blob: 03b0486f7613ae2100a20cdd6a3987736d579d74 [file] [log] [blame]
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/scale.h"
#include <assert.h>
#include <string.h>
#include "libyuv/cpu_id.h"
#include "libyuv/planar_functions.h" // For CopyPlane
#include "libyuv/row.h"
#include "libyuv/scale_row.h"
#include "libyuv/scale_uv.h" // For UVScale
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
static __inline int Abs(int v) {
return v >= 0 ? v : -v;
}
#define SUBSAMPLE(v, a, s) (v < 0) ? (-((-v + a) >> s)) : ((v + a) >> s)
// Scale plane, 1/2
// This is an optimized version for scaling down a plane to 1/2 of
// its original size.
static void ScalePlaneDown2(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown2)(const uint8_t* src_ptr, ptrdiff_t src_stride,
uint8_t* dst_ptr, int dst_width) =
filtering == kFilterNone
? ScaleRowDown2_C
: (filtering == kFilterLinear ? ScaleRowDown2Linear_C
: ScaleRowDown2Box_C);
int row_stride = src_stride << 1;
(void)src_width;
(void)src_height;
if (!filtering) {
src_ptr += src_stride; // Point to odd rows.
src_stride = 0;
}
#if defined(HAS_SCALEROWDOWN2_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleRowDown2 =
filtering == kFilterNone
? ScaleRowDown2_Any_NEON
: (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_NEON
: ScaleRowDown2Box_Any_NEON);
if (IS_ALIGNED(dst_width, 16)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_NEON
: (filtering == kFilterLinear
? ScaleRowDown2Linear_NEON
: ScaleRowDown2Box_NEON);
}
}
#endif
#if defined(HAS_SCALEROWDOWN2_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ScaleRowDown2 =
filtering == kFilterNone
? ScaleRowDown2_Any_SSSE3
: (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_SSSE3
: ScaleRowDown2Box_Any_SSSE3);
if (IS_ALIGNED(dst_width, 16)) {
ScaleRowDown2 =
filtering == kFilterNone
? ScaleRowDown2_SSSE3
: (filtering == kFilterLinear ? ScaleRowDown2Linear_SSSE3
: ScaleRowDown2Box_SSSE3);
}
}
#endif
#if defined(HAS_SCALEROWDOWN2_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleRowDown2 =
filtering == kFilterNone
? ScaleRowDown2_Any_AVX2
: (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_AVX2
: ScaleRowDown2Box_Any_AVX2);
if (IS_ALIGNED(dst_width, 32)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_AVX2
: (filtering == kFilterLinear
? ScaleRowDown2Linear_AVX2
: ScaleRowDown2Box_AVX2);
}
}
#endif
#if defined(HAS_SCALEROWDOWN2_MMI)
if (TestCpuFlag(kCpuHasMMI)) {
ScaleRowDown2 =
filtering == kFilterNone
? ScaleRowDown2_Any_MMI
: (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_MMI
: ScaleRowDown2Box_Any_MMI);
if (IS_ALIGNED(dst_width, 8)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_MMI
: (filtering == kFilterLinear
? ScaleRowDown2Linear_MMI
: ScaleRowDown2Box_MMI);
}
}
#endif
#if defined(HAS_SCALEROWDOWN2_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
ScaleRowDown2 =
filtering == kFilterNone
? ScaleRowDown2_Any_MSA
: (filtering == kFilterLinear ? ScaleRowDown2Linear_Any_MSA
: ScaleRowDown2Box_Any_MSA);
if (IS_ALIGNED(dst_width, 32)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_MSA
: (filtering == kFilterLinear
? ScaleRowDown2Linear_MSA
: ScaleRowDown2Box_MSA);
}
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
// TODO(fbarchard): Loop through source height to allow odd height.
for (y = 0; y < dst_height; ++y) {
ScaleRowDown2(src_ptr, src_stride, dst_ptr, dst_width);
src_ptr += row_stride;
dst_ptr += dst_stride;
}
}
static void ScalePlaneDown2_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown2)(const uint16_t* src_ptr, ptrdiff_t src_stride,
uint16_t* dst_ptr, int dst_width) =
filtering == kFilterNone
? ScaleRowDown2_16_C
: (filtering == kFilterLinear ? ScaleRowDown2Linear_16_C
: ScaleRowDown2Box_16_C);
int row_stride = src_stride << 1;
(void)src_width;
(void)src_height;
if (!filtering) {
src_ptr += src_stride; // Point to odd rows.
src_stride = 0;
}
#if defined(HAS_SCALEROWDOWN2_16_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 16)) {
ScaleRowDown2 =
filtering ? ScaleRowDown2Box_16_NEON : ScaleRowDown2_16_NEON;
}
#endif
#if defined(HAS_SCALEROWDOWN2_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 16)) {
ScaleRowDown2 =
filtering == kFilterNone
? ScaleRowDown2_16_SSE2
: (filtering == kFilterLinear ? ScaleRowDown2Linear_16_SSE2
: ScaleRowDown2Box_16_SSE2);
}
#endif
#if defined(HAS_SCALEROWDOWN2_16_MMI)
if (TestCpuFlag(kCpuHasMMI) && IS_ALIGNED(dst_width, 4)) {
ScaleRowDown2 = filtering == kFilterNone ? ScaleRowDown2_16_MMI
: (filtering == kFilterLinear
? ScaleRowDown2Linear_16_MMI
: ScaleRowDown2Box_16_MMI);
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
// TODO(fbarchard): Loop through source height to allow odd height.
for (y = 0; y < dst_height; ++y) {
ScaleRowDown2(src_ptr, src_stride, dst_ptr, dst_width);
src_ptr += row_stride;
dst_ptr += dst_stride;
}
}
// Scale plane, 1/4
// This is an optimized version for scaling down a plane to 1/4 of
// its original size.
static void ScalePlaneDown4(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown4)(const uint8_t* src_ptr, ptrdiff_t src_stride,
uint8_t* dst_ptr, int dst_width) =
filtering ? ScaleRowDown4Box_C : ScaleRowDown4_C;
int row_stride = src_stride << 2;
(void)src_width;
(void)src_height;
if (!filtering) {
src_ptr += src_stride * 2; // Point to row 2.
src_stride = 0;
}
#if defined(HAS_SCALEROWDOWN4_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleRowDown4 =
filtering ? ScaleRowDown4Box_Any_NEON : ScaleRowDown4_Any_NEON;
if (IS_ALIGNED(dst_width, 8)) {
ScaleRowDown4 = filtering ? ScaleRowDown4Box_NEON : ScaleRowDown4_NEON;
}
}
#endif
#if defined(HAS_SCALEROWDOWN4_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
ScaleRowDown4 =
filtering ? ScaleRowDown4Box_Any_SSSE3 : ScaleRowDown4_Any_SSSE3;
if (IS_ALIGNED(dst_width, 8)) {
ScaleRowDown4 = filtering ? ScaleRowDown4Box_SSSE3 : ScaleRowDown4_SSSE3;
}
}
#endif
#if defined(HAS_SCALEROWDOWN4_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleRowDown4 =
filtering ? ScaleRowDown4Box_Any_AVX2 : ScaleRowDown4_Any_AVX2;
if (IS_ALIGNED(dst_width, 16)) {
ScaleRowDown4 = filtering ? ScaleRowDown4Box_AVX2 : ScaleRowDown4_AVX2;
}
}
#endif
#if defined(HAS_SCALEROWDOWN4_MMI)
if (TestCpuFlag(kCpuHasMMI)) {
ScaleRowDown4 =
filtering ? ScaleRowDown4Box_Any_MMI : ScaleRowDown4_Any_MMI;
if (IS_ALIGNED(dst_width, 8)) {
ScaleRowDown4 = filtering ? ScaleRowDown4Box_MMI : ScaleRowDown4_MMI;
}
}
#endif
#if defined(HAS_SCALEROWDOWN4_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
ScaleRowDown4 =
filtering ? ScaleRowDown4Box_Any_MSA : ScaleRowDown4_Any_MSA;
if (IS_ALIGNED(dst_width, 16)) {
ScaleRowDown4 = filtering ? ScaleRowDown4Box_MSA : ScaleRowDown4_MSA;
}
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
for (y = 0; y < dst_height; ++y) {
ScaleRowDown4(src_ptr, src_stride, dst_ptr, dst_width);
src_ptr += row_stride;
dst_ptr += dst_stride;
}
}
static void ScalePlaneDown4_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown4)(const uint16_t* src_ptr, ptrdiff_t src_stride,
uint16_t* dst_ptr, int dst_width) =
filtering ? ScaleRowDown4Box_16_C : ScaleRowDown4_16_C;
int row_stride = src_stride << 2;
(void)src_width;
(void)src_height;
if (!filtering) {
src_ptr += src_stride * 2; // Point to row 2.
src_stride = 0;
}
#if defined(HAS_SCALEROWDOWN4_16_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 8)) {
ScaleRowDown4 =
filtering ? ScaleRowDown4Box_16_NEON : ScaleRowDown4_16_NEON;
}
#endif
#if defined(HAS_SCALEROWDOWN4_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
ScaleRowDown4 =
filtering ? ScaleRowDown4Box_16_SSE2 : ScaleRowDown4_16_SSE2;
}
#endif
#if defined(HAS_SCALEROWDOWN4_16_MMI)
if (TestCpuFlag(kCpuHasMMI) && IS_ALIGNED(dst_width, 8)) {
ScaleRowDown4 = filtering ? ScaleRowDown4Box_16_MMI : ScaleRowDown4_16_MMI;
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
for (y = 0; y < dst_height; ++y) {
ScaleRowDown4(src_ptr, src_stride, dst_ptr, dst_width);
src_ptr += row_stride;
dst_ptr += dst_stride;
}
}
// Scale plane down, 3/4
static void ScalePlaneDown34(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown34_0)(const uint8_t* src_ptr, ptrdiff_t src_stride,
uint8_t* dst_ptr, int dst_width);
void (*ScaleRowDown34_1)(const uint8_t* src_ptr, ptrdiff_t src_stride,
uint8_t* dst_ptr, int dst_width);
const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
(void)src_width;
(void)src_height;
assert(dst_width % 3 == 0);
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_C;
ScaleRowDown34_1 = ScaleRowDown34_C;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_C;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_C;
}
#if defined(HAS_SCALEROWDOWN34_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_Any_NEON;
ScaleRowDown34_1 = ScaleRowDown34_Any_NEON;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_NEON;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_NEON;
}
if (dst_width % 24 == 0) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_NEON;
ScaleRowDown34_1 = ScaleRowDown34_NEON;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_NEON;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_NEON;
}
}
}
#endif
#if defined(HAS_SCALEROWDOWN34_MMI)
if (TestCpuFlag(kCpuHasMMI)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_Any_MMI;
ScaleRowDown34_1 = ScaleRowDown34_Any_MMI;
if (dst_width % 24 == 0) {
ScaleRowDown34_0 = ScaleRowDown34_MMI;
ScaleRowDown34_1 = ScaleRowDown34_MMI;
}
}
}
#endif
#if defined(HAS_SCALEROWDOWN34_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_Any_MSA;
ScaleRowDown34_1 = ScaleRowDown34_Any_MSA;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_MSA;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_MSA;
}
if (dst_width % 48 == 0) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_MSA;
ScaleRowDown34_1 = ScaleRowDown34_MSA;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_MSA;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_MSA;
}
}
}
#endif
#if defined(HAS_SCALEROWDOWN34_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_Any_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_Any_SSSE3;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_Any_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_Any_SSSE3;
}
if (dst_width % 24 == 0) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_SSSE3;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_SSSE3;
}
}
}
#endif
for (y = 0; y < dst_height - 2; y += 3) {
ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_1(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_0(src_ptr + src_stride, -filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 2;
dst_ptr += dst_stride;
}
// Remainder 1 or 2 rows with last row vertically unfiltered
if ((dst_height % 3) == 2) {
ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_1(src_ptr, 0, dst_ptr, dst_width);
} else if ((dst_height % 3) == 1) {
ScaleRowDown34_0(src_ptr, 0, dst_ptr, dst_width);
}
}
static void ScalePlaneDown34_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown34_0)(const uint16_t* src_ptr, ptrdiff_t src_stride,
uint16_t* dst_ptr, int dst_width);
void (*ScaleRowDown34_1)(const uint16_t* src_ptr, ptrdiff_t src_stride,
uint16_t* dst_ptr, int dst_width);
const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
(void)src_width;
(void)src_height;
assert(dst_width % 3 == 0);
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_16_C;
ScaleRowDown34_1 = ScaleRowDown34_16_C;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_C;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_C;
}
#if defined(HAS_SCALEROWDOWN34_16_NEON)
if (TestCpuFlag(kCpuHasNEON) && (dst_width % 24 == 0)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_16_NEON;
ScaleRowDown34_1 = ScaleRowDown34_16_NEON;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_NEON;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_NEON;
}
}
#endif
#if defined(HAS_SCALEROWDOWN34_16_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && (dst_width % 24 == 0)) {
if (!filtering) {
ScaleRowDown34_0 = ScaleRowDown34_16_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_16_SSSE3;
} else {
ScaleRowDown34_0 = ScaleRowDown34_0_Box_16_SSSE3;
ScaleRowDown34_1 = ScaleRowDown34_1_Box_16_SSSE3;
}
}
#endif
for (y = 0; y < dst_height - 2; y += 3) {
ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_1(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_0(src_ptr + src_stride, -filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 2;
dst_ptr += dst_stride;
}
// Remainder 1 or 2 rows with last row vertically unfiltered
if ((dst_height % 3) == 2) {
ScaleRowDown34_0(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride;
dst_ptr += dst_stride;
ScaleRowDown34_1(src_ptr, 0, dst_ptr, dst_width);
} else if ((dst_height % 3) == 1) {
ScaleRowDown34_0(src_ptr, 0, dst_ptr, dst_width);
}
}
// Scale plane, 3/8
// This is an optimized version for scaling down a plane to 3/8
// of its original size.
//
// Uses box filter arranges like this
// aaabbbcc -> abc
// aaabbbcc def
// aaabbbcc ghi
// dddeeeff
// dddeeeff
// dddeeeff
// ggghhhii
// ggghhhii
// Boxes are 3x3, 2x3, 3x2 and 2x2
static void ScalePlaneDown38(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown38_3)(const uint8_t* src_ptr, ptrdiff_t src_stride,
uint8_t* dst_ptr, int dst_width);
void (*ScaleRowDown38_2)(const uint8_t* src_ptr, ptrdiff_t src_stride,
uint8_t* dst_ptr, int dst_width);
const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
assert(dst_width % 3 == 0);
(void)src_width;
(void)src_height;
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_C;
ScaleRowDown38_2 = ScaleRowDown38_C;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_C;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_C;
}
#if defined(HAS_SCALEROWDOWN38_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_Any_NEON;
ScaleRowDown38_2 = ScaleRowDown38_Any_NEON;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_NEON;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_NEON;
}
if (dst_width % 12 == 0) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_NEON;
ScaleRowDown38_2 = ScaleRowDown38_NEON;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_NEON;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_NEON;
}
}
}
#endif
#if defined(HAS_SCALEROWDOWN38_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_Any_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_Any_SSSE3;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_SSSE3;
}
if (dst_width % 12 == 0 && !filtering) {
ScaleRowDown38_3 = ScaleRowDown38_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_SSSE3;
}
if (dst_width % 6 == 0 && filtering) {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_SSSE3;
}
}
#endif
#if defined(HAS_SCALEROWDOWN38_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_Any_MSA;
ScaleRowDown38_2 = ScaleRowDown38_Any_MSA;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_Any_MSA;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_Any_MSA;
}
if (dst_width % 12 == 0) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_MSA;
ScaleRowDown38_2 = ScaleRowDown38_MSA;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_MSA;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_MSA;
}
}
}
#endif
for (y = 0; y < dst_height - 2; y += 3) {
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_2(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 2;
dst_ptr += dst_stride;
}
// Remainder 1 or 2 rows with last row vertically unfiltered
if ((dst_height % 3) == 2) {
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
} else if ((dst_height % 3) == 1) {
ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
}
}
static void ScalePlaneDown38_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr,
enum FilterMode filtering) {
int y;
void (*ScaleRowDown38_3)(const uint16_t* src_ptr, ptrdiff_t src_stride,
uint16_t* dst_ptr, int dst_width);
void (*ScaleRowDown38_2)(const uint16_t* src_ptr, ptrdiff_t src_stride,
uint16_t* dst_ptr, int dst_width);
const int filter_stride = (filtering == kFilterLinear) ? 0 : src_stride;
(void)src_width;
(void)src_height;
assert(dst_width % 3 == 0);
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_16_C;
ScaleRowDown38_2 = ScaleRowDown38_16_C;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_C;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_C;
}
#if defined(HAS_SCALEROWDOWN38_16_NEON)
if (TestCpuFlag(kCpuHasNEON) && (dst_width % 12 == 0)) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_16_NEON;
ScaleRowDown38_2 = ScaleRowDown38_16_NEON;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_NEON;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_NEON;
}
}
#endif
#if defined(HAS_SCALEROWDOWN38_16_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && (dst_width % 24 == 0)) {
if (!filtering) {
ScaleRowDown38_3 = ScaleRowDown38_16_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_16_SSSE3;
} else {
ScaleRowDown38_3 = ScaleRowDown38_3_Box_16_SSSE3;
ScaleRowDown38_2 = ScaleRowDown38_2_Box_16_SSSE3;
}
}
#endif
for (y = 0; y < dst_height - 2; y += 3) {
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_2(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 2;
dst_ptr += dst_stride;
}
// Remainder 1 or 2 rows with last row vertically unfiltered
if ((dst_height % 3) == 2) {
ScaleRowDown38_3(src_ptr, filter_stride, dst_ptr, dst_width);
src_ptr += src_stride * 3;
dst_ptr += dst_stride;
ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
} else if ((dst_height % 3) == 1) {
ScaleRowDown38_3(src_ptr, 0, dst_ptr, dst_width);
}
}
#define MIN1(x) ((x) < 1 ? 1 : (x))
static __inline uint32_t SumPixels(int iboxwidth, const uint16_t* src_ptr) {
uint32_t sum = 0u;
int x;
assert(iboxwidth > 0);
for (x = 0; x < iboxwidth; ++x) {
sum += src_ptr[x];
}
return sum;
}
static __inline uint32_t SumPixels_16(int iboxwidth, const uint32_t* src_ptr) {
uint32_t sum = 0u;
int x;
assert(iboxwidth > 0);
for (x = 0; x < iboxwidth; ++x) {
sum += src_ptr[x];
}
return sum;
}
static void ScaleAddCols2_C(int dst_width,
int boxheight,
int x,
int dx,
const uint16_t* src_ptr,
uint8_t* dst_ptr) {
int i;
int scaletbl[2];
int minboxwidth = dx >> 16;
int boxwidth;
scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight);
scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight);
for (i = 0; i < dst_width; ++i) {
int ix = x >> 16;
x += dx;
boxwidth = MIN1((x >> 16) - ix);
*dst_ptr++ =
SumPixels(boxwidth, src_ptr + ix) * scaletbl[boxwidth - minboxwidth] >>
16;
}
}
static void ScaleAddCols2_16_C(int dst_width,
int boxheight,
int x,
int dx,
const uint32_t* src_ptr,
uint16_t* dst_ptr) {
int i;
int scaletbl[2];
int minboxwidth = dx >> 16;
int boxwidth;
scaletbl[0] = 65536 / (MIN1(minboxwidth) * boxheight);
scaletbl[1] = 65536 / (MIN1(minboxwidth + 1) * boxheight);
for (i = 0; i < dst_width; ++i) {
int ix = x >> 16;
x += dx;
boxwidth = MIN1((x >> 16) - ix);
*dst_ptr++ = SumPixels_16(boxwidth, src_ptr + ix) *
scaletbl[boxwidth - minboxwidth] >>
16;
}
}
static void ScaleAddCols0_C(int dst_width,
int boxheight,
int x,
int dx,
const uint16_t* src_ptr,
uint8_t* dst_ptr) {
int scaleval = 65536 / boxheight;
int i;
(void)dx;
src_ptr += (x >> 16);
for (i = 0; i < dst_width; ++i) {
*dst_ptr++ = src_ptr[i] * scaleval >> 16;
}
}
static void ScaleAddCols1_C(int dst_width,
int boxheight,
int x,
int dx,
const uint16_t* src_ptr,
uint8_t* dst_ptr) {
int boxwidth = MIN1(dx >> 16);
int scaleval = 65536 / (boxwidth * boxheight);
int i;
x >>= 16;
for (i = 0; i < dst_width; ++i) {
*dst_ptr++ = SumPixels(boxwidth, src_ptr + x) * scaleval >> 16;
x += boxwidth;
}
}
static void ScaleAddCols1_16_C(int dst_width,
int boxheight,
int x,
int dx,
const uint32_t* src_ptr,
uint16_t* dst_ptr) {
int boxwidth = MIN1(dx >> 16);
int scaleval = 65536 / (boxwidth * boxheight);
int i;
for (i = 0; i < dst_width; ++i) {
*dst_ptr++ = SumPixels_16(boxwidth, src_ptr + x) * scaleval >> 16;
x += boxwidth;
}
}
// Scale plane down to any dimensions, with interpolation.
// (boxfilter).
//
// Same method as SimpleScale, which is fixed point, outputting
// one pixel of destination using fixed point (16.16) to step
// through source, sampling a box of pixel with simple
// averaging.
static void ScalePlaneBox(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr) {
int j, k;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height << 16);
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
{
// Allocate a row buffer of uint16_t.
align_buffer_64(row16, src_width * 2);
void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx,
const uint16_t* src_ptr, uint8_t* dst_ptr) =
(dx & 0xffff) ? ScaleAddCols2_C
: ((dx != 0x10000) ? ScaleAddCols1_C : ScaleAddCols0_C);
void (*ScaleAddRow)(const uint8_t* src_ptr, uint16_t* dst_ptr,
int src_width) = ScaleAddRow_C;
#if defined(HAS_SCALEADDROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
ScaleAddRow = ScaleAddRow_Any_SSE2;
if (IS_ALIGNED(src_width, 16)) {
ScaleAddRow = ScaleAddRow_SSE2;
}
}
#endif
#if defined(HAS_SCALEADDROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleAddRow = ScaleAddRow_Any_AVX2;
if (IS_ALIGNED(src_width, 32)) {
ScaleAddRow = ScaleAddRow_AVX2;
}
}
#endif
#if defined(HAS_SCALEADDROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
ScaleAddRow = ScaleAddRow_Any_NEON;
if (IS_ALIGNED(src_width, 16)) {
ScaleAddRow = ScaleAddRow_NEON;
}
}
#endif
#if defined(HAS_SCALEADDROW_MMI)
if (TestCpuFlag(kCpuHasMMI)) {
ScaleAddRow = ScaleAddRow_Any_MMI;
if (IS_ALIGNED(src_width, 8)) {
ScaleAddRow = ScaleAddRow_MMI;
}
}
#endif
#if defined(HAS_SCALEADDROW_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
ScaleAddRow = ScaleAddRow_Any_MSA;
if (IS_ALIGNED(src_width, 16)) {
ScaleAddRow = ScaleAddRow_MSA;
}
}
#endif
for (j = 0; j < dst_height; ++j) {
int boxheight;
int iy = y >> 16;
const uint8_t* src = src_ptr + iy * src_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
boxheight = MIN1((y >> 16) - iy);
memset(row16, 0, src_width * 2);
for (k = 0; k < boxheight; ++k) {
ScaleAddRow(src, (uint16_t*)(row16), src_width);
src += src_stride;
}
ScaleAddCols(dst_width, boxheight, x, dx, (uint16_t*)(row16), dst_ptr);
dst_ptr += dst_stride;
}
free_aligned_buffer_64(row16);
}
}
static void ScalePlaneBox_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
int j, k;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height << 16);
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterBox, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
{
// Allocate a row buffer of uint32_t.
align_buffer_64(row32, src_width * 4);
void (*ScaleAddCols)(int dst_width, int boxheight, int x, int dx,
const uint32_t* src_ptr, uint16_t* dst_ptr) =
(dx & 0xffff) ? ScaleAddCols2_16_C : ScaleAddCols1_16_C;
void (*ScaleAddRow)(const uint16_t* src_ptr, uint32_t* dst_ptr,
int src_width) = ScaleAddRow_16_C;
#if defined(HAS_SCALEADDROW_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(src_width, 16)) {
ScaleAddRow = ScaleAddRow_16_SSE2;
}
#endif
#if defined(HAS_SCALEADDROW_16_MMI)
if (TestCpuFlag(kCpuHasMMI) && IS_ALIGNED(src_width, 4)) {
ScaleAddRow = ScaleAddRow_16_MMI;
}
#endif
for (j = 0; j < dst_height; ++j) {
int boxheight;
int iy = y >> 16;
const uint16_t* src = src_ptr + iy * src_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
boxheight = MIN1((y >> 16) - iy);
memset(row32, 0, src_width * 4);
for (k = 0; k < boxheight; ++k) {
ScaleAddRow(src, (uint32_t*)(row32), src_width);
src += src_stride;
}
ScaleAddCols(dst_width, boxheight, x, dx, (uint32_t*)(row32), dst_ptr);
dst_ptr += dst_stride;
}
free_aligned_buffer_64(row32);
}
}
// Scale plane down with bilinear interpolation.
void ScalePlaneBilinearDown(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr,
enum FilterMode filtering) {
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
// TODO(fbarchard): Consider not allocating row buffer for kFilterLinear.
// Allocate a row buffer.
align_buffer_64(row, src_width);
const int max_y = (src_height - 1) << 16;
int j;
void (*ScaleFilterCols)(uint8_t * dst_ptr, const uint8_t* src_ptr,
int dst_width, int x, int dx) =
(src_width >= 32768) ? ScaleFilterCols64_C : ScaleFilterCols_C;
void (*InterpolateRow)(uint8_t * dst_ptr, const uint8_t* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(src_width, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(src_width, 32)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(src_width, 16)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_MMI)
if (TestCpuFlag(kCpuHasMMI)) {
InterpolateRow = InterpolateRow_Any_MMI;
if (IS_ALIGNED(src_width, 16)) {
InterpolateRow = InterpolateRow_MMI;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
InterpolateRow = InterpolateRow_Any_MSA;
if (IS_ALIGNED(src_width, 32)) {
InterpolateRow = InterpolateRow_MSA;
}
}
#endif
#if defined(HAS_SCALEFILTERCOLS_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_SSSE3;
}
#endif
#if defined(HAS_SCALEFILTERCOLS_NEON)
if (TestCpuFlag(kCpuHasNEON) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_Any_NEON;
if (IS_ALIGNED(dst_width, 8)) {
ScaleFilterCols = ScaleFilterCols_NEON;
}
}
#endif
#if defined(HAS_SCALEFILTERCOLS_MSA)
if (TestCpuFlag(kCpuHasMSA) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_Any_MSA;
if (IS_ALIGNED(dst_width, 16)) {
ScaleFilterCols = ScaleFilterCols_MSA;
}
}
#endif
if (y > max_y) {
y = max_y;
}
for (j = 0; j < dst_height; ++j) {
int yi = y >> 16;
const uint8_t* src = src_ptr + yi * src_stride;
if (filtering == kFilterLinear) {
ScaleFilterCols(dst_ptr, src, dst_width, x, dx);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(row, src, src_stride, src_width, yf);
ScaleFilterCols(dst_ptr, row, dst_width, x, dx);
}
dst_ptr += dst_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
}
free_aligned_buffer_64(row);
}
void ScalePlaneBilinearDown_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr,
enum FilterMode filtering) {
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
// TODO(fbarchard): Consider not allocating row buffer for kFilterLinear.
// Allocate a row buffer.
align_buffer_64(row, src_width * 2);
const int max_y = (src_height - 1) << 16;
int j;
void (*ScaleFilterCols)(uint16_t * dst_ptr, const uint16_t* src_ptr,
int dst_width, int x, int dx) =
(src_width >= 32768) ? ScaleFilterCols64_16_C : ScaleFilterCols_16_C;
void (*InterpolateRow)(uint16_t * dst_ptr, const uint16_t* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_16_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
#if defined(HAS_INTERPOLATEROW_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
InterpolateRow = InterpolateRow_Any_16_SSE2;
if (IS_ALIGNED(src_width, 16)) {
InterpolateRow = InterpolateRow_16_SSE2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_16_SSSE3;
if (IS_ALIGNED(src_width, 16)) {
InterpolateRow = InterpolateRow_16_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_16_AVX2;
if (IS_ALIGNED(src_width, 32)) {
InterpolateRow = InterpolateRow_16_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_16_NEON;
if (IS_ALIGNED(src_width, 16)) {
InterpolateRow = InterpolateRow_16_NEON;
}
}
#endif
#if defined(HAS_SCALEFILTERCOLS_16_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_16_SSSE3;
}
#endif
if (y > max_y) {
y = max_y;
}
for (j = 0; j < dst_height; ++j) {
int yi = y >> 16;
const uint16_t* src = src_ptr + yi * src_stride;
if (filtering == kFilterLinear) {
ScaleFilterCols(dst_ptr, src, dst_width, x, dx);
} else {
int yf = (y >> 8) & 255;
InterpolateRow((uint16_t*)row, src, src_stride, src_width, yf);
ScaleFilterCols(dst_ptr, (uint16_t*)row, dst_width, x, dx);
}
dst_ptr += dst_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
}
free_aligned_buffer_64(row);
}
// Scale up down with bilinear interpolation.
void ScalePlaneBilinearUp(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr,
enum FilterMode filtering) {
int j;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height - 1) << 16;
void (*InterpolateRow)(uint8_t * dst_ptr, const uint8_t* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_C;
void (*ScaleFilterCols)(uint8_t * dst_ptr, const uint8_t* src_ptr,
int dst_width, int x, int dx) =
filtering ? ScaleFilterCols_C : ScaleCols_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(dst_width, 32)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
if (filtering && src_width >= 32768) {
ScaleFilterCols = ScaleFilterCols64_C;
}
#if defined(HAS_SCALEFILTERCOLS_SSSE3)
if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_SSSE3;
}
#endif
#if defined(HAS_SCALEFILTERCOLS_NEON)
if (filtering && TestCpuFlag(kCpuHasNEON) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_Any_NEON;
if (IS_ALIGNED(dst_width, 8)) {
ScaleFilterCols = ScaleFilterCols_NEON;
}
}
#endif
#if defined(HAS_SCALEFILTERCOLS_MSA)
if (filtering && TestCpuFlag(kCpuHasMSA) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_Any_MSA;
if (IS_ALIGNED(dst_width, 16)) {
ScaleFilterCols = ScaleFilterCols_MSA;
}
}
#endif
if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
ScaleFilterCols = ScaleColsUp2_C;
#if defined(HAS_SCALECOLS_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
ScaleFilterCols = ScaleColsUp2_SSE2;
}
#endif
#if defined(HAS_SCALECOLS_MMI)
if (TestCpuFlag(kCpuHasMMI) && IS_ALIGNED(dst_width, 8)) {
ScaleFilterCols = ScaleColsUp2_MMI;
}
#endif
}
if (y > max_y) {
y = max_y;
}
{
int yi = y >> 16;
const uint8_t* src = src_ptr + yi * src_stride;
// Allocate 2 row buffers.
const int kRowSize = (dst_width + 31) & ~31;
align_buffer_64(row, kRowSize * 2);
uint8_t* rowptr = row;
int rowstride = kRowSize;
int lasty = yi;
ScaleFilterCols(rowptr, src, dst_width, x, dx);
if (src_height > 1) {
src += src_stride;
}
ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx);
src += src_stride;
for (j = 0; j < dst_height; ++j) {
yi = y >> 16;
if (yi != lasty) {
if (y > max_y) {
y = max_y;
yi = y >> 16;
src = src_ptr + yi * src_stride;
}
if (yi != lasty) {
ScaleFilterCols(rowptr, src, dst_width, x, dx);
rowptr += rowstride;
rowstride = -rowstride;
lasty = yi;
src += src_stride;
}
}
if (filtering == kFilterLinear) {
InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf);
}
dst_ptr += dst_stride;
y += dy;
}
free_aligned_buffer_64(row);
}
}
// Scale plane, horizontally up by 2 times.
// Uses linear filter horizontally, nearest vertically.
// This is an optimized version for scaling up a plane to 2 times of
// its original width, using linear interpolation.
// This is used to scale U and V planes of I422 to I444.
void ScalePlaneUp2_Linear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr) {
void (*ScaleRowUp)(const uint8_t* src_ptr, uint8_t* dst_ptr, int dst_width) =
ScaleRowUp2_Linear_Any_C;
int i;
int y;
int dy;
// This function can only scale up by 2 times horizontally.
assert(src_width == ((dst_width + 1) / 2));
#ifdef HAS_SCALEROWUP2LINEAR_SSE2
if (TestCpuFlag(kCpuHasSSE2)) {
ScaleRowUp = ScaleRowUp2_Linear_Any_SSE2;
}
#endif
#ifdef HAS_SCALEROWUP2LINEAR_SSSE3
if (TestCpuFlag(kCpuHasSSSE3)) {
ScaleRowUp = ScaleRowUp2_Linear_Any_SSSE3;
}
#endif
#ifdef HAS_SCALEROWUP2LINEAR_AVX2
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleRowUp = ScaleRowUp2_Linear_Any_AVX2;
}
#endif
#ifdef HAS_SCALEROWUP2LINEAR_NEON
if (TestCpuFlag(kCpuHasNEON)) {
ScaleRowUp = ScaleRowUp2_Linear_Any_NEON;
}
#endif
if (dst_height == 1) {
ScaleRowUp(src_ptr + ((src_height - 1) / 2) * src_stride, dst_ptr,
dst_width);
} else {
dy = FixedDiv(src_height - 1, dst_height - 1);
y = (1 << 15) - 1;
for (i = 0; i < dst_height; ++i) {
ScaleRowUp(src_ptr + (y >> 16) * src_stride, dst_ptr, dst_width);
dst_ptr += dst_stride;
y += dy;
}
}
}
// Scale plane, up by 2 times.
// This is an optimized version for scaling up a plane to 2 times of
// its original size, using bilinear interpolation.
// This is used to scale U and V planes of I420 to I444.
void ScalePlaneUp2_Bilinear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr) {
void (*Scale2RowUp)(const uint8_t* src_ptr, ptrdiff_t src_stride,
uint8_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) =
ScaleRowUp2_Bilinear_Any_C;
int x;
// This function can only scale up by 2 times.
assert(src_width == ((dst_width + 1) / 2));
assert(src_height == ((dst_height + 1) / 2));
#ifdef HAS_SCALEROWUP2BILINEAR_SSE2
if (TestCpuFlag(kCpuHasSSE2)) {
Scale2RowUp = ScaleRowUp2_Bilinear_Any_SSE2;
}
#endif
#ifdef HAS_SCALEROWUP2BILINEAR_SSSE3
if (TestCpuFlag(kCpuHasSSSE3)) {
Scale2RowUp = ScaleRowUp2_Bilinear_Any_SSSE3;
}
#endif
#ifdef HAS_SCALEROWUP2BILINEAR_AVX2
if (TestCpuFlag(kCpuHasAVX2)) {
Scale2RowUp = ScaleRowUp2_Bilinear_Any_AVX2;
}
#endif
#ifdef HAS_SCALEROWUP2BILINEAR_NEON
if (TestCpuFlag(kCpuHasNEON)) {
Scale2RowUp = ScaleRowUp2_Bilinear_Any_NEON;
}
#endif
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
dst_ptr += dst_stride;
for (x = 0; x < src_height - 1; ++x) {
Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width);
src_ptr += src_stride;
// TODO(fbarchard): Test performance of writing one row of destination at a
// time.
dst_ptr += 2 * dst_stride;
}
if (!(dst_height & 1)) {
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
}
}
// Scale at most 14 bit plane, horizontally up by 2 times.
// This is an optimized version for scaling up a plane to 2 times of
// its original width, using linear interpolation.
// stride is in count of uint16_t.
// This is used to scale U and V planes of I210 to I410 and I212 to I412.
void ScalePlaneUp2_12_Linear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
void (*ScaleRowUp)(const uint16_t* src_ptr, uint16_t* dst_ptr,
int dst_width) = ScaleRowUp2_Linear_16_Any_C;
int i;
int y;
int dy;
// This function can only scale up by 2 times horizontally.
assert(src_width == ((dst_width + 1) / 2));
#ifdef HAS_SCALEROWUP2LINEAR_12_SSSE3
if (TestCpuFlag(kCpuHasSSSE3)) {
ScaleRowUp = ScaleRowUp2_Linear_12_Any_SSSE3;
}
#endif
#ifdef HAS_SCALEROWUP2LINEAR_12_AVX2
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleRowUp = ScaleRowUp2_Linear_12_Any_AVX2;
}
#endif
#ifdef HAS_SCALEROWUP2LINEAR_12_NEON
if (TestCpuFlag(kCpuHasNEON)) {
ScaleRowUp = ScaleRowUp2_Linear_12_Any_NEON;
}
#endif
if (dst_height == 1) {
ScaleRowUp(src_ptr + ((src_height - 1) / 2) * src_stride, dst_ptr,
dst_width);
} else {
dy = FixedDiv(src_height - 1, dst_height - 1);
y = (1 << 15) - 1;
for (i = 0; i < dst_height; ++i) {
ScaleRowUp(src_ptr + (y >> 16) * src_stride, dst_ptr, dst_width);
dst_ptr += dst_stride;
y += dy;
}
}
}
// Scale at most 12 bit plane, up by 2 times.
// This is an optimized version for scaling up a plane to 2 times of
// its original size, using bilinear interpolation.
// stride is in count of uint16_t.
// This is used to scale U and V planes of I010 to I410 and I012 to I412.
void ScalePlaneUp2_12_Bilinear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
void (*Scale2RowUp)(const uint16_t* src_ptr, ptrdiff_t src_stride,
uint16_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) =
ScaleRowUp2_Bilinear_16_Any_C;
int x;
// This function can only scale up by 2 times.
assert(src_width == ((dst_width + 1) / 2));
assert(src_height == ((dst_height + 1) / 2));
#ifdef HAS_SCALEROWUP2BILINEAR_12_SSSE3
if (TestCpuFlag(kCpuHasSSSE3)) {
Scale2RowUp = ScaleRowUp2_Bilinear_12_Any_SSSE3;
}
#endif
#ifdef HAS_SCALEROWUP2BILINEAR_12_AVX2
if (TestCpuFlag(kCpuHasAVX2)) {
Scale2RowUp = ScaleRowUp2_Bilinear_12_Any_AVX2;
}
#endif
#ifdef HAS_SCALEROWUP2BILINEAR_12_NEON
if (TestCpuFlag(kCpuHasNEON)) {
Scale2RowUp = ScaleRowUp2_Bilinear_12_Any_NEON;
}
#endif
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
dst_ptr += dst_stride;
for (x = 0; x < src_height - 1; ++x) {
Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width);
src_ptr += src_stride;
dst_ptr += 2 * dst_stride;
}
if (!(dst_height & 1)) {
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
}
}
void ScalePlaneUp2_16_Linear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
void (*ScaleRowUp)(const uint16_t* src_ptr, uint16_t* dst_ptr,
int dst_width) = ScaleRowUp2_Linear_16_Any_C;
int i;
int y;
int dy;
// This function can only scale up by 2 times horizontally.
assert(src_width == ((dst_width + 1) / 2));
#ifdef HAS_SCALEROWUP2LINEAR_16_SSE2
if (TestCpuFlag(kCpuHasSSE2)) {
ScaleRowUp = ScaleRowUp2_Linear_16_Any_SSE2;
}
#endif
#ifdef HAS_SCALEROWUP2LINEAR_16_AVX2
if (TestCpuFlag(kCpuHasAVX2)) {
ScaleRowUp = ScaleRowUp2_Linear_16_Any_AVX2;
}
#endif
#ifdef HAS_SCALEROWUP2LINEAR_16_NEON
if (TestCpuFlag(kCpuHasNEON)) {
ScaleRowUp = ScaleRowUp2_Linear_16_Any_NEON;
}
#endif
if (dst_height == 1) {
ScaleRowUp(src_ptr + ((src_height - 1) / 2) * src_stride, dst_ptr,
dst_width);
} else {
dy = FixedDiv(src_height - 1, dst_height - 1);
y = (1 << 15) - 1;
for (i = 0; i < dst_height; ++i) {
ScaleRowUp(src_ptr + (y >> 16) * src_stride, dst_ptr, dst_width);
dst_ptr += dst_stride;
y += dy;
}
}
}
void ScalePlaneUp2_16_Bilinear(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
void (*Scale2RowUp)(const uint16_t* src_ptr, ptrdiff_t src_stride,
uint16_t* dst_ptr, ptrdiff_t dst_stride, int dst_width) =
ScaleRowUp2_Bilinear_16_Any_C;
int x;
// This function can only scale up by 2 times.
assert(src_width == ((dst_width + 1) / 2));
assert(src_height == ((dst_height + 1) / 2));
#ifdef HAS_SCALEROWUP2BILINEAR_16_SSE2
if (TestCpuFlag(kCpuHasSSSE3)) {
Scale2RowUp = ScaleRowUp2_Bilinear_16_Any_SSSE3;
}
#endif
#ifdef HAS_SCALEROWUP2BILINEAR_16_AVX2
if (TestCpuFlag(kCpuHasAVX2)) {
Scale2RowUp = ScaleRowUp2_Bilinear_16_Any_AVX2;
}
#endif
#ifdef HAS_SCALEROWUP2BILINEAR_16_NEON
if (TestCpuFlag(kCpuHasNEON)) {
Scale2RowUp = ScaleRowUp2_Bilinear_16_Any_NEON;
}
#endif
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
dst_ptr += dst_stride;
for (x = 0; x < src_height - 1; ++x) {
Scale2RowUp(src_ptr, src_stride, dst_ptr, dst_stride, dst_width);
src_ptr += src_stride;
dst_ptr += 2 * dst_stride;
}
if (!(dst_height & 1)) {
Scale2RowUp(src_ptr, 0, dst_ptr, 0, dst_width);
}
}
void ScalePlaneBilinearUp_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr,
enum FilterMode filtering) {
int j;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
const int max_y = (src_height - 1) << 16;
void (*InterpolateRow)(uint16_t * dst_ptr, const uint16_t* src_ptr,
ptrdiff_t src_stride, int dst_width,
int source_y_fraction) = InterpolateRow_16_C;
void (*ScaleFilterCols)(uint16_t * dst_ptr, const uint16_t* src_ptr,
int dst_width, int x, int dx) =
filtering ? ScaleFilterCols_16_C : ScaleCols_16_C;
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
#if defined(HAS_INTERPOLATEROW_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
InterpolateRow = InterpolateRow_Any_16_SSE2;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_16_SSE2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
InterpolateRow = InterpolateRow_Any_16_SSSE3;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_16_SSSE3;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
InterpolateRow = InterpolateRow_Any_16_AVX2;
if (IS_ALIGNED(dst_width, 32)) {
InterpolateRow = InterpolateRow_16_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_16_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
InterpolateRow = InterpolateRow_Any_16_NEON;
if (IS_ALIGNED(dst_width, 16)) {
InterpolateRow = InterpolateRow_16_NEON;
}
}
#endif
if (filtering && src_width >= 32768) {
ScaleFilterCols = ScaleFilterCols64_16_C;
}
#if defined(HAS_SCALEFILTERCOLS_16_SSSE3)
if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleFilterCols = ScaleFilterCols_16_SSSE3;
}
#endif
if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
ScaleFilterCols = ScaleColsUp2_16_C;
#if defined(HAS_SCALECOLS_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
ScaleFilterCols = ScaleColsUp2_16_SSE2;
}
#endif
#if defined(HAS_SCALECOLS_16_MMI)
if (TestCpuFlag(kCpuHasMMI) && IS_ALIGNED(dst_width, 8)) {
ScaleFilterCols = ScaleColsUp2_16_MMI;
}
#endif
}
if (y > max_y) {
y = max_y;
}
{
int yi = y >> 16;
const uint16_t* src = src_ptr + yi * src_stride;
// Allocate 2 row buffers.
const int kRowSize = (dst_width + 31) & ~31;
align_buffer_64(row, kRowSize * 4);
uint16_t* rowptr = (uint16_t*)row;
int rowstride = kRowSize;
int lasty = yi;
ScaleFilterCols(rowptr, src, dst_width, x, dx);
if (src_height > 1) {
src += src_stride;
}
ScaleFilterCols(rowptr + rowstride, src, dst_width, x, dx);
src += src_stride;
for (j = 0; j < dst_height; ++j) {
yi = y >> 16;
if (yi != lasty) {
if (y > max_y) {
y = max_y;
yi = y >> 16;
src = src_ptr + yi * src_stride;
}
if (yi != lasty) {
ScaleFilterCols(rowptr, src, dst_width, x, dx);
rowptr += rowstride;
rowstride = -rowstride;
lasty = yi;
src += src_stride;
}
}
if (filtering == kFilterLinear) {
InterpolateRow(dst_ptr, rowptr, 0, dst_width, 0);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(dst_ptr, rowptr, rowstride, dst_width, yf);
}
dst_ptr += dst_stride;
y += dy;
}
free_aligned_buffer_64(row);
}
}
// Scale Plane to/from any dimensions, without interpolation.
// Fixed point math is used for performance: The upper 16 bits
// of x and dx is the integer part of the source position and
// the lower 16 bits are the fixed decimal part.
static void ScalePlaneSimple(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint8_t* src_ptr,
uint8_t* dst_ptr) {
int i;
void (*ScaleCols)(uint8_t * dst_ptr, const uint8_t* src_ptr, int dst_width,
int x, int dx) = ScaleCols_C;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
if (src_width * 2 == dst_width && x < 0x8000) {
ScaleCols = ScaleColsUp2_C;
#if defined(HAS_SCALECOLS_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
ScaleCols = ScaleColsUp2_SSE2;
}
#endif
#if defined(HAS_SCALECOLS_MMI)
if (TestCpuFlag(kCpuHasMMI) && IS_ALIGNED(dst_width, 8)) {
ScaleCols = ScaleColsUp2_MMI;
}
#endif
}
for (i = 0; i < dst_height; ++i) {
ScaleCols(dst_ptr, src_ptr + (y >> 16) * src_stride, dst_width, x, dx);
dst_ptr += dst_stride;
y += dy;
}
}
static void ScalePlaneSimple_16(int src_width,
int src_height,
int dst_width,
int dst_height,
int src_stride,
int dst_stride,
const uint16_t* src_ptr,
uint16_t* dst_ptr) {
int i;
void (*ScaleCols)(uint16_t * dst_ptr, const uint16_t* src_ptr, int dst_width,
int x, int dx) = ScaleCols_16_C;
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
ScaleSlope(src_width, src_height, dst_width, dst_height, kFilterNone, &x, &y,
&dx, &dy);
src_width = Abs(src_width);
if (src_width * 2 == dst_width && x < 0x8000) {
ScaleCols = ScaleColsUp2_16_C;
#if defined(HAS_SCALECOLS_16_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) {
ScaleCols = ScaleColsUp2_16_SSE2;
}
#endif
#if defined(HAS_SCALECOLS_16_MMI)
if (TestCpuFlag(kCpuHasMMI) && IS_ALIGNED(dst_width, 8)) {
ScaleCols = ScaleColsUp2_16_MMI;
}
#endif
}
for (i = 0; i < dst_height; ++i) {
ScaleCols(dst_ptr, src_ptr + (y >> 16) * src_stride, dst_width, x, dx);
dst_ptr += dst_stride;
y += dy;
}
}
// Scale a plane.
// This function dispatches to a specialized scaler based on scale factor.
LIBYUV_API
void ScalePlane(const uint8_t* src,
int src_stride,
int src_width,
int src_height,
uint8_t* dst,
int dst_stride,
int dst_width,
int dst_height,
enum FilterMode filtering) {
// Simplify filtering when possible.
filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
filtering);
// Negative height means invert the image.
if (src_height < 0) {
src_height = -src_height;
src = src + (src_height - 1) * src_stride;
src_stride = -src_stride;
}
// Use specialized scales to improve performance for common resolutions.
// For example, all the 1/2 scalings will use ScalePlaneDown2()
if (dst_width == src_width && dst_height == src_height) {
// Straight copy.
CopyPlane(src, src_stride, dst, dst_stride, dst_width, dst_height);
return;
}
if (dst_width == src_width && filtering != kFilterBox) {
int dy = FixedDiv(src_height, dst_height);
// Arbitrary scale vertically, but unscaled horizontally.
ScalePlaneVertical(src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst, 0, 0, dy, 1, filtering);
return;
}
if (dst_width <= Abs(src_width) && dst_height <= src_height) {
// Scale down.
if (4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height) {
// optimized, 3/4
ScalePlaneDown34(src_width, src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst, filtering);
return;
}
if (2 * dst_width == src_width && 2 * dst_height == src_height) {
// optimized, 1/2
ScalePlaneDown2(src_width, src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst, filtering);
return;
}
// 3/8 rounded up for odd sized chroma height.
if (8 * dst_width == 3 * src_width && 8 * dst_height == 3 * src_height) {
// optimized, 3/8
ScalePlaneDown38(src_width, src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst, filtering);
return;
}
if (4 * dst_width == src_width && 4 * dst_height == src_height &&
(filtering == kFilterBox || filtering == kFilterNone)) {
// optimized, 1/4
ScalePlaneDown4(src_width, src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst, filtering);
return;
}
}
if (filtering == kFilterBox && dst_height * 2 < src_height) {
ScalePlaneBox(src_width, src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst);
return;
}
if ((dst_width + 1) / 2 == src_width && filtering == kFilterLinear) {
ScalePlaneUp2_Linear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return;
}
if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width &&
(filtering == kFilterBilinear || filtering == kFilterBox)) {
ScalePlaneUp2_Bilinear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return;
}
if (filtering && dst_height > src_height) {
ScalePlaneBilinearUp(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
if (filtering) {
ScalePlaneBilinearDown(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
ScalePlaneSimple(src_width, src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst);
}
LIBYUV_API
void ScalePlane_16(const uint16_t* src,
int src_stride,
int src_width,
int src_height,
uint16_t* dst,
int dst_stride,
int dst_width,
int dst_height,
enum FilterMode filtering) {
// Simplify filtering when possible.
filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
filtering);
// Negative height means invert the image.
if (src_height < 0) {
src_height = -src_height;
src = src + (src_height - 1) * src_stride;
src_stride = -src_stride;
}
// Use specialized scales to improve performance for common resolutions.
// For example, all the 1/2 scalings will use ScalePlaneDown2()
if (dst_width == src_width && dst_height == src_height) {
// Straight copy.
CopyPlane_16(src, src_stride, dst, dst_stride, dst_width, dst_height);
return;
}
if (dst_width == src_width && filtering != kFilterBox) {
int dy = FixedDiv(src_height, dst_height);
// Arbitrary scale vertically, but unscaled horizontally.
ScalePlaneVertical_16(src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst, 0, 0, dy, 1, filtering);
return;
}
if (dst_width <= Abs(src_width) && dst_height <= src_height) {
// Scale down.
if (4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height) {
// optimized, 3/4
ScalePlaneDown34_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
if (2 * dst_width == src_width && 2 * dst_height == src_height) {
// optimized, 1/2
ScalePlaneDown2_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
// 3/8 rounded up for odd sized chroma height.
if (8 * dst_width == 3 * src_width && 8 * dst_height == 3 * src_height) {
// optimized, 3/8
ScalePlaneDown38_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
if (4 * dst_width == src_width && 4 * dst_height == src_height &&
(filtering == kFilterBox || filtering == kFilterNone)) {
// optimized, 1/4
ScalePlaneDown4_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
}
if (filtering == kFilterBox && dst_height * 2 < src_height) {
ScalePlaneBox_16(src_width, src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst);
return;
}
if ((dst_width + 1) / 2 == src_width && filtering == kFilterLinear) {
ScalePlaneUp2_16_Linear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return;
}
if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width &&
(filtering == kFilterBilinear || filtering == kFilterBox)) {
ScalePlaneUp2_16_Bilinear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return;
}
if (filtering && dst_height > src_height) {
ScalePlaneBilinearUp_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
if (filtering) {
ScalePlaneBilinearDown_16(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst, filtering);
return;
}
ScalePlaneSimple_16(src_width, src_height, dst_width, dst_height, src_stride,
dst_stride, src, dst);
}
LIBYUV_API
void ScalePlane_12(const uint16_t* src,
int src_stride,
int src_width,
int src_height,
uint16_t* dst,
int dst_stride,
int dst_width,
int dst_height,
enum FilterMode filtering) {
// Simplify filtering when possible.
filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height,
filtering);
// Negative height means invert the image.
if (src_height < 0) {
src_height = -src_height;
src = src + (src_height - 1) * src_stride;
src_stride = -src_stride;
}
if ((dst_width + 1) / 2 == src_width && filtering == kFilterLinear) {
ScalePlaneUp2_12_Linear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return;
}
if ((dst_height + 1) / 2 == src_height && (dst_width + 1) / 2 == src_width &&
(filtering == kFilterBilinear || filtering == kFilterBox)) {
ScalePlaneUp2_12_Bilinear(src_width, src_height, dst_width, dst_height,
src_stride, dst_stride, src, dst);
return;
}
ScalePlane_16(src, src_stride, src_width, src_height, dst, dst_stride,
dst_width, dst_height, filtering);
}
// Scale an I420 image.
// This function in turn calls a scaling function for each plane.
LIBYUV_API
int I420Scale(const uint8_t* src_y,
int src_stride_y,
const uint8_t* src_u,
int src_stride_u,
const uint8_t* src_v,
int src_stride_v,
int src_width,
int src_height,
uint8_t* dst_y,
int dst_stride_y,
uint8_t* dst_u,
int dst_stride_u,
uint8_t* dst_v,
int dst_stride_v,
int dst_width,
int dst_height,
enum FilterMode filtering) {
int src_halfwidth = SUBSAMPLE(src_width, 1, 1);
int src_halfheight = SUBSAMPLE(src_height, 1, 1);
int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1);
int dst_halfheight = SUBSAMPLE(dst_height, 1, 1);
if (!src_y || !src_u || !src_v || src_width <= 0 || src_height == 0 ||
src_width > 32768 || src_height > 32768 || !dst_y || !dst_u || !dst_v ||
dst_width <= 0 || dst_height <= 0) {
return -1;
}
ScalePlane(src_y, src_stride_y, src_width, src_height, dst_y, dst_stride_y,
dst_width, dst_height, filtering);
ScalePlane(src_u, src_stride_u, src_halfwidth, src_halfheight, dst_u,
dst_stride_u, dst_halfwidth, dst_halfheight, filtering);
ScalePlane(src_v, src_stride_v, src_halfwidth, src_halfheight, dst_v,
dst_stride_v, dst_halfwidth, dst_halfheight, filtering);
return 0;
}
LIBYUV_API
int I420Scale_16(const uint16_t* src_y,
int src_stride_y,
const uint16_t* src_u,
int src_stride_u,
const uint16_t* src_v,
int src_stride_v,
int src_width,
int src_height,
uint16_t* dst_y,
int dst_stride_y,
uint16_t* dst_u,
int dst_stride_u,
uint16_t* dst_v,
int dst_stride_v,
int dst_width,
int dst_height,
enum FilterMode filtering) {
int src_halfwidth = SUBSAMPLE(src_width, 1, 1);
int src_halfheight = SUBSAMPLE(src_height, 1, 1);
int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1);
int dst_halfheight = SUBSAMPLE(dst_height, 1, 1);
if (!src_y || !src_u || !src_v || src_width <= 0 || src_height == 0 ||
src_width > 32768 || src_height > 32768 || !dst_y || !dst_u || !dst_v ||
dst_width <= 0 || dst_height <= 0) {
return -1;
}
ScalePlane_16(src_y, src_stride_y, src_width, src_height, dst_y, dst_stride_y,
dst_width, dst_height, filtering);
ScalePlane_16(src_u, src_stride_u, src_halfwidth, src_halfheight, dst_u,
dst_stride_u, dst_halfwidth, dst_halfheight, filtering);
ScalePlane_16(src_v, src_stride_v, src_halfwidth, src_halfheight, dst_v,
dst_stride_v, dst_halfwidth, dst_halfheight, filtering);
return 0;
}
LIBYUV_API
int I420Scale_12(const uint16_t* src_y,
int src_stride_y,
const uint16_t* src_u,
int src_stride_u,
const uint16_t* src_v,
int src_stride_v,
int src_width,
int src_height,
uint16_t* dst_y,
int dst_stride_y,
uint16_t* dst_u,
int dst_stride_u,
uint16_t* dst_v,
int dst_stride_v,
int dst_width,
int dst_height,
enum FilterMode filtering) {
int src_halfwidth = SUBSAMPLE(src_width, 1, 1);
int src_halfheight = SUBSAMPLE(src_height, 1, 1);
int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1);
int dst_halfheight = SUBSAMPLE(dst_height, 1, 1);
if (!src_y || !src_u || !src_v || src_width <= 0 || src_height == 0 ||
src_width > 32768 || src_height > 32768 || !dst_y || !dst_u || !dst_v ||
dst_width <= 0 || dst_height <= 0) {
return -1;
}
ScalePlane_12(src_y, src_stride_y, src_width, src_height, dst_y, dst_stride_y,
dst_width, dst_height, filtering);
ScalePlane_12(src_u, src_stride_u, src_halfwidth, src_halfheight, dst_u,
dst_stride_u, dst_halfwidth, dst_halfheight, filtering);
ScalePlane_12(src_v, src_stride_v, src_halfwidth, src_halfheight, dst_v,
dst_stride_v, dst_halfwidth, dst_halfheight, filtering);
return 0;
}
// Scale an I444 image.
// This function in turn calls a scaling function for each plane.
LIBYUV_API
int I444Scale(const uint8_t* src_y,
int src_stride_y,
const uint8_t* src_u,
int src_stride_u,
const uint8_t* src_v,
int src_stride_v,
int src_width,
int src_height,
uint8_t* dst_y,
int dst_stride_y,
uint8_t* dst_u,
int dst_stride_u,
uint8_t* dst_v,
int dst_stride_v,
int dst_width,
int dst_height,
enum FilterMode filtering) {
if (!src_y || !src_u || !src_v || src_width <= 0 || src_height == 0 ||
src_width > 32768 || src_height > 32768 || !dst_y || !dst_u || !dst_v ||
dst_width <= 0 || dst_height <= 0) {
return -1;
}
ScalePlane(src_y, src_stride_y, src_width, src_height, dst_y, dst_stride_y,
dst_width, dst_height, filtering);
ScalePlane(src_u, src_stride_u, src_width, src_height, dst_u, dst_stride_u,
dst_width, dst_height, filtering);
ScalePlane(src_v, src_stride_v, src_width, src_height, dst_v, dst_stride_v,
dst_width, dst_height, filtering);
return 0;
}
LIBYUV_API
int I444Scale_16(const uint16_t* src_y,
int src_stride_y,
const uint16_t* src_u,
int src_stride_u,
const uint16_t* src_v,
int src_stride_v,
int src_width,
int src_height,
uint16_t* dst_y,
int dst_stride_y,
uint16_t* dst_u,
int dst_stride_u,
uint16_t* dst_v,
int dst_stride_v,
int dst_width,
int dst_height,
enum FilterMode filtering) {
if (!src_y || !src_u || !src_v || src_width <= 0 || src_height == 0 ||
src_width > 32768 || src_height > 32768 || !dst_y || !dst_u || !dst_v ||
dst_width <= 0 || dst_height <= 0) {
return -1;
}
ScalePlane_16(src_y, src_stride_y, src_width, src_height, dst_y, dst_stride_y,
dst_width, dst_height, filtering);
ScalePlane_16(src_u, src_stride_u, src_width, src_height, dst_u, dst_stride_u,
dst_width, dst_height, filtering);
ScalePlane_16(src_v, src_stride_v, src_width, src_height, dst_v, dst_stride_v,
dst_width, dst_height, filtering);
return 0;
}
LIBYUV_API
int I444Scale_12(const uint16_t* src_y,
int src_stride_y,
const uint16_t* src_u,
int src_stride_u,
const uint16_t* src_v,
int src_stride_v,
int src_width,
int src_height,
uint16_t* dst_y,
int dst_stride_y,
uint16_t* dst_u,
int dst_stride_u,
uint16_t* dst_v,
int dst_stride_v,
int dst_width,
int dst_height,
enum FilterMode filtering) {
if (!src_y || !src_u || !src_v || src_width <= 0 || src_height == 0 ||
src_width > 32768 || src_height > 32768 || !dst_y || !dst_u || !dst_v ||
dst_width <= 0 || dst_height <= 0) {
return -1;
}
ScalePlane_12(src_y, src_stride_y, src_width, src_height, dst_y, dst_stride_y,
dst_width, dst_height, filtering);
ScalePlane_12(src_u, src_stride_u, src_width, src_height, dst_u, dst_stride_u,
dst_width, dst_height, filtering);
ScalePlane_12(src_v, src_stride_v, src_width, src_height, dst_v, dst_stride_v,
dst_width, dst_height, filtering);
return 0;
}
// Scale an NV12 image.
// This function in turn calls a scaling function for each plane.
LIBYUV_API
int NV12Scale(const uint8_t* src_y,
int src_stride_y,
const uint8_t* src_uv,
int src_stride_uv,
int src_width,
int src_height,
uint8_t* dst_y,
int dst_stride_y,
uint8_t* dst_uv,
int dst_stride_uv,
int dst_width,
int dst_height,
enum FilterMode filtering) {
int src_halfwidth = SUBSAMPLE(src_width, 1, 1);
int src_halfheight = SUBSAMPLE(src_height, 1, 1);
int dst_halfwidth = SUBSAMPLE(dst_width, 1, 1);
int dst_halfheight = SUBSAMPLE(dst_height, 1, 1);
if (!src_y || !src_uv || src_width <= 0 || src_height == 0 ||
src_width > 32768 || src_height > 32768 || !dst_y || !dst_uv ||
dst_width <= 0 || dst_height <= 0) {
return -1;
}
ScalePlane(src_y, src_stride_y, src_width, src_height, dst_y, dst_stride_y,
dst_width, dst_height, filtering);
UVScale(src_uv, src_stride_uv, src_halfwidth, src_halfheight, dst_uv,
dst_stride_uv, dst_halfwidth, dst_halfheight, filtering);
return 0;
}
// Deprecated api
LIBYUV_API
int Scale(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
int src_stride_y,
int src_stride_u,
int src_stride_v,
int src_width,
int src_height,
uint8_t* dst_y,
uint8_t* dst_u,
uint8_t* dst_v,
int dst_stride_y,
int dst_stride_u,
int dst_stride_v,
int dst_width,
int dst_height,
LIBYUV_BOOL interpolate) {
return I420Scale(src_y, src_stride_y, src_u, src_stride_u, src_v,
src_stride_v, src_width, src_height, dst_y, dst_stride_y,
dst_u, dst_stride_u, dst_v, dst_stride_v, dst_width,
dst_height, interpolate ? kFilterBox : kFilterNone);
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif