blob: 48ad75eafd809fa9c8b58ea572824c00b3e55d47 [file] [log] [blame]
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <time.h>
#include "../unit_test/unit_test.h"
#include "libyuv/convert_argb.h"
#include "libyuv/cpu_id.h"
#include "libyuv/scale_argb.h"
#include "libyuv/video_common.h"
namespace libyuv {
#define STRINGIZE(line) #line
#define FILELINESTR(file, line) file ":" STRINGIZE(line)
// Test scaling with C vs Opt and return maximum pixel difference. 0 = exact.
static int ARGBTestFilter(int src_width,
int src_height,
int dst_width,
int dst_height,
FilterMode f,
int benchmark_iterations,
int disable_cpu_flags,
int benchmark_cpu_info) {
if (!SizeValid(src_width, src_height, dst_width, dst_height)) {
return 0;
}
int i, j;
const int b = 0; // 128 to test for padding/stride.
int64_t src_argb_plane_size =
(Abs(src_width) + b * 2) * (Abs(src_height) + b * 2) * 4LL;
int src_stride_argb = (b * 2 + Abs(src_width)) * 4;
align_buffer_page_end(src_argb, src_argb_plane_size);
if (!src_argb) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
MemRandomize(src_argb, src_argb_plane_size);
int64_t dst_argb_plane_size =
(dst_width + b * 2) * (dst_height + b * 2) * 4LL;
int dst_stride_argb = (b * 2 + dst_width) * 4;
align_buffer_page_end(dst_argb_c, dst_argb_plane_size);
align_buffer_page_end(dst_argb_opt, dst_argb_plane_size);
if (!dst_argb_c || !dst_argb_opt) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
memset(dst_argb_c, 2, dst_argb_plane_size);
memset(dst_argb_opt, 3, dst_argb_plane_size);
// Warm up both versions for consistent benchmarks.
MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization.
ARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb,
src_width, src_height, dst_argb_c + (dst_stride_argb * b) + b * 4,
dst_stride_argb, dst_width, dst_height, f);
MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization.
ARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb,
src_width, src_height, dst_argb_opt + (dst_stride_argb * b) + b * 4,
dst_stride_argb, dst_width, dst_height, f);
MaskCpuFlags(disable_cpu_flags); // Disable all CPU optimization.
double c_time = get_time();
ARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb,
src_width, src_height, dst_argb_c + (dst_stride_argb * b) + b * 4,
dst_stride_argb, dst_width, dst_height, f);
c_time = (get_time() - c_time);
MaskCpuFlags(benchmark_cpu_info); // Enable all CPU optimization.
double opt_time = get_time();
for (i = 0; i < benchmark_iterations; ++i) {
ARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb,
src_width, src_height,
dst_argb_opt + (dst_stride_argb * b) + b * 4, dst_stride_argb,
dst_width, dst_height, f);
}
opt_time = (get_time() - opt_time) / benchmark_iterations;
// Report performance of C vs OPT
printf("filter %d - %8d us C - %8d us OPT\n", f,
static_cast<int>(c_time * 1e6), static_cast<int>(opt_time * 1e6));
// C version may be a little off from the optimized. Order of
// operations may introduce rounding somewhere. So do a difference
// of the buffers and look to see that the max difference isn't
// over 2.
int max_diff = 0;
for (i = b; i < (dst_height + b); ++i) {
for (j = b * 4; j < (dst_width + b) * 4; ++j) {
int abs_diff = Abs(dst_argb_c[(i * dst_stride_argb) + j] -
dst_argb_opt[(i * dst_stride_argb) + j]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
}
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
free_aligned_buffer_page_end(src_argb);
return max_diff;
}
static const int kTileX = 64;
static const int kTileY = 64;
static int TileARGBScale(const uint8_t* src_argb,
int src_stride_argb,
int src_width,
int src_height,
uint8_t* dst_argb,
int dst_stride_argb,
int dst_width,
int dst_height,
FilterMode filtering) {
for (int y = 0; y < dst_height; y += kTileY) {
for (int x = 0; x < dst_width; x += kTileX) {
int clip_width = kTileX;
if (x + clip_width > dst_width) {
clip_width = dst_width - x;
}
int clip_height = kTileY;
if (y + clip_height > dst_height) {
clip_height = dst_height - y;
}
int r = ARGBScaleClip(src_argb, src_stride_argb, src_width, src_height,
dst_argb, dst_stride_argb, dst_width, dst_height, x,
y, clip_width, clip_height, filtering);
if (r) {
return r;
}
}
}
return 0;
}
static int ARGBClipTestFilter(int src_width,
int src_height,
int dst_width,
int dst_height,
FilterMode f,
int benchmark_iterations) {
if (!SizeValid(src_width, src_height, dst_width, dst_height)) {
return 0;
}
const int b = 128;
int64_t src_argb_plane_size =
(Abs(src_width) + b * 2) * (Abs(src_height) + b * 2) * 4;
int src_stride_argb = (b * 2 + Abs(src_width)) * 4;
align_buffer_page_end(src_argb, src_argb_plane_size);
if (!src_argb) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
memset(src_argb, 1, src_argb_plane_size);
int64_t dst_argb_plane_size = (dst_width + b * 2) * (dst_height + b * 2) * 4;
int dst_stride_argb = (b * 2 + dst_width) * 4;
int i, j;
for (i = b; i < (Abs(src_height) + b); ++i) {
for (j = b; j < (Abs(src_width) + b) * 4; ++j) {
src_argb[(i * src_stride_argb) + j] = (fastrand() & 0xff);
}
}
align_buffer_page_end(dst_argb_c, dst_argb_plane_size);
align_buffer_page_end(dst_argb_opt, dst_argb_plane_size);
if (!dst_argb_c || !dst_argb_opt) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
memset(dst_argb_c, 2, dst_argb_plane_size);
memset(dst_argb_opt, 3, dst_argb_plane_size);
// Do full image, no clipping.
double c_time = get_time();
ARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb,
src_width, src_height, dst_argb_c + (dst_stride_argb * b) + b * 4,
dst_stride_argb, dst_width, dst_height, f);
c_time = (get_time() - c_time);
// Do tiled image, clipping scale to a tile at a time.
double opt_time = get_time();
for (i = 0; i < benchmark_iterations; ++i) {
TileARGBScale(src_argb + (src_stride_argb * b) + b * 4, src_stride_argb,
src_width, src_height,
dst_argb_opt + (dst_stride_argb * b) + b * 4, dst_stride_argb,
dst_width, dst_height, f);
}
opt_time = (get_time() - opt_time) / benchmark_iterations;
// Report performance of Full vs Tiled.
printf("filter %d - %8d us Full - %8d us Tiled\n", f,
static_cast<int>(c_time * 1e6), static_cast<int>(opt_time * 1e6));
// Compare full scaled image vs tiled image.
int max_diff = 0;
for (i = b; i < (dst_height + b); ++i) {
for (j = b * 4; j < (dst_width + b) * 4; ++j) {
int abs_diff = Abs(dst_argb_c[(i * dst_stride_argb) + j] -
dst_argb_opt[(i * dst_stride_argb) + j]);
if (abs_diff > max_diff) {
max_diff = abs_diff;
}
}
}
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
free_aligned_buffer_page_end(src_argb);
return max_diff;
}
// The following adjustments in dimensions ensure the scale factor will be
// exactly achieved.
#define DX(x, nom, denom) static_cast<int>((Abs(x) / nom) * nom)
#define SX(x, nom, denom) static_cast<int>((x / nom) * denom)
#define TEST_FACTOR1(DISABLED_, name, filter, nom, denom, max_diff) \
TEST_F(LibYUVScaleTest, ARGBScaleDownBy##name##_##filter) { \
int diff = ARGBTestFilter( \
SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \
DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \
kFilter##filter, benchmark_iterations_, disable_cpu_flags_, \
benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
} \
TEST_F(LibYUVScaleTest, DISABLED_##ARGBScaleDownClipBy##name##_##filter) { \
int diff = ARGBClipTestFilter( \
SX(benchmark_width_, nom, denom), SX(benchmark_height_, nom, denom), \
DX(benchmark_width_, nom, denom), DX(benchmark_height_, nom, denom), \
kFilter##filter, benchmark_iterations_); \
EXPECT_LE(diff, max_diff); \
}
// Test a scale factor with all 4 filters. Expect unfiltered to be exact, but
// filtering is different fixed point implementations for SSSE3, Neon and C.
#ifdef ENABLE_SLOW_TESTS
#define TEST_FACTOR(name, nom, denom) \
TEST_FACTOR1(, name, None, nom, denom, 0) \
TEST_FACTOR1(, name, Linear, nom, denom, 3) \
TEST_FACTOR1(, name, Bilinear, nom, denom, 3) \
TEST_FACTOR1(, name, Box, nom, denom, 3)
#else
#define TEST_FACTOR(name, nom, denom) \
TEST_FACTOR1(DISABLED_, name, None, nom, denom, 0) \
TEST_FACTOR1(DISABLED_, name, Linear, nom, denom, 3) \
TEST_FACTOR1(DISABLED_, name, Bilinear, nom, denom, 3) \
TEST_FACTOR1(DISABLED_, name, Box, nom, denom, 3)
#endif
TEST_FACTOR(2, 1, 2)
TEST_FACTOR(4, 1, 4)
// TEST_FACTOR(8, 1, 8) Disable for benchmark performance.
TEST_FACTOR(3by4, 3, 4)
TEST_FACTOR(3by8, 3, 8)
TEST_FACTOR(3, 1, 3)
#undef TEST_FACTOR1
#undef TEST_FACTOR
#undef SX
#undef DX
#define TEST_SCALETO1(DISABLED_, name, width, height, filter, max_diff) \
TEST_F(LibYUVScaleTest, name##To##width##x##height##_##filter) { \
int diff = ARGBTestFilter(benchmark_width_, benchmark_height_, width, \
height, kFilter##filter, benchmark_iterations_, \
disable_cpu_flags_, benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
} \
TEST_F(LibYUVScaleTest, name##From##width##x##height##_##filter) { \
int diff = ARGBTestFilter(width, height, Abs(benchmark_width_), \
Abs(benchmark_height_), kFilter##filter, \
benchmark_iterations_, disable_cpu_flags_, \
benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
} \
TEST_F(LibYUVScaleTest, \
DISABLED_##name##ClipTo##width##x##height##_##filter) { \
int diff = \
ARGBClipTestFilter(benchmark_width_, benchmark_height_, width, height, \
kFilter##filter, benchmark_iterations_); \
EXPECT_LE(diff, max_diff); \
} \
TEST_F(LibYUVScaleTest, \
DISABLED_##name##ClipFrom##width##x##height##_##filter) { \
int diff = ARGBClipTestFilter(width, height, Abs(benchmark_width_), \
Abs(benchmark_height_), kFilter##filter, \
benchmark_iterations_); \
EXPECT_LE(diff, max_diff); \
}
/// Test scale to a specified size with all 4 filters.
#ifdef ENABLE_SLOW_TESTS
#define TEST_SCALETO(name, width, height) \
TEST_SCALETO1(, name, width, height, None, 0) \
TEST_SCALETO1(, name, width, height, Linear, 3) \
TEST_SCALETO1(, name, width, height, Bilinear, 3)
#else
#define TEST_SCALETO(name, width, height) \
TEST_SCALETO1(DISABLED_, name, width, height, None, 0) \
TEST_SCALETO1(DISABLED_, name, width, height, Linear, 3) \
TEST_SCALETO1(DISABLED_, name, width, height, Bilinear, 3)
#endif
TEST_SCALETO(ARGBScale, 1, 1)
TEST_SCALETO(ARGBScale, 256, 144) /* 128x72 * 2 */
TEST_SCALETO(ARGBScale, 320, 240)
TEST_SCALETO(ARGBScale, 569, 480)
TEST_SCALETO(ARGBScale, 640, 360)
#ifdef ENABLE_SLOW_TESTS
TEST_SCALETO(ARGBScale, 1280, 720)
TEST_SCALETO(ARGBScale, 1920, 1080)
#endif // ENABLE_SLOW_TESTS
#undef TEST_SCALETO1
#undef TEST_SCALETO
#define TEST_SCALESWAPXY1(name, filter, max_diff) \
TEST_F(LibYUVScaleTest, name##SwapXY_##filter) { \
int diff = ARGBTestFilter(benchmark_width_, benchmark_height_, \
benchmark_height_, benchmark_width_, \
kFilter##filter, benchmark_iterations_, \
disable_cpu_flags_, benchmark_cpu_info_); \
EXPECT_LE(diff, max_diff); \
}
// Test scale with swapped width and height with all 3 filters.
TEST_SCALESWAPXY1(ARGBScale, None, 0)
TEST_SCALESWAPXY1(ARGBScale, Linear, 0)
TEST_SCALESWAPXY1(ARGBScale, Bilinear, 0)
#undef TEST_SCALESWAPXY1
// Scale with YUV conversion to ARGB and clipping.
// TODO(fbarchard): Add fourcc support. All 4 ARGB formats is easy to support.
LIBYUV_API
int YUVToARGBScaleReference2(const uint8_t* src_y,
int src_stride_y,
const uint8_t* src_u,
int src_stride_u,
const uint8_t* src_v,
int src_stride_v,
uint32_t /* src_fourcc */,
int src_width,
int src_height,
uint8_t* dst_argb,
int dst_stride_argb,
uint32_t /* dst_fourcc */,
int dst_width,
int dst_height,
int clip_x,
int clip_y,
int clip_width,
int clip_height,
enum FilterMode filtering) {
uint8_t* argb_buffer =
static_cast<uint8_t*>(malloc(src_width * src_height * 4));
int r;
I420ToARGB(src_y, src_stride_y, src_u, src_stride_u, src_v, src_stride_v,
argb_buffer, src_width * 4, src_width, src_height);
r = ARGBScaleClip(argb_buffer, src_width * 4, src_width, src_height, dst_argb,
dst_stride_argb, dst_width, dst_height, clip_x, clip_y,
clip_width, clip_height, filtering);
free(argb_buffer);
return r;
}
static void FillRamp(uint8_t* buf,
int width,
int height,
int v,
int dx,
int dy) {
int rv = v;
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
*buf++ = v;
v += dx;
if (v < 0 || v > 255) {
dx = -dx;
v += dx;
}
}
v = rv + dy;
if (v < 0 || v > 255) {
dy = -dy;
v += dy;
}
rv = v;
}
}
// Test scaling with C vs Opt and return maximum pixel difference. 0 = exact.
static int YUVToARGBTestFilter(int src_width,
int src_height,
int dst_width,
int dst_height,
FilterMode f,
int benchmark_iterations) {
int64_t src_y_plane_size = Abs(src_width) * Abs(src_height);
int64_t src_uv_plane_size =
((Abs(src_width) + 1) / 2) * ((Abs(src_height) + 1) / 2);
int src_stride_y = Abs(src_width);
int src_stride_uv = (Abs(src_width) + 1) / 2;
align_buffer_page_end(src_y, src_y_plane_size);
align_buffer_page_end(src_u, src_uv_plane_size);
align_buffer_page_end(src_v, src_uv_plane_size);
int64_t dst_argb_plane_size = (dst_width) * (dst_height)*4LL;
int dst_stride_argb = (dst_width)*4;
align_buffer_page_end(dst_argb_c, dst_argb_plane_size);
align_buffer_page_end(dst_argb_opt, dst_argb_plane_size);
if (!dst_argb_c || !dst_argb_opt || !src_y || !src_u || !src_v) {
printf("Skipped. Alloc failed " FILELINESTR(__FILE__, __LINE__) "\n");
return 0;
}
// Fill YUV image with continuous ramp, which is less sensitive to
// subsampling and filtering differences for test purposes.
FillRamp(src_y, Abs(src_width), Abs(src_height), 128, 1, 1);
FillRamp(src_u, (Abs(src_width) + 1) / 2, (Abs(src_height) + 1) / 2, 3, 1, 1);
FillRamp(src_v, (Abs(src_width) + 1) / 2, (Abs(src_height) + 1) / 2, 4, 1, 1);
memset(dst_argb_c, 2, dst_argb_plane_size);
memset(dst_argb_opt, 3, dst_argb_plane_size);
YUVToARGBScaleReference2(src_y, src_stride_y, src_u, src_stride_uv, src_v,
src_stride_uv, libyuv::FOURCC_I420, src_width,
src_height, dst_argb_c, dst_stride_argb,
libyuv::FOURCC_I420, dst_width, dst_height, 0, 0,
dst_width, dst_height, f);
for (int i = 0; i < benchmark_iterations; ++i) {
YUVToARGBScaleClip(src_y, src_stride_y, src_u, src_stride_uv, src_v,
src_stride_uv, libyuv::FOURCC_I420, src_width,
src_height, dst_argb_opt, dst_stride_argb,
libyuv::FOURCC_I420, dst_width, dst_height, 0, 0,
dst_width, dst_height, f);
}
int max_diff = 0;
for (int i = 0; i < dst_height; ++i) {
for (int j = 0; j < dst_width * 4; ++j) {
int abs_diff = Abs(dst_argb_c[(i * dst_stride_argb) + j] -
dst_argb_opt[(i * dst_stride_argb) + j]);
if (abs_diff > max_diff) {
printf("error %d at %d,%d c %d opt %d", abs_diff, j, i,
dst_argb_c[(i * dst_stride_argb) + j],
dst_argb_opt[(i * dst_stride_argb) + j]);
EXPECT_LE(abs_diff, 40);
max_diff = abs_diff;
}
}
}
free_aligned_buffer_page_end(dst_argb_c);
free_aligned_buffer_page_end(dst_argb_opt);
free_aligned_buffer_page_end(src_y);
free_aligned_buffer_page_end(src_u);
free_aligned_buffer_page_end(src_v);
return max_diff;
}
TEST_F(LibYUVScaleTest, YUVToRGBScaleUp) {
int diff =
YUVToARGBTestFilter(benchmark_width_, benchmark_height_,
benchmark_width_ * 3 / 2, benchmark_height_ * 3 / 2,
libyuv::kFilterBilinear, benchmark_iterations_);
EXPECT_LE(diff, 10);
}
TEST_F(LibYUVScaleTest, YUVToRGBScaleDown) {
int diff = YUVToARGBTestFilter(
benchmark_width_ * 3 / 2, benchmark_height_ * 3 / 2, benchmark_width_,
benchmark_height_, libyuv::kFilterBilinear, benchmark_iterations_);
EXPECT_LE(diff, 10);
}
TEST_F(LibYUVScaleTest, ARGBTest3x) {
const int kSrcStride = 48 * 4;
const int kDstStride = 16 * 4;
const int kSize = kSrcStride * 3;
align_buffer_page_end(orig_pixels, kSize);
for (int i = 0; i < 48 * 3; ++i) {
orig_pixels[i * 4 + 0] = i;
orig_pixels[i * 4 + 1] = 255 - i;
orig_pixels[i * 4 + 2] = i + 1;
orig_pixels[i * 4 + 3] = i + 10;
}
align_buffer_page_end(dest_pixels, kDstStride);
int iterations16 =
benchmark_width_ * benchmark_height_ / (16 * 1) * benchmark_iterations_;
for (int i = 0; i < iterations16; ++i) {
ARGBScale(orig_pixels, kSrcStride, 48, 3, dest_pixels, kDstStride, 16, 1,
kFilterBilinear);
}
EXPECT_EQ(49, dest_pixels[0]);
EXPECT_EQ(255 - 49, dest_pixels[1]);
EXPECT_EQ(50, dest_pixels[2]);
EXPECT_EQ(59, dest_pixels[3]);
ARGBScale(orig_pixels, kSrcStride, 48, 3, dest_pixels, kDstStride, 16, 1,
kFilterNone);
EXPECT_EQ(49, dest_pixels[0]);
EXPECT_EQ(255 - 49, dest_pixels[1]);
EXPECT_EQ(50, dest_pixels[2]);
EXPECT_EQ(59, dest_pixels[3]);
free_aligned_buffer_page_end(dest_pixels);
free_aligned_buffer_page_end(orig_pixels);
}
TEST_F(LibYUVScaleTest, ARGBTest4x) {
const int kSrcStride = 64 * 4;
const int kDstStride = 16 * 4;
const int kSize = kSrcStride * 4;
align_buffer_page_end(orig_pixels, kSize);
for (int i = 0; i < 64 * 4; ++i) {
orig_pixels[i * 4 + 0] = i;
orig_pixels[i * 4 + 1] = 255 - i;
orig_pixels[i * 4 + 2] = i + 1;
orig_pixels[i * 4 + 3] = i + 10;
}
align_buffer_page_end(dest_pixels, kDstStride);
int iterations16 =
benchmark_width_ * benchmark_height_ / (16 * 1) * benchmark_iterations_;
for (int i = 0; i < iterations16; ++i) {
ARGBScale(orig_pixels, kSrcStride, 64, 4, dest_pixels, kDstStride, 16, 1,
kFilterBilinear);
}
EXPECT_NEAR((65 + 66 + 129 + 130 + 2) / 4, dest_pixels[0], 4);
EXPECT_NEAR((255 - 65 + 255 - 66 + 255 - 129 + 255 - 130 + 2) / 4,
dest_pixels[1], 4);
EXPECT_NEAR((1 * 4 + 65 + 66 + 129 + 130 + 2) / 4, dest_pixels[2], 4);
EXPECT_NEAR((10 * 4 + 65 + 66 + 129 + 130 + 2) / 4, dest_pixels[3], 4);
ARGBScale(orig_pixels, kSrcStride, 64, 4, dest_pixels, kDstStride, 16, 1,
kFilterNone);
EXPECT_EQ(130, dest_pixels[0]);
EXPECT_EQ(255 - 130, dest_pixels[1]);
EXPECT_EQ(130 + 1, dest_pixels[2]);
EXPECT_EQ(130 + 10, dest_pixels[3]);
free_aligned_buffer_page_end(dest_pixels);
free_aligned_buffer_page_end(orig_pixels);
}
} // namespace libyuv