This doc covers implementation details of the recipe engine and its processes. Read this if you want to understand/modify how the recipes as a system work. For general recipe developement, please see user_guide.md.
All recipe engine subcommands live in the commands folder. The __init__.py
file here contains the entrypoint for all subcommand parsing parse_and_run
which is invoked from main.py.
The commands module contains (as submodules) all of the subcommands that the recipe engine supports. The protocol is pretty simple:
The subcommand lives in a submodule (either directory or .py file).
Each submodule has a add_arguments(parser)
function (for directories, this is expected to be in the __init__.py
file).
Each submodule may also define an optional __cmd_priority__
field. This should be an integer which will be used to rank commands (e.g. so that ‘run’ and ‘test’ can preceed all other subcommands). Commands will be ordered first by cmd_priority (lower values sort earlier) and then alphabetically. This is currently used to put run
and test
as the topmost arguments in the recipes.py
help output.
The add_arguments
function takes an argparse parser, and adds flags to it. The parser will be created:
__doc__
to generate both the description and ‘help’ for the parser (help will be the first paragraph of __doc__
).In addition to adding flags, the function must also call:
parser.set_defaults( postprocess_func=function(error, args), # optional func=function(args)) # required
Where the ‘args’ parameter is the parsed CLI arguments and ‘error’ is the function to call if the preconditions for the subcommand aren't met.
postprocess_func should do any post-CLI checks and call error(msg)
if the checks don‘t pass. Most subcommands don’t need this, but it's a nice way to verify preconditions for the command.
func executes the actual subcommand.
The reason for this structure is so that the actual func
can do lazy importing; this is necessary if the subcommand requires protobufs to operate correctly (which are only available after the CLI has successfully parsed).
All commands have args.recipe_deps
, which is the resolved RecipeDeps instance to use.
This section talks about how the recipe engine gets from the the recipes.py command invocation to the point where it begins executing the recipe.
Recipes have a bit of an interesting multi-step loading process, though it has gotten simpler over the years.
Every recipe repo has at least two things:
recipes.py
script (which is a literal copy of recipes.py).recipes.cfg
config file located at //infra/config/recipes.cfg
The recipes.cfg contains a field recipes_path
(aka $recipes_path
for this doc) which is a path inside the repo of where the following can exist:
recipes
folder - contains entrypoint scripts (recipes) for the repo.recipe_modules
folder - contains modules which may be depended on (used by) both recipe scripts as well as other modules (in this repo and any other repos which depend on it).Additionally, recipes.cfg
describes dependent repos with a git URL, commit and fetch ref.
When a dev runs recipes.py
in their repo (their repo‘s copy of recipes.py), it will find and parse the repo’s recipes.cfg
file, and identify the version of the recipe_engine
repo that the repo currently depends on.
It will then bootstrap (with git) a clone of the recipe engine repo in the repo‘s $recipes_path/.recipe_deps/recipe_engine
folder, and will invoke main.py in that clone with the --package
argument pointing to the absolute path of the repo’s recipes.cfg file.
Once main.py
is running, it parses the -O
overrides and the --package
flags, and builds a RecipeDeps object which owns the whole $recipes_path/.recipe_deps
folder. Constructing this object includes syncing (with git) all dependencies described in recipes.cfg
. Every dependent repo will be checked out at $recipes_path/.recipe_deps/$dep_repo_name
.
When dependencies are overridden on the command line with the -O
flag, the path specified for the dependency is used verbatim as the root of that dependency repo; no git operations are performed.
This is the mechanism that the recipes.py bundle
command employs to make a hermetic recipe bundle; it generates a recipes
script which passes -O
flags for ALL dependencies, causing the engine to run without doing any git operations.
The RecipeDeps
object also traverses (by scanning the checked-out state) all the dependent repos to find their recipes and recipe_modules. It does not yet read the code inside the files.
At this point, the chosen recipe subcommand's main function (e.g. [run
], [test
], etc.) executes with the loaded RecipeDeps
object, as well as any other command-line flags the subcommand has defined.
Some commands just work on the structure of the RecipeDeps
object, but most will need to actually parse the recipe code from disk (e.g. to run it in one form or another).
The recipe engine facilitates the use of protobufs with builtin protoc
capabilities. This is all implemented in proto_support.py.
recipes.py bundle
generates so that builders don’t need to do any protoc
activity on their startup.Due to the nature of .proto imports, the generated python code (specifically w.r.t. the generated import
lines), and the layout of recipes and modules (specifically, across multiple repos), is a bit more involved than just putting the .proto files in a directory, running ‘protoc’ and calling it a day.
After loading all the repos, the engine gathers and compiles any .proto
files they contain into a single global namespace. The recipe engine looks for proto files in 3 (well, 4) places in a repo:
recipe_modules
directoryrecipe_modules/$repo_name/*
.recipes
directoryrecipes/$repo_name/*
.recipe_engine
directory (only in the actual recipe_engine
repo).recipe_engine/*
.recipe_proto
directory (adjacent to the ‘recipes’ and/or ‘recipe_modules’ directories).recipe_engine
, recipes
or recipe_modules
subdirectories.While the engine gathers all the proto files, it sorts them and generates a checksum of their contents. This is a SHA2 of the following:
RECIPE_PB_VERSION
| NUL
- The version of the recipe engine's compilation algorithm.PROTOC_VERSION
| NUL
- The version of the protobuf library/compiler we're using.repo_name
| NUL
| NUL
- The name of the repo. Then, for every .proto in the repo we hash:relative_path_in_repo
| NUL
relative_path_of_global_destination
| NUL
githash_of_content
| NUL
The githash_of_content
is defined by git's “blob” hashing scheme (but is currently implemented in pure-python).
Once we‘ve gathered all proto files and have computed the checksum, we verify the checksum against .recipe_deps/_pb/PB/csum
. If it’s the same, we conclude that the currently cached protos are the same as what we're about to compile.
If not, we copy all protos to a temporary directory reflecting their expected structure (see remarks about “global namespace” above). This structure is important to allow protoc
to correctly resolve import
lines in proto files, as well as to make the correct python import lines in the generated code.
Once the proto files are in place, we compile them all with protoc
into another tempdir.
We then rewrite and rename all of the generated _pb2
files to change their import lines from:
from path.to.package import blah_pb2 as <unique_id_in_file>
to:
from PB.path.to.package import blah as <unique_id_in_file>
And rename them from *_pb2
to *
. We also generate empty __init__.py
files.
After this, we write csum
, and do a rename-swap of this tempdir to .recipe_deps/_pb/PB
. Finally, we put .recipe_deps/_pb
onto sys.path
.
Modules are loaded by calling the RecipeModule.do_import()
function. This is equivalent in all ways to doing:
from RECIPE_MODULES.repo_name import module_name
For example:
from RECIPE_MODULES.depot_tools import gclient
This import magic is accomplished by installing a PEP302 ‘import hook’ on sys.meta_path
. The hook is implemented in recipe_module_importer.py. Though this sounds scary, it‘s actually the least-scary way to implement the recipe module loading system, since it meshes with the way that python imports are actually meant to be extended. You can read PEP302 for details on how these hooks are meant to work, but the TL;DR is that they are an object with two methods, find_module
and load_module
. The first function is responsible for saying "Yes! I know how to import the module you’re requesting", or “No, I have no idea what that is”. The second function is responsible for actually loading the code for the module and returning the module object.
Our importer behaves specially:
RECIPE_MODULES
- Returns an empty module marked as a ‘package’ (i.e., a module with submodules).RECIPE_MODULES.repo_name
- Verifies that the given project actually exists in RecipeDeps
, then returns an empty module marked as a ‘package’.RECIPE_MODULES.repo_name.module_name
- Verifies that the given module exists in this project, then uses imp.find_module
and imp.load_module
to actually do the loading. These are the bog-standard implementations for loading regular python modules. Additionally, we run a patchup
function on this module before returning it.RECIPE_MODULES.repo_name.module_name....
- All submodules are imported without any alteration using imp.find_module
and imp.load_module
.The “patchup” we do to the recipe module adds a few extra attributes to the loaded module:
NAME
- The short name of the module, e.g. “buildbucket”.MODULE_DIRECTORY
- A recipe Path
object used by the api.resource()
function present on RecipeApi subclasses indirectly (see next item). AFAIK, nothing actually uses this directly, but “it seems like a good idea”.module.__file__
instead.RESOURCE_DIRECTORY
- A recipe Path
object used by the api.resource()
function present on RecipeApi subclasses.module.__file__
instead.REPO_ROOT
- The Path to the root of the repo for this module, used by the api.repo_resource()
method.CONFIG_CTX
- The ConfigContext
instance defined in the module's config.py file (if any).DEPS
- The DEPS list/dictionary defined in the module‘s __init__.py
file (if any). This is populated with () if __init__.py
doesn’t define it.API
- The RecipeApiPlain
subclass found in the api.py file.TEST_API
- The RecipeTestApi
subclass found in the test_api.py file (if any).PROPERTIES
- This finds the PROPERTIES
dict in __init__.py
and preprocesses it to ‘bind’ the property objects with the module name. These bound property objects will be used later when the recipe module is instantiated.These patchup features are probably actually bugs/relics of the way that the module loading system used to work; it would be good to minimize/remove these over time.
Recipe loading is substantially simpler than loading modules. The recipe .py
file is exec‘d with execfile
, and then it’s PROPERTIES dict (if any) is bound the same way as it is for Recipe Modules.
Recipes also have a RETURN_SCHEMA
object which defines the type of data that this recipe returns. This is about 30% of a good idea, and hopefully I can replace it with protobufs before anyone reads this paragraph :).
Now that we know how to load the code for modules and recipes, we need to actually instantiate them. This process starts at the recipe‘s DEPS
description, and walks down the entire DEPS tree, instantiating recipe modules on the way back up (so, they’re instantiated in topological order from bottom to top of the dependency tree).
Instantiation can either be done in ‘API’ mode or ‘TEST_API’ mode. ‘API’ mode is to generate the api
object which is passed to RunSteps
. ‘TEST_API’ mode is to generate the api
object which is passed to GenTests
. Both modes traverse the depedency graph the same way, but ‘API’ mode does a superset of the work (since all RecipeApi
objects have a reference to their test_api
as self.test_api
).
Both RecipeTestApi
and RecipeApiPlain
classes have an m
member injected into them after construction, which contains all of the DEPS'd-in modules as members. So if a DEPS entry looks like:
DEPS = [ "some_repo_name/module", "other_module", ]
Then the api
and test_api
instances will have an ‘m’ member which contains module
and other_module
as members, each of which is an instance of their respective instantiated api
class.
As the loader walks up the tree, each recipe module‘s RecipeTestApi
(if any) subclass is instantiated by calling its __init__
and then injecting it’s m
object.
If the loader is in ‘API’ mode, then the module‘s RecipeApiPlan subclass is also instantiated, using the declared PROPERTIES as arguments to init, along with test_data
, which may be provided if the api
is being used from the recipes.py test
subcommand to provide mock data for the execution of the test. The m
object is injected, and then any _UnresolvedRequirement
objects are injected as well. Finally, after m
has been injected and all _UnresolvedRequirement
objects are injected, the loader calls the instance’s initialize()
method to allow it to do post-dependency initialization.
_UnresolvedRequirement
objects are currently only used to provide limited ‘pinhole’ interfaces into the recipe engine, such as the ability to run a subprocess (step), or get access to the global properties that the recipe was started with, etc. Typically these are only used by a single module somewhere in the recipe_engine
repo; user recipe modules are not expected to use these.This section talks about the code that implements the test command of recipes.py.
As part of the definition of a simulation test, the user can add post-process hooks to filter and/or make assertions on the expectations recorded for the test run. Hooks can be added using either the post_process
or post_check
methods of RecipeTestApi. The code that runs these hooks as well as the implementation of the check
callable passed as the first argument to hooks is located in magic_check_fn.py.
The check
callable passed to post-process hooks is an instance of Checker
. The Checker
class is responsible for recording failed checks, including determining the relevant stack frames to be included in the failure output.
The Checker
is instantiated in post_process
and assigned to a local variable. The local varible is important because the Checker
object uses the presence of itself in the frame locals to define the boundary between engine code and post-process hook code. In the event of a failure, the Checker
iterates over the stack frames, starting from the outermost frame and proceeding towards the current execution point. The first frame where the Checker
appears in the frame locals is the last frame of engine code and the relevant frames begin starting at the next frame and excluding the 2 innermost frames (the __call__
method calls _call_impl
which is where the frame walking takes place.
Failures may also be recorded in the case of a KeyError. KeyErrors are caught in post_process
and the frames to be included in the failure are extracted from the exception info.
Once relevant frames are determined by Checker
or post_process
, Check.create
is called to create a representation of the failure containing processed frames. The frames are converted to CheckFrame
, a representation that holds information about the point in code that the frame refers to without keeping all of the frame locals alive.
Processing a frame involves extracting the filename, line number and function name from the frame and where possible reconstructing the expression being evaluated in that frame. To reconstuct the expression, CheckFrame
maintains a cache that maps filename and line number to AST nodes corresponding to expressions whose definitions end at that line number. The end line is the line that will appear as the line number of a frame executing that expression. The cache is populated by parsing the source code into nodes and then examining the nodes. Nodes that define expressions or simple statements (statements that can‘t have additional nested statements) are added to the cache. Other statements result in nested statements or expressions being added to the queue. When a simple statement or expression is added to the cache, we also walk over all of its nested nodes to find any lambda definitions. Lambda definitions within a larger expression may result in line numbers in an execution frame that doesn’t correspond with the line number of the larger expression, so in order to display code for frames that occur in lambdas we add them to the cache separately.
In the case of the innermost frame, the CheckFrame
also includes information about the values of the variables and expressions relevant for determining the exact nature of the check failure. CheckFrame
has a varmap field that is a dict mapping a string representation for a variable or expression to the value of that variable or expression (e.g. ‘my_variable’ -> ‘foo’). The expression may not be an expression that actually appears in the code if the expression would actually be more useful than the actual expression in the code (e.g. ‘some_dict.keys()’ will appear if the call check('x' in some_dict) fails because the values in
some_dictaren't relevant to whether 'x' is in it). This varmap is constructed by the
_checkTransformerclass, which is a subclass of
ast.NodeTransformer.
ast.NodeTransformer` is an instance of the visitor design pattern containing methods corresponding to each node subclass. These methods can be overridden to modify or replace the nodes in the AST.
_checkTransformer
overrides some of these methods to replace nodes with resolved nodes where possible. Resolved nodes are represented by _resolved
, a custom node subclass that records a string representation and a value for a variable or expression. It also records whether the node is valid. The node would not be valid if the recorded value doesn't correspond to the actual value in the code, which is the case if we replace an expression with an expression more useful for the user (e.g. showing only the keys of a dict when a membership check fails). The node types handled by _checkTransformer
are:
Name
nodes correspond to a variable or constant and have the following fields:id
- string that acts as a key into one of frame locals, frame globals or builtins If id
is one of the constants True
, False
and None
the node is replaced with a resolved node with the name of the constant as the representation and the constant itself as the value. Otherwise, if the name is found in either the frame locals or the frame globals, the node is replaced with a resolved node with id
as the representation and the looked up value as the value.Attribute
nodes correspond to an expression such as x.y
and have the following fields:value
- node corresponding to the expression an attribute is looked up on (x
)attr
- string containing the attribute to look up (y
) If value
refers to a resolved node, then we have been able to resolve the preceding expression and so we replace the node with a resolved node with the value of the lookup.Compare
nodes correspond to an expression performing a series of comparison operations and have the following fields:left
- node corresponding the left-most argument of the comparisonops
- sequence of nodes corresponding to the comparison operatorscmps
- sequence of nodes corresponding to the remaining arguments of the comparison The only change we make to Compare
nodes is to prevent the full display of dictionaries when a membership check is performed; if the expression x in y
fails when y is a dict, we do not actually care about the values of y
, only its keys. If ops
has only a single element that is an instance of either ast.In
or ast.NotIn
and cmps
has only a single element that is a resolved node referring to a dict, then we make a node that replaces the cmps
with a single resolved node with the dict‘s keys as its value. The new resolved node is marked not valid because we wouldn’t expect operations that work against the dict to necessarily work against its keys.Subscript
nodes correspond to an expression such as x[y]
and contains the following fields:value
- node corresponding to the expression being indexed (x
)slice
- node corresponding to the subscript expression (y
), which may be a simple index, a slice or an ellipsis If value
is a valid resolved node and slice
is a simple index (instance of ast.Index
), then we attempt to create a resolved node with the value of the lookup as its value. We don‘t attempt a lookup if the value
is an invalid resolved node because we would expect the lookup to raise an exception or return a different value then the actual code would. In the case that we do perform the lookup, it still may fail (e.g. check('x' in y and y['x'] == 'z')
when ‘x’ is not in y
). If the lookup fails and value
is a dict, then we return a new invalid resolved node with the dict’s keys as its value so that the user has some helpful information about what went wrong.The nodes returned by the transformer are walked to find the resolved nodes and the varmap is populated mapping the resolved nodes' representations to their values that have been rendered in a user-friendly fashion.
Once the recipe is loaded, the running subcommand (i.e. run
, test
, run_build
) selects a StreamEngine and a StepRunner. The StreamEngine is responsible for exporting the state of the running recipe to the outside world, and the StepRunner is responsible for ‘running’ steps.
Once the subcommand has selected the relevant engine and runner, it then hands control off to RecipeEngine.run_steps
, which orchestrates the actual execution of the recipe (namely; running steps, handling errors and updating presentation via the StreamEngine).
The StreamEngine's responsibility is to accept reports about the UI and data export (“output properties”) state of the recipe, and channel them to an appropriate backend service which can render them. The UI backend is the LUCI project called “Milo”, which runs on https://ci.chromium.org.
There are 2 primary implementations of the StreamEngine; one for the old @@@annotation@@@
protocol, and another which directly emits build.proto via logdog.
The entire recipe engine was originally written to support the @@@annotation@@@
protocol, and thus StreamEngine is very heavily informed by this. It assumes that all data is ‘append only’, and structures things as commands to a backend, rather than setting state on a persistent object and assuming that the StreamEngine will worry about state replication to the backend.
The ‘build.proto’ (LUCI) engine maps the command-oriented StreamEngine interface onto a persistent buildbucket.v2.Build
protobuf message, and then replicates the state of this message to the backend via ‘logdog’ (which is LUCI's log streaming service).
Going forward the plan is to completely remove the @@@annotation@@@
engine in favor of the LUCI engine.
The StepRunner's responsibility is to translate between the recipe and “the system”. This includes things like mediating access to the filesystem and actually executing subprocesses for steps. This interface is currently an ad-hoc collection of functions pertaining to the particulars of how recipes work today (i.e. the placeholder
methods returning test data).
*** TODO Give StepRunner a full vfs-style interface; Instead of doing weird mocks in the path module for asserting that files exist, and having placeholder-specific data, the user could manipulate the state of the filesytem in their test and then the placeholders would be implemented against the (virtual) filesystem directly.
There are two implementations of the StepRunner; A “real” implementation and a “simulation” implementation.
The real implementation actually talks to the real filesystem and executes subprocesses when asked for the execution result of steps.
The simulation implementation supplies responses to the RecipeEngine for placeholder test data and step results.
One feature of the StepRunner implementations is that they don‘t raise exceptions; In particular the ‘run’ function should return an ExecutionResult even if the step crashes, doesn’t exist or whatever other terrible condition it may have.
Within a chunk of recipe user code, steps are executed sequentially. When a step runs (i.e. the recipe user code invokes api.step(...)
), a number of things happens:
step_stream
with the StreamEngine so the UI knows about the step.ok_ret
and infra_step
.If an exception is raised during this process it's logged (to $debug
) and then saved while the engine does the final processing.
Currently, when a step has finished execution, its step_stream
is kept open and the step is pushed onto a stack of ActiveStep
s. Depending on the configuration of the step (ok_ret
, infra_step
, etc.) the engine will raise an exeption back into user code. If something broke while running the step (like a bad placeholder, or the user asked to run a non-executable file... you know, the usual stuff), this exception will be re-raised after the engine finalizes the StepData, and sets up the presentation status (likely, “EXCEPTION”).
However, the step remains open until the next step runs!
The step's presentation can be accessed, and modified in a couple ways:
api.step()
api.step.active_result
property.The first one isn't too bad, but the last two are pretty awful. This means that a user of your module function can get access to your step result and: