blob: 3f8332c3457fb32510513cd040edfffba0ec9e29 [file] [log] [blame]
/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "libyuv/rotate.h"
#include "libyuv/convert.h"
#include "libyuv/cpu_id.h"
#include "libyuv/planar_functions.h"
#include "libyuv/rotate_row.h"
#include "libyuv/row.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
LIBYUV_API
void TransposePlane(const uint8_t* src,
int src_stride,
uint8_t* dst,
int dst_stride,
int width,
int height) {
int i = height;
#if defined(HAS_TRANSPOSEWX16_MSA) || defined(HAS_TRANSPOSEWX16_LSX)
void (*TransposeWx16)(const uint8_t* src, int src_stride, uint8_t* dst,
int dst_stride, int width) = TransposeWx16_C;
#else
void (*TransposeWx8)(const uint8_t* src, int src_stride, uint8_t* dst,
int dst_stride, int width) = TransposeWx8_C;
#endif
#if defined(HAS_TRANSPOSEWX8_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
TransposeWx8 = TransposeWx8_Any_NEON;
if (IS_ALIGNED(width, 8)) {
TransposeWx8 = TransposeWx8_NEON;
}
}
#endif
#if defined(HAS_TRANSPOSEWX8_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
TransposeWx8 = TransposeWx8_Any_SSSE3;
if (IS_ALIGNED(width, 8)) {
TransposeWx8 = TransposeWx8_SSSE3;
}
}
#endif
#if defined(HAS_TRANSPOSEWX8_FAST_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
TransposeWx8 = TransposeWx8_Fast_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
TransposeWx8 = TransposeWx8_Fast_SSSE3;
}
}
#endif
#if defined(HAS_TRANSPOSEWX16_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
TransposeWx16 = TransposeWx16_Any_MSA;
if (IS_ALIGNED(width, 16)) {
TransposeWx16 = TransposeWx16_MSA;
}
}
#endif
#if defined(HAS_TRANSPOSEWX16_LSX)
if (TestCpuFlag(kCpuHasLSX)) {
TransposeWx16 = TransposeWx16_Any_LSX;
if (IS_ALIGNED(width, 16)) {
TransposeWx16 = TransposeWx16_LSX;
}
}
#endif
#if defined(HAS_TRANSPOSEWX16_MSA) || defined(HAS_TRANSPOSEWX16_LSX)
// Work across the source in 16x16 tiles
while (i >= 16) {
TransposeWx16(src, src_stride, dst, dst_stride, width);
src += 16 * src_stride; // Go down 16 rows.
dst += 16; // Move over 16 columns.
i -= 16;
}
#else
// Work across the source in 8x8 tiles
while (i >= 8) {
TransposeWx8(src, src_stride, dst, dst_stride, width);
src += 8 * src_stride; // Go down 8 rows.
dst += 8; // Move over 8 columns.
i -= 8;
}
#endif
if (i > 0) {
TransposeWxH_C(src, src_stride, dst, dst_stride, width, i);
}
}
LIBYUV_API
void RotatePlane90(const uint8_t* src,
int src_stride,
uint8_t* dst,
int dst_stride,
int width,
int height) {
// Rotate by 90 is a transpose with the source read
// from bottom to top. So set the source pointer to the end
// of the buffer and flip the sign of the source stride.
src += src_stride * (height - 1);
src_stride = -src_stride;
TransposePlane(src, src_stride, dst, dst_stride, width, height);
}
LIBYUV_API
void RotatePlane270(const uint8_t* src,
int src_stride,
uint8_t* dst,
int dst_stride,
int width,
int height) {
// Rotate by 270 is a transpose with the destination written
// from bottom to top. So set the destination pointer to the end
// of the buffer and flip the sign of the destination stride.
dst += dst_stride * (width - 1);
dst_stride = -dst_stride;
TransposePlane(src, src_stride, dst, dst_stride, width, height);
}
LIBYUV_API
void RotatePlane180(const uint8_t* src,
int src_stride,
uint8_t* dst,
int dst_stride,
int width,
int height) {
// Swap top and bottom row and mirror the content. Uses a temporary row.
align_buffer_64(row, width);
assert(row);
if (!row)
return;
const uint8_t* src_bot = src + src_stride * (height - 1);
uint8_t* dst_bot = dst + dst_stride * (height - 1);
int half_height = (height + 1) >> 1;
int y;
void (*MirrorRow)(const uint8_t* src, uint8_t* dst, int width) = MirrorRow_C;
void (*CopyRow)(const uint8_t* src, uint8_t* dst, int width) = CopyRow_C;
#if defined(HAS_MIRRORROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
MirrorRow = MirrorRow_Any_NEON;
if (IS_ALIGNED(width, 32)) {
MirrorRow = MirrorRow_NEON;
}
}
#endif
#if defined(HAS_MIRRORROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3)) {
MirrorRow = MirrorRow_Any_SSSE3;
if (IS_ALIGNED(width, 16)) {
MirrorRow = MirrorRow_SSSE3;
}
}
#endif
#if defined(HAS_MIRRORROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2)) {
MirrorRow = MirrorRow_Any_AVX2;
if (IS_ALIGNED(width, 32)) {
MirrorRow = MirrorRow_AVX2;
}
}
#endif
#if defined(HAS_MIRRORROW_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
MirrorRow = MirrorRow_Any_MSA;
if (IS_ALIGNED(width, 64)) {
MirrorRow = MirrorRow_MSA;
}
}
#endif
#if defined(HAS_MIRRORROW_LSX)
if (TestCpuFlag(kCpuHasLSX)) {
MirrorRow = MirrorRow_Any_LSX;
if (IS_ALIGNED(width, 32)) {
MirrorRow = MirrorRow_LSX;
}
}
#endif
#if defined(HAS_MIRRORROW_LASX)
if (TestCpuFlag(kCpuHasLASX)) {
MirrorRow = MirrorRow_Any_LASX;
if (IS_ALIGNED(width, 64)) {
MirrorRow = MirrorRow_LASX;
}
}
#endif
#if defined(HAS_COPYROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
CopyRow = IS_ALIGNED(width, 32) ? CopyRow_SSE2 : CopyRow_Any_SSE2;
}
#endif
#if defined(HAS_COPYROW_AVX)
if (TestCpuFlag(kCpuHasAVX)) {
CopyRow = IS_ALIGNED(width, 64) ? CopyRow_AVX : CopyRow_Any_AVX;
}
#endif
#if defined(HAS_COPYROW_ERMS)
if (TestCpuFlag(kCpuHasERMS)) {
CopyRow = CopyRow_ERMS;
}
#endif
#if defined(HAS_COPYROW_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
CopyRow = IS_ALIGNED(width, 32) ? CopyRow_NEON : CopyRow_Any_NEON;
}
#endif
#if defined(HAS_COPYROW_RVV)
if (TestCpuFlag(kCpuHasRVV)) {
CopyRow = CopyRow_RVV;
}
#endif
// Odd height will harmlessly mirror the middle row twice.
for (y = 0; y < half_height; ++y) {
CopyRow(src, row, width); // Copy top row into buffer
MirrorRow(src_bot, dst, width); // Mirror bottom row into top row
MirrorRow(row, dst_bot, width); // Mirror buffer into bottom row
src += src_stride;
dst += dst_stride;
src_bot -= src_stride;
dst_bot -= dst_stride;
}
free_aligned_buffer_64(row);
}
LIBYUV_API
void SplitTransposeUV(const uint8_t* src,
int src_stride,
uint8_t* dst_a,
int dst_stride_a,
uint8_t* dst_b,
int dst_stride_b,
int width,
int height) {
int i = height;
#if defined(HAS_TRANSPOSEUVWX16_MSA)
void (*TransposeUVWx16)(const uint8_t* src, int src_stride, uint8_t* dst_a,
int dst_stride_a, uint8_t* dst_b, int dst_stride_b,
int width) = TransposeUVWx16_C;
#elif defined(HAS_TRANSPOSEUVWX16_LSX)
void (*TransposeUVWx16)(const uint8_t* src, int src_stride, uint8_t* dst_a,
int dst_stride_a, uint8_t* dst_b, int dst_stride_b,
int width) = TransposeUVWx16_C;
#else
void (*TransposeUVWx8)(const uint8_t* src, int src_stride, uint8_t* dst_a,
int dst_stride_a, uint8_t* dst_b, int dst_stride_b,
int width) = TransposeUVWx8_C;
#endif
#if defined(HAS_TRANSPOSEUVWX16_MSA)
if (TestCpuFlag(kCpuHasMSA)) {
TransposeUVWx16 = TransposeUVWx16_Any_MSA;
if (IS_ALIGNED(width, 8)) {
TransposeUVWx16 = TransposeUVWx16_MSA;
}
}
#elif defined(HAS_TRANSPOSEUVWX16_LSX)
if (TestCpuFlag(kCpuHasLSX)) {
TransposeUVWx16 = TransposeUVWx16_Any_LSX;
if (IS_ALIGNED(width, 8)) {
TransposeUVWx16 = TransposeUVWx16_LSX;
}
}
#else
#if defined(HAS_TRANSPOSEUVWX8_NEON)
if (TestCpuFlag(kCpuHasNEON)) {
TransposeUVWx8 = TransposeUVWx8_NEON;
}
#endif
#if defined(HAS_TRANSPOSEUVWX8_SSE2)
if (TestCpuFlag(kCpuHasSSE2)) {
TransposeUVWx8 = TransposeUVWx8_Any_SSE2;
if (IS_ALIGNED(width, 8)) {
TransposeUVWx8 = TransposeUVWx8_SSE2;
}
}
#endif
#endif /* defined(HAS_TRANSPOSEUVWX16_MSA) */
#if defined(HAS_TRANSPOSEUVWX16_MSA)
// Work through the source in 8x8 tiles.
while (i >= 16) {
TransposeUVWx16(src, src_stride, dst_a, dst_stride_a, dst_b, dst_stride_b,
width);
src += 16 * src_stride; // Go down 16 rows.
dst_a += 16; // Move over 8 columns.
dst_b += 16; // Move over 8 columns.
i -= 16;
}
#elif defined(HAS_TRANSPOSEUVWX16_LSX)
// Work through the source in 8x8 tiles.
while (i >= 16) {
TransposeUVWx16(src, src_stride, dst_a, dst_stride_a, dst_b, dst_stride_b,
width);
src += 16 * src_stride; // Go down 16 rows.
dst_a += 16; // Move over 8 columns.
dst_b += 16; // Move over 8 columns.
i -= 16;
}
#else
// Work through the source in 8x8 tiles.
while (i >= 8) {
TransposeUVWx8(src, src_stride, dst_a, dst_stride_a, dst_b, dst_stride_b,
width);
src += 8 * src_stride; // Go down 8 rows.
dst_a += 8; // Move over 8 columns.
dst_b += 8; // Move over 8 columns.
i -= 8;
}
#endif
if (i > 0) {
TransposeUVWxH_C(src, src_stride, dst_a, dst_stride_a, dst_b, dst_stride_b,
width, i);
}
}
LIBYUV_API
void SplitRotateUV90(const uint8_t* src,
int src_stride,
uint8_t* dst_a,
int dst_stride_a,
uint8_t* dst_b,
int dst_stride_b,
int width,
int height) {
src += src_stride * (height - 1);
src_stride = -src_stride;
SplitTransposeUV(src, src_stride, dst_a, dst_stride_a, dst_b, dst_stride_b,
width, height);
}
LIBYUV_API
void SplitRotateUV270(const uint8_t* src,
int src_stride,
uint8_t* dst_a,
int dst_stride_a,
uint8_t* dst_b,
int dst_stride_b,
int width,
int height) {
dst_a += dst_stride_a * (width - 1);
dst_b += dst_stride_b * (width - 1);
dst_stride_a = -dst_stride_a;
dst_stride_b = -dst_stride_b;
SplitTransposeUV(src, src_stride, dst_a, dst_stride_a, dst_b, dst_stride_b,
width, height);
}
// Rotate 180 is a horizontal and vertical flip.
LIBYUV_API
void SplitRotateUV180(const uint8_t* src,
int src_stride,
uint8_t* dst_a,
int dst_stride_a,
uint8_t* dst_b,
int dst_stride_b,
int width,
int height) {
int i;
void (*MirrorSplitUVRow)(const uint8_t* src, uint8_t* dst_u, uint8_t* dst_v,
int width) = MirrorSplitUVRow_C;
#if defined(HAS_MIRRORSPLITUVROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(width, 16)) {
MirrorSplitUVRow = MirrorSplitUVRow_NEON;
}
#endif
#if defined(HAS_MIRRORSPLITUVROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && IS_ALIGNED(width, 16)) {
MirrorSplitUVRow = MirrorSplitUVRow_SSSE3;
}
#endif
#if defined(HAS_MIRRORSPLITUVROW_MSA)
if (TestCpuFlag(kCpuHasMSA) && IS_ALIGNED(width, 32)) {
MirrorSplitUVRow = MirrorSplitUVRow_MSA;
}
#endif
#if defined(HAS_MIRRORSPLITUVROW_LSX)
if (TestCpuFlag(kCpuHasLSX) && IS_ALIGNED(width, 32)) {
MirrorSplitUVRow = MirrorSplitUVRow_LSX;
}
#endif
dst_a += dst_stride_a * (height - 1);
dst_b += dst_stride_b * (height - 1);
for (i = 0; i < height; ++i) {
MirrorSplitUVRow(src, dst_a, dst_b, width);
src += src_stride;
dst_a -= dst_stride_a;
dst_b -= dst_stride_b;
}
}
// Rotate UV and split into planar.
// width and height expected to be half size for NV12
LIBYUV_API
int SplitRotateUV(const uint8_t* src_uv,
int src_stride_uv,
uint8_t* dst_u,
int dst_stride_u,
uint8_t* dst_v,
int dst_stride_v,
int width,
int height,
enum RotationMode mode) {
if (!src_uv || width <= 0 || height == 0 || !dst_u || !dst_v) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_uv = src_uv + (height - 1) * src_stride_uv;
src_stride_uv = -src_stride_uv;
}
switch (mode) {
case kRotate0:
SplitUVPlane(src_uv, src_stride_uv, dst_u, dst_stride_u, dst_v,
dst_stride_v, width, height);
return 0;
case kRotate90:
SplitRotateUV90(src_uv, src_stride_uv, dst_u, dst_stride_u, dst_v,
dst_stride_v, width, height);
return 0;
case kRotate270:
SplitRotateUV270(src_uv, src_stride_uv, dst_u, dst_stride_u, dst_v,
dst_stride_v, width, height);
return 0;
case kRotate180:
SplitRotateUV180(src_uv, src_stride_uv, dst_u, dst_stride_u, dst_v,
dst_stride_v, width, height);
return 0;
default:
break;
}
return -1;
}
LIBYUV_API
int RotatePlane(const uint8_t* src,
int src_stride,
uint8_t* dst,
int dst_stride,
int width,
int height,
enum RotationMode mode) {
if (!src || width <= 0 || height == 0 || !dst) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src = src + (height - 1) * src_stride;
src_stride = -src_stride;
}
switch (mode) {
case kRotate0:
// copy frame
CopyPlane(src, src_stride, dst, dst_stride, width, height);
return 0;
case kRotate90:
RotatePlane90(src, src_stride, dst, dst_stride, width, height);
return 0;
case kRotate270:
RotatePlane270(src, src_stride, dst, dst_stride, width, height);
return 0;
case kRotate180:
RotatePlane180(src, src_stride, dst, dst_stride, width, height);
return 0;
default:
break;
}
return -1;
}
static void TransposePlane_16(const uint16_t* src,
int src_stride,
uint16_t* dst,
int dst_stride,
int width,
int height) {
int i = height;
// Work across the source in 8x8 tiles
while (i >= 8) {
TransposeWx8_16_C(src, src_stride, dst, dst_stride, width);
src += 8 * src_stride; // Go down 8 rows.
dst += 8; // Move over 8 columns.
i -= 8;
}
if (i > 0) {
TransposeWxH_16_C(src, src_stride, dst, dst_stride, width, i);
}
}
static void RotatePlane90_16(const uint16_t* src,
int src_stride,
uint16_t* dst,
int dst_stride,
int width,
int height) {
// Rotate by 90 is a transpose with the source read
// from bottom to top. So set the source pointer to the end
// of the buffer and flip the sign of the source stride.
src += src_stride * (height - 1);
src_stride = -src_stride;
TransposePlane_16(src, src_stride, dst, dst_stride, width, height);
}
static void RotatePlane270_16(const uint16_t* src,
int src_stride,
uint16_t* dst,
int dst_stride,
int width,
int height) {
// Rotate by 270 is a transpose with the destination written
// from bottom to top. So set the destination pointer to the end
// of the buffer and flip the sign of the destination stride.
dst += dst_stride * (width - 1);
dst_stride = -dst_stride;
TransposePlane_16(src, src_stride, dst, dst_stride, width, height);
}
static void RotatePlane180_16(const uint16_t* src,
int src_stride,
uint16_t* dst,
int dst_stride,
int width,
int height) {
const uint16_t* src_bot = src + src_stride * (height - 1);
uint16_t* dst_bot = dst + dst_stride * (height - 1);
int half_height = (height + 1) >> 1;
int y;
// Swap top and bottom row and mirror the content. Uses a temporary row.
align_buffer_64(row, width * 2);
uint16_t* row_tmp = (uint16_t*)row;
assert(row);
if (!row)
return;
// Odd height will harmlessly mirror the middle row twice.
for (y = 0; y < half_height; ++y) {
CopyRow_16_C(src, row_tmp, width); // Copy top row into buffer
MirrorRow_16_C(src_bot, dst, width); // Mirror bottom row into top row
MirrorRow_16_C(row_tmp, dst_bot, width); // Mirror buffer into bottom row
src += src_stride;
dst += dst_stride;
src_bot -= src_stride;
dst_bot -= dst_stride;
}
free_aligned_buffer_64(row);
}
LIBYUV_API
int RotatePlane_16(const uint16_t* src,
int src_stride,
uint16_t* dst,
int dst_stride,
int width,
int height,
enum RotationMode mode) {
if (!src || width <= 0 || height == 0 || !dst) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src = src + (height - 1) * src_stride;
src_stride = -src_stride;
}
switch (mode) {
case kRotate0:
// copy frame
CopyPlane_16(src, src_stride, dst, dst_stride, width, height);
return 0;
case kRotate90:
RotatePlane90_16(src, src_stride, dst, dst_stride, width, height);
return 0;
case kRotate270:
RotatePlane270_16(src, src_stride, dst, dst_stride, width, height);
return 0;
case kRotate180:
RotatePlane180_16(src, src_stride, dst, dst_stride, width, height);
return 0;
default:
break;
}
return -1;
}
LIBYUV_API
int I420Rotate(const uint8_t* src_y,
int src_stride_y,
const uint8_t* src_u,
int src_stride_u,
const uint8_t* src_v,
int src_stride_v,
uint8_t* dst_y,
int dst_stride_y,
uint8_t* dst_u,
int dst_stride_u,
uint8_t* dst_v,
int dst_stride_v,
int width,
int height,
enum RotationMode mode) {
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
if ((!src_y && dst_y) || !src_u || !src_v || width <= 0 || height == 0 ||
!dst_y || !dst_u || !dst_v) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (halfheight - 1) * src_stride_u;
src_v = src_v + (halfheight - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
switch (mode) {
case kRotate0:
// copy frame
return I420Copy(src_y, src_stride_y, src_u, src_stride_u, src_v,
src_stride_v, dst_y, dst_stride_y, dst_u, dst_stride_u,
dst_v, dst_stride_v, width, height);
case kRotate90:
RotatePlane90(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
RotatePlane90(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth,
halfheight);
RotatePlane90(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth,
halfheight);
return 0;
case kRotate270:
RotatePlane270(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
RotatePlane270(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth,
halfheight);
RotatePlane270(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth,
halfheight);
return 0;
case kRotate180:
RotatePlane180(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
RotatePlane180(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth,
halfheight);
RotatePlane180(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth,
halfheight);
return 0;
default:
break;
}
return -1;
}
// I422 has half width x full height UV planes, so rotate by 90 and 270
// require scaling to maintain 422 subsampling.
LIBYUV_API
int I422Rotate(const uint8_t* src_y,
int src_stride_y,
const uint8_t* src_u,
int src_stride_u,
const uint8_t* src_v,
int src_stride_v,
uint8_t* dst_y,
int dst_stride_y,
uint8_t* dst_u,
int dst_stride_u,
uint8_t* dst_v,
int dst_stride_v,
int width,
int height,
enum RotationMode mode) {
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
int r;
if (!src_y || !src_u || !src_v || width <= 0 || height == 0 || !dst_y ||
!dst_u || !dst_v) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
switch (mode) {
case kRotate0:
// Copy frame
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, height);
CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, height);
return 0;
// Note on temporary Y plane for UV.
// Rotation of UV first fits within the Y destination plane rows.
// Y plane is width x height
// Y plane rotated is height x width
// UV plane is (width / 2) x height
// UV plane rotated is height x (width / 2)
// UV plane rotated+scaled is (height / 2) x width.
// UV plane rotated is a temporary that fits within the Y plane rotated.
case kRotate90:
RotatePlane90(src_u, src_stride_u, dst_y, dst_stride_y, halfwidth,
height);
r = ScalePlane(dst_y, dst_stride_y, height, halfwidth, dst_u,
dst_stride_u, halfheight, width, kFilterBilinear);
if (r != 0) {
return r;
}
RotatePlane90(src_v, src_stride_v, dst_y, dst_stride_y, halfwidth,
height);
r = ScalePlane(dst_y, dst_stride_y, height, halfwidth, dst_v,
dst_stride_v, halfheight, width, kFilterLinear);
if (r != 0) {
return r;
}
RotatePlane90(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
return 0;
case kRotate270:
RotatePlane270(src_u, src_stride_u, dst_y, dst_stride_y, halfwidth,
height);
r = ScalePlane(dst_y, dst_stride_y, height, halfwidth, dst_u,
dst_stride_u, halfheight, width, kFilterBilinear);
if (r != 0) {
return r;
}
RotatePlane270(src_v, src_stride_v, dst_y, dst_stride_y, halfwidth,
height);
r = ScalePlane(dst_y, dst_stride_y, height, halfwidth, dst_v,
dst_stride_v, halfheight, width, kFilterLinear);
if (r != 0) {
return r;
}
RotatePlane270(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
return 0;
case kRotate180:
RotatePlane180(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
RotatePlane180(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth,
height);
RotatePlane180(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth,
height);
return 0;
default:
break;
}
return -1;
}
LIBYUV_API
int I444Rotate(const uint8_t* src_y,
int src_stride_y,
const uint8_t* src_u,
int src_stride_u,
const uint8_t* src_v,
int src_stride_v,
uint8_t* dst_y,
int dst_stride_y,
uint8_t* dst_u,
int dst_stride_u,
uint8_t* dst_v,
int dst_stride_v,
int width,
int height,
enum RotationMode mode) {
if (!src_y || !src_u || !src_v || width <= 0 || height == 0 || !dst_y ||
!dst_u || !dst_v) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
switch (mode) {
case kRotate0:
// copy frame
CopyPlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
CopyPlane(src_u, src_stride_u, dst_u, dst_stride_u, width, height);
CopyPlane(src_v, src_stride_v, dst_v, dst_stride_v, width, height);
return 0;
case kRotate90:
RotatePlane90(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
RotatePlane90(src_u, src_stride_u, dst_u, dst_stride_u, width, height);
RotatePlane90(src_v, src_stride_v, dst_v, dst_stride_v, width, height);
return 0;
case kRotate270:
RotatePlane270(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
RotatePlane270(src_u, src_stride_u, dst_u, dst_stride_u, width, height);
RotatePlane270(src_v, src_stride_v, dst_v, dst_stride_v, width, height);
return 0;
case kRotate180:
RotatePlane180(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
RotatePlane180(src_u, src_stride_u, dst_u, dst_stride_u, width, height);
RotatePlane180(src_v, src_stride_v, dst_v, dst_stride_v, width, height);
return 0;
default:
break;
}
return -1;
}
LIBYUV_API
int NV12ToI420Rotate(const uint8_t* src_y,
int src_stride_y,
const uint8_t* src_uv,
int src_stride_uv,
uint8_t* dst_y,
int dst_stride_y,
uint8_t* dst_u,
int dst_stride_u,
uint8_t* dst_v,
int dst_stride_v,
int width,
int height,
enum RotationMode mode) {
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
if (!src_y || !src_uv || width <= 0 || height == 0 || !dst_y || !dst_u ||
!dst_v) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_uv = src_uv + (halfheight - 1) * src_stride_uv;
src_stride_y = -src_stride_y;
src_stride_uv = -src_stride_uv;
}
switch (mode) {
case kRotate0:
// copy frame
return NV12ToI420(src_y, src_stride_y, src_uv, src_stride_uv, dst_y,
dst_stride_y, dst_u, dst_stride_u, dst_v, dst_stride_v,
width, height);
case kRotate90:
RotatePlane90(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
SplitRotateUV90(src_uv, src_stride_uv, dst_u, dst_stride_u, dst_v,
dst_stride_v, halfwidth, halfheight);
return 0;
case kRotate270:
RotatePlane270(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
SplitRotateUV270(src_uv, src_stride_uv, dst_u, dst_stride_u, dst_v,
dst_stride_v, halfwidth, halfheight);
return 0;
case kRotate180:
RotatePlane180(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
SplitRotateUV180(src_uv, src_stride_uv, dst_u, dst_stride_u, dst_v,
dst_stride_v, halfwidth, halfheight);
return 0;
default:
break;
}
return -1;
}
static void SplitPixels(const uint8_t* src_u,
int src_pixel_stride_uv,
uint8_t* dst_u,
int width) {
int i;
for (i = 0; i < width; ++i) {
*dst_u = *src_u;
++dst_u;
src_u += src_pixel_stride_uv;
}
}
// Convert Android420 to I420 with Rotate
LIBYUV_API
int Android420ToI420Rotate(const uint8_t* src_y,
int src_stride_y,
const uint8_t* src_u,
int src_stride_u,
const uint8_t* src_v,
int src_stride_v,
int src_pixel_stride_uv,
uint8_t* dst_y,
int dst_stride_y,
uint8_t* dst_u,
int dst_stride_u,
uint8_t* dst_v,
int dst_stride_v,
int width,
int height,
enum RotationMode rotation) {
int y;
const ptrdiff_t vu_off = src_v - src_u;
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
if ((!src_y && dst_y) || !src_u || !src_v || !dst_u || !dst_v || width <= 0 ||
height == 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
halfheight = (height + 1) >> 1;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (halfheight - 1) * src_stride_u;
src_v = src_v + (halfheight - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
if (dst_y) {
RotatePlane(src_y, src_stride_y, dst_y, dst_stride_y, width, height,
rotation);
}
// Copy UV planes - I420
if (src_pixel_stride_uv == 1) {
RotatePlane(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, halfheight,
rotation);
RotatePlane(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, halfheight,
rotation);
return 0;
}
// Split UV planes - NV21
if (src_pixel_stride_uv == 2 && vu_off == -1 &&
src_stride_u == src_stride_v) {
SplitRotateUV(src_v, src_stride_v, dst_v, dst_stride_v, dst_u, dst_stride_u,
halfwidth, halfheight, rotation);
return 0;
}
// Split UV planes - NV12
if (src_pixel_stride_uv == 2 && vu_off == 1 && src_stride_u == src_stride_v) {
SplitRotateUV(src_u, src_stride_u, dst_u, dst_stride_u, dst_v, dst_stride_v,
halfwidth, halfheight, rotation);
return 0;
}
if (rotation == 0) {
for (y = 0; y < halfheight; ++y) {
SplitPixels(src_u, src_pixel_stride_uv, dst_u, halfwidth);
SplitPixels(src_v, src_pixel_stride_uv, dst_v, halfwidth);
src_u += src_stride_u;
src_v += src_stride_v;
dst_u += dst_stride_u;
dst_v += dst_stride_v;
}
return 0;
}
// unsupported type and/or rotation.
return -1;
}
LIBYUV_API
int I010Rotate(const uint16_t* src_y,
int src_stride_y,
const uint16_t* src_u,
int src_stride_u,
const uint16_t* src_v,
int src_stride_v,
uint16_t* dst_y,
int dst_stride_y,
uint16_t* dst_u,
int dst_stride_u,
uint16_t* dst_v,
int dst_stride_v,
int width,
int height,
enum RotationMode mode) {
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
if (!src_y || !src_u || !src_v || width <= 0 || height == 0 || !dst_y ||
!dst_u || !dst_v || dst_stride_y < 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
switch (mode) {
case kRotate0:
// copy frame
return I010Copy(src_y, src_stride_y, src_u, src_stride_u, src_v,
src_stride_v, dst_y, dst_stride_y, dst_u, dst_stride_u,
dst_v, dst_stride_v, width, height);
case kRotate90:
RotatePlane90_16(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
RotatePlane90_16(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth,
halfheight);
RotatePlane90_16(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth,
halfheight);
return 0;
case kRotate270:
RotatePlane270_16(src_y, src_stride_y, dst_y, dst_stride_y, width,
height);
RotatePlane270_16(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth,
halfheight);
RotatePlane270_16(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth,
halfheight);
return 0;
case kRotate180:
RotatePlane180_16(src_y, src_stride_y, dst_y, dst_stride_y, width,
height);
RotatePlane180_16(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth,
halfheight);
RotatePlane180_16(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth,
halfheight);
return 0;
default:
break;
}
return -1;
}
// I210 has half width x full height UV planes, so rotate by 90 and 270
// require scaling to maintain 422 subsampling.
LIBYUV_API
int I210Rotate(const uint16_t* src_y,
int src_stride_y,
const uint16_t* src_u,
int src_stride_u,
const uint16_t* src_v,
int src_stride_v,
uint16_t* dst_y,
int dst_stride_y,
uint16_t* dst_u,
int dst_stride_u,
uint16_t* dst_v,
int dst_stride_v,
int width,
int height,
enum RotationMode mode) {
int halfwidth = (width + 1) >> 1;
int halfheight = (height + 1) >> 1;
int r;
if (!src_y || !src_u || !src_v || width <= 0 || height == 0 || !dst_y ||
!dst_u || !dst_v) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
switch (mode) {
case kRotate0:
// Copy frame
CopyPlane_16(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
CopyPlane_16(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth, height);
CopyPlane_16(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth, height);
return 0;
// Note on temporary Y plane for UV.
// Rotation of UV first fits within the Y destination plane rows.
// Y plane is width x height
// Y plane rotated is height x width
// UV plane is (width / 2) x height
// UV plane rotated is height x (width / 2)
// UV plane rotated+scaled is (height / 2) x width.
// UV plane rotated is a temporary that fits within the Y plane rotated.
case kRotate90:
RotatePlane90_16(src_u, src_stride_u, dst_y, dst_stride_y, halfwidth,
height);
r = ScalePlane_16(dst_y, dst_stride_y, height, halfwidth, dst_u,
dst_stride_u, halfheight, width, kFilterBilinear);
if (r != 0) {
return r;
}
RotatePlane90_16(src_v, src_stride_v, dst_y, dst_stride_y, halfwidth,
height);
r = ScalePlane_16(dst_y, dst_stride_y, height, halfwidth, dst_v,
dst_stride_v, halfheight, width, kFilterLinear);
if (r != 0) {
return r;
}
RotatePlane90_16(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
return 0;
case kRotate270:
RotatePlane270_16(src_u, src_stride_u, dst_y, dst_stride_y, halfwidth,
height);
r = ScalePlane_16(dst_y, dst_stride_y, height, halfwidth, dst_u,
dst_stride_u, halfheight, width, kFilterBilinear);
if (r != 0) {
return r;
}
RotatePlane270_16(src_v, src_stride_v, dst_y, dst_stride_y, halfwidth,
height);
r = ScalePlane_16(dst_y, dst_stride_y, height, halfwidth, dst_v,
dst_stride_v, halfheight, width, kFilterLinear);
if (r != 0) {
return r;
}
RotatePlane270_16(src_y, src_stride_y, dst_y, dst_stride_y, width,
height);
return 0;
case kRotate180:
RotatePlane180_16(src_y, src_stride_y, dst_y, dst_stride_y, width,
height);
RotatePlane180_16(src_u, src_stride_u, dst_u, dst_stride_u, halfwidth,
height);
RotatePlane180_16(src_v, src_stride_v, dst_v, dst_stride_v, halfwidth,
height);
return 0;
default:
break;
}
return -1;
}
LIBYUV_API
int I410Rotate(const uint16_t* src_y,
int src_stride_y,
const uint16_t* src_u,
int src_stride_u,
const uint16_t* src_v,
int src_stride_v,
uint16_t* dst_y,
int dst_stride_y,
uint16_t* dst_u,
int dst_stride_u,
uint16_t* dst_v,
int dst_stride_v,
int width,
int height,
enum RotationMode mode) {
if (!src_y || !src_u || !src_v || width <= 0 || height == 0 || !dst_y ||
!dst_u || !dst_v || dst_stride_y < 0) {
return -1;
}
// Negative height means invert the image.
if (height < 0) {
height = -height;
src_y = src_y + (height - 1) * src_stride_y;
src_u = src_u + (height - 1) * src_stride_u;
src_v = src_v + (height - 1) * src_stride_v;
src_stride_y = -src_stride_y;
src_stride_u = -src_stride_u;
src_stride_v = -src_stride_v;
}
switch (mode) {
case kRotate0:
// copy frame
CopyPlane_16(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
CopyPlane_16(src_u, src_stride_u, dst_u, dst_stride_u, width, height);
CopyPlane_16(src_v, src_stride_v, dst_v, dst_stride_v, width, height);
return 0;
case kRotate90:
RotatePlane90_16(src_y, src_stride_y, dst_y, dst_stride_y, width, height);
RotatePlane90_16(src_u, src_stride_u, dst_u, dst_stride_u, width, height);
RotatePlane90_16(src_v, src_stride_v, dst_v, dst_stride_v, width, height);
return 0;
case kRotate270:
RotatePlane270_16(src_y, src_stride_y, dst_y, dst_stride_y, width,
height);
RotatePlane270_16(src_u, src_stride_u, dst_u, dst_stride_u, width,
height);
RotatePlane270_16(src_v, src_stride_v, dst_v, dst_stride_v, width,
height);
return 0;
case kRotate180:
RotatePlane180_16(src_y, src_stride_y, dst_y, dst_stride_y, width,
height);
RotatePlane180_16(src_u, src_stride_u, dst_u, dst_stride_u, width,
height);
RotatePlane180_16(src_v, src_stride_v, dst_v, dst_stride_v, width,
height);
return 0;
default:
break;
}
return -1;
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif