blob: f6b1f6f5f998cd976d08d816392aca3efc8cf982 [file] [log] [blame]
/*
* Copyright 2015 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include "../unit_test/unit_test.h"
#include "libyuv/basic_types.h"
#include "libyuv/convert.h"
#include "libyuv/convert_argb.h"
#include "libyuv/convert_from.h"
#include "libyuv/convert_from_argb.h"
#include "libyuv/cpu_id.h"
namespace libyuv {
// TODO(fbarchard): clang x86 has a higher accuracy YUV to RGB.
// Port to Visual C and other CPUs
#if !defined(LIBYUV_DISABLE_X86) && \
(defined(__x86_64__) || defined(__i386__))
#define ERROR_FULL 5
#define ERROR_J420 4
#else
#define ERROR_FULL 6
#define ERROR_J420 6
#endif
#define ERROR_R 1
#define ERROR_G 1
#ifdef LIBYUV_UNLIMITED_DATA
#define ERROR_B 1
#else
#define ERROR_B 18
#endif
#define TESTCS(TESTNAME, YUVTOARGB, ARGBTOYUV, HS1, HS, HN, DIFF) \
TEST_F(LibYUVColorTest, TESTNAME) { \
const int kPixels = benchmark_width_ * benchmark_height_; \
const int kHalfPixels = \
((benchmark_width_ + 1) / 2) * ((benchmark_height_ + HS1) / HS); \
align_buffer_page_end(orig_y, kPixels); \
align_buffer_page_end(orig_u, kHalfPixels); \
align_buffer_page_end(orig_v, kHalfPixels); \
align_buffer_page_end(orig_pixels, kPixels * 4); \
align_buffer_page_end(temp_y, kPixels); \
align_buffer_page_end(temp_u, kHalfPixels); \
align_buffer_page_end(temp_v, kHalfPixels); \
align_buffer_page_end(dst_pixels_opt, kPixels * 4); \
align_buffer_page_end(dst_pixels_c, kPixels * 4); \
\
MemRandomize(orig_pixels, kPixels * 4); \
MemRandomize(orig_y, kPixels); \
MemRandomize(orig_u, kHalfPixels); \
MemRandomize(orig_v, kHalfPixels); \
MemRandomize(temp_y, kPixels); \
MemRandomize(temp_u, kHalfPixels); \
MemRandomize(temp_v, kHalfPixels); \
MemRandomize(dst_pixels_opt, kPixels * 4); \
MemRandomize(dst_pixels_c, kPixels * 4); \
\
/* The test is overall for color conversion matrix being reversible, so */ \
/* this initializes the pixel with 2x2 blocks to eliminate subsampling. */ \
uint8_t* p = orig_y; \
for (int y = 0; y < benchmark_height_ - HS1; y += HS) { \
for (int x = 0; x < benchmark_width_ - 1; x += 2) { \
uint8_t r = static_cast<uint8_t>(fastrand()); \
p[0] = r; \
p[1] = r; \
p[HN] = r; \
p[HN + 1] = r; \
p += 2; \
} \
if (benchmark_width_ & 1) { \
uint8_t r = static_cast<uint8_t>(fastrand()); \
p[0] = r; \
p[HN] = r; \
p += 1; \
} \
p += HN; \
} \
if ((benchmark_height_ & 1) && HS == 2) { \
for (int x = 0; x < benchmark_width_ - 1; x += 2) { \
uint8_t r = static_cast<uint8_t>(fastrand()); \
p[0] = r; \
p[1] = r; \
p += 2; \
} \
if (benchmark_width_ & 1) { \
uint8_t r = static_cast<uint8_t>(fastrand()); \
p[0] = r; \
p += 1; \
} \
} \
/* Start with YUV converted to ARGB. */ \
YUVTOARGB(orig_y, benchmark_width_, orig_u, (benchmark_width_ + 1) / 2, \
orig_v, (benchmark_width_ + 1) / 2, orig_pixels, \
benchmark_width_ * 4, benchmark_width_, benchmark_height_); \
\
ARGBTOYUV(orig_pixels, benchmark_width_ * 4, temp_y, benchmark_width_, \
temp_u, (benchmark_width_ + 1) / 2, temp_v, \
(benchmark_width_ + 1) / 2, benchmark_width_, \
benchmark_height_); \
\
MaskCpuFlags(disable_cpu_flags_); \
YUVTOARGB(temp_y, benchmark_width_, temp_u, (benchmark_width_ + 1) / 2, \
temp_v, (benchmark_width_ + 1) / 2, dst_pixels_c, \
benchmark_width_ * 4, benchmark_width_, benchmark_height_); \
MaskCpuFlags(benchmark_cpu_info_); \
\
for (int i = 0; i < benchmark_iterations_; ++i) { \
YUVTOARGB(temp_y, benchmark_width_, temp_u, (benchmark_width_ + 1) / 2, \
temp_v, (benchmark_width_ + 1) / 2, dst_pixels_opt, \
benchmark_width_ * 4, benchmark_width_, benchmark_height_); \
} \
/* Test C and SIMD match. */ \
for (int i = 0; i < kPixels * 4; ++i) { \
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]); \
} \
/* Test SIMD is close to original. */ \
for (int i = 0; i < kPixels * 4; ++i) { \
EXPECT_NEAR(static_cast<int>(orig_pixels[i]), \
static_cast<int>(dst_pixels_opt[i]), DIFF); \
} \
\
free_aligned_buffer_page_end(orig_pixels); \
free_aligned_buffer_page_end(orig_y); \
free_aligned_buffer_page_end(orig_u); \
free_aligned_buffer_page_end(orig_v); \
free_aligned_buffer_page_end(temp_y); \
free_aligned_buffer_page_end(temp_u); \
free_aligned_buffer_page_end(temp_v); \
free_aligned_buffer_page_end(dst_pixels_opt); \
free_aligned_buffer_page_end(dst_pixels_c); \
}
TESTCS(TestI420, I420ToARGB, ARGBToI420, 1, 2, benchmark_width_, ERROR_FULL)
TESTCS(TestI422, I422ToARGB, ARGBToI422, 0, 1, 0, ERROR_FULL)
TESTCS(TestJ420, J420ToARGB, ARGBToJ420, 1, 2, benchmark_width_, ERROR_J420)
TESTCS(TestJ422, J422ToARGB, ARGBToJ422, 0, 1, 0, ERROR_J420)
static void YUVToRGB(int y, int u, int v, int* r, int* g, int* b) {
const int kWidth = 16;
const int kHeight = 1;
const int kPixels = kWidth * kHeight;
const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2);
SIMD_ALIGNED(uint8_t orig_y[16]);
SIMD_ALIGNED(uint8_t orig_u[8]);
SIMD_ALIGNED(uint8_t orig_v[8]);
SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]);
memset(orig_y, y, kPixels);
memset(orig_u, u, kHalfPixels);
memset(orig_v, v, kHalfPixels);
/* YUV converted to ARGB. */
I422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2,
orig_pixels, kWidth * 4, kWidth, kHeight);
*b = orig_pixels[0];
*g = orig_pixels[1];
*r = orig_pixels[2];
}
static void YUVJToRGB(int y, int u, int v, int* r, int* g, int* b) {
const int kWidth = 16;
const int kHeight = 1;
const int kPixels = kWidth * kHeight;
const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2);
SIMD_ALIGNED(uint8_t orig_y[16]);
SIMD_ALIGNED(uint8_t orig_u[8]);
SIMD_ALIGNED(uint8_t orig_v[8]);
SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]);
memset(orig_y, y, kPixels);
memset(orig_u, u, kHalfPixels);
memset(orig_v, v, kHalfPixels);
/* YUV converted to ARGB. */
J422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2,
orig_pixels, kWidth * 4, kWidth, kHeight);
*b = orig_pixels[0];
*g = orig_pixels[1];
*r = orig_pixels[2];
}
static void YUVHToRGB(int y, int u, int v, int* r, int* g, int* b) {
const int kWidth = 16;
const int kHeight = 1;
const int kPixels = kWidth * kHeight;
const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2);
SIMD_ALIGNED(uint8_t orig_y[16]);
SIMD_ALIGNED(uint8_t orig_u[8]);
SIMD_ALIGNED(uint8_t orig_v[8]);
SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]);
memset(orig_y, y, kPixels);
memset(orig_u, u, kHalfPixels);
memset(orig_v, v, kHalfPixels);
/* YUV converted to ARGB. */
H422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2,
orig_pixels, kWidth * 4, kWidth, kHeight);
*b = orig_pixels[0];
*g = orig_pixels[1];
*r = orig_pixels[2];
}
#define F422ToARGB(a, b, c, d, e, f, g, h, i, j) \
I422ToARGBMatrix(a, b, c, d, e, f, g, h, &kYuvF709Constants, i, j)
static void YUVFToRGB(int y, int u, int v, int* r, int* g, int* b) {
const int kWidth = 16;
const int kHeight = 1;
const int kPixels = kWidth * kHeight;
const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2);
SIMD_ALIGNED(uint8_t orig_y[16]);
SIMD_ALIGNED(uint8_t orig_u[8]);
SIMD_ALIGNED(uint8_t orig_v[8]);
SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]);
memset(orig_y, y, kPixels);
memset(orig_u, u, kHalfPixels);
memset(orig_v, v, kHalfPixels);
/* YUV converted to ARGB. */
F422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2,
orig_pixels, kWidth * 4, kWidth, kHeight);
*b = orig_pixels[0];
*g = orig_pixels[1];
*r = orig_pixels[2];
}
static void YUVUToRGB(int y, int u, int v, int* r, int* g, int* b) {
const int kWidth = 16;
const int kHeight = 1;
const int kPixels = kWidth * kHeight;
const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2);
SIMD_ALIGNED(uint8_t orig_y[16]);
SIMD_ALIGNED(uint8_t orig_u[8]);
SIMD_ALIGNED(uint8_t orig_v[8]);
SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]);
memset(orig_y, y, kPixels);
memset(orig_u, u, kHalfPixels);
memset(orig_v, v, kHalfPixels);
/* YUV converted to ARGB. */
U422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2,
orig_pixels, kWidth * 4, kWidth, kHeight);
*b = orig_pixels[0];
*g = orig_pixels[1];
*r = orig_pixels[2];
}
#define V422ToARGB(a, b, c, d, e, f, g, h, i, j) \
I422ToARGBMatrix(a, b, c, d, e, f, g, h, &kYuvV2020Constants, i, j)
static void YUVVToRGB(int y, int u, int v, int* r, int* g, int* b) {
const int kWidth = 16;
const int kHeight = 1;
const int kPixels = kWidth * kHeight;
const int kHalfPixels = ((kWidth + 1) / 2) * ((kHeight + 1) / 2);
SIMD_ALIGNED(uint8_t orig_y[16]);
SIMD_ALIGNED(uint8_t orig_u[8]);
SIMD_ALIGNED(uint8_t orig_v[8]);
SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]);
memset(orig_y, y, kPixels);
memset(orig_u, u, kHalfPixels);
memset(orig_v, v, kHalfPixels);
/* YUV converted to ARGB. */
V422ToARGB(orig_y, kWidth, orig_u, (kWidth + 1) / 2, orig_v, (kWidth + 1) / 2,
orig_pixels, kWidth * 4, kWidth, kHeight);
*b = orig_pixels[0];
*g = orig_pixels[1];
*r = orig_pixels[2];
}
static void YToRGB(int y, int* r, int* g, int* b) {
const int kWidth = 16;
const int kHeight = 1;
const int kPixels = kWidth * kHeight;
SIMD_ALIGNED(uint8_t orig_y[16]);
SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]);
memset(orig_y, y, kPixels);
/* YUV converted to ARGB. */
I400ToARGB(orig_y, kWidth, orig_pixels, kWidth * 4, kWidth, kHeight);
*b = orig_pixels[0];
*g = orig_pixels[1];
*r = orig_pixels[2];
}
static void YJToRGB(int y, int* r, int* g, int* b) {
const int kWidth = 16;
const int kHeight = 1;
const int kPixels = kWidth * kHeight;
SIMD_ALIGNED(uint8_t orig_y[16]);
SIMD_ALIGNED(uint8_t orig_pixels[16 * 4]);
memset(orig_y, y, kPixels);
/* YUV converted to ARGB. */
J400ToARGB(orig_y, kWidth, orig_pixels, kWidth * 4, kWidth, kHeight);
*b = orig_pixels[0];
*g = orig_pixels[1];
*r = orig_pixels[2];
}
// Pick a method for clamping.
// #define CLAMPMETHOD_IF 1
// #define CLAMPMETHOD_TABLE 1
#define CLAMPMETHOD_TERNARY 1
// #define CLAMPMETHOD_MASK 1
// Pick a method for rounding.
#define ROUND(f) static_cast<int>(f + 0.5f)
// #define ROUND(f) lrintf(f)
// #define ROUND(f) static_cast<int>(round(f))
// #define ROUND(f) _mm_cvt_ss2si(_mm_load_ss(&f))
#if defined(CLAMPMETHOD_IF)
static int RoundToByte(float f) {
int i = ROUND(f);
if (i < 0) {
i = 0;
}
if (i > 255) {
i = 255;
}
return i;
}
#elif defined(CLAMPMETHOD_TABLE)
static const unsigned char clamptable[811] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158,
159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,
174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188,
189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,
204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218,
219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248,
249, 250, 251, 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255};
static int RoundToByte(float f) {
return clamptable[ROUND(f) + 276];
}
#elif defined(CLAMPMETHOD_TERNARY)
static int RoundToByte(float f) {
int i = ROUND(f);
return (i < 0) ? 0 : ((i > 255) ? 255 : i);
}
#elif defined(CLAMPMETHOD_MASK)
static int RoundToByte(float f) {
int i = ROUND(f);
i = ((-(i) >> 31) & (i)); // clamp to 0.
return (((255 - (i)) >> 31) | (i)) & 255; // clamp to 255.
}
#endif
#define RANDOM256(s) ((s & 1) ? ((s >> 1) ^ 0xb8) : (s >> 1))
TEST_F(LibYUVColorTest, TestRoundToByte) {
int allb = 0;
int count = benchmark_width_ * benchmark_height_;
for (int i = 0; i < benchmark_iterations_; ++i) {
float f = (fastrand() & 255) * 3.14f - 260.f;
for (int j = 0; j < count; ++j) {
int b = RoundToByte(f);
f += 0.91f;
allb |= b;
}
}
EXPECT_GE(allb, 0);
EXPECT_LE(allb, 255);
}
// BT.601 limited range YUV to RGB reference
static void YUVToRGBReference(int y, int u, int v, int* r, int* g, int* b) {
*r = RoundToByte((y - 16) * 1.164 - (v - 128) * -1.596);
*g = RoundToByte((y - 16) * 1.164 - (u - 128) * 0.391 - (v - 128) * 0.813);
*b = RoundToByte((y - 16) * 1.164 - (u - 128) * -2.018);
}
// BT.601 full range YUV to RGB reference (aka JPEG)
static void YUVJToRGBReference(int y, int u, int v, int* r, int* g, int* b) {
*r = RoundToByte(y - (v - 128) * -1.40200);
*g = RoundToByte(y - (u - 128) * 0.34414 - (v - 128) * 0.71414);
*b = RoundToByte(y - (u - 128) * -1.77200);
}
// BT.709 limited range YUV to RGB reference
// See also http://www.equasys.de/colorconversion.html
static void YUVHToRGBReference(int y, int u, int v, int* r, int* g, int* b) {
*r = RoundToByte((y - 16) * 1.164 - (v - 128) * -1.793);
*g = RoundToByte((y - 16) * 1.164 - (u - 128) * 0.213 - (v - 128) * 0.533);
*b = RoundToByte((y - 16) * 1.164 - (u - 128) * -2.112);
}
// BT.709 full range YUV to RGB reference
static void YUVFToRGBReference(int y, int u, int v, int* r, int* g, int* b) {
*r = RoundToByte(y - (v - 128) * -1.5748);
*g = RoundToByte(y - (u - 128) * 0.18732 - (v - 128) * 0.46812);
*b = RoundToByte(y - (u - 128) * -1.8556);
}
// BT.2020 limited range YUV to RGB reference
static void YUVUToRGBReference(int y, int u, int v, int* r, int* g, int* b) {
*r = RoundToByte((y - 16) * 1.164384 - (v - 128) * -1.67867);
*g = RoundToByte((y - 16) * 1.164384 - (u - 128) * 0.187326 -
(v - 128) * 0.65042);
*b = RoundToByte((y - 16) * 1.164384 - (u - 128) * -2.14177);
}
// BT.2020 full range YUV to RGB reference
static void YUVVToRGBReference(int y, int u, int v, int* r, int* g, int* b) {
*r = RoundToByte(y + (v - 128) * 1.474600);
*g = RoundToByte(y - (u - 128) * 0.164553 - (v - 128) * 0.571353);
*b = RoundToByte(y + (u - 128) * 1.881400);
}
TEST_F(LibYUVColorTest, TestYUV) {
int r0, g0, b0, r1, g1, b1;
// cyan (less red)
YUVToRGBReference(240, 255, 0, &r0, &g0, &b0);
EXPECT_EQ(56, r0);
EXPECT_EQ(255, g0);
EXPECT_EQ(255, b0);
YUVToRGB(240, 255, 0, &r1, &g1, &b1);
EXPECT_EQ(57, r1);
EXPECT_EQ(255, g1);
EXPECT_EQ(255, b1);
// green (less red and blue)
YUVToRGBReference(240, 0, 0, &r0, &g0, &b0);
EXPECT_EQ(56, r0);
EXPECT_EQ(255, g0);
EXPECT_EQ(2, b0);
YUVToRGB(240, 0, 0, &r1, &g1, &b1);
EXPECT_EQ(57, r1);
EXPECT_EQ(255, g1);
#ifdef LIBYUV_UNLIMITED_DATA
EXPECT_EQ(3, b1);
#else
EXPECT_EQ(5, b1);
#endif
for (int i = 0; i < 256; ++i) {
YUVToRGBReference(i, 128, 128, &r0, &g0, &b0);
YUVToRGB(i, 128, 128, &r1, &g1, &b1);
EXPECT_NEAR(r0, r1, ERROR_R);
EXPECT_NEAR(g0, g1, ERROR_G);
EXPECT_NEAR(b0, b1, ERROR_B);
YUVToRGBReference(i, 0, 0, &r0, &g0, &b0);
YUVToRGB(i, 0, 0, &r1, &g1, &b1);
EXPECT_NEAR(r0, r1, ERROR_R);
EXPECT_NEAR(g0, g1, ERROR_G);
EXPECT_NEAR(b0, b1, ERROR_B);
YUVToRGBReference(i, 0, 255, &r0, &g0, &b0);
YUVToRGB(i, 0, 255, &r1, &g1, &b1);
EXPECT_NEAR(r0, r1, ERROR_R);
EXPECT_NEAR(g0, g1, ERROR_G);
EXPECT_NEAR(b0, b1, ERROR_B);
}
}
TEST_F(LibYUVColorTest, TestGreyYUV) {
int r0, g0, b0, r1, g1, b1, r2, g2, b2;
// black
YUVToRGBReference(16, 128, 128, &r0, &g0, &b0);
EXPECT_EQ(0, r0);
EXPECT_EQ(0, g0);
EXPECT_EQ(0, b0);
YUVToRGB(16, 128, 128, &r1, &g1, &b1);
EXPECT_EQ(0, r1);
EXPECT_EQ(0, g1);
EXPECT_EQ(0, b1);
// white
YUVToRGBReference(240, 128, 128, &r0, &g0, &b0);
EXPECT_EQ(255, r0);
EXPECT_EQ(255, g0);
EXPECT_EQ(255, b0);
YUVToRGB(240, 128, 128, &r1, &g1, &b1);
EXPECT_EQ(255, r1);
EXPECT_EQ(255, g1);
EXPECT_EQ(255, b1);
// grey
YUVToRGBReference(128, 128, 128, &r0, &g0, &b0);
EXPECT_EQ(130, r0);
EXPECT_EQ(130, g0);
EXPECT_EQ(130, b0);
YUVToRGB(128, 128, 128, &r1, &g1, &b1);
EXPECT_EQ(130, r1);
EXPECT_EQ(130, g1);
EXPECT_EQ(130, b1);
for (int y = 0; y < 256; ++y) {
YUVToRGBReference(y, 128, 128, &r0, &g0, &b0);
YUVToRGB(y, 128, 128, &r1, &g1, &b1);
YToRGB(y, &r2, &g2, &b2);
EXPECT_EQ(r0, r1);
EXPECT_EQ(g0, g1);
EXPECT_EQ(b0, b1);
EXPECT_EQ(r0, r2);
EXPECT_EQ(g0, g2);
EXPECT_EQ(b0, b2);
}
}
static void PrintHistogram(int rh[256], int gh[256], int bh[256]) {
int i;
printf("hist");
for (i = 0; i < 256; ++i) {
if (rh[i] || gh[i] || bh[i]) {
printf("\t%8d", i - 128);
}
}
printf("\nred");
for (i = 0; i < 256; ++i) {
if (rh[i] || gh[i] || bh[i]) {
printf("\t%8d", rh[i]);
}
}
printf("\ngreen");
for (i = 0; i < 256; ++i) {
if (rh[i] || gh[i] || bh[i]) {
printf("\t%8d", gh[i]);
}
}
printf("\nblue");
for (i = 0; i < 256; ++i) {
if (rh[i] || gh[i] || bh[i]) {
printf("\t%8d", bh[i]);
}
}
printf("\n");
}
// Step by 5 on inner loop goes from 0 to 255 inclusive.
// Set to 1 for better converage. 3, 5 or 17 for faster testing.
#ifdef ENABLE_SLOW_TESTS
#define FASTSTEP 1
#else
#define FASTSTEP 5
#endif
// BT.601 limited range.
TEST_F(LibYUVColorTest, TestFullYUV) {
int rh[256] = {
0,
};
int gh[256] = {
0,
};
int bh[256] = {
0,
};
for (int u = 0; u < 256; ++u) {
for (int v = 0; v < 256; ++v) {
for (int y2 = 0; y2 < 256; y2 += FASTSTEP) {
int r0, g0, b0, r1, g1, b1;
int y = RANDOM256(y2);
YUVToRGBReference(y, u, v, &r0, &g0, &b0);
YUVToRGB(y, u, v, &r1, &g1, &b1);
EXPECT_NEAR(r0, r1, ERROR_R);
EXPECT_NEAR(g0, g1, ERROR_G);
EXPECT_NEAR(b0, b1, ERROR_B);
++rh[r1 - r0 + 128];
++gh[g1 - g0 + 128];
++bh[b1 - b0 + 128];
}
}
}
PrintHistogram(rh, gh, bh);
}
// BT.601 full range.
TEST_F(LibYUVColorTest, TestFullYUVJ) {
int rh[256] = {
0,
};
int gh[256] = {
0,
};
int bh[256] = {
0,
};
for (int u = 0; u < 256; ++u) {
for (int v = 0; v < 256; ++v) {
for (int y2 = 0; y2 < 256; y2 += FASTSTEP) {
int r0, g0, b0, r1, g1, b1;
int y = RANDOM256(y2);
YUVJToRGBReference(y, u, v, &r0, &g0, &b0);
YUVJToRGB(y, u, v, &r1, &g1, &b1);
EXPECT_NEAR(r0, r1, ERROR_R);
EXPECT_NEAR(g0, g1, ERROR_G);
EXPECT_NEAR(b0, b1, ERROR_B);
++rh[r1 - r0 + 128];
++gh[g1 - g0 + 128];
++bh[b1 - b0 + 128];
}
}
}
PrintHistogram(rh, gh, bh);
}
// BT.709 limited range.
TEST_F(LibYUVColorTest, TestFullYUVH) {
int rh[256] = {
0,
};
int gh[256] = {
0,
};
int bh[256] = {
0,
};
for (int u = 0; u < 256; ++u) {
for (int v = 0; v < 256; ++v) {
for (int y2 = 0; y2 < 256; y2 += FASTSTEP) {
int r0, g0, b0, r1, g1, b1;
int y = RANDOM256(y2);
YUVHToRGBReference(y, u, v, &r0, &g0, &b0);
YUVHToRGB(y, u, v, &r1, &g1, &b1);
EXPECT_NEAR(r0, r1, ERROR_R);
EXPECT_NEAR(g0, g1, ERROR_G);
EXPECT_NEAR(b0, b1, ERROR_B);
++rh[r1 - r0 + 128];
++gh[g1 - g0 + 128];
++bh[b1 - b0 + 128];
}
}
}
PrintHistogram(rh, gh, bh);
}
// BT.709 full range.
TEST_F(LibYUVColorTest, TestFullYUVF) {
int rh[256] = {
0,
};
int gh[256] = {
0,
};
int bh[256] = {
0,
};
for (int u = 0; u < 256; ++u) {
for (int v = 0; v < 256; ++v) {
for (int y2 = 0; y2 < 256; y2 += FASTSTEP) {
int r0, g0, b0, r1, g1, b1;
int y = RANDOM256(y2);
YUVFToRGBReference(y, u, v, &r0, &g0, &b0);
YUVFToRGB(y, u, v, &r1, &g1, &b1);
EXPECT_NEAR(r0, r1, ERROR_R);
EXPECT_NEAR(g0, g1, ERROR_G);
EXPECT_NEAR(b0, b1, ERROR_B);
++rh[r1 - r0 + 128];
++gh[g1 - g0 + 128];
++bh[b1 - b0 + 128];
}
}
}
PrintHistogram(rh, gh, bh);
}
// BT.2020 limited range.
TEST_F(LibYUVColorTest, TestFullYUVU) {
int rh[256] = {
0,
};
int gh[256] = {
0,
};
int bh[256] = {
0,
};
for (int u = 0; u < 256; ++u) {
for (int v = 0; v < 256; ++v) {
for (int y2 = 0; y2 < 256; y2 += FASTSTEP) {
int r0, g0, b0, r1, g1, b1;
int y = RANDOM256(y2);
YUVUToRGBReference(y, u, v, &r0, &g0, &b0);
YUVUToRGB(y, u, v, &r1, &g1, &b1);
EXPECT_NEAR(r0, r1, ERROR_R);
EXPECT_NEAR(g0, g1, ERROR_G);
EXPECT_NEAR(b0, b1, ERROR_B);
++rh[r1 - r0 + 128];
++gh[g1 - g0 + 128];
++bh[b1 - b0 + 128];
}
}
}
PrintHistogram(rh, gh, bh);
}
// BT.2020 full range.
TEST_F(LibYUVColorTest, TestFullYUVV) {
int rh[256] = {
0,
};
int gh[256] = {
0,
};
int bh[256] = {
0,
};
for (int u = 0; u < 256; ++u) {
for (int v = 0; v < 256; ++v) {
for (int y2 = 0; y2 < 256; y2 += FASTSTEP) {
int r0, g0, b0, r1, g1, b1;
int y = RANDOM256(y2);
YUVVToRGBReference(y, u, v, &r0, &g0, &b0);
YUVVToRGB(y, u, v, &r1, &g1, &b1);
EXPECT_NEAR(r0, r1, ERROR_R);
EXPECT_NEAR(g0, g1, 2);
EXPECT_NEAR(b0, b1, ERROR_B);
++rh[r1 - r0 + 128];
++gh[g1 - g0 + 128];
++bh[b1 - b0 + 128];
}
}
}
PrintHistogram(rh, gh, bh);
}
#undef FASTSTEP
TEST_F(LibYUVColorTest, TestGreyYUVJ) {
int r0, g0, b0, r1, g1, b1, r2, g2, b2;
// black
YUVJToRGBReference(0, 128, 128, &r0, &g0, &b0);
EXPECT_EQ(0, r0);
EXPECT_EQ(0, g0);
EXPECT_EQ(0, b0);
YUVJToRGB(0, 128, 128, &r1, &g1, &b1);
EXPECT_EQ(0, r1);
EXPECT_EQ(0, g1);
EXPECT_EQ(0, b1);
// white
YUVJToRGBReference(255, 128, 128, &r0, &g0, &b0);
EXPECT_EQ(255, r0);
EXPECT_EQ(255, g0);
EXPECT_EQ(255, b0);
YUVJToRGB(255, 128, 128, &r1, &g1, &b1);
EXPECT_EQ(255, r1);
EXPECT_EQ(255, g1);
EXPECT_EQ(255, b1);
// grey
YUVJToRGBReference(128, 128, 128, &r0, &g0, &b0);
EXPECT_EQ(128, r0);
EXPECT_EQ(128, g0);
EXPECT_EQ(128, b0);
YUVJToRGB(128, 128, 128, &r1, &g1, &b1);
EXPECT_EQ(128, r1);
EXPECT_EQ(128, g1);
EXPECT_EQ(128, b1);
for (int y = 0; y < 256; ++y) {
YUVJToRGBReference(y, 128, 128, &r0, &g0, &b0);
YUVJToRGB(y, 128, 128, &r1, &g1, &b1);
YJToRGB(y, &r2, &g2, &b2);
EXPECT_EQ(r0, r1);
EXPECT_EQ(g0, g1);
EXPECT_EQ(b0, b1);
EXPECT_EQ(r0, r2);
EXPECT_EQ(g0, g2);
EXPECT_EQ(b0, b2);
}
}
} // namespace libyuv