most machines.
hnsBufferDuration = 30*10000;
}
hr = _ptrClientOut->Initialize(
AUDCLNT_SHAREMODE_SHARED, // share Audio Engine with other applications
AUDCLNT_STREAMFLAGS_EVENTCALLBACK, // processing of the audio buffer by the client will be event driven
hnsBufferDuration, // requested buffer capacity as a time value (in 100-nanosecond units)
0, // periodicity
&Wfx, // selected wave format
NULL); // session GUID
if (FAILED(hr))
{
LOG(LS_ERROR) << "IAudioClient::Initialize() failed:";
}
EXIT_ON_ERROR(hr);
if (_ptrAudioBuffer)
{
// Update the audio buffer with the selected parameters
_ptrAudioBuffer->SetPlayoutSampleRate(_playSampleRate);
_ptrAudioBuffer->SetPlayoutChannels((uint8_t)_playChannels);
}
else
{
// We can enter this state during CoreAudioIsSupported() when no AudioDeviceImplementation
// has been created, hence the AudioDeviceBuffer does not exist.
// It is OK to end up here since we don't initiate any media in CoreAudioIsSupported().
LOG(LS_VERBOSE)
<< "AudioDeviceBuffer must be attached before streaming can start";
}
// Get the actual size of the shared (endpoint buffer).
// Typical value is 960 audio frames <=> 20ms @ 48kHz sample rate.
UINT bufferFrameCount(0);
hr = _ptrClientOut->GetBufferSize(
&bufferFrameCount);
if (SUCCEEDED(hr))
{
LOG(LS_VERBOSE) << "IAudioClient::GetBufferSize() => "
<< bufferFrameCount << " (<=> "
<< bufferFrameCount*_playAudioFrameSize << " bytes)";
}
// Set the event handle that the system signals when an audio buffer is ready
// to be processed by the client.
hr = _ptrClientOut->SetEventHandle(
_hRenderSamplesReadyEvent);
EXIT_ON_ERROR(hr);
// Get an IAudioRenderClient interface.
SAFE_RELEASE(_ptrRenderClient);
hr = _ptrClientOut->GetService(
__uuidof(IAudioRenderClient),
(void**)&_ptrRenderClient);
EXIT_ON_ERROR(hr);
// Mark playout side as initialized
_playIsInitialized = true;
CoTaskMemFree(pWfxOut);
CoTaskMemFree(pWfxClosestMatch);
LOG(LS_VERBOSE) << "render side is now initialized";
return 0;
Exit:
_TraceCOMError(hr);
CoTaskMemFree(pWfxOut);
CoTaskMemFree(pWfxClosestMatch);
SAFE_RELEASE(_ptrClientOut);
SAFE_RELEASE(_ptrRenderClient);
return -1;
}
// Capture initialization when the built-in AEC DirectX Media Object (DMO) is
// used. Called from InitRecording(), most of which is skipped over. The DMO
// handles device initialization itself.
// Reference: http://msdn.microsoft.com/en-us/library/ff819492(v=vs.85).aspx
int32_t AudioDeviceWindowsCore::InitRecordingDMO()
{
assert(_builtInAecEnabled);
assert(_dmo != NULL);
if (SetDMOProperties() == -1)
{
return -1;
}
DMO_MEDIA_TYPE mt = {0};
HRESULT hr = MoInitMediaType(&mt, sizeof(WAVEFORMATEX));
if (FAILED(hr))
{
MoFreeMediaType(&mt);
_TraceCOMError(hr);
return -1;
}
mt.majortype = MEDIATYPE_Audio;
mt.subtype = MEDIASUBTYPE_PCM;
mt.formattype = FORMAT_WaveFormatEx;
// Supported formats
// nChannels: 1 (in AEC-only mode)
// nSamplesPerSec: 8000, 11025, 16000, 22050
// wBitsPerSample: 16
WAVEFORMATEX* ptrWav = reinterpret_cast<WAVEFORMATEX*>(mt.pbFormat);
ptrWav->wFormatTag = WAVE_FORMAT_PCM;
ptrWav->nChannels = 1;
// 16000 is the highest we can support with our resampler.
ptrWav->nSamplesPerSec = 16000;
ptrWav->nAvgBytesPerSec = 32000;
ptrWav->nBlockAlign = 2;
ptrWav->wBitsPerSample = 16;
ptrWav->cbSize = 0;
// Set the VoE format equal to the AEC output format.
_recAudioFrameSize = ptrWav->nBlockAlign;
_recSampleRate = ptrWav->nSamplesPerSec;
_recBlockSize = ptrWav->nSamplesPerSec / 100;
_recChannels = ptrWav->nChannels;
// Set the DMO output format parameters.
hr = _dmo->SetOutputType(kAecCaptureStreamIndex, &mt, 0);
MoFreeMediaType(&mt);
if (FAILED(hr))
{
_TraceCOMError(hr);
return -1;
}
if (_ptrAudioBuffer)
{
_ptrAudioBuffer->SetRecordingSampleRate(_recSampleRate);
_ptrAudioBuffer->SetRecordingChannels(_recChannels);
}
else
{
// Refer to InitRecording() for comments.
LOG(LS_VERBOSE)
<< "AudioDeviceBuffer must be attached before streaming can start";
}
_mediaBuffer = new MediaBufferImpl(_recBlockSize * _recAudioFrameSize);
// Optional, but if called, must be after media types are set.
hr = _dmo->AllocateStreamingResources();
if (FAILED(hr))
{
_TraceCOMError(hr);
return -1;
}
_recIsInitialized = true;
LOG(LS_VERBOSE) << "Capture side is now initialized";
return 0;
}
// ----------------------------------------------------------------------------
// InitRecording
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::InitRecording()
{
rtc::CritScope lock(&_critSect);
if (_recording)
{
return -1;
}
if (_recIsInitialized)
{
return 0;
}
if (QueryPerformanceFrequency(&_perfCounterFreq) == 0)
{
return -1;
}
_perfCounterFactor = 10000000.0 / (double)_perfCounterFreq.QuadPart;
if (_ptrDeviceIn == NULL)
{
return -1;
}
// Initialize the microphone (devices might have been added or removed)
if (InitMicrophone() == -1)
{
LOG(LS_WARNING) << "InitMicrophone() failed";
}
// Ensure that the updated capturing endpoint device is valid
if (_ptrDeviceIn == NULL)
{
return -1;
}
if (_builtInAecEnabled)
{
// The DMO will configure the capture device.
return InitRecordingDMO();
}
HRESULT hr = S_OK;
WAVEFORMATEX* pWfxIn = NULL;
WAVEFORMATEXTENSIBLE Wfx = WAVEFORMATEXTENSIBLE();
WAVEFORMATEX* pWfxClosestMatch = NULL;
// Create COM object with IAudioClient interface.
SAFE_RELEASE(_ptrClientIn);
hr = _ptrDeviceIn->Activate(
__uuidof(IAudioClient),
CLSCTX_ALL,
NULL,
(void**)&_ptrClientIn);
EXIT_ON_ERROR(hr);
// Retrieve the stream format that the audio engine uses for its internal
// processing (mixing) of shared-mode streams.
hr = _ptrClientIn->GetMixFormat(&pWfxIn);
if (SUCCEEDED(hr))
{
LOG(LS_VERBOSE) << "Audio Engine's current capturing mix format:";
// format type
LOG(LS_VERBOSE) << "wFormatTag : 0x" << std::hex
<< pWfxIn->wFormatTag << std::dec << " ("
<< pWfxIn->wFormatTag << ")";
// number of channels (i.e. mono, stereo...)
LOG(LS_VERBOSE) << "nChannels : " << pWfxIn->nChannels;
// sample rate
LOG(LS_VERBOSE) << "nSamplesPerSec : " << pWfxIn->nSamplesPerSec;
// for buffer estimation
LOG(LS_VERBOSE) << "nAvgBytesPerSec: " << pWfxIn->nAvgBytesPerSec;
// block size of data
LOG(LS_VERBOSE) << "nBlockAlign : " << pWfxIn->nBlockAlign;
// number of bits per sample of mono data
LOG(LS_VERBOSE) << "wBitsPerSample : " << pWfxIn->wBitsPerSample;
LOG(LS_VERBOSE) << "cbSize : " << pWfxIn->cbSize;
}
// Set wave format
Wfx.Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE;
Wfx.Format.wBitsPerSample = 16;
Wfx.Format.cbSize = 22;
Wfx.dwChannelMask = 0;
Wfx.Samples.wValidBitsPerSample = Wfx.Format.wBitsPerSample;
Wfx.SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
const int freqs[6] = {48000, 44100, 16000, 96000, 32000, 8000};
hr = S_FALSE;
// Iterate over frequencies and channels, in order of priority
for (unsigned int freq = 0; freq < sizeof(freqs)/sizeof(freqs[0]); freq++)
{
for (unsigned int chan = 0; chan < sizeof(_recChannelsPrioList)/sizeof(_recChannelsPrioList[0]); chan++)
{
Wfx.Format.nChannels = _recChannelsPrioList[chan];
Wfx.Format.nSamplesPerSec = freqs[freq];
Wfx.Format.nBlockAlign = Wfx.Format.nChannels *
Wfx.Format.wBitsPerSample / 8;
Wfx.Format.nAvgBytesPerSec = Wfx.Format.nSamplesPerSec *
Wfx.Format.nBlockAlign;
// If the method succeeds and the audio endpoint device supports the specified stream format,
// it returns S_OK. If the method succeeds and provides a closest match to the specified format,
// it returns S_FALSE.
hr = _ptrClientIn->IsFormatSupported(
AUDCLNT_SHAREMODE_SHARED,
(WAVEFORMATEX*)&Wfx,
&pWfxClosestMatch);
if (hr == S_OK)
{
break;
}
else
{
if (pWfxClosestMatch)
{
LOG(INFO) << "nChannels=" << Wfx.Format.nChannels <<
", nSamplesPerSec=" << Wfx.Format.nSamplesPerSec <<
" is not supported. Closest match: " <<
"nChannels=" << pWfxClosestMatch->nChannels <<
", nSamplesPerSec=" << pWfxClosestMatch->nSamplesPerSec;
CoTaskMemFree(pWfxClosestMatch);
pWfxClosestMatch = NULL;
}
else
{
LOG(INFO) << "nChannels=" << Wfx.Format.nChannels <<
", nSamplesPerSec=" << Wfx.Format.nSamplesPerSec <<
" is not supported. No closest match.";
}
}
}
if (hr == S_OK)
break;
}
if (hr == S_OK)
{
_recAudioFrameSize = Wfx.Format.nBlockAlign;
_recSampleRate = Wfx.Format.nSamplesPerSec;
_recBlockSize = Wfx.Format.nSamplesPerSec/100;
_recChannels = Wfx.Format.nChannels;
LOG(LS_VERBOSE) << "VoE selected this capturing format:";
LOG(LS_VERBOSE) << "wFormatTag : 0x" << std::hex
<< Wfx.Format.wFormatTag << std::dec
<< " (" << Wfx.Format.wFormatTag << ")";
LOG(LS_VERBOSE) << "nChannels : " << Wfx.Format.nChannels;
LOG(LS_VERBOSE) << "nSamplesPerSec : " << Wfx.Format.nSamplesPerSec;
LOG(LS_VERBOSE) << "nAvgBytesPerSec : " << Wfx.Format.nAvgBytesPerSec;
LOG(LS_VERBOSE) << "nBlockAlign : " << Wfx.Format.nBlockAlign;
LOG(LS_VERBOSE) << "wBitsPerSample : " << Wfx.Format.wBitsPerSample;
LOG(LS_VERBOSE) << "cbSize : " << Wfx.Format.cbSize;
LOG(LS_VERBOSE) << "Additional settings:";
LOG(LS_VERBOSE) << "_recAudioFrameSize: " << _recAudioFrameSize;
LOG(LS_VERBOSE) << "_recBlockSize : " << _recBlockSize;
LOG(LS_VERBOSE) << "_recChannels : " << _recChannels;
}
// Create a capturing stream.
hr = _ptrClientIn->Initialize(
AUDCLNT_SHAREMODE_SHARED, // share Audio Engine with other applications
AUDCLNT_STREAMFLAGS_EVENTCALLBACK | // processing of the audio buffer by the client will be event driven
AUDCLNT_STREAMFLAGS_NOPERSIST, // volume and mute settings for an audio session will not persist across system restarts
0, // required for event-driven shared mode
0, // periodicity
(WAVEFORMATEX*)&Wfx, // selected wave format
NULL); // session GUID
if (hr != S_OK)
{
LOG(LS_ERROR) << "IAudioClient::Initialize() failed:";
}
EXIT_ON_ERROR(hr);
if (_ptrAudioBuffer)
{
// Update the audio buffer with the selected parameters
_ptrAudioBuffer->SetRecordingSampleRate(_recSampleRate);
_ptrAudioBuffer->SetRecordingChannels((uint8_t)_recChannels);
}
else
{
// We can enter this state during CoreAudioIsSupported() when no AudioDeviceImplementation
// has been created, hence the AudioDeviceBuffer does not exist.
// It is OK to end up here since we don't initiate any media in CoreAudioIsSupported().
LOG(LS_VERBOSE)
<< "AudioDeviceBuffer must be attached before streaming can start";
}
// Get the actual size of the shared (endpoint buffer).
// Typical value is 960 audio frames <=> 20ms @ 48kHz sample rate.
UINT bufferFrameCount(0);
hr = _ptrClientIn->GetBufferSize(
&bufferFrameCount);
if (SUCCEEDED(hr))
{
LOG(LS_VERBOSE) << "IAudioClient::GetBufferSize() => "
<< bufferFrameCount << " (<=> "
<< bufferFrameCount*_recAudioFrameSize << " bytes)";
}
// Set the event handle that the system signals when an audio buffer is ready
// to be processed by the client.
hr = _ptrClientIn->SetEventHandle(
_hCaptureSamplesReadyEvent);
EXIT_ON_ERROR(hr);
// Get an IAudioCaptureClient interface.
SAFE_RELEASE(_ptrCaptureClient);
hr = _ptrClientIn->GetService(
__uuidof(IAudioCaptureClient),
(void**)&_ptrCaptureClient);
EXIT_ON_ERROR(hr);
// Mark capture side as initialized
_recIsInitialized = true;
CoTaskMemFree(pWfxIn);
CoTaskMemFree(pWfxClosestMatch);
LOG(LS_VERBOSE) << "capture side is now initialized";
return 0;
Exit:
_TraceCOMError(hr);
CoTaskMemFree(pWfxIn);
CoTaskMemFree(pWfxClosestMatch);
SAFE_RELEASE(_ptrClientIn);
SAFE_RELEASE(_ptrCaptureClient);
return -1;
}
// ----------------------------------------------------------------------------
// StartRecording
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::StartRecording()
{
if (!_recIsInitialized)
{
return -1;
}
if (_hRecThread != NULL)
{
return 0;
}
if (_recording)
{
return 0;
}
{
rtc::CritScope critScoped(&_critSect);
// Create thread which will drive the capturing
LPTHREAD_START_ROUTINE lpStartAddress = WSAPICaptureThread;
if (_builtInAecEnabled)
{
// Redirect to the DMO polling method.
lpStartAddress = WSAPICaptureThreadPollDMO;
if (!_playing)
{
// The DMO won't provide us captured output data unless we
// give it render data to process.
LOG(LS_ERROR)
<< "Playout must be started before recording when using"
<< " the built-in AEC";
return -1;
}
}
assert(_hRecThread == NULL);
_hRecThread = CreateThread(NULL,
0,
lpStartAddress,
this,
0,
NULL);
if (_hRecThread == NULL)
{
LOG(LS_ERROR) << "failed to create the recording thread";
return -1;
}
// Set thread priority to highest possible
SetThreadPriority(_hRecThread, THREAD_PRIORITY_TIME_CRITICAL);
assert(_hGetCaptureVolumeThread == NULL);
_hGetCaptureVolumeThread = CreateThread(NULL,
0,
GetCaptureVolumeThread,
this,
0,
NULL);
if (_hGetCaptureVolumeThread == NULL)
{
LOG(LS_ERROR) << "failed to create the volume getter thread";
return -1;
}
assert(_hSetCaptureVolumeThread == NULL);
_hSetCaptureVolumeThread = CreateThread(NULL,
0,
SetCaptureVolumeThread,
this,
0,
NULL);
if (_hSetCaptureVolumeThread == NULL)
{
LOG(LS_ERROR) << "failed to create the volume setter thread";
return -1;
}
} // critScoped
DWORD ret = WaitForSingleObject(_hCaptureStartedEvent, 1000);
if (ret != WAIT_OBJECT_0)
{
LOG(LS_VERBOSE) << "capturing did not start up properly";
return -1;
}
LOG(LS_VERBOSE) << "capture audio stream has now started...";
_recording = true;
return 0;
}
// ----------------------------------------------------------------------------
// StopRecording
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::StopRecording()
{
int32_t err = 0;
if (!_recIsInitialized)
{
return 0;
}
_Lock();
if (_hRecThread == NULL)
{
LOG(LS_VERBOSE)
<< "no capturing stream is active => close down WASAPI only";
SAFE_RELEASE(_ptrClientIn);
SAFE_RELEASE(_ptrCaptureClient);
_recIsInitialized = false;
_recording = false;
_UnLock();
return 0;
}
// Stop the driving thread...
LOG(LS_VERBOSE) << "closing down the webrtc_core_audio_capture_thread...";
// Manual-reset event; it will remain signalled to stop all capture threads.
SetEvent(_hShutdownCaptureEvent);
_UnLock();
DWORD ret = WaitForSingleObject(_hRecThread, 2000);
if (ret != WAIT_OBJECT_0)
{
LOG(LS_ERROR)
<< "failed to close down webrtc_core_audio_capture_thread";
err = -1;
}
else
{
LOG(LS_VERBOSE) << "webrtc_core_audio_capture_thread is now closed";
}
ret = WaitForSingleObject(_hGetCaptureVolumeThread, 2000);
if (ret != WAIT_OBJECT_0)
{
// the thread did not stop as it should
LOG(LS_ERROR) << "failed to close down volume getter thread";
err = -1;
}
else
{
LOG(LS_VERBOSE) << "volume getter thread is now closed";
}
ret = WaitForSingleObject(_hSetCaptureVolumeThread, 2000);
if (ret != WAIT_OBJECT_0)
{
// the thread did not stop as it should
LOG(LS_ERROR) << "failed to close down volume setter thread";
err = -1;
}
else
{
LOG(LS_VERBOSE) << "volume setter thread is now closed";
}
_Lock();
ResetEvent(_hShutdownCaptureEvent); // Must be manually reset.
// Ensure that the thread has released these interfaces properly.
assert(err == -1 || _ptrClientIn == NULL);
assert(err == -1 || _ptrCaptureClient == NULL);
_recIsInitialized = false;
_recording = false;
// These will create thread leaks in the result of an error,
// but we can at least resume the call.
CloseHandle(_hRecThread);
_hRecThread = NULL;
CloseHandle(_hGetCaptureVolumeThread);
_hGetCaptureVolumeThread = NULL;
CloseHandle(_hSetCaptureVolumeThread);
_hSetCaptureVolumeThread = NULL;
if (_builtInAecEnabled)
{
assert(_dmo != NULL);
// This is necessary. Otherwise the DMO can generate garbage render
// audio even after rendering has stopped.
HRESULT hr = _dmo->FreeStreamingResources();
if (FAILED(hr))
{
_TraceCOMError(hr);
err = -1;
}
}
// Reset the recording delay value.
_sndCardRecDelay = 0;
_UnLock();
return err;
}
// ----------------------------------------------------------------------------
// RecordingIsInitialized
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::RecordingIsInitialized() const
{
return (_recIsInitialized);
}
// ----------------------------------------------------------------------------
// Recording
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::Recording() const
{
return (_recording);
}
// ----------------------------------------------------------------------------
// PlayoutIsInitialized
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::PlayoutIsInitialized() const
{
return (_playIsInitialized);
}
// ----------------------------------------------------------------------------
// StartPlayout
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::StartPlayout()
{
if (!_playIsInitialized)
{
return -1;
}
if (_hPlayThread != NULL)
{
return 0;
}
if (_playing)
{
return 0;
}
{
rtc::CritScope critScoped(&_critSect);
// Create thread which will drive the rendering.
assert(_hPlayThread == NULL);
_hPlayThread = CreateThread(
NULL,
0,
WSAPIRenderThread,
this,
0,
NULL);
if (_hPlayThread == NULL)
{
LOG(LS_ERROR) << "failed to create the playout thread";
return -1;
}
// Set thread priority to highest possible.
SetThreadPriority(_hPlayThread, THREAD_PRIORITY_TIME_CRITICAL);
} // critScoped
DWORD ret = WaitForSingleObject(_hRenderStartedEvent, 1000);
if (ret != WAIT_OBJECT_0)
{
LOG(LS_VERBOSE) << "rendering did not start up properly";
return -1;
}
_playing = true;
LOG(LS_VERBOSE) << "rendering audio stream has now started...";
return 0;
}
// ----------------------------------------------------------------------------
// StopPlayout
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::StopPlayout()
{
if (!_playIsInitialized)
{
return 0;
}
{
rtc::CritScope critScoped(&_critSect) ;
if (_hPlayThread == NULL)
{
LOG(LS_VERBOSE)
<< "no rendering stream is active => close down WASAPI only";
SAFE_RELEASE(_ptrClientOut);
SAFE_RELEASE(_ptrRenderClient);
_playIsInitialized = false;
_playing = false;
return 0;
}
// stop the driving thread...
LOG(LS_VERBOSE)
<< "closing down the webrtc_core_audio_render_thread...";
SetEvent(_hShutdownRenderEvent);
} // critScoped
DWORD ret = WaitForSingleObject(_hPlayThread, 2000);
if (ret != WAIT_OBJECT_0)
{
// the thread did not stop as it should
LOG(LS_ERROR) << "failed to close down webrtc_core_audio_render_thread";
CloseHandle(_hPlayThread);
_hPlayThread = NULL;
_playIsInitialized = false;
_playing = false;
return -1;
}
{
rtc::CritScope critScoped(&_critSect);
LOG(LS_VERBOSE) << "webrtc_core_audio_render_thread is now closed";
// to reset this event manually at each time we finish with it,
// in case that the render thread has exited before StopPlayout(),
// this event might be caught by the new render thread within same VoE instance.
ResetEvent(_hShutdownRenderEvent);
SAFE_RELEASE(_ptrClientOut);
SAFE_RELEASE(_ptrRenderClient);
_playIsInitialized = false;
_playing = false;
CloseHandle(_hPlayThread);
_hPlayThread = NULL;
if (_builtInAecEnabled && _recording)
{
// The DMO won't provide us captured output data unless we
// give it render data to process.
//
// We still permit the playout to shutdown, and trace a warning.
// Otherwise, VoE can get into a state which will never permit
// playout to stop properly.
LOG(LS_WARNING)
<< "Recording should be stopped before playout when using the"
<< " built-in AEC";
}
// Reset the playout delay value.
_sndCardPlayDelay = 0;
} // critScoped
return 0;
}
// ----------------------------------------------------------------------------
// PlayoutDelay
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::PlayoutDelay(uint16_t& delayMS) const
{
rtc::CritScope critScoped(&_critSect);
delayMS = static_cast<uint16_t>(_sndCardPlayDelay);
return 0;
}
// ----------------------------------------------------------------------------
// RecordingDelay
// ----------------------------------------------------------------------------
int32_t AudioDeviceWindowsCore::RecordingDelay(uint16_t& delayMS) const
{
rtc::CritScope critScoped(&_critSect);
delayMS = static_cast<uint16_t>(_sndCardRecDelay);
return 0;
}
// ----------------------------------------------------------------------------
// Playing
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::Playing() const
{
return (_playing);
}
// ----------------------------------------------------------------------------
// PlayoutWarning
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::PlayoutWarning() const
{
return ( _playWarning > 0);
}
// ----------------------------------------------------------------------------
// PlayoutError
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::PlayoutError() const
{
return ( _playError > 0);
}
// ----------------------------------------------------------------------------
// RecordingWarning
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::RecordingWarning() const
{
return ( _recWarning > 0);
}
// ----------------------------------------------------------------------------
// RecordingError
// ----------------------------------------------------------------------------
bool AudioDeviceWindowsCore::RecordingError() const
{
return ( _recError > 0);
}
// ----------------------------------------------------------------------------
// ClearPlayoutWarning
// ----------------------------------------------------------------------------
void AudioDeviceWindowsCore::ClearPlayoutWarning()
{
_playWarning = 0;
}
// ----------------------------------------------------------------------------
// ClearPlayoutError
// ----------------------------------------------------------------------------
void AudioDeviceWindowsCore::ClearPlayoutError()
{
_playError = 0;
}
// ----------------------------------------------------------------------------
// ClearRecordingWarning
// ----------------------------------------------------------------------------
void AudioDeviceWindowsCore::ClearRecordingWarning()
{
_recWarning = 0;
}
// ----------------------------------------------------------------------------
// ClearRecordingError
// ----------------------------------------------------------------------------
void AudioDeviceWindowsCore::ClearRecordingError()
{
_recError = 0;
}
// ============================================================================
// Private Methods
// ============================================================================
// ----------------------------------------------------------------------------
// [static] WSAPIRenderThread
// ----------------------------------------------------------------------------
DWORD WINAPI AudioDeviceWindowsCore::WSAPIRenderThread(LPVOID context)
{
return reinterpret_cast<AudioDeviceWindowsCore*>(context)->
DoRenderThread();
}
// ----------------------------------------------------------------------------
// [static] WSAPICaptureThread
// ----------------------------------------------------------------------------
DWORD WINAPI AudioDeviceWindowsCore::WSAPICaptureThread(LPVOID context)
{
return reinterpret_cast<AudioDeviceWindowsCore*>(context)->
DoCaptureThread();
}
DWORD WINAPI AudioDeviceWindowsCore::WSAPICaptureThreadPollDMO(LPVOID context)
{
return reinterpret_cast<AudioDeviceWindowsCore*>(context)->
DoCaptureThreadPollDMO();
}
DWORD WINAPI AudioDeviceWindowsCore::GetCaptureVolumeThread(LPVOID context)
{
return reinterpret_cast<AudioDeviceWindowsCore*>(context)->
DoGetCaptureVolumeThread();
}
DWORD WINAPI AudioDeviceWindowsCore::SetCaptureVolumeThread(LPVOID context)
{
return reinterpret_cast<AudioDeviceWindowsCore*>(context)->
DoSetCaptureVolumeThread();
}
DWORD AudioDeviceWindowsCore::DoGetCaptureVolumeThread()
{
HANDLE waitObject = _hShutdownCaptureEvent;
while (1)
{
if (AGC())
{
uint32_t currentMicLevel = 0;
if (MicrophoneVolume(currentMicLevel) == 0)
{
// This doesn't set the system volume, just stores it.
_Lock();
if (_ptrAudioBuffer)
{
_ptrAudioBuffer->SetCurrentMicLevel(currentMicLevel);
}
_UnLock();
}
}
DWORD waitResult = WaitForSingleObject(waitObject,
GET_MIC_VOLUME_INTERVAL_MS);
switch (waitResult)
{
case WAIT_OBJECT_0: // _hShutdownCaptureEvent
return 0;
case WAIT_TIMEOUT: // timeout notification
break;
default: // unexpected error
LOG(LS_WARNING)
<< "unknown wait termination on get volume thread";
return 1;
}
}
}
DWORD AudioDeviceWindowsCore::DoSetCaptureVolumeThread()
{
HANDLE waitArray[2] = {_hShutdownCaptureEvent, _hSetCaptureVolumeEvent};
while (1)
{
DWORD waitResult = WaitForMultipleObjects(2, waitArray, FALSE, INFINITE);
switch (waitResult)
{
case WAIT_OBJECT_0: // _hShutdownCaptureEvent
return 0;
case WAIT_OBJECT_0 + 1: // _hSetCaptureVolumeEvent
break;
default: // unexpected error
LOG(LS_WARNING)
<< "unknown wait termination on set volume thread";
return 1;
}
_Lock();
uint32_t newMicLevel = _newMicLevel;
_UnLock();
if (SetMicrophoneVolume(newMicLevel) == -1)
{
LOG(LS_WARNING)
<< "the required modification of the microphone volume failed";
}
}
}
// ----------------------------------------------------------------------------
// DoRenderThread
// ----------------------------------------------------------------------------
DWORD AudioDeviceWindowsCore::DoRenderThread()
{
bool keepPlaying = true;
HANDLE waitArray[2] = {_hShutdownRenderEvent, _hRenderSamplesReadyEvent};
HRESULT hr = S_OK;
HANDLE hMmTask = NULL;
// Initialize COM as MTA in this thread.
ScopedCOMInitializer comInit(ScopedCOMInitializer::kMTA);
if (!comInit.succeeded()) {
LOG(LS_ERROR) << "failed to initialize COM in render thread";
return 1;
}
rtc::SetCurrentThreadName("webrtc_core_audio_render_thread");
// Use Multimedia Class Scheduler Service (MMCSS) to boost the thread priority.
//
if (_winSupportAvrt)
{
DWORD taskIndex(0);
hMmTask = _PAvSetMmThreadCharacteristicsA("Pro Audio", &taskIndex);
if (hMmTask)
{
if (FALSE == _PAvSetMmThreadPriority(hMmTask, AVRT_PRIORITY_CRITICAL))
{
LOG(LS_WARNING) << "failed to boost play-thread using MMCSS";
}
LOG(LS_VERBOSE)
<< "render thread is now registered with MMCSS (taskIndex="
<< taskIndex << ")";
}
else
{
LOG(LS_WARNING) << "failed to enable MMCSS on render thread (err="
<< GetLastError() << ")";
_TraceCOMError(GetLastError());
}
}
_Lock();
IAudioClock* clock = NULL;
// Get size of rendering buffer (length is expressed as the number of audio frames the buffer can hold).
// This value is fixed during the rendering session.
//
UINT32 bufferLength = 0;
hr = _ptrClientOut->GetBufferSize(&bufferLength);
EXIT_ON_ERROR(hr);
LOG(LS_VERBOSE) << "[REND] size of buffer : " << bufferLength;
// Get maximum latency for the current stream (will not change for the lifetime of the IAudioClient object).
//
REFERENCE_TIME latency;
_ptrClientOut->GetStreamLatency(&latency);
LOG(LS_VERBOSE) << "[REND] max stream latency : " << (DWORD)latency
<< " (" << (double)(latency/10000.0) << " ms)";
// Get the length of the periodic interval separating successive processing passes by
// the audio engine on the data in the endpoint buffer.
//
// The period between processing passes by the audio engine is fixed for a particular
// audio endpoint device and represents the smallest processing quantum for the audio engine.
// This period plus the stream latency between the buffer and endpoint device represents
// the minimum possible latency that an audio application can achieve.
// Typical value: 100000 <=> 0.01 sec = 10ms.