[AArch64] Add Neon dot-product implementation for ARGBSepiaRow

We can use the dot product instructions to apply the coefficients
directly without the need for LD4 de-interleaving load instructions,
since these are known to be slow on some micro-architectures.

ST4 is also known to be slow on more modern micro-architectures, however
avoiding this is left for a future SVE implementation where we can make
use of interleaving-narrowing instructions.

Reduction in cycle counts observed compared to existing Neon code:

 Cortex-A55:  -5.8%
Cortex-A510: -18.9%
 Cortex-A76: -21.8%
Cortex-A720: -30.2%
  Cortex-X1: -28.6%
  Cortex-X2: -23.4%

Bug: b/42280946
Change-Id: I5887559649cc805a810d867b652c85d48285657d
Reviewed-on: https://chromium-review.googlesource.com/c/libyuv/libyuv/+/5790970
Reviewed-by: Justin Green <greenjustin@google.com>
Reviewed-by: Frank Barchard <fbarchard@chromium.org>
3 files changed
tree: 0055f392eb6d07e36a0f91705f0b71935f309a35
  1. build_overrides/
  2. docs/
  3. include/
  4. infra/
  5. riscv_script/
  6. source/
  7. tools_libyuv/
  8. unit_test/
  9. util/
  10. .clang-format
  11. .gitignore
  12. .gn
  13. .vpython
  14. .vpython3
  15. Android.bp
  16. Android.mk
  17. AUTHORS
  18. BUILD.gn
  19. CM_linux_packages.cmake
  20. CMakeLists.txt
  21. codereview.settings
  22. DEPS
  23. DIR_METADATA
  24. download_vs_toolchain.py
  25. libyuv.gni
  26. libyuv.gyp
  27. libyuv.gypi
  28. LICENSE
  29. linux.mk
  30. OWNERS
  31. PATENTS
  32. PRESUBMIT.py
  33. public.mk
  34. pylintrc
  35. README.chromium
  36. README.md
  37. winarm.mk
README.md

libyuv is an open source project that includes YUV scaling and conversion functionality.

  • Scale YUV to prepare content for compression, with point, bilinear or box filter.
  • Convert to YUV from webcam formats for compression.
  • Convert to RGB formats for rendering/effects.
  • Rotate by 90/180/270 degrees to adjust for mobile devices in portrait mode.
  • Optimized for SSSE3/AVX2 on x86/x64.
  • Optimized for Neon on Arm.
  • Optimized for MSA on Mips.
  • Optimized for RVV on RISC-V.

Development

See Getting started for instructions on how to get started developing.

You can also browse the docs directory for more documentation.