Recipes

Recipes are a python framework for writing Continuous Integration scripts (i.e. what you might otherwise write as a bash script). Unlike bash scripts, they are meant to:

  • Be testable
  • Be cross-platform
  • Allow code-sharing
  • Be locally runnable
  • Integrate with the LUCI UI (e.g. ci.chromium.org) to display subprocesses as “steps”, and other UI attributes (step color, descriptive text, debugging logs, etc.)
This user guide is a work in progress, and is a revised version of the old_user_guide. Once this guide is fully updated, the old version will be removed.
For more implementation details, please see implementation_details.

Background

Chromium previously used BuildBot for its builds, which stored the definition of a builder's actions as ‘Build Factories’ on the service side, requiring service redeployment (including temporary outages) in order to make changes to them. Additionally the build factories produced all steps-to-be-run at the beginning of the build; there was no easy way to calculate a future step from the results of running an intermediate step. This made it very difficult to iterate on the builds.

We initially introduced a protocol to BuildBot to allow a script running in the build to control the presentation of the build on BuildBot (i.e. telling the service that new steps were running and their status, etc.). For a while a couple sub-teams used bash scripts to execute their builds, manually emitting the signalling protocol interspersed with stdout. This provided the ability to de-couple working on what-the-build-does from the running BuildBot service, allowing changes to the build without redeployment of the service.

Recipes were the evolution of these bash scripts; they are written in python, allow code sharing across repos, have a testing mechanism, etc.

Arguably, recipes have TOO MANY features at present, but we're hard at work removing them where we can, to keep them simple :).

Intro

This README will attempt to bootstrap your understanding of the recipes ecosystem. This includes:

  • Runtime dependencies
  • Initial repo setup
  • The recipes.py command
  • Writing recipes
  • Writing recipe_modules
  • Structured data passing for steps
  • Build UI manipulation
  • Testing recipes and recipe_modules
  • Productionizing a recipe repo
  • Recipe Philosophy

Runtime dependencies

Recipes depend on a couple tools to be in the environment:

  • Python (2.7) - Currently recipes rely on python 2.7.
  • vpython - This is a LUCI tool to manage python VirtualEnvs. Recipes rely on this for the recipe engine runtime dependencies (like the python protobuf libraries, etc.)
  • cipd - This is a LUCI tool to manage binary package distribution.

Additionally, most existing recipes depend on the following:

  • luci-auth - This is a LUCI tool to manage OAuth tokens; on bots it can mint tokens for service accounts installed as part of the Swarming task, and on dev machines it can mint tokens based on locally stored credentials (i.e. run luci-auth login to locally store credentials).

Initial repo setup

A recipe repo has a couple essential requirements:

  • It is a git repo
  • It contains a file called //infra/config/recipes.cfg. For historical reasons, this is a non-configurable path.
  • It contains ‘recipes’, ‘recipe_modules’, and/or ‘recipe_proto’ folders (in the recipes_path folder indicated by recipes.cfg. By default they are located at the base of the repository).
  • It contains a copy of recipes.py in its recipes_path folder.

recipes.cfg

The recipes.cfg file is a JSONPB file, which is defined by the recipes_cfg.proto protobuf file.

Its purpose is to tell the recipe engine about this repo, and indicate any other repos that this repo depends on (including precise dependency pins). All recipe repos will need to depend on the ‘recipe_engine’ repo (the repo containing this user_guide).

As part of this config, the repo needs an id, which should match the LUCI-config project id for the repo; this id will show up when other recipe repos depend on your repo.

Example recipes.cfg.

Recipes folder

The recipes folder contains a collection of python files and subfolders containing python files, as well as subfolders containing JSON ‘expectation’ files. Recipes are named by their file path (minus the .py extension).

A recipe in a subfolder includes that subfolder in its name; so /path/to/recipes/subdir/recipe.py would have the name “subdir/recipe”.

Example recipes folder.

recipe_modules folder

The recipe_modules folder contains subfolders, one per module. Unlike recipes, the module namespace is flat in each repo. A recipe_module is composed of a couple files:

  • __init__.py - Contains the DEPS and PROPERTIES declarations for the recipe_module.
  • api.py - Contains the implementation of the recipe module.
  • test_api.py - Contains the implementation of the recipe module's fakes.

Example recipe_modules folder.

recipe_proto folder

See Working with Protobufs for details on this folder and it's contents.

The recipes.py script

The recipes.py script is the entrypoint to the recipe_engine. Its primary functionality is to clone a copy of the recipe_engine repo (matching the version in your recipes.cfg file), and then invoke the main recipe_engine code with whatever command line you gave it.

This script invokes the recipe engine with vpython, which picks up a python VirtualEnv suitable for the recipe engine (it includes things like py-cryptography and the protobuf library).

The recipes.py command

The recipes.py command is the main entrypoint to your recipe. It has a couple important subcommands that you'll use frequently:

  • run - This command actually executes a single recipe
  • test - This command runs the simulation tests and trains the generated README.recipes.md file as well as simulation expectation files. This also has a ‘debug’ option which is pretty helpful.

Less often-used:

  • autoroll - Automatically updates your recipes.cfg file with newer versions of the dependencies there. This rolls the recipes.cfg version and also runs simulation tests to try to detect the largest ‘trivial’ roll, or the smallest ‘non-trivial’ roll.
  • manual_roll - Updates your recipes.cfg file with the smallest valid roll possible, but doesn‘t do any automated testing. It’s useful for when you need to manually roll recipes (i.e. the automated roll doesn't find a valid trivial or non-trivial roll, due to API changes, etc.)
  • bundle - Extracts all files necessary to run the recipe without making any network requests (i.e. no git repository operations).

And very infrequently used:

  • doc - Shows/generates documentation for the recipes and modules from their python docstrings. However the test train subcommand will generate Markdown automatically from the docstrings, so you don't usually need to invoke this subcommand explicitly.
  • fetch - Explicitly runs the ‘fetch’ phase of the recipe engine (to sync all local git repos to the versions in recipes.cfg). However, this happens implicitly for all subcommands, and the bundle command is a superior way to prepare recipes for offline use.
  • lint - Runs some very simple static analysis on the recipes. This command is mostly invoked automatically from PRESUBMIT scripts so you don't need to run it manually.

It also has a couple tools for analyzing the recipe dependency graph:

  • analyze - Answers questions about the recipe dependency graph (for use in continuous integration scenarios).

Overriding dependencies

If you're developing recipes locally, you may find the need to work on changes in multiple recipe repos simultaneously. You can override a dependency for a recipe repo with the -O option to recipes.py, for any of its subcommands.

For example, you may want to change the behavior of the upstream repo and see how it affects the behavior of the recipes in the dependent repo (which presumably depends on the upstream repo). To do this you would:

$ # Hack on the upstream repo locally to make your change
$ cd /path/to/dependent/repo
$ ./recipes.py -O upstream_id=/path/to/upstream/repo test train
<uses your local upstream repo, regardless of what recipe.cfg specifies>

This works for all dependency repos, and can be specified multiple times to override more than one dependency.

The run command

TODO(iannucci) - Document

The test command

TODO(iannucci) - Document

The autoroll command

TODO(iannucci) - Document

The manual_roll command

Updates your repo's recipes.cfg file with the smallest valid roll possible. This means that for all dependencies your repo has, the smallest number of commits change between the previous value of recipes.cfg and the new value of recipes.cfg.

This will print out the effective changelog to stdout as well, for help in preparing a manual roll CL.

You can run this command repeatedly to find successive roll candidates.

The bundle command

TODO(iannucci) - Document

Writing recipes

A “recipe” is a python script which the recipe engine can run and test. This script:

  • Must have a RunSteps function
  • Must have a GenTests generator
  • May have a DEPS list
  • May have a PROPERTIES declaration

Recipes must exist in one of the following places in a recipe repo:

  • Under the recipes directory
  • Under a recipe_modules/*/examples directory
  • Under a recipe_modules/*/tests directory
  • Under a recipe_modules/*/run directory

Recipes in subfolders of these are also permitted. Recipes in the global recipe directory have a name which is the path of the recipe script relative to the recipe folder containing it. If the recipe is located under a recipe module folder, the name is prepended with the module's name and a colon. For example:

//recipes/something.py                      ->  "something"
//recipes/sub/something.py                  ->  "sub/something"
//recipe_modules/foo/tests/something.py     ->  "foo:tests/something"
//recipe_modules/foo/run/sub/something.py   ->  "foo:run/sub/something"

Here's a simple example recipe:

DEPS = [
  "recipe_engine/step",
]

def RunSteps(api):
  # This runs a single step called "say hello" which executes the `echo`
  # program to print 'hello' to stdout. `echo` is assumed to be resolvable
  # via $PATH here.
  api.step('say hello', ['echo', 'hello'])

def GenTests(api):
  # yields a single test case called 'basic' which has no particular inputs
  # and asserts that the step 'say hello' runs.
  yield (
      api.test('basic')
    + api.post_process(lambda check, steps: check('say hello' in steps))
  )

RunSteps

The RunSteps function has a signature like:

 # PROPERTIES is not declared
 def RunSteps(api):

 # (DEPRECATED) Old style PROPERTIES declaration.
 def RunSteps(api, name, of, properties):

Where api is a python object containing all loaded DEPS (see section on DEPS below), and the properties arguments are loaded from the properties passed in to the recipe when the recipe is started.

The RunSteps function may invoke any recipe module it wants via api (at its most basic, a recipe would run steps via api.step(...) after including ‘recipe_engine/step’ in DEPS).

GenTests

The GenTests function is a generator which yields test cases. Every test case:

  • Has a unique name
  • Specifies input properties for the test
  • Specifies input data for recipe modules
    • e.g. ‘paths which exist’ for the recipe_engine/path module, what OS and architecture the recipe_engine/platform module should simulate, etc.
  • Specifies the behavior of various steps by name (i.e. their return code, the output from placeholders)
  • Assertions about steps which should have run (or should not have run) given those inputs.
  • Filters for the ‘test expectation’ of the test case to omit details from the test expectations which aren't relevant to the test case.

Each test case also produces a test expectation file adjacent to the recipe; the final state of the recipe execution in the form of a listing of the steps that have run. The test expectation files are written to a folder which is generated by replacing the ‘.py’ extension of the recipe script with ‘.expected/’.

DEPS

The DEPS section of the recipe specifies what recipe modules this recipe depends on. The DEPS section has two possible forms, a list and a dict.

As a list, DEPS can specify a module by its fully qualified name, like recipe_engine/step, or its unqualified name (for modules in the same recipe repo as the recipe) like step. The ‘local name’ of an entry is the last token of the fully qualified name, or the whole name for an unqualified name (in this example, the local name for both of these is just ‘step’).

As a dict, DEPS maps from a local name of your choosing to either the fully qualified or unqulaified name of the module. This would allow you to disambiguate between modules which would end up having the same local name. For example {'my_archive': 'archive', 'archive': 'recipe_engine/archive'}.

The recipe engine, when running your recipe, will inject an instance of each DEPS'd recipe module into the api object passed to RunSteps. The instance will be injected with the local name of the dependency. Within a given execution of a recipe module instances behave like singletons; if a recipe and a module both DEPS in the same other module (say ‘tertiary’), there will only be one instance of the ‘tertiary’ module.

PROPERTIES

TODO(iannucci) - Document

Writing recipe_modules

TODO(iannucci) - Document

PROPERTIES

TODO(iannucci) - Document

Accessing recipe_modules as python modules

While recipe modules provide a way to share ‘recipe’ code (via DEPS), they are also regular python modules, and occasionally you may find yourself wishing to directly import some code from a recipe module.

You may do this by importing the module from the special RECIPE_MODULES namespace; This namespace contains all reachable modules (i.e. from repos specified in your recipes.cfg file) sub namespaced by repo_name and module_name. This looks like:

from RECIPE_MODULES.repo_name.module_name import python_module
from RECIPE_MODULES.repo_name.module_name.python_module import Object

etc. Everything past the RECIPE_MODULES.repo_name.module_name bit works exactly like any regular python import statement.

Writing recipe_module config.py

The config subsystem of recipes is very messy and we do not recommend adding additional dependencies on it. However some important modules (like gclient in depot_tools) still use it, and so this documentation section exists.

We‘re looking to introduce native protobuf support as a means of fully deprecating and eventually removing config.py, so this section is very sparse without a “TODO” to document it more. I’ll be adding additional documentation for it as strictly necessary.

Extending config.py

If you need to extend the configurations provided by another recipe module, write your extensions in a file ending with _config.py in your recipe module and then import that other module's “CONFIG_CTX” to add additional named configurations to it (yes, this has very messy implications).

You can import the upstream module's CONFIG_CTX by using the recipe module import syntax. For example, importing from the ‘gclient’ module in ‘depot_tools’ looks like:

from RECIPE_MODULES.depot_tools.gclient import CONFIG_CTX

How recipes execute

TODO(iannucci) - Document

How recipe simulation tests work

TODO(iannucci) - Document

Structured data passing for steps

TODO(iannucci) - Document

Build UI manipulation

TODO(iannucci) - Document

Testing recipes and recipe_modules

TODO(iannucci) - Document

Working with Protobufs.

The recipe engine facilitates the use of protobufs with builtin protoc capabilities.

Due to the nature of .proto imports, the generated python code (specifically w.r.t. the generated import lines), and the layout of recipes and modules (specifically, across multiple repos), is a bit more involved than just putting the .proto files in a directory, running ‘protoc’ and calling it a day.

Where Recipe Engine looks for .proto files

Recipe engine will look for proto files in 3 places in your recipe repo:

  • Mixed among the recipe_modules in your repo
  • Mixed among the recipes in your repo
  • In a recipe_proto directory (adjacent to your ‘recipes’ and/or recipe_modules directories)

For proto files which are only used in the recipe ecosystem, you should put them either in recipes/* or recipe_modules/*. For proto files which originate outside the recipe ecosystem (e.g. their source of truth is some other repo), place them into the recipe_proto directory in an appropriate subdirectory (so that protoc will find them where other protos expect to import them).

recipe_modules

Your recipe modules can have any .proto files they want, in any subdirectory structure that they want (the subdirectories do not need to be python modules, i.e. they are not required to have an __init__.py file). So you could have:

recipe_modules/
  module_A/
    cool.proto
    other.proto
    subdir/
      sub.proto

The ‘package’ line in the protos MUST be in the form of:

package "recipe_modules.repo_name.module_name.path.holding_file";

So if you had .../recipe_modules/foo/path/holding_file/file.proto in the “build” repo, its package must be recipe_modules.build.foo.path.holding_file. Note that this is the traditional way to namespace proto files in the same directory, but that this differs from how the package line for recipes works below.

The proto files are importable in other proto files as e.g.:

import "recipe_modules/repo_name/module_name/path/to/file.proto";

The generated protobuf libraries are importable as e.g.:

import PB.recipe_modules.repo_name.module_name.path.to.file
recipes folder

Your recipes may also define protos. It‘s required that the protos in the recipe folder correspond 1:1 with an actual recipe. The name for this proto file should be the recipe’s name, but with ‘.proto’ instead of ‘.py’. So, you could have:

recipes/
  my_recipe.py
  my_recipe.proto
  subdir/
    sub_recipe.py
    sub_recipe.proto

If you need to have common messages which are shared between recipes, put them under the recipe_modules directory.

The ‘package’ line in the proto MUST be in the form of:

package "recipes.repo_name.path.to.file";

So if you had a proto named .../recipes/path/to/file.proto in the “build” repo, its package must be “recipes.build.path.to.file”.

Note that this includes the proto file name!

This is done because otherwise all (unrelated) recipe protos in the same directory would have to share a namespace, and we'd like to permit common message names like Input and Output on a per-recipe basis instead of RecipeNameInput, etc.

The proto files are importable in other proto files as e.g.:

import "recipes/repo_name/path/to/file.proto";

The generated protobuf libraries are importable as e.g.:

import PB.recipes.repo_name.path.to.file
Special Case recipe_engine protos

The recipe engine repo itself also has some protos defined within it's own recipe_engine folder. These are the proto files here.

The proto files are importable in other proto files as e.g.:

import "recipe_engine/file.proto";

The generated protobuf libraries are importable as e.g.:

import PB.recipe_engine.file
recipe_proto folder

The ‘recipe_proto’ directory can have arbitrary proto files in it from external sources (i.e. from other repos), and organized using that project's folder naming scheme. This is important to allow external proto files to work without modification (due to import lines in proto files; if proto A imports “go.chromium.org/luci/something/something.proto”, then protoc needs to find “something.proto” in the “go.chromium.org/luci/something” subdirectory).

Note that the following top-level folders are reserved under recipe_proto. All of these directories are managed by the recipe engine (as documented above):

  • recipe_engine
  • recipe_modules
  • recipes

These are ALSO reserved proto package namespaces, i.e. it's invalid to have a proto under a recipe_proto folder whose proto package line starts with ‘recipes.’.

It's invalid for two recipe repos to both define protos under their recipe_proto folders with the same path. This will cause proto compilation in the downstream repo to fail. This usually just means that the downstream repo needs to stop including those proto files, since it will be able to import them from the upstream repo which now includes them.

Using generated protos in your recipes / recipe_modules

Once the protos are generated, you can import them anywhere in the recipe ecosystem by doing:

# from recipe_proto/external.example.com/repo_name/proto_name.proto
from PB.external.example.com.repo_name import proto_name

# from recipe_engine/proto_name.proto
from PB.recipe_engine import proto_name

# from repo_name.git//.../recipe_modules/module_name/proto_name.proto
from PB.recipe_modules.repo_name.module_name import proto_name

# from repo_name.git//.../recipes/recipe_name.proto
from PB.recipes.repo_name import recipe_name

Productionizing

TODO(iannucci) - Document

Bundling

TODO(iannucci) - Document

Rolling

TODO(iannucci) - Document

Recipe Philosophy

TODO(iannucci) - Document

  • Recipes are glorified shell scripts
  • Recipes should be functions (small set of documented inputs and outputs).
  • Recipe inputs should have predictable effects on the behavior of the Recipe.
  • Structured data communication to/from steps
  • When to put something in a helper script or directly in the recipe

Glossary

recipe repo -- A git repository with an ‘infra/config/recipes.cfg’ file.

recipe -- An entry point into the recipes ecosystem; a “main” function.

recipe_module -- A piece of shared code that multiple recipes can use.

DEPS -- An expression of the dependency from a recipe to a recipe_module, or from one recipe_module to another.

repo_name -- The name of a recipe repo, as indicated by the repo_name field in it's recipes.cfg file. This is used to qualify module dependencies from other repos.

properties -- A JSON object that every recipe is started with; These are the input parameters to the recipe.

output properties -- TODO(iannucci)

PROPERTIES -- An expression of a recipe or recipe_module of the properties that it relies on.