blob: b8994c3049b6b857dccf27b77278587df414a658 [file] [log] [blame]
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <time.h>
#include "../unit_test/unit_test.h"
#include "libyuv/cpu_id.h"
#include "libyuv/scale.h"
#include "libyuv/scale_row.h" // For ScaleRowDown2Box_Odd_C
#define STRINGIZE(line) #line
#define FILELINESTR(file, line) file ":" STRINGIZE(line)
namespace libyuv {
// Test scaling with C vs Opt and return maximum pixel difference. 0 = exact.
static int TestFilter(int src_width,
int src_height,
int dst_width,
int dst_height,
FilterMode f,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info) {
if (!SizeValid(src_width, src_height, dst_width, dst_height)) {
return 0;
}
int i, j;
int src_width_uv = (Abs(src_width) + 1) >> 1;
int src_height_uv = (Abs(src_height) + 1) >> 1;
int64_t src_y_plane_size = (Abs(src_width)) * (Abs(src_height));
int64_t src_uv_plane_size = (src_width_uv) * (src_height_uv);
int src_stride_y = Abs(src_width);
int src_stride_uv = src_width_uv;
align_buffer_page_end(src_y, src_y_plane_size);
align_buffer_page_end(src_u, src_uv_plane_size);
align_buffer_page_end(src_v, src_uv_plane_size);
if (!src_y || !src_u || !src_v) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
MemRandomize(src_y, src_y_plane_size);
MemRandomize(src_u, src_uv_plane_size);
MemRandomize(src_v, src_uv_plane_size);
int dst_width_uv = (dst_width + 1) >> 1;
int dst_height_uv = (dst_height + 1) >> 1;
int64_t dst_y_plane_size = (dst_width) * (dst_height);
int64_t dst_uv_plane_size = (dst_width_uv) * (dst_height_uv);
int dst_stride_y = dst_width;
int dst_stride_uv = dst_width_uv;
align_buffer_page_end(dst_y_c, dst_y_plane_size);
align_buffer_page_end(dst_u_c, dst_uv_plane_size);
align_buffer_page_end(dst_v_c, dst_uv_plane_size);
align_buffer_page_end(dst_y_opt, dst_y_plane_size);
align_buffer_page_end(dst_u_opt, dst_uv_plane_size);
align_buffer_page_end(dst_v_opt, dst_uv_plane_size);
if (!dst_y_c || !dst_u_c || !dst_v_c || !dst_y_opt || !dst_u_opt ||
!dst_v_opt) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization.
double c_time = get_time();
I420Scale(src_y, src_stride_y, src_u, src_stride_uv, src_v, src_stride_uv,
src_width, src_height, dst_y_c, dst_stride_y, dst_u_c,
dst_stride_uv, dst_v_c, dst_stride_uv, dst_width, dst_height, f);
c_time = (get_time() - c_time);
MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization.
double opt_time = get_time();
for (i = 0; i < benchmark_iterations; ++i) {
I420Scale(src_y, src_stride_y, src_u, src_stride_uv, src_v, src_stride_uv,
src_width, src_height, dst_y_opt, dst_stride_y, dst_u_opt,
dst_stride_uv, dst_v_opt, dst_stride_uv, dst_width, dst_height,
f);
}
opt_time = (get_time() - opt_time) / benchmark_iterations;
// Report performance of C vs OPT.
printf("filter %d - %8d us C - %8d us OPT\n", f,
static_cast<int>(c_time * 1e6), static_cast<int>(opt_time * 1e6));
// C version may be a little off from the optimized. Order of
// operations may introduce rounding somewhere. So do a difference
// of the buffers and look to see that the max difference is not
// over 3.
int max_diff = 0;
for (i = 0; i < (dst_height); ++i) {
for (j = 0; j < (dst_width); ++j) {
int abs_diff = Abs(dst_y_c[(i * dst_stride_y) + j] -
dst_y_opt[(i * dst_stride_y) + j]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
}
for (i = 0; i < (dst_height_uv); ++i) {
for (j = 0; j < (dst_width_uv); ++j) {
int abs_diff = Abs(dst_u_c[(i * dst_stride_uv) + j] -
dst_u_opt[(i * dst_stride_uv) + j]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
abs_diff = Abs(dst_v_c[(i * dst_stride_uv) + j] -
dst_v_opt[(i * dst_stride_uv) + j]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
}
free_aligned_buffer_page_end(dst_y_c);
free_aligned_buffer_page_end(dst_u_c);
free_aligned_buffer_page_end(dst_v_c);
free_aligned_buffer_page_end(dst_y_opt);
free_aligned_buffer_page_end(dst_u_opt);
free_aligned_buffer_page_end(dst_v_opt);
free_aligned_buffer_page_end(src_y);
free_aligned_buffer_page_end(src_u);
free_aligned_buffer_page_end(src_v);
return max_diff;
}
// Test scaling with 8 bit C vs 16 bit C and return maximum pixel difference.
// 0 = exact.
static int TestFilter_16(int src_width,
int src_height,
int dst_width,
int dst_height,
FilterMode f,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info) {
if (!SizeValid(src_width, src_height, dst_width, dst_height)) {
return 0;
}
int i;
int src_width_uv = (Abs(src_width) + 1) >> 1;
int src_height_uv = (Abs(src_height) + 1) >> 1;
int64_t src_y_plane_size = (Abs(src_width)) * (Abs(src_height));
int64_t src_uv_plane_size = (src_width_uv) * (src_height_uv);
int src_stride_y = Abs(src_width);
int src_stride_uv = src_width_uv;
align_buffer_page_end(src_y, src_y_plane_size);
align_buffer_page_end(src_u, src_uv_plane_size);
align_buffer_page_end(src_v, src_uv_plane_size);
align_buffer_page_end(src_y_16, src_y_plane_size * 2);
align_buffer_page_end(src_u_16, src_uv_plane_size * 2);
align_buffer_page_end(src_v_16, src_uv_plane_size * 2);
if (!src_y || !src_u || !src_v || !src_y_16 || !src_u_16 || !src_v_16) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
uint16_t* p_src_y_16 = reinterpret_cast<uint16_t*>(src_y_16);
uint16_t* p_src_u_16 = reinterpret_cast<uint16_t*>(src_u_16);
uint16_t* p_src_v_16 = reinterpret_cast<uint16_t*>(src_v_16);
MemRandomize(src_y, src_y_plane_size);
MemRandomize(src_u, src_uv_plane_size);
MemRandomize(src_v, src_uv_plane_size);
for (i = 0; i < src_y_plane_size; ++i) {
p_src_y_16[i] = src_y[i];
}
for (i = 0; i < src_uv_plane_size; ++i) {
p_src_u_16[i] = src_u[i];
p_src_v_16[i] = src_v[i];
}
int dst_width_uv = (dst_width + 1) >> 1;
int dst_height_uv = (dst_height + 1) >> 1;
int dst_y_plane_size = (dst_width) * (dst_height);
int dst_uv_plane_size = (dst_width_uv) * (dst_height_uv);
int dst_stride_y = dst_width;
int dst_stride_uv = dst_width_uv;
align_buffer_page_end(dst_y_8, dst_y_plane_size);
align_buffer_page_end(dst_u_8, dst_uv_plane_size);
align_buffer_page_end(dst_v_8, dst_uv_plane_size);
align_buffer_page_end(dst_y_16, dst_y_plane_size * 2);
align_buffer_page_end(dst_u_16, dst_uv_plane_size * 2);
align_buffer_page_end(dst_v_16, dst_uv_plane_size * 2);
uint16_t* p_dst_y_16 = reinterpret_cast<uint16_t*>(dst_y_16);
uint16_t* p_dst_u_16 = reinterpret_cast<uint16_t*>(dst_u_16);
uint16_t* p_dst_v_16 = reinterpret_cast<uint16_t*>(dst_v_16);
MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization.
I420Scale(src_y, src_stride_y, src_u, src_stride_uv, src_v, src_stride_uv,
src_width, src_height, dst_y_8, dst_stride_y, dst_u_8,
dst_stride_uv, dst_v_8, dst_stride_uv, dst_width, dst_height, f);
MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization.
for (i = 0; i < benchmark_iterations; ++i) {
I420Scale_16(p_src_y_16, src_stride_y, p_src_u_16, src_stride_uv,
p_src_v_16, src_stride_uv, src_width, src_height, p_dst_y_16,
dst_stride_y, p_dst_u_16, dst_stride_uv, p_dst_v_16,
dst_stride_uv, dst_width, dst_height, f);
}
// Expect an exact match.
int max_diff = 0;
for (i = 0; i < dst_y_plane_size; ++i) {
int abs_diff = Abs(dst_y_8[i] - p_dst_y_16[i]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
for (i = 0; i < dst_uv_plane_size; ++i) {
int abs_diff = Abs(dst_u_8[i] - p_dst_u_16[i]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
abs_diff = Abs(dst_v_8[i] - p_dst_v_16[i]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(dst_y_8);
free_aligned_buffer_page_end(dst_u_8);
free_aligned_buffer_page_end(dst_v_8);
free_aligned_buffer_page_end(dst_y_16);
free_aligned_buffer_page_end(dst_u_16);
free_aligned_buffer_page_end(dst_v_16);
free_aligned_buffer_page_end(src_y);
free_aligned_buffer_page_end(src_u);
free_aligned_buffer_page_end(src_v);
free_aligned_buffer_page_end(src_y_16);
free_aligned_buffer_page_end(src_u_16);
free_aligned_buffer_page_end(src_v_16);
return max_diff;
}
// The following adjustments in dimensions ensure the scale factor will be
// exactly achieved.
// 2 is chroma subsample.
#define DX(x, nom, denom) static_cast<int>(((Abs(x) / nom + 1) / 2) * nom * 2)
#define SX(x, nom, denom) static_cast<int>(((x / nom + 1) / 2) * denom * 2)
#define TEST_FACTOR1(name, filter, nom, denom, max_diff) \
TEST_F(LibYUVScaleTest, ScaleDownBy##name##_##filter) { \
int diff = TestFilter( \
SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \
DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \
kFilter##filter, benchmark_iterations_, disable_cpu_flags_, \
benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
} \
TEST_F(LibYUVScaleTest, ScaleDownBy##name##_##filter##_16) { \
int diff = TestFilter_16( \
SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \
DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \
kFilter##filter, benchmark_iterations_, disable_cpu_flags_, \
benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
}
// Test a scale factor with all 4 filters. Expect unfiltered to be exact, but
// filtering is different fixed point implementations for SSSE3, Neon and C.
#define TEST_FACTOR(name, nom, denom, boxdiff) \
TEST_FACTOR1(name, None, nom, denom, 0) \
TEST_FACTOR1(name, Linear, nom, denom, 3) \
TEST_FACTOR1(name, Bilinear, nom, denom, 3) \
TEST_FACTOR1(name, Box, nom, denom, boxdiff)
TEST_FACTOR(2, 1, 2, 0)
TEST_FACTOR(4, 1, 4, 0)
TEST_FACTOR(8, 1, 8, 0)
TEST_FACTOR(3by4, 3, 4, 1)
TEST_FACTOR(3by8, 3, 8, 1)
TEST_FACTOR(3, 1, 3, 0)
#undef TEST_FACTOR1
#undef TEST_FACTOR
#undef SX
#undef DX
#define TEST_SCALETO1(name, width, height, filter, max_diff) \
TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter) { \
int diff = TestFilter(benchmark_width_, benchmark_height_, width, height, \
kFilter##filter, benchmark_iterations_, \
disable_cpu_flags_, benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
} \
TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter) { \
int diff = TestFilter(width, height, Abs(benchmark_width_), \
Abs(benchmark_height_), kFilter##filter, \
benchmark_iterations_, disable_cpu_flags_, \
benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
} \
TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter##_16) { \
int diff = TestFilter_16(benchmark_width_, benchmark_height_, width, \
height, kFilter##filter, benchmark_iterations_, \
disable_cpu_flags_, benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
} \
TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter##_16) { \
int diff = TestFilter_16(width, height, Abs(benchmark_width_), \
Abs(benchmark_height_), kFilter##filter, \
benchmark_iterations_, disable_cpu_flags_, \
benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
}
// Test scale to a specified size with all 4 filters.
#define TEST_SCALETO(name, width, height) \
TEST_SCALETO1(name, width, height, None, 0) \
TEST_SCALETO1(name, width, height, Linear, 3) \
TEST_SCALETO1(name, width, height, Bilinear, 3) \
TEST_SCALETO1(name, width, height, Box, 3)
TEST_SCALETO(Scale, 1, 1)
TEST_SCALETO(Scale, 320, 240)
TEST_SCALETO(Scale, 352, 288)
TEST_SCALETO(Scale, 569, 480)
TEST_SCALETO(Scale, 640, 360)
TEST_SCALETO(Scale, 1280, 720)
#undef TEST_SCALETO1
#undef TEST_SCALETO
#ifdef HAS_SCALEROWDOWN2_SSSE3
TEST_F(LibYUVScaleTest, TestScaleRowDown2Box_Odd_SSSE3) {
SIMD_ALIGNED(uint8_t orig_pixels[128 * 2]);
SIMD_ALIGNED(uint8_t dst_pixels_opt[64]);
SIMD_ALIGNED(uint8_t dst_pixels_c[64]);
memset(orig_pixels, 0, sizeof(orig_pixels));
memset(dst_pixels_opt, 0, sizeof(dst_pixels_opt));
memset(dst_pixels_c, 0, sizeof(dst_pixels_c));
int has_ssse3 = TestCpuFlag(kCpuHasSSSE3);
if (!has_ssse3) {
printf("Warning SSSE3 not detected; Skipping test.\n");
} else {
// TL.
orig_pixels[0] = 255u;
orig_pixels[1] = 0u;
orig_pixels[128 + 0] = 0u;
orig_pixels[128 + 1] = 0u;
// TR.
orig_pixels[2] = 0u;
orig_pixels[3] = 100u;
orig_pixels[128 + 2] = 0u;
orig_pixels[128 + 3] = 0u;
// BL.
orig_pixels[4] = 0u;
orig_pixels[5] = 0u;
orig_pixels[128 + 4] = 50u;
orig_pixels[128 + 5] = 0u;
// BR.
orig_pixels[6] = 0u;
orig_pixels[7] = 0u;
orig_pixels[128 + 6] = 0u;
orig_pixels[128 + 7] = 20u;
// Odd.
orig_pixels[126] = 4u;
orig_pixels[127] = 255u;
orig_pixels[128 + 126] = 16u;
orig_pixels[128 + 127] = 255u;
// Test regular half size.
ScaleRowDown2Box_C(orig_pixels, 128, dst_pixels_c, 64);
EXPECT_EQ(64u, dst_pixels_c[0]);
EXPECT_EQ(25u, dst_pixels_c[1]);
EXPECT_EQ(13u, dst_pixels_c[2]);
EXPECT_EQ(5u, dst_pixels_c[3]);
EXPECT_EQ(0u, dst_pixels_c[4]);
EXPECT_EQ(133u, dst_pixels_c[63]);
// Test Odd width version - Last pixel is just 1 horizontal pixel.
ScaleRowDown2Box_Odd_C(orig_pixels, 128, dst_pixels_c, 64);
EXPECT_EQ(64u, dst_pixels_c[0]);
EXPECT_EQ(25u, dst_pixels_c[1]);
EXPECT_EQ(13u, dst_pixels_c[2]);
EXPECT_EQ(5u, dst_pixels_c[3]);
EXPECT_EQ(0u, dst_pixels_c[4]);
EXPECT_EQ(10u, dst_pixels_c[63]);
// Test one pixel less, should skip the last pixel.
memset(dst_pixels_c, 0, sizeof(dst_pixels_c));
ScaleRowDown2Box_Odd_C(orig_pixels, 128, dst_pixels_c, 63);
EXPECT_EQ(64u, dst_pixels_c[0]);
EXPECT_EQ(25u, dst_pixels_c[1]);
EXPECT_EQ(13u, dst_pixels_c[2]);
EXPECT_EQ(5u, dst_pixels_c[3]);
EXPECT_EQ(0u, dst_pixels_c[4]);
EXPECT_EQ(0u, dst_pixels_c[63]);
// Test regular half size SSSE3.
ScaleRowDown2Box_SSSE3(orig_pixels, 128, dst_pixels_opt, 64);
EXPECT_EQ(64u, dst_pixels_opt[0]);
EXPECT_EQ(25u, dst_pixels_opt[1]);
EXPECT_EQ(13u, dst_pixels_opt[2]);
EXPECT_EQ(5u, dst_pixels_opt[3]);
EXPECT_EQ(0u, dst_pixels_opt[4]);
EXPECT_EQ(133u, dst_pixels_opt[63]);
// Compare C and SSSE3 match.
ScaleRowDown2Box_Odd_C(orig_pixels, 128, dst_pixels_c, 64);
ScaleRowDown2Box_Odd_SSSE3(orig_pixels, 128, dst_pixels_opt, 64);
for (int i = 0; i < 64; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
}
}
#endif // HAS_SCALEROWDOWN2_SSSE3
extern "C" void ScaleRowUp2_16_NEON(const uint16_t* src_ptr,
ptrdiff_t src_stride,
uint16_t* dst,
int dst_width);
extern "C" void ScaleRowUp2_16_MMI(const uint16_t* src_ptr,
ptrdiff_t src_stride,
uint16_t* dst,
int dst_width);
extern "C" void ScaleRowUp2_16_C(const uint16_t* src_ptr,
ptrdiff_t src_stride,
uint16_t* dst,
int dst_width);
TEST_F(LibYUVScaleTest, TestScaleRowUp2_16) {
SIMD_ALIGNED(uint16_t orig_pixels[640 * 2 + 1]); // 2 rows + 1 pixel overrun.
SIMD_ALIGNED(uint16_t dst_pixels_opt[1280]);
SIMD_ALIGNED(uint16_t dst_pixels_c[1280]);
memset(orig_pixels, 0, sizeof(orig_pixels));
memset(dst_pixels_opt, 1, sizeof(dst_pixels_opt));
memset(dst_pixels_c, 2, sizeof(dst_pixels_c));
for (int i = 0; i < 640 * 2 + 1; ++i) {
orig_pixels[i] = i;
}
ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_c[0], 1280);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
#if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__)
int has_neon = TestCpuFlag(kCpuHasNEON);
if (has_neon) {
ScaleRowUp2_16_NEON(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280);
} else {
ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280);
}
#elif !defined(LIBYUV_DISABLE_MMI) && defined(_MIPS_ARCH_LOONGSON3A)
int has_mmi = TestCpuFlag(kCpuHasMMI);
if (has_mmi) {
ScaleRowUp2_16_MMI(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280);
} else {
ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280);
}
#else
ScaleRowUp2_16_C(&orig_pixels[0], 640, &dst_pixels_opt[0], 1280);
#endif
}
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
EXPECT_EQ(dst_pixels_c[0], (0 * 9 + 1 * 3 + 640 * 3 + 641 * 1 + 8) / 16);
EXPECT_EQ(dst_pixels_c[1279], 800);
}
extern "C" void ScaleRowDown2Box_16_NEON(const uint16_t* src_ptr,
ptrdiff_t src_stride,
uint16_t* dst,
int dst_width);
TEST_F(LibYUVScaleTest, TestScaleRowDown2Box_16) {
SIMD_ALIGNED(uint16_t orig_pixels[2560 * 2]);
SIMD_ALIGNED(uint16_t dst_pixels_c[1280]);
SIMD_ALIGNED(uint16_t dst_pixels_opt[1280]);
memset(orig_pixels, 0, sizeof(orig_pixels));
memset(dst_pixels_c, 1, sizeof(dst_pixels_c));
memset(dst_pixels_opt, 2, sizeof(dst_pixels_opt));
for (int i = 0; i < 2560 * 2; ++i) {
orig_pixels[i] = i;
}
ScaleRowDown2Box_16_C(&orig_pixels[0], 2560, &dst_pixels_c[0], 1280);
for (int i = 0; i < benchmark_pixels_div1280_; ++i) {
#if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__)
int has_neon = TestCpuFlag(kCpuHasNEON);
if (has_neon) {
ScaleRowDown2Box_16_NEON(&orig_pixels[0], 2560, &dst_pixels_opt[0], 1280);
} else {
ScaleRowDown2Box_16_C(&orig_pixels[0], 2560, &dst_pixels_opt[0], 1280);
}
#else
ScaleRowDown2Box_16_C(&orig_pixels[0], 2560, &dst_pixels_opt[0], 1280);
#endif
}
for (int i = 0; i < 1280; ++i) {
EXPECT_EQ(dst_pixels_c[i], dst_pixels_opt[i]);
}
EXPECT_EQ(dst_pixels_c[0], (0 + 1 + 2560 + 2561 + 2) / 4);
EXPECT_EQ(dst_pixels_c[1279], 3839);
}
// Test scaling plane with 8 bit C vs 16 bit C and return maximum pixel
// difference.
// 0 = exact.
static int TestPlaneFilter_16(int src_width,
int src_height,
int dst_width,
int dst_height,
FilterMode f,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info) {
if (!SizeValid(src_width, src_height, dst_width, dst_height)) {
return 0;
}
int i;
int64_t src_y_plane_size = (Abs(src_width)) * (Abs(src_height));
int src_stride_y = Abs(src_width);
int dst_y_plane_size = dst_width * dst_height;
int dst_stride_y = dst_width;
align_buffer_page_end(src_y, src_y_plane_size);
align_buffer_page_end(src_y_16, src_y_plane_size * 2);
align_buffer_page_end(dst_y_8, dst_y_plane_size);
align_buffer_page_end(dst_y_16, dst_y_plane_size * 2);
uint16_t* p_src_y_16 = reinterpret_cast<uint16_t*>(src_y_16);
uint16_t* p_dst_y_16 = reinterpret_cast<uint16_t*>(dst_y_16);
MemRandomize(src_y, src_y_plane_size);
memset(dst_y_8, 0, dst_y_plane_size);
memset(dst_y_16, 1, dst_y_plane_size * 2);
for (i = 0; i < src_y_plane_size; ++i) {
p_src_y_16[i] = src_y[i] & 255;
}
MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization.
ScalePlane(src_y, src_stride_y, src_width, src_height, dst_y_8, dst_stride_y,
dst_width, dst_height, f);
MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization.
for (i = 0; i < benchmark_iterations; ++i) {
ScalePlane_16(p_src_y_16, src_stride_y, src_width, src_height, p_dst_y_16,
dst_stride_y, dst_width, dst_height, f);
}
// Expect an exact match.
int max_diff = 0;
for (i = 0; i < dst_y_plane_size; ++i) {
int abs_diff = Abs(dst_y_8[i] - p_dst_y_16[i]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
free_aligned_buffer_page_end(dst_y_8);
free_aligned_buffer_page_end(dst_y_16);
free_aligned_buffer_page_end(src_y);
free_aligned_buffer_page_end(src_y_16);
return max_diff;
}
// The following adjustments in dimensions ensure the scale factor will be
// exactly achieved.
// 2 is chroma subsample.
#define DX(x, nom, denom) static_cast<int>(((Abs(x) / nom + 1) / 2) * nom * 2)
#define SX(x, nom, denom) static_cast<int>(((x / nom + 1) / 2) * denom * 2)
#define TEST_FACTOR1(name, filter, nom, denom, max_diff) \
TEST_F(LibYUVScaleTest, ScalePlaneDownBy##name##_##filter##_16) { \
int diff = TestPlaneFilter_16( \
SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \
DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \
kFilter##filter, benchmark_iterations_, disable_cpu_flags_, \
benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
}
// Test a scale factor with all 4 filters. Expect unfiltered to be exact, but
// filtering is different fixed point implementations for SSSE3, Neon and C.
#define TEST_FACTOR(name, nom, denom, boxdiff) \
TEST_FACTOR1(name, None, nom, denom, 0) \
TEST_FACTOR1(name, Linear, nom, denom, boxdiff) \
TEST_FACTOR1(name, Bilinear, nom, denom, boxdiff) \
TEST_FACTOR1(name, Box, nom, denom, boxdiff)
TEST_FACTOR(2, 1, 2, 0)
TEST_FACTOR(4, 1, 4, 0)
TEST_FACTOR(8, 1, 8, 0)
TEST_FACTOR(3by4, 3, 4, 1)
TEST_FACTOR(3by8, 3, 8, 1)
TEST_FACTOR(3, 1, 3, 0)
#undef TEST_FACTOR1
#undef TEST_FACTOR
#undef SX
#undef DX
} // namespace libyuv