blob: 6e4649f84d231ecb09094a57f0220f94aee86ee9 [file] [log] [blame]
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <time.h>
#include "../unit_test/unit_test.h"
#include "libyuv/cpu_id.h"
#include "libyuv/scale_uv.h"
namespace libyuv {
#define STRINGIZE(line) #line
#define FILELINESTR(file, line) file ":" STRINGIZE(line)
// Test scaling with C vs Opt and return maximum pixel difference. 0 = exact.
static int UVTestFilter(int src_width,
int src_height,
int dst_width,
int dst_height,
FilterMode f,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info) {
if (!SizeValid(src_width, src_height, dst_width, dst_height)) {
return 0;
}
int i, j;
const int b = 0; // 128 to test for padding/stride.
int64_t src_uv_plane_size =
(Abs(src_width) + b * 2) * (Abs(src_height) + b * 2) * 2LL;
int src_stride_uv = (b * 2 + Abs(src_width)) * 2;
align_buffer_page_end(src_uv, src_uv_plane_size);
if (!src_uv) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
MemRandomize(src_uv, src_uv_plane_size);
int64_t dst_uv_plane_size = (dst_width + b * 2) * (dst_height + b * 2) * 2LL;
int dst_stride_uv = (b * 2 + dst_width) * 2;
align_buffer_page_end(dst_uv_c, dst_uv_plane_size);
align_buffer_page_end(dst_uv_opt, dst_uv_plane_size);
if (!dst_uv_c || !dst_uv_opt) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
memset(dst_uv_c, 2, dst_uv_plane_size);
memset(dst_uv_opt, 3, dst_uv_plane_size);
// Warm up both versions for consistent benchmarks.
MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization.
UVScale(src_uv + (src_stride_uv * b) + b * 2, src_stride_uv, src_width,
src_height, dst_uv_c + (dst_stride_uv * b) + b * 2, dst_stride_uv,
dst_width, dst_height, f);
MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization.
UVScale(src_uv + (src_stride_uv * b) + b * 2, src_stride_uv, src_width,
src_height, dst_uv_opt + (dst_stride_uv * b) + b * 2, dst_stride_uv,
dst_width, dst_height, f);
MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization.
double c_time = get_time();
UVScale(src_uv + (src_stride_uv * b) + b * 2, src_stride_uv, src_width,
src_height, dst_uv_c + (dst_stride_uv * b) + b * 2, dst_stride_uv,
dst_width, dst_height, f);
c_time = (get_time() - c_time);
MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization.
double opt_time = get_time();
for (i = 0; i < benchmark_iterations; ++i) {
UVScale(src_uv + (src_stride_uv * b) + b * 2, src_stride_uv, src_width,
src_height, dst_uv_opt + (dst_stride_uv * b) + b * 2, dst_stride_uv,
dst_width, dst_height, f);
}
opt_time = (get_time() - opt_time) / benchmark_iterations;
// Report performance of C vs OPT
printf("filter %d - %8d us C - %8d us OPT\n", f,
static_cast<int>(c_time * 1e6), static_cast<int>(opt_time * 1e6));
// C version may be a little off from the optimized. Order of
// operations may introduce rounding somewhere. So do a difference
// of the buffers and look to see that the max difference isn't
// over 2.
int max_diff = 0;
for (i = b; i < (dst_height + b); ++i) {
for (j = b * 2; j < (dst_width + b) * 2; ++j) {
int abs_diff = Abs(dst_uv_c[(i * dst_stride_uv) + j] -
dst_uv_opt[(i * dst_stride_uv) + j]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
}
free_aligned_buffer_page_end(dst_uv_c);
free_aligned_buffer_page_end(dst_uv_opt);
free_aligned_buffer_page_end(src_uv);
return max_diff;
}
// The following adjustments in dimensions ensure the scale factor will be
// exactly achieved.
#define DX(x, nom, denom) static_cast<int>((Abs(x) / nom) * nom)
#define SX(x, nom, denom) static_cast<int>((x / nom) * denom)
#define TEST_FACTOR1(name, filter, nom, denom, max_diff) \
TEST_F(LibYUVScaleTest, UVScaleDownBy##name##_##filter) { \
int diff = UVTestFilter( \
SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \
DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \
kFilter##filter, benchmark_iterations_, disable_cpu_flags_, \
benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
}
// Test a scale factor with all 4 filters. Expect unfiltered to be exact, but
// filtering is different fixed point implementations for SSSE3, Neon and C.
#define TEST_FACTOR(name, nom, denom) \
TEST_FACTOR1(name, None, nom, denom, 0) \
TEST_FACTOR1(name, Linear, nom, denom, 3) \
TEST_FACTOR1(name, Bilinear, nom, denom, 3) \
TEST_FACTOR1(name, Box, nom, denom, 3)
TEST_FACTOR(2, 1, 2)
TEST_FACTOR(4, 1, 4)
// TEST_FACTOR(8, 1, 8) Disable for benchmark performance.
TEST_FACTOR(3by4, 3, 4)
TEST_FACTOR(3by8, 3, 8)
TEST_FACTOR(3, 1, 3)
#undef TEST_FACTOR1
#undef TEST_FACTOR
#undef SX
#undef DX
#define TEST_SCALETO1(name, width, height, filter, max_diff) \
TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter) { \
int diff = UVTestFilter(benchmark_width_, benchmark_height_, width, \
height, kFilter##filter, benchmark_iterations_, \
disable_cpu_flags_, benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
} \
TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter) { \
int diff = UVTestFilter(width, height, Abs(benchmark_width_), \
Abs(benchmark_height_), kFilter##filter, \
benchmark_iterations_, disable_cpu_flags_, \
benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
}
/// Test scale to a specified size with all 4 filters.
#define TEST_SCALETO(name, width, height) \
TEST_SCALETO1(name, width, height, None, 0) \
TEST_SCALETO1(name, width, height, Linear, 3) \
TEST_SCALETO1(name, width, height, Bilinear, 3)
TEST_SCALETO(UVScale, 1, 1)
TEST_SCALETO(UVScale, 256, 144) /* 128x72 * 2 */
TEST_SCALETO(UVScale, 320, 240)
TEST_SCALETO(UVScale, 569, 480)
TEST_SCALETO(UVScale, 640, 360)
#ifdef ENABLE_SLOW_TESTS
TEST_SCALETO(UVScale, 1280, 720)
TEST_SCALETO(UVScale, 1920, 1080)
#endif // ENABLE_SLOW_TESTS
#undef TEST_SCALETO1
#undef TEST_SCALETO
#define TEST_SCALESWAPXY1(name, filter, max_diff) \
TEST_F(LibYUVScaleTest, name##SwapXY_##filter) { \
int diff = \
UVTestFilter(benchmark_width_, benchmark_height_, benchmark_height_, \
benchmark_width_, kFilter##filter, benchmark_iterations_, \
disable_cpu_flags_, benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
}
// Test scale with swapped width and height with all 3 filters.
TEST_SCALESWAPXY1(UVScale, None, 0)
TEST_SCALESWAPXY1(UVScale, Linear, 0)
TEST_SCALESWAPXY1(UVScale, Bilinear, 0)
#undef TEST_SCALESWAPXY1
TEST_F(LibYUVScaleTest, UVTest3x) {
const int kSrcStride = 48 * 2;
const int kDstStride = 16 * 2;
const int kSize = kSrcStride * 3;
align_buffer_page_end(orig_pixels, kSize);
for (int i = 0; i < 48 * 3; ++i) {
orig_pixels[i * 2 + 0] = i;
orig_pixels[i * 2 + 1] = 255 - i;
}
align_buffer_page_end(dest_pixels, kDstStride);
int iterations16 =
benchmark_width_ * benchmark_height_ / (16 * 1) * benchmark_iterations_;
for (int i = 0; i < iterations16; ++i) {
UVScale(orig_pixels, kSrcStride, 48, 3, dest_pixels, kDstStride, 16, 1,
kFilterBilinear);
}
EXPECT_EQ(49, dest_pixels[0]);
EXPECT_EQ(255 - 49, dest_pixels[1]);
UVScale(orig_pixels, kSrcStride, 48, 3, dest_pixels, kDstStride, 16, 1,
kFilterNone);
EXPECT_EQ(49, dest_pixels[0]);
EXPECT_EQ(255 - 49, dest_pixels[1]);
free_aligned_buffer_page_end(dest_pixels);
free_aligned_buffer_page_end(orig_pixels);
}
TEST_F(LibYUVScaleTest, UVTest4x) {
const int kSrcStride = 64 * 2;
const int kDstStride = 16 * 2;
const int kSize = kSrcStride * 4;
align_buffer_page_end(orig_pixels, kSize);
for (int i = 0; i < 64 * 4; ++i) {
orig_pixels[i * 2 + 0] = i;
orig_pixels[i * 2 + 1] = 255 - i;
}
align_buffer_page_end(dest_pixels, kDstStride);
int iterations16 =
benchmark_width_ * benchmark_height_ / (16 * 1) * benchmark_iterations_;
for (int i = 0; i < iterations16; ++i) {
UVScale(orig_pixels, kSrcStride, 64, 4, dest_pixels, kDstStride, 16, 1,
kFilterBilinear);
}
EXPECT_EQ((65 + 66 + 129 + 130 + 2) / 4, dest_pixels[0]);
EXPECT_EQ((255 - 65 + 255 - 66 + 255 - 129 + 255 - 130 + 2) / 4,
dest_pixels[1]);
UVScale(orig_pixels, kSrcStride, 64, 4, dest_pixels, kDstStride, 16, 1,
kFilterNone);
EXPECT_EQ(130, dest_pixels[0]); // expect the 3rd pixel of the 3rd row
EXPECT_EQ(255 - 130, dest_pixels[1]);
free_aligned_buffer_page_end(dest_pixels);
free_aligned_buffer_page_end(orig_pixels);
}
} // namespace libyuv