blob: 21ae84cdb440d5e78154754f36a993ba15ccee99 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/codecs/test/videoprocessor_integrationtest.h"
#include <utility>
#if defined(WEBRTC_ANDROID)
#include "webrtc/modules/video_coding/codecs/test/android_test_initializer.h"
#include "webrtc/sdk/android/src/jni/androidmediadecoder_jni.h"
#include "webrtc/sdk/android/src/jni/androidmediaencoder_jni.h"
#elif defined(WEBRTC_IOS)
#include "webrtc/modules/video_coding/codecs/test/objc_codec_h264_test.h"
#endif
#include "webrtc/media/engine/internaldecoderfactory.h"
#include "webrtc/media/engine/internalencoderfactory.h"
#include "webrtc/modules/video_coding/codecs/vp8/include/vp8_common_types.h"
#include "webrtc/modules/video_coding/include/video_codec_interface.h"
#include "webrtc/modules/video_coding/include/video_coding.h"
#include "webrtc/rtc_base/checks.h"
#include "webrtc/rtc_base/event.h"
#include "webrtc/rtc_base/file.h"
#include "webrtc/rtc_base/logging.h"
#include "webrtc/rtc_base/ptr_util.h"
#include "webrtc/system_wrappers/include/sleep.h"
#include "webrtc/test/testsupport/fileutils.h"
#include "webrtc/test/testsupport/metrics/video_metrics.h"
#include "webrtc/test/video_codec_settings.h"
namespace webrtc {
namespace test {
namespace {
const int kPercTargetvsActualMismatch = 20;
const int kBaseKeyFrameInterval = 3000;
// Parameters from VP8 wrapper, which control target size of key frames.
const float kInitialBufferSize = 0.5f;
const float kOptimalBufferSize = 0.6f;
const float kScaleKeyFrameSize = 0.5f;
void VerifyQuality(const QualityMetricsResult& psnr_result,
const QualityMetricsResult& ssim_result,
const QualityThresholds& quality_thresholds) {
EXPECT_GT(psnr_result.average, quality_thresholds.min_avg_psnr);
EXPECT_GT(psnr_result.min, quality_thresholds.min_min_psnr);
EXPECT_GT(ssim_result.average, quality_thresholds.min_avg_ssim);
EXPECT_GT(ssim_result.min, quality_thresholds.min_min_ssim);
}
int NumberOfTemporalLayers(const VideoCodec& codec_settings) {
if (codec_settings.codecType == kVideoCodecVP8) {
return codec_settings.VP8().numberOfTemporalLayers;
} else if (codec_settings.codecType == kVideoCodecVP9) {
return codec_settings.VP9().numberOfTemporalLayers;
} else {
return 1;
}
}
} // namespace
VideoProcessorIntegrationTest::VideoProcessorIntegrationTest() {
#if defined(WEBRTC_VIDEOPROCESSOR_INTEGRATIONTEST_HW_CODECS_ENABLED) && \
defined(WEBRTC_ANDROID)
InitializeAndroidObjects();
#endif
}
VideoProcessorIntegrationTest::~VideoProcessorIntegrationTest() = default;
void VideoProcessorIntegrationTest::SetCodecSettings(TestConfig* config,
VideoCodecType codec_type,
int num_temporal_layers,
bool error_concealment_on,
bool denoising_on,
bool frame_dropper_on,
bool spatial_resize_on,
bool resilience_on,
int width,
int height) {
webrtc::test::CodecSettings(codec_type, &config->codec_settings);
config->codec_settings.width = width;
config->codec_settings.height = height;
switch (config->codec_settings.codecType) {
case kVideoCodecVP8:
config->codec_settings.VP8()->resilience =
resilience_on ? kResilientStream : kResilienceOff;
config->codec_settings.VP8()->numberOfTemporalLayers =
num_temporal_layers;
config->codec_settings.VP8()->denoisingOn = denoising_on;
config->codec_settings.VP8()->errorConcealmentOn = error_concealment_on;
config->codec_settings.VP8()->automaticResizeOn = spatial_resize_on;
config->codec_settings.VP8()->frameDroppingOn = frame_dropper_on;
config->codec_settings.VP8()->keyFrameInterval = kBaseKeyFrameInterval;
break;
case kVideoCodecVP9:
config->codec_settings.VP9()->resilienceOn = resilience_on;
config->codec_settings.VP9()->numberOfTemporalLayers =
num_temporal_layers;
config->codec_settings.VP9()->denoisingOn = denoising_on;
config->codec_settings.VP9()->frameDroppingOn = frame_dropper_on;
config->codec_settings.VP9()->keyFrameInterval = kBaseKeyFrameInterval;
config->codec_settings.VP9()->automaticResizeOn = spatial_resize_on;
break;
case kVideoCodecH264:
config->codec_settings.H264()->frameDroppingOn = frame_dropper_on;
config->codec_settings.H264()->keyFrameInterval = kBaseKeyFrameInterval;
break;
default:
RTC_NOTREACHED();
break;
}
config->frame_length_in_bytes =
CalcBufferSize(VideoType::kI420, width, height);
}
void VideoProcessorIntegrationTest::SetRateProfile(
RateProfile* rate_profile,
int rate_update_index,
int bitrate_kbps,
int framerate_fps,
int frame_index_rate_update) {
rate_profile->target_bit_rate[rate_update_index] = bitrate_kbps;
rate_profile->input_frame_rate[rate_update_index] = framerate_fps;
rate_profile->frame_index_rate_update[rate_update_index] =
frame_index_rate_update;
}
void VideoProcessorIntegrationTest::AddRateControlThresholds(
int max_num_dropped_frames,
int max_key_frame_size_mismatch,
int max_delta_frame_size_mismatch,
int max_encoding_rate_mismatch,
int max_time_hit_target,
int num_spatial_resizes,
int num_key_frames,
std::vector<RateControlThresholds>* rc_thresholds) {
RTC_DCHECK(rc_thresholds);
rc_thresholds->emplace_back();
RateControlThresholds* rc_threshold = &rc_thresholds->back();
rc_threshold->max_num_dropped_frames = max_num_dropped_frames;
rc_threshold->max_key_frame_size_mismatch = max_key_frame_size_mismatch;
rc_threshold->max_delta_frame_size_mismatch = max_delta_frame_size_mismatch;
rc_threshold->max_encoding_rate_mismatch = max_encoding_rate_mismatch;
rc_threshold->max_time_hit_target = max_time_hit_target;
rc_threshold->num_spatial_resizes = num_spatial_resizes;
rc_threshold->num_key_frames = num_key_frames;
}
// Processes all frames in the clip and verifies the result.
void VideoProcessorIntegrationTest::ProcessFramesAndMaybeVerify(
const RateProfile& rate_profile,
const std::vector<RateControlThresholds>* rc_thresholds,
const QualityThresholds* quality_thresholds,
const VisualizationParams* visualization_params) {
// The Android HW codec needs to be run on a task queue, so we simply always
// run the test on a task queue.
rtc::TaskQueue task_queue("VidProc TQ");
rtc::Event sync_event(false, false);
SetUpAndInitObjects(&task_queue, rate_profile.target_bit_rate[0],
rate_profile.input_frame_rate[0], visualization_params);
// Set initial rates.
int rate_update_index = 0;
task_queue.PostTask([this, &rate_profile, rate_update_index] {
processor_->SetRates(rate_profile.target_bit_rate[rate_update_index],
rate_profile.input_frame_rate[rate_update_index]);
});
// Process all frames.
int frame_number = 0;
const int num_frames = rate_profile.num_frames;
RTC_DCHECK_GE(num_frames, 1);
while (frame_number < num_frames) {
// In order to not overwhelm the OpenMAX buffers in the Android
// MediaCodec API, we roughly pace the frames here. The downside
// of this is that the encode run will be done in real-time.
// TODO(brandtr): Investigate if this is needed on iOS.
if (config_.hw_codec) {
SleepMs(rtc::kNumMillisecsPerSec /
rate_profile.input_frame_rate[rate_update_index]);
}
task_queue.PostTask(
[this, frame_number] { processor_->ProcessFrame(frame_number); });
++frame_number;
if (frame_number ==
rate_profile.frame_index_rate_update[rate_update_index + 1]) {
++rate_update_index;
task_queue.PostTask([this, &rate_profile, rate_update_index] {
processor_->SetRates(rate_profile.target_bit_rate[rate_update_index],
rate_profile.input_frame_rate[rate_update_index]);
});
}
}
// Give the VideoProcessor pipeline some time to process the last frame,
// and then release the codecs.
if (config_.hw_codec) {
SleepMs(1 * rtc::kNumMillisecsPerSec);
}
ReleaseAndCloseObjects(&task_queue);
// Calculate and print rate control statistics.
rate_update_index = 0;
frame_number = 0;
ResetRateControlMetrics(rate_update_index, rate_profile);
std::vector<int> num_dropped_frames;
std::vector<int> num_resize_actions;
sync_event.Reset();
task_queue.PostTask(
[this, &num_dropped_frames, &num_resize_actions, &sync_event]() {
num_dropped_frames = processor_->NumberDroppedFramesPerRateUpdate();
num_resize_actions = processor_->NumberSpatialResizesPerRateUpdate();
sync_event.Set();
});
sync_event.Wait(rtc::Event::kForever);
while (frame_number < num_frames) {
UpdateRateControlMetrics(frame_number);
++frame_number;
if (frame_number ==
rate_profile.frame_index_rate_update[rate_update_index + 1]) {
PrintAndMaybeVerifyRateControlMetrics(rate_update_index, rc_thresholds,
num_dropped_frames,
num_resize_actions);
++rate_update_index;
ResetRateControlMetrics(rate_update_index, rate_profile);
}
}
PrintAndMaybeVerifyRateControlMetrics(rate_update_index, rc_thresholds,
num_dropped_frames, num_resize_actions);
// Calculate and print other statistics.
EXPECT_EQ(num_frames, static_cast<int>(stats_.stats_.size()));
stats_.PrintSummary();
// Calculate and print image quality statistics.
// TODO(marpan): Should compute these quality metrics per SetRates update.
QualityMetricsResult psnr_result, ssim_result;
EXPECT_EQ(0, I420MetricsFromFiles(config_.input_filename.c_str(),
config_.output_filename.c_str(),
config_.codec_settings.width,
config_.codec_settings.height, &psnr_result,
&ssim_result));
if (quality_thresholds) {
VerifyQuality(psnr_result, ssim_result, *quality_thresholds);
}
printf("PSNR avg: %f, min: %f\nSSIM avg: %f, min: %f\n", psnr_result.average,
psnr_result.min, ssim_result.average, ssim_result.min);
printf("\n");
// Remove analysis file.
if (remove(config_.output_filename.c_str()) < 0) {
fprintf(stderr, "Failed to remove temporary file!\n");
}
}
void VideoProcessorIntegrationTest::CreateEncoderAndDecoder() {
if (config_.hw_codec) {
#if defined(WEBRTC_VIDEOPROCESSOR_INTEGRATIONTEST_HW_CODECS_ENABLED)
#if defined(WEBRTC_ANDROID)
encoder_factory_.reset(new jni::MediaCodecVideoEncoderFactory());
decoder_factory_.reset(new jni::MediaCodecVideoDecoderFactory());
#elif defined(WEBRTC_IOS)
EXPECT_EQ(kVideoCodecH264, config_.codec_settings.codecType)
<< "iOS HW codecs only support H264.";
encoder_factory_ = CreateObjCEncoderFactory();
decoder_factory_ = CreateObjCDecoderFactory();
#else
RTC_NOTREACHED() << "Only support HW codecs on Android and iOS.";
#endif
#endif // WEBRTC_VIDEOPROCESSOR_INTEGRATIONTEST_HW_CODECS_ENABLED
} else {
// SW codecs.
encoder_factory_.reset(new cricket::InternalEncoderFactory());
decoder_factory_.reset(new cricket::InternalDecoderFactory());
}
switch (config_.codec_settings.codecType) {
case kVideoCodecVP8:
encoder_ = encoder_factory_->CreateVideoEncoder(
cricket::VideoCodec(cricket::kVp8CodecName));
decoder_ = decoder_factory_->CreateVideoDecoder(kVideoCodecVP8);
break;
case kVideoCodecVP9:
encoder_ = encoder_factory_->CreateVideoEncoder(
cricket::VideoCodec(cricket::kVp9CodecName));
decoder_ = decoder_factory_->CreateVideoDecoder(kVideoCodecVP9);
break;
case kVideoCodecH264:
// TODO(brandtr): Generalize so that we support multiple profiles here.
encoder_ = encoder_factory_->CreateVideoEncoder(
cricket::VideoCodec(cricket::kH264CodecName));
decoder_ = decoder_factory_->CreateVideoDecoder(kVideoCodecH264);
break;
default:
RTC_NOTREACHED();
break;
}
EXPECT_TRUE(encoder_) << "Encoder not successfully created.";
EXPECT_TRUE(decoder_) << "Decoder not successfully created.";
}
void VideoProcessorIntegrationTest::DestroyEncoderAndDecoder() {
encoder_factory_->DestroyVideoEncoder(encoder_);
decoder_factory_->DestroyVideoDecoder(decoder_);
}
void VideoProcessorIntegrationTest::SetUpAndInitObjects(
rtc::TaskQueue* task_queue,
const int initial_bitrate_kbps,
const int initial_framerate_fps,
const VisualizationParams* visualization_params) {
CreateEncoderAndDecoder();
// Create file objects for quality analysis.
analysis_frame_reader_.reset(new YuvFrameReaderImpl(
config_.input_filename, config_.codec_settings.width,
config_.codec_settings.height));
analysis_frame_writer_.reset(new YuvFrameWriterImpl(
config_.output_filename, config_.codec_settings.width,
config_.codec_settings.height));
EXPECT_TRUE(analysis_frame_reader_->Init());
EXPECT_TRUE(analysis_frame_writer_->Init());
if (visualization_params) {
const std::string codec_name =
CodecTypeToPayloadString(config_.codec_settings.codecType);
const std::string implementation_type = config_.hw_codec ? "hw" : "sw";
// clang-format off
const std::string output_filename_base =
OutputPath() + config_.filename + "-" +
codec_name + "-" + implementation_type + "-" +
std::to_string(initial_bitrate_kbps);
// clang-format on
if (visualization_params->save_encoded_ivf) {
rtc::File post_encode_file =
rtc::File::Create(output_filename_base + ".ivf");
encoded_frame_writer_ =
IvfFileWriter::Wrap(std::move(post_encode_file), 0);
}
if (visualization_params->save_decoded_y4m) {
decoded_frame_writer_.reset(new Y4mFrameWriterImpl(
output_filename_base + ".y4m", config_.codec_settings.width,
config_.codec_settings.height, initial_framerate_fps));
EXPECT_TRUE(decoded_frame_writer_->Init());
}
}
packet_manipulator_.reset(new PacketManipulatorImpl(
&packet_reader_, config_.networking_config, config_.verbose));
config_.codec_settings.minBitrate = 0;
config_.codec_settings.startBitrate = initial_bitrate_kbps;
config_.codec_settings.maxFramerate = initial_framerate_fps;
rtc::Event sync_event(false, false);
task_queue->PostTask([this, &sync_event]() {
processor_ = rtc::MakeUnique<VideoProcessor>(
encoder_, decoder_, analysis_frame_reader_.get(),
analysis_frame_writer_.get(), packet_manipulator_.get(), config_,
&stats_, encoded_frame_writer_.get(), decoded_frame_writer_.get());
processor_->Init();
sync_event.Set();
});
sync_event.Wait(rtc::Event::kForever);
}
void VideoProcessorIntegrationTest::ReleaseAndCloseObjects(
rtc::TaskQueue* task_queue) {
rtc::Event sync_event(false, false);
task_queue->PostTask([this, &sync_event]() {
processor_->Release();
sync_event.Set();
});
sync_event.Wait(rtc::Event::kForever);
// The VideoProcessor must be ::Release()'d before we destroy the codecs.
DestroyEncoderAndDecoder();
// Close the analysis files before we use them for SSIM/PSNR calculations.
analysis_frame_reader_->Close();
analysis_frame_writer_->Close();
// Close visualization files.
if (encoded_frame_writer_) {
EXPECT_TRUE(encoded_frame_writer_->Close());
}
if (decoded_frame_writer_) {
decoded_frame_writer_->Close();
}
}
// For every encoded frame, update the rate control metrics.
void VideoProcessorIntegrationTest::UpdateRateControlMetrics(int frame_number) {
RTC_CHECK_GE(frame_number, 0);
const int tl_idx = TemporalLayerIndexForFrame(frame_number);
++num_frames_per_update_[tl_idx];
++num_frames_total_;
FrameType frame_type = stats_.stats_[frame_number].frame_type;
float encoded_size_kbits =
stats_.stats_[frame_number].encoded_frame_length_in_bytes * 8.0f /
1000.0f;
// Update layer data.
// Update rate mismatch relative to per-frame bandwidth for delta frames.
if (frame_type == kVideoFrameDelta) {
// TODO(marpan): Should we count dropped (zero size) frames in mismatch?
sum_frame_size_mismatch_[tl_idx] +=
fabs(encoded_size_kbits - per_frame_bandwidth_[tl_idx]) /
per_frame_bandwidth_[tl_idx];
} else {
float target_size = (frame_number == 0) ? target_size_key_frame_initial_
: target_size_key_frame_;
sum_key_frame_size_mismatch_ +=
fabs(encoded_size_kbits - target_size) / target_size;
num_key_frames_ += 1;
}
sum_encoded_frame_size_[tl_idx] += encoded_size_kbits;
// Encoding bit rate per temporal layer: from the start of the update/run
// to the current frame.
encoding_bitrate_[tl_idx] = sum_encoded_frame_size_[tl_idx] *
framerate_layer_[tl_idx] /
num_frames_per_update_[tl_idx];
// Total encoding rate: from the start of the update/run to current frame.
sum_encoded_frame_size_total_ += encoded_size_kbits;
encoding_bitrate_total_ =
sum_encoded_frame_size_total_ * framerate_ / num_frames_total_;
perc_encoding_rate_mismatch_ =
100 * fabs(encoding_bitrate_total_ - bitrate_kbps_) / bitrate_kbps_;
if (perc_encoding_rate_mismatch_ < kPercTargetvsActualMismatch &&
!encoding_rate_within_target_) {
num_frames_to_hit_target_ = num_frames_total_;
encoding_rate_within_target_ = true;
}
}
// Verify expected behavior of rate control and print out data.
void VideoProcessorIntegrationTest::PrintAndMaybeVerifyRateControlMetrics(
int rate_update_index,
const std::vector<RateControlThresholds>* rc_thresholds,
const std::vector<int>& num_dropped_frames,
const std::vector<int>& num_resize_actions) {
printf(
"Rate update #%d:\n"
" Target bitrate : %d\n"
" Encoded bitrate : %f\n"
" Frame rate : %d\n",
rate_update_index, bitrate_kbps_, encoding_bitrate_total_, framerate_);
printf(
" # processed frames : %d\n"
" # frames to convergence: %d\n"
" # dropped frames : %d\n"
" # spatial resizes : %d\n",
num_frames_total_, num_frames_to_hit_target_,
num_dropped_frames[rate_update_index],
num_resize_actions[rate_update_index]);
const RateControlThresholds* rc_threshold = nullptr;
if (rc_thresholds) {
rc_threshold = &(*rc_thresholds)[rate_update_index];
EXPECT_LE(perc_encoding_rate_mismatch_,
rc_threshold->max_encoding_rate_mismatch);
}
if (num_key_frames_ > 0) {
int perc_key_frame_size_mismatch =
100 * sum_key_frame_size_mismatch_ / num_key_frames_;
printf(
" # key frames : %d\n"
" Key frame rate mismatch: %d\n",
num_key_frames_, perc_key_frame_size_mismatch);
if (rc_threshold) {
EXPECT_LE(perc_key_frame_size_mismatch,
rc_threshold->max_key_frame_size_mismatch);
}
}
const int num_temporal_layers =
NumberOfTemporalLayers(config_.codec_settings);
for (int i = 0; i < num_temporal_layers; i++) {
int perc_frame_size_mismatch =
100 * sum_frame_size_mismatch_[i] / num_frames_per_update_[i];
int perc_encoding_rate_mismatch =
100 * fabs(encoding_bitrate_[i] - bitrate_layer_[i]) /
bitrate_layer_[i];
printf(
" Temporal layer #%d:\n"
" Target layer bitrate : %f\n"
" Layer frame rate : %f\n"
" Layer per frame bandwidth : %f\n"
" Layer encoding bitrate : %f\n"
" Layer percent frame size mismatch : %d\n"
" Layer percent encoding rate mismatch: %d\n"
" # frames processed per layer : %d\n",
i, bitrate_layer_[i], framerate_layer_[i], per_frame_bandwidth_[i],
encoding_bitrate_[i], perc_frame_size_mismatch,
perc_encoding_rate_mismatch, num_frames_per_update_[i]);
if (rc_threshold) {
EXPECT_LE(perc_frame_size_mismatch,
rc_threshold->max_delta_frame_size_mismatch);
EXPECT_LE(perc_encoding_rate_mismatch,
rc_threshold->max_encoding_rate_mismatch);
}
}
printf("\n");
if (rc_threshold) {
EXPECT_LE(num_frames_to_hit_target_, rc_threshold->max_time_hit_target);
EXPECT_LE(num_dropped_frames[rate_update_index],
rc_threshold->max_num_dropped_frames);
EXPECT_EQ(rc_threshold->num_spatial_resizes,
num_resize_actions[rate_update_index]);
EXPECT_EQ(rc_threshold->num_key_frames, num_key_frames_);
}
}
// Temporal layer index corresponding to frame number, for up to 3 layers.
int VideoProcessorIntegrationTest::TemporalLayerIndexForFrame(
int frame_number) const {
const int num_temporal_layers =
NumberOfTemporalLayers(config_.codec_settings);
int tl_idx = -1;
switch (num_temporal_layers) {
case 1:
tl_idx = 0;
break;
case 2:
// temporal layer 0: 0 2 4 ...
// temporal layer 1: 1 3
tl_idx = (frame_number % 2 == 0) ? 0 : 1;
break;
case 3:
// temporal layer 0: 0 4 8 ...
// temporal layer 1: 2 6
// temporal layer 2: 1 3 5 7
if (frame_number % 4 == 0) {
tl_idx = 0;
} else if ((frame_number + 2) % 4 == 0) {
tl_idx = 1;
} else if ((frame_number + 1) % 2 == 0) {
tl_idx = 2;
}
break;
default:
RTC_NOTREACHED();
break;
}
return tl_idx;
}
// Reset quantities before each encoder rate update.
void VideoProcessorIntegrationTest::ResetRateControlMetrics(
int rate_update_index,
const RateProfile& rate_profile) {
// Set new rates.
bitrate_kbps_ = rate_profile.target_bit_rate[rate_update_index];
framerate_ = rate_profile.input_frame_rate[rate_update_index];
const int num_temporal_layers =
NumberOfTemporalLayers(config_.codec_settings);
RTC_DCHECK_LE(num_temporal_layers, kMaxNumTemporalLayers);
for (int i = 0; i < num_temporal_layers; i++) {
float bit_rate_ratio = kVp8LayerRateAlloction[num_temporal_layers - 1][i];
if (i > 0) {
float bit_rate_delta_ratio =
kVp8LayerRateAlloction[num_temporal_layers - 1][i] -
kVp8LayerRateAlloction[num_temporal_layers - 1][i - 1];
bitrate_layer_[i] = bitrate_kbps_ * bit_rate_delta_ratio;
} else {
bitrate_layer_[i] = bitrate_kbps_ * bit_rate_ratio;
}
framerate_layer_[i] =
framerate_ / static_cast<float>(1 << (num_temporal_layers - 1));
}
if (num_temporal_layers == 3) {
framerate_layer_[2] = framerate_ / 2.0f;
}
if (rate_update_index == 0) {
target_size_key_frame_initial_ =
0.5 * kInitialBufferSize * bitrate_layer_[0];
}
// Reset rate control metrics.
for (int i = 0; i < num_temporal_layers; i++) {
num_frames_per_update_[i] = 0;
sum_frame_size_mismatch_[i] = 0.0f;
sum_encoded_frame_size_[i] = 0.0f;
encoding_bitrate_[i] = 0.0f;
// Update layer per-frame-bandwidth.
per_frame_bandwidth_[i] = static_cast<float>(bitrate_layer_[i]) /
static_cast<float>(framerate_layer_[i]);
}
// Set maximum size of key frames, following setting in the VP8 wrapper.
float max_key_size = kScaleKeyFrameSize * kOptimalBufferSize * framerate_;
// We don't know exact target size of the key frames (except for first one),
// but the minimum in libvpx is ~|3 * per_frame_bandwidth| and maximum is
// set by |max_key_size_ * per_frame_bandwidth|. Take middle point/average
// as reference for mismatch. Note key frames always correspond to base
// layer frame in this test.
target_size_key_frame_ = 0.5 * (3 + max_key_size) * per_frame_bandwidth_[0];
num_frames_total_ = 0;
sum_encoded_frame_size_total_ = 0.0f;
encoding_bitrate_total_ = 0.0f;
perc_encoding_rate_mismatch_ = 0.0f;
num_frames_to_hit_target_ =
rate_profile.frame_index_rate_update[rate_update_index + 1];
encoding_rate_within_target_ = false;
sum_key_frame_size_mismatch_ = 0.0;
num_key_frames_ = 0;
}
} // namespace test
} // namespace webrtc