| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/video_coding/codecs/test/videoprocessor_integrationtest.h" |
| |
| #include <utility> |
| |
| #if defined(WEBRTC_ANDROID) |
| #include "webrtc/modules/video_coding/codecs/test/android_test_initializer.h" |
| #include "webrtc/sdk/android/src/jni/androidmediadecoder_jni.h" |
| #include "webrtc/sdk/android/src/jni/androidmediaencoder_jni.h" |
| #elif defined(WEBRTC_IOS) |
| #include "webrtc/modules/video_coding/codecs/test/objc_codec_h264_test.h" |
| #endif |
| |
| #include "webrtc/media/engine/internaldecoderfactory.h" |
| #include "webrtc/media/engine/internalencoderfactory.h" |
| #include "webrtc/modules/video_coding/codecs/vp8/include/vp8_common_types.h" |
| #include "webrtc/modules/video_coding/include/video_codec_interface.h" |
| #include "webrtc/modules/video_coding/include/video_coding.h" |
| #include "webrtc/rtc_base/checks.h" |
| #include "webrtc/rtc_base/event.h" |
| #include "webrtc/rtc_base/file.h" |
| #include "webrtc/rtc_base/logging.h" |
| #include "webrtc/rtc_base/ptr_util.h" |
| #include "webrtc/system_wrappers/include/sleep.h" |
| #include "webrtc/test/testsupport/fileutils.h" |
| #include "webrtc/test/testsupport/metrics/video_metrics.h" |
| #include "webrtc/test/video_codec_settings.h" |
| |
| namespace webrtc { |
| namespace test { |
| |
| namespace { |
| |
| const int kPercTargetvsActualMismatch = 20; |
| const int kBaseKeyFrameInterval = 3000; |
| |
| // Parameters from VP8 wrapper, which control target size of key frames. |
| const float kInitialBufferSize = 0.5f; |
| const float kOptimalBufferSize = 0.6f; |
| const float kScaleKeyFrameSize = 0.5f; |
| |
| void VerifyQuality(const QualityMetricsResult& psnr_result, |
| const QualityMetricsResult& ssim_result, |
| const QualityThresholds& quality_thresholds) { |
| EXPECT_GT(psnr_result.average, quality_thresholds.min_avg_psnr); |
| EXPECT_GT(psnr_result.min, quality_thresholds.min_min_psnr); |
| EXPECT_GT(ssim_result.average, quality_thresholds.min_avg_ssim); |
| EXPECT_GT(ssim_result.min, quality_thresholds.min_min_ssim); |
| } |
| |
| int NumberOfTemporalLayers(const VideoCodec& codec_settings) { |
| if (codec_settings.codecType == kVideoCodecVP8) { |
| return codec_settings.VP8().numberOfTemporalLayers; |
| } else if (codec_settings.codecType == kVideoCodecVP9) { |
| return codec_settings.VP9().numberOfTemporalLayers; |
| } else { |
| return 1; |
| } |
| } |
| |
| } // namespace |
| |
| VideoProcessorIntegrationTest::VideoProcessorIntegrationTest() { |
| #if defined(WEBRTC_VIDEOPROCESSOR_INTEGRATIONTEST_HW_CODECS_ENABLED) && \ |
| defined(WEBRTC_ANDROID) |
| InitializeAndroidObjects(); |
| #endif |
| } |
| |
| VideoProcessorIntegrationTest::~VideoProcessorIntegrationTest() = default; |
| |
| void VideoProcessorIntegrationTest::SetCodecSettings(TestConfig* config, |
| VideoCodecType codec_type, |
| int num_temporal_layers, |
| bool error_concealment_on, |
| bool denoising_on, |
| bool frame_dropper_on, |
| bool spatial_resize_on, |
| bool resilience_on, |
| int width, |
| int height) { |
| webrtc::test::CodecSettings(codec_type, &config->codec_settings); |
| config->codec_settings.width = width; |
| config->codec_settings.height = height; |
| switch (config->codec_settings.codecType) { |
| case kVideoCodecVP8: |
| config->codec_settings.VP8()->resilience = |
| resilience_on ? kResilientStream : kResilienceOff; |
| config->codec_settings.VP8()->numberOfTemporalLayers = |
| num_temporal_layers; |
| config->codec_settings.VP8()->denoisingOn = denoising_on; |
| config->codec_settings.VP8()->errorConcealmentOn = error_concealment_on; |
| config->codec_settings.VP8()->automaticResizeOn = spatial_resize_on; |
| config->codec_settings.VP8()->frameDroppingOn = frame_dropper_on; |
| config->codec_settings.VP8()->keyFrameInterval = kBaseKeyFrameInterval; |
| break; |
| case kVideoCodecVP9: |
| config->codec_settings.VP9()->resilienceOn = resilience_on; |
| config->codec_settings.VP9()->numberOfTemporalLayers = |
| num_temporal_layers; |
| config->codec_settings.VP9()->denoisingOn = denoising_on; |
| config->codec_settings.VP9()->frameDroppingOn = frame_dropper_on; |
| config->codec_settings.VP9()->keyFrameInterval = kBaseKeyFrameInterval; |
| config->codec_settings.VP9()->automaticResizeOn = spatial_resize_on; |
| break; |
| case kVideoCodecH264: |
| config->codec_settings.H264()->frameDroppingOn = frame_dropper_on; |
| config->codec_settings.H264()->keyFrameInterval = kBaseKeyFrameInterval; |
| break; |
| default: |
| RTC_NOTREACHED(); |
| break; |
| } |
| |
| config->frame_length_in_bytes = |
| CalcBufferSize(VideoType::kI420, width, height); |
| } |
| |
| void VideoProcessorIntegrationTest::SetRateProfile( |
| RateProfile* rate_profile, |
| int rate_update_index, |
| int bitrate_kbps, |
| int framerate_fps, |
| int frame_index_rate_update) { |
| rate_profile->target_bit_rate[rate_update_index] = bitrate_kbps; |
| rate_profile->input_frame_rate[rate_update_index] = framerate_fps; |
| rate_profile->frame_index_rate_update[rate_update_index] = |
| frame_index_rate_update; |
| } |
| |
| void VideoProcessorIntegrationTest::AddRateControlThresholds( |
| int max_num_dropped_frames, |
| int max_key_frame_size_mismatch, |
| int max_delta_frame_size_mismatch, |
| int max_encoding_rate_mismatch, |
| int max_time_hit_target, |
| int num_spatial_resizes, |
| int num_key_frames, |
| std::vector<RateControlThresholds>* rc_thresholds) { |
| RTC_DCHECK(rc_thresholds); |
| |
| rc_thresholds->emplace_back(); |
| RateControlThresholds* rc_threshold = &rc_thresholds->back(); |
| rc_threshold->max_num_dropped_frames = max_num_dropped_frames; |
| rc_threshold->max_key_frame_size_mismatch = max_key_frame_size_mismatch; |
| rc_threshold->max_delta_frame_size_mismatch = max_delta_frame_size_mismatch; |
| rc_threshold->max_encoding_rate_mismatch = max_encoding_rate_mismatch; |
| rc_threshold->max_time_hit_target = max_time_hit_target; |
| rc_threshold->num_spatial_resizes = num_spatial_resizes; |
| rc_threshold->num_key_frames = num_key_frames; |
| } |
| |
| // Processes all frames in the clip and verifies the result. |
| void VideoProcessorIntegrationTest::ProcessFramesAndMaybeVerify( |
| const RateProfile& rate_profile, |
| const std::vector<RateControlThresholds>* rc_thresholds, |
| const QualityThresholds* quality_thresholds, |
| const VisualizationParams* visualization_params) { |
| // The Android HW codec needs to be run on a task queue, so we simply always |
| // run the test on a task queue. |
| rtc::TaskQueue task_queue("VidProc TQ"); |
| rtc::Event sync_event(false, false); |
| |
| SetUpAndInitObjects(&task_queue, rate_profile.target_bit_rate[0], |
| rate_profile.input_frame_rate[0], visualization_params); |
| |
| // Set initial rates. |
| int rate_update_index = 0; |
| task_queue.PostTask([this, &rate_profile, rate_update_index] { |
| processor_->SetRates(rate_profile.target_bit_rate[rate_update_index], |
| rate_profile.input_frame_rate[rate_update_index]); |
| }); |
| |
| // Process all frames. |
| int frame_number = 0; |
| const int num_frames = rate_profile.num_frames; |
| RTC_DCHECK_GE(num_frames, 1); |
| while (frame_number < num_frames) { |
| // In order to not overwhelm the OpenMAX buffers in the Android |
| // MediaCodec API, we roughly pace the frames here. The downside |
| // of this is that the encode run will be done in real-time. |
| // TODO(brandtr): Investigate if this is needed on iOS. |
| if (config_.hw_codec) { |
| SleepMs(rtc::kNumMillisecsPerSec / |
| rate_profile.input_frame_rate[rate_update_index]); |
| } |
| |
| task_queue.PostTask( |
| [this, frame_number] { processor_->ProcessFrame(frame_number); }); |
| ++frame_number; |
| |
| if (frame_number == |
| rate_profile.frame_index_rate_update[rate_update_index + 1]) { |
| ++rate_update_index; |
| |
| task_queue.PostTask([this, &rate_profile, rate_update_index] { |
| processor_->SetRates(rate_profile.target_bit_rate[rate_update_index], |
| rate_profile.input_frame_rate[rate_update_index]); |
| }); |
| } |
| } |
| |
| // Give the VideoProcessor pipeline some time to process the last frame, |
| // and then release the codecs. |
| if (config_.hw_codec) { |
| SleepMs(1 * rtc::kNumMillisecsPerSec); |
| } |
| ReleaseAndCloseObjects(&task_queue); |
| |
| // Calculate and print rate control statistics. |
| rate_update_index = 0; |
| frame_number = 0; |
| ResetRateControlMetrics(rate_update_index, rate_profile); |
| std::vector<int> num_dropped_frames; |
| std::vector<int> num_resize_actions; |
| sync_event.Reset(); |
| task_queue.PostTask( |
| [this, &num_dropped_frames, &num_resize_actions, &sync_event]() { |
| num_dropped_frames = processor_->NumberDroppedFramesPerRateUpdate(); |
| num_resize_actions = processor_->NumberSpatialResizesPerRateUpdate(); |
| sync_event.Set(); |
| }); |
| sync_event.Wait(rtc::Event::kForever); |
| while (frame_number < num_frames) { |
| UpdateRateControlMetrics(frame_number); |
| |
| ++frame_number; |
| |
| if (frame_number == |
| rate_profile.frame_index_rate_update[rate_update_index + 1]) { |
| PrintAndMaybeVerifyRateControlMetrics(rate_update_index, rc_thresholds, |
| num_dropped_frames, |
| num_resize_actions); |
| ++rate_update_index; |
| ResetRateControlMetrics(rate_update_index, rate_profile); |
| } |
| } |
| PrintAndMaybeVerifyRateControlMetrics(rate_update_index, rc_thresholds, |
| num_dropped_frames, num_resize_actions); |
| |
| // Calculate and print other statistics. |
| EXPECT_EQ(num_frames, static_cast<int>(stats_.stats_.size())); |
| stats_.PrintSummary(); |
| |
| // Calculate and print image quality statistics. |
| // TODO(marpan): Should compute these quality metrics per SetRates update. |
| QualityMetricsResult psnr_result, ssim_result; |
| EXPECT_EQ(0, I420MetricsFromFiles(config_.input_filename.c_str(), |
| config_.output_filename.c_str(), |
| config_.codec_settings.width, |
| config_.codec_settings.height, &psnr_result, |
| &ssim_result)); |
| if (quality_thresholds) { |
| VerifyQuality(psnr_result, ssim_result, *quality_thresholds); |
| } |
| printf("PSNR avg: %f, min: %f\nSSIM avg: %f, min: %f\n", psnr_result.average, |
| psnr_result.min, ssim_result.average, ssim_result.min); |
| printf("\n"); |
| |
| // Remove analysis file. |
| if (remove(config_.output_filename.c_str()) < 0) { |
| fprintf(stderr, "Failed to remove temporary file!\n"); |
| } |
| } |
| |
| void VideoProcessorIntegrationTest::CreateEncoderAndDecoder() { |
| if (config_.hw_codec) { |
| #if defined(WEBRTC_VIDEOPROCESSOR_INTEGRATIONTEST_HW_CODECS_ENABLED) |
| #if defined(WEBRTC_ANDROID) |
| encoder_factory_.reset(new jni::MediaCodecVideoEncoderFactory()); |
| decoder_factory_.reset(new jni::MediaCodecVideoDecoderFactory()); |
| #elif defined(WEBRTC_IOS) |
| EXPECT_EQ(kVideoCodecH264, config_.codec_settings.codecType) |
| << "iOS HW codecs only support H264."; |
| encoder_factory_ = CreateObjCEncoderFactory(); |
| decoder_factory_ = CreateObjCDecoderFactory(); |
| #else |
| RTC_NOTREACHED() << "Only support HW codecs on Android and iOS."; |
| #endif |
| #endif // WEBRTC_VIDEOPROCESSOR_INTEGRATIONTEST_HW_CODECS_ENABLED |
| } else { |
| // SW codecs. |
| encoder_factory_.reset(new cricket::InternalEncoderFactory()); |
| decoder_factory_.reset(new cricket::InternalDecoderFactory()); |
| } |
| |
| switch (config_.codec_settings.codecType) { |
| case kVideoCodecVP8: |
| encoder_ = encoder_factory_->CreateVideoEncoder( |
| cricket::VideoCodec(cricket::kVp8CodecName)); |
| decoder_ = decoder_factory_->CreateVideoDecoder(kVideoCodecVP8); |
| break; |
| case kVideoCodecVP9: |
| encoder_ = encoder_factory_->CreateVideoEncoder( |
| cricket::VideoCodec(cricket::kVp9CodecName)); |
| decoder_ = decoder_factory_->CreateVideoDecoder(kVideoCodecVP9); |
| break; |
| case kVideoCodecH264: |
| // TODO(brandtr): Generalize so that we support multiple profiles here. |
| encoder_ = encoder_factory_->CreateVideoEncoder( |
| cricket::VideoCodec(cricket::kH264CodecName)); |
| decoder_ = decoder_factory_->CreateVideoDecoder(kVideoCodecH264); |
| break; |
| default: |
| RTC_NOTREACHED(); |
| break; |
| } |
| |
| EXPECT_TRUE(encoder_) << "Encoder not successfully created."; |
| EXPECT_TRUE(decoder_) << "Decoder not successfully created."; |
| } |
| |
| void VideoProcessorIntegrationTest::DestroyEncoderAndDecoder() { |
| encoder_factory_->DestroyVideoEncoder(encoder_); |
| decoder_factory_->DestroyVideoDecoder(decoder_); |
| } |
| |
| void VideoProcessorIntegrationTest::SetUpAndInitObjects( |
| rtc::TaskQueue* task_queue, |
| const int initial_bitrate_kbps, |
| const int initial_framerate_fps, |
| const VisualizationParams* visualization_params) { |
| CreateEncoderAndDecoder(); |
| |
| // Create file objects for quality analysis. |
| analysis_frame_reader_.reset(new YuvFrameReaderImpl( |
| config_.input_filename, config_.codec_settings.width, |
| config_.codec_settings.height)); |
| analysis_frame_writer_.reset(new YuvFrameWriterImpl( |
| config_.output_filename, config_.codec_settings.width, |
| config_.codec_settings.height)); |
| EXPECT_TRUE(analysis_frame_reader_->Init()); |
| EXPECT_TRUE(analysis_frame_writer_->Init()); |
| |
| if (visualization_params) { |
| const std::string codec_name = |
| CodecTypeToPayloadString(config_.codec_settings.codecType); |
| const std::string implementation_type = config_.hw_codec ? "hw" : "sw"; |
| // clang-format off |
| const std::string output_filename_base = |
| OutputPath() + config_.filename + "-" + |
| codec_name + "-" + implementation_type + "-" + |
| std::to_string(initial_bitrate_kbps); |
| // clang-format on |
| if (visualization_params->save_encoded_ivf) { |
| rtc::File post_encode_file = |
| rtc::File::Create(output_filename_base + ".ivf"); |
| encoded_frame_writer_ = |
| IvfFileWriter::Wrap(std::move(post_encode_file), 0); |
| } |
| if (visualization_params->save_decoded_y4m) { |
| decoded_frame_writer_.reset(new Y4mFrameWriterImpl( |
| output_filename_base + ".y4m", config_.codec_settings.width, |
| config_.codec_settings.height, initial_framerate_fps)); |
| EXPECT_TRUE(decoded_frame_writer_->Init()); |
| } |
| } |
| |
| packet_manipulator_.reset(new PacketManipulatorImpl( |
| &packet_reader_, config_.networking_config, config_.verbose)); |
| |
| config_.codec_settings.minBitrate = 0; |
| config_.codec_settings.startBitrate = initial_bitrate_kbps; |
| config_.codec_settings.maxFramerate = initial_framerate_fps; |
| |
| rtc::Event sync_event(false, false); |
| task_queue->PostTask([this, &sync_event]() { |
| processor_ = rtc::MakeUnique<VideoProcessor>( |
| encoder_, decoder_, analysis_frame_reader_.get(), |
| analysis_frame_writer_.get(), packet_manipulator_.get(), config_, |
| &stats_, encoded_frame_writer_.get(), decoded_frame_writer_.get()); |
| processor_->Init(); |
| sync_event.Set(); |
| }); |
| sync_event.Wait(rtc::Event::kForever); |
| } |
| |
| void VideoProcessorIntegrationTest::ReleaseAndCloseObjects( |
| rtc::TaskQueue* task_queue) { |
| rtc::Event sync_event(false, false); |
| task_queue->PostTask([this, &sync_event]() { |
| processor_->Release(); |
| sync_event.Set(); |
| }); |
| sync_event.Wait(rtc::Event::kForever); |
| |
| // The VideoProcessor must be ::Release()'d before we destroy the codecs. |
| DestroyEncoderAndDecoder(); |
| |
| // Close the analysis files before we use them for SSIM/PSNR calculations. |
| analysis_frame_reader_->Close(); |
| analysis_frame_writer_->Close(); |
| |
| // Close visualization files. |
| if (encoded_frame_writer_) { |
| EXPECT_TRUE(encoded_frame_writer_->Close()); |
| } |
| if (decoded_frame_writer_) { |
| decoded_frame_writer_->Close(); |
| } |
| } |
| |
| // For every encoded frame, update the rate control metrics. |
| void VideoProcessorIntegrationTest::UpdateRateControlMetrics(int frame_number) { |
| RTC_CHECK_GE(frame_number, 0); |
| |
| const int tl_idx = TemporalLayerIndexForFrame(frame_number); |
| ++num_frames_per_update_[tl_idx]; |
| ++num_frames_total_; |
| |
| FrameType frame_type = stats_.stats_[frame_number].frame_type; |
| float encoded_size_kbits = |
| stats_.stats_[frame_number].encoded_frame_length_in_bytes * 8.0f / |
| 1000.0f; |
| |
| // Update layer data. |
| // Update rate mismatch relative to per-frame bandwidth for delta frames. |
| if (frame_type == kVideoFrameDelta) { |
| // TODO(marpan): Should we count dropped (zero size) frames in mismatch? |
| sum_frame_size_mismatch_[tl_idx] += |
| fabs(encoded_size_kbits - per_frame_bandwidth_[tl_idx]) / |
| per_frame_bandwidth_[tl_idx]; |
| } else { |
| float target_size = (frame_number == 0) ? target_size_key_frame_initial_ |
| : target_size_key_frame_; |
| sum_key_frame_size_mismatch_ += |
| fabs(encoded_size_kbits - target_size) / target_size; |
| num_key_frames_ += 1; |
| } |
| sum_encoded_frame_size_[tl_idx] += encoded_size_kbits; |
| // Encoding bit rate per temporal layer: from the start of the update/run |
| // to the current frame. |
| encoding_bitrate_[tl_idx] = sum_encoded_frame_size_[tl_idx] * |
| framerate_layer_[tl_idx] / |
| num_frames_per_update_[tl_idx]; |
| // Total encoding rate: from the start of the update/run to current frame. |
| sum_encoded_frame_size_total_ += encoded_size_kbits; |
| encoding_bitrate_total_ = |
| sum_encoded_frame_size_total_ * framerate_ / num_frames_total_; |
| perc_encoding_rate_mismatch_ = |
| 100 * fabs(encoding_bitrate_total_ - bitrate_kbps_) / bitrate_kbps_; |
| if (perc_encoding_rate_mismatch_ < kPercTargetvsActualMismatch && |
| !encoding_rate_within_target_) { |
| num_frames_to_hit_target_ = num_frames_total_; |
| encoding_rate_within_target_ = true; |
| } |
| } |
| |
| // Verify expected behavior of rate control and print out data. |
| void VideoProcessorIntegrationTest::PrintAndMaybeVerifyRateControlMetrics( |
| int rate_update_index, |
| const std::vector<RateControlThresholds>* rc_thresholds, |
| const std::vector<int>& num_dropped_frames, |
| const std::vector<int>& num_resize_actions) { |
| printf( |
| "Rate update #%d:\n" |
| " Target bitrate : %d\n" |
| " Encoded bitrate : %f\n" |
| " Frame rate : %d\n", |
| rate_update_index, bitrate_kbps_, encoding_bitrate_total_, framerate_); |
| printf( |
| " # processed frames : %d\n" |
| " # frames to convergence: %d\n" |
| " # dropped frames : %d\n" |
| " # spatial resizes : %d\n", |
| num_frames_total_, num_frames_to_hit_target_, |
| num_dropped_frames[rate_update_index], |
| num_resize_actions[rate_update_index]); |
| |
| const RateControlThresholds* rc_threshold = nullptr; |
| if (rc_thresholds) { |
| rc_threshold = &(*rc_thresholds)[rate_update_index]; |
| |
| EXPECT_LE(perc_encoding_rate_mismatch_, |
| rc_threshold->max_encoding_rate_mismatch); |
| } |
| if (num_key_frames_ > 0) { |
| int perc_key_frame_size_mismatch = |
| 100 * sum_key_frame_size_mismatch_ / num_key_frames_; |
| printf( |
| " # key frames : %d\n" |
| " Key frame rate mismatch: %d\n", |
| num_key_frames_, perc_key_frame_size_mismatch); |
| if (rc_threshold) { |
| EXPECT_LE(perc_key_frame_size_mismatch, |
| rc_threshold->max_key_frame_size_mismatch); |
| } |
| } |
| |
| const int num_temporal_layers = |
| NumberOfTemporalLayers(config_.codec_settings); |
| for (int i = 0; i < num_temporal_layers; i++) { |
| int perc_frame_size_mismatch = |
| 100 * sum_frame_size_mismatch_[i] / num_frames_per_update_[i]; |
| int perc_encoding_rate_mismatch = |
| 100 * fabs(encoding_bitrate_[i] - bitrate_layer_[i]) / |
| bitrate_layer_[i]; |
| printf( |
| " Temporal layer #%d:\n" |
| " Target layer bitrate : %f\n" |
| " Layer frame rate : %f\n" |
| " Layer per frame bandwidth : %f\n" |
| " Layer encoding bitrate : %f\n" |
| " Layer percent frame size mismatch : %d\n" |
| " Layer percent encoding rate mismatch: %d\n" |
| " # frames processed per layer : %d\n", |
| i, bitrate_layer_[i], framerate_layer_[i], per_frame_bandwidth_[i], |
| encoding_bitrate_[i], perc_frame_size_mismatch, |
| perc_encoding_rate_mismatch, num_frames_per_update_[i]); |
| if (rc_threshold) { |
| EXPECT_LE(perc_frame_size_mismatch, |
| rc_threshold->max_delta_frame_size_mismatch); |
| EXPECT_LE(perc_encoding_rate_mismatch, |
| rc_threshold->max_encoding_rate_mismatch); |
| } |
| } |
| printf("\n"); |
| |
| if (rc_threshold) { |
| EXPECT_LE(num_frames_to_hit_target_, rc_threshold->max_time_hit_target); |
| EXPECT_LE(num_dropped_frames[rate_update_index], |
| rc_threshold->max_num_dropped_frames); |
| EXPECT_EQ(rc_threshold->num_spatial_resizes, |
| num_resize_actions[rate_update_index]); |
| EXPECT_EQ(rc_threshold->num_key_frames, num_key_frames_); |
| } |
| } |
| |
| // Temporal layer index corresponding to frame number, for up to 3 layers. |
| int VideoProcessorIntegrationTest::TemporalLayerIndexForFrame( |
| int frame_number) const { |
| const int num_temporal_layers = |
| NumberOfTemporalLayers(config_.codec_settings); |
| int tl_idx = -1; |
| switch (num_temporal_layers) { |
| case 1: |
| tl_idx = 0; |
| break; |
| case 2: |
| // temporal layer 0: 0 2 4 ... |
| // temporal layer 1: 1 3 |
| tl_idx = (frame_number % 2 == 0) ? 0 : 1; |
| break; |
| case 3: |
| // temporal layer 0: 0 4 8 ... |
| // temporal layer 1: 2 6 |
| // temporal layer 2: 1 3 5 7 |
| if (frame_number % 4 == 0) { |
| tl_idx = 0; |
| } else if ((frame_number + 2) % 4 == 0) { |
| tl_idx = 1; |
| } else if ((frame_number + 1) % 2 == 0) { |
| tl_idx = 2; |
| } |
| break; |
| default: |
| RTC_NOTREACHED(); |
| break; |
| } |
| return tl_idx; |
| } |
| |
| // Reset quantities before each encoder rate update. |
| void VideoProcessorIntegrationTest::ResetRateControlMetrics( |
| int rate_update_index, |
| const RateProfile& rate_profile) { |
| // Set new rates. |
| bitrate_kbps_ = rate_profile.target_bit_rate[rate_update_index]; |
| framerate_ = rate_profile.input_frame_rate[rate_update_index]; |
| const int num_temporal_layers = |
| NumberOfTemporalLayers(config_.codec_settings); |
| RTC_DCHECK_LE(num_temporal_layers, kMaxNumTemporalLayers); |
| for (int i = 0; i < num_temporal_layers; i++) { |
| float bit_rate_ratio = kVp8LayerRateAlloction[num_temporal_layers - 1][i]; |
| if (i > 0) { |
| float bit_rate_delta_ratio = |
| kVp8LayerRateAlloction[num_temporal_layers - 1][i] - |
| kVp8LayerRateAlloction[num_temporal_layers - 1][i - 1]; |
| bitrate_layer_[i] = bitrate_kbps_ * bit_rate_delta_ratio; |
| } else { |
| bitrate_layer_[i] = bitrate_kbps_ * bit_rate_ratio; |
| } |
| framerate_layer_[i] = |
| framerate_ / static_cast<float>(1 << (num_temporal_layers - 1)); |
| } |
| if (num_temporal_layers == 3) { |
| framerate_layer_[2] = framerate_ / 2.0f; |
| } |
| if (rate_update_index == 0) { |
| target_size_key_frame_initial_ = |
| 0.5 * kInitialBufferSize * bitrate_layer_[0]; |
| } |
| |
| // Reset rate control metrics. |
| for (int i = 0; i < num_temporal_layers; i++) { |
| num_frames_per_update_[i] = 0; |
| sum_frame_size_mismatch_[i] = 0.0f; |
| sum_encoded_frame_size_[i] = 0.0f; |
| encoding_bitrate_[i] = 0.0f; |
| // Update layer per-frame-bandwidth. |
| per_frame_bandwidth_[i] = static_cast<float>(bitrate_layer_[i]) / |
| static_cast<float>(framerate_layer_[i]); |
| } |
| // Set maximum size of key frames, following setting in the VP8 wrapper. |
| float max_key_size = kScaleKeyFrameSize * kOptimalBufferSize * framerate_; |
| // We don't know exact target size of the key frames (except for first one), |
| // but the minimum in libvpx is ~|3 * per_frame_bandwidth| and maximum is |
| // set by |max_key_size_ * per_frame_bandwidth|. Take middle point/average |
| // as reference for mismatch. Note key frames always correspond to base |
| // layer frame in this test. |
| target_size_key_frame_ = 0.5 * (3 + max_key_size) * per_frame_bandwidth_[0]; |
| num_frames_total_ = 0; |
| sum_encoded_frame_size_total_ = 0.0f; |
| encoding_bitrate_total_ = 0.0f; |
| perc_encoding_rate_mismatch_ = 0.0f; |
| num_frames_to_hit_target_ = |
| rate_profile.frame_index_rate_update[rate_update_index + 1]; |
| encoding_rate_within_target_ = false; |
| sum_key_frame_size_mismatch_ = 0.0; |
| num_key_frames_ = 0; |
| } |
| |
| } // namespace test |
| } // namespace webrtc |