blob: f7a25e4099de0871d22659d0503e2572ff9246ca [file] [log] [blame]
/* Expand builtin functions.
Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "machmode.h"
#include "real.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "flags.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "except.h"
#include "function.h"
#include "insn-config.h"
#include "expr.h"
#include "optabs.h"
#include "libfuncs.h"
#include "recog.h"
#include "output.h"
#include "typeclass.h"
#include "toplev.h"
#include "predict.h"
#include "tm_p.h"
#include "target.h"
#include "langhooks.h"
#include "basic-block.h"
#include "tree-mudflap.h"
#include "tree-flow.h"
#include "value-prof.h"
#include "diagnostic.h"
#ifndef SLOW_UNALIGNED_ACCESS
#define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
#endif
#ifndef PAD_VARARGS_DOWN
#define PAD_VARARGS_DOWN BYTES_BIG_ENDIAN
#endif
/* Define the names of the builtin function types and codes. */
const char *const built_in_class_names[4]
= {"NOT_BUILT_IN", "BUILT_IN_FRONTEND", "BUILT_IN_MD", "BUILT_IN_NORMAL"};
#define DEF_BUILTIN(X, N, C, T, LT, B, F, NA, AT, IM, COND) #X,
const char * built_in_names[(int) END_BUILTINS] =
{
#include "builtins.def"
};
#undef DEF_BUILTIN
/* Setup an array of _DECL trees, make sure each element is
initialized to NULL_TREE. */
tree built_in_decls[(int) END_BUILTINS];
/* Declarations used when constructing the builtin implicitly in the compiler.
It may be NULL_TREE when this is invalid (for instance runtime is not
required to implement the function call in all cases). */
tree implicit_built_in_decls[(int) END_BUILTINS];
static const char *c_getstr (tree);
static rtx c_readstr (const char *, enum machine_mode);
static int target_char_cast (tree, char *);
static rtx get_memory_rtx (tree, tree);
static int apply_args_size (void);
static int apply_result_size (void);
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
static rtx result_vector (int, rtx);
#endif
static void expand_builtin_update_setjmp_buf (rtx);
static void expand_builtin_prefetch (tree);
static rtx expand_builtin_apply_args (void);
static rtx expand_builtin_apply_args_1 (void);
static rtx expand_builtin_apply (rtx, rtx, rtx);
static void expand_builtin_return (rtx);
static enum type_class type_to_class (tree);
static rtx expand_builtin_classify_type (tree);
static void expand_errno_check (tree, rtx);
static rtx expand_builtin_mathfn (tree, rtx, rtx);
static rtx expand_builtin_mathfn_2 (tree, rtx, rtx);
static rtx expand_builtin_mathfn_3 (tree, rtx, rtx);
static rtx expand_builtin_interclass_mathfn (tree, rtx, rtx);
static rtx expand_builtin_sincos (tree);
static rtx expand_builtin_cexpi (tree, rtx, rtx);
static rtx expand_builtin_int_roundingfn (tree, rtx);
static rtx expand_builtin_int_roundingfn_2 (tree, rtx);
static rtx expand_builtin_args_info (tree);
static rtx expand_builtin_next_arg (void);
static rtx expand_builtin_va_start (tree);
static rtx expand_builtin_va_end (tree);
static rtx expand_builtin_va_copy (tree);
static rtx expand_builtin_memchr (tree, rtx, enum machine_mode);
static rtx expand_builtin_memcmp (tree, rtx, enum machine_mode);
static rtx expand_builtin_strcmp (tree, rtx, enum machine_mode);
static rtx expand_builtin_strncmp (tree, rtx, enum machine_mode);
static rtx builtin_memcpy_read_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx expand_builtin_strcat (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strncat (tree, rtx, enum machine_mode);
static rtx expand_builtin_strspn (tree, rtx, enum machine_mode);
static rtx expand_builtin_strcspn (tree, rtx, enum machine_mode);
static rtx expand_builtin_memcpy (tree, rtx, enum machine_mode);
static rtx expand_builtin_mempcpy (tree, rtx, enum machine_mode);
static rtx expand_builtin_mempcpy_args (tree, tree, tree, tree, rtx,
enum machine_mode, int);
static rtx expand_builtin_memmove (tree, rtx, enum machine_mode, int);
static rtx expand_builtin_memmove_args (tree, tree, tree, tree, rtx,
enum machine_mode, int);
static rtx expand_builtin_bcopy (tree, int);
static rtx expand_builtin_strcpy (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strcpy_args (tree, tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_stpcpy (tree, rtx, enum machine_mode);
static rtx expand_builtin_strncpy (tree, rtx, enum machine_mode);
static rtx builtin_memset_gen_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx expand_builtin_memset (tree, rtx, enum machine_mode);
static rtx expand_builtin_memset_args (tree, tree, tree, rtx, enum machine_mode, tree);
static rtx expand_builtin_bzero (tree);
static rtx expand_builtin_strlen (tree, rtx, enum machine_mode);
static rtx expand_builtin_strstr (tree, rtx, enum machine_mode);
static rtx expand_builtin_strpbrk (tree, rtx, enum machine_mode);
static rtx expand_builtin_strchr (tree, rtx, enum machine_mode);
static rtx expand_builtin_strrchr (tree, rtx, enum machine_mode);
static rtx expand_builtin_alloca (tree, rtx);
static rtx expand_builtin_unop (enum machine_mode, tree, rtx, rtx, optab);
static rtx expand_builtin_frame_address (tree, tree);
static rtx expand_builtin_fputs (tree, rtx, bool);
static rtx expand_builtin_printf (tree, rtx, enum machine_mode, bool);
static rtx expand_builtin_fprintf (tree, rtx, enum machine_mode, bool);
static rtx expand_builtin_sprintf (tree, rtx, enum machine_mode);
static tree stabilize_va_list (tree, int);
static rtx expand_builtin_expect (tree, rtx);
static tree fold_builtin_constant_p (tree);
static tree fold_builtin_expect (tree, tree);
static tree fold_builtin_classify_type (tree);
static tree fold_builtin_strlen (tree, tree);
static tree fold_builtin_inf (tree, int);
static tree fold_builtin_nan (tree, tree, int);
static tree rewrite_call_expr (tree, int, tree, int, ...);
static bool validate_arg (const_tree, enum tree_code code);
static bool integer_valued_real_p (tree);
static tree fold_trunc_transparent_mathfn (tree, tree);
static bool readonly_data_expr (tree);
static rtx expand_builtin_fabs (tree, rtx, rtx);
static rtx expand_builtin_signbit (tree, rtx);
static tree fold_builtin_sqrt (tree, tree);
static tree fold_builtin_cbrt (tree, tree);
static tree fold_builtin_pow (tree, tree, tree, tree);
static tree fold_builtin_powi (tree, tree, tree, tree);
static tree fold_builtin_cos (tree, tree, tree);
static tree fold_builtin_cosh (tree, tree, tree);
static tree fold_builtin_tan (tree, tree);
static tree fold_builtin_trunc (tree, tree);
static tree fold_builtin_floor (tree, tree);
static tree fold_builtin_ceil (tree, tree);
static tree fold_builtin_round (tree, tree);
static tree fold_builtin_int_roundingfn (tree, tree);
static tree fold_builtin_bitop (tree, tree);
static tree fold_builtin_memory_op (tree, tree, tree, tree, bool, int);
static tree fold_builtin_strchr (tree, tree, tree);
static tree fold_builtin_memchr (tree, tree, tree, tree);
static tree fold_builtin_memcmp (tree, tree, tree);
static tree fold_builtin_strcmp (tree, tree);
static tree fold_builtin_strncmp (tree, tree, tree);
static tree fold_builtin_signbit (tree, tree);
static tree fold_builtin_copysign (tree, tree, tree, tree);
static tree fold_builtin_isascii (tree);
static tree fold_builtin_toascii (tree);
static tree fold_builtin_isdigit (tree);
static tree fold_builtin_fabs (tree, tree);
static tree fold_builtin_abs (tree, tree);
static tree fold_builtin_unordered_cmp (tree, tree, tree, enum tree_code,
enum tree_code);
static tree fold_builtin_n (tree, tree *, int, bool);
static tree fold_builtin_0 (tree, bool);
static tree fold_builtin_1 (tree, tree, bool);
static tree fold_builtin_2 (tree, tree, tree, bool);
static tree fold_builtin_3 (tree, tree, tree, tree, bool);
static tree fold_builtin_4 (tree, tree, tree, tree, tree, bool);
static tree fold_builtin_varargs (tree, tree, bool);
static tree fold_builtin_strpbrk (tree, tree, tree);
static tree fold_builtin_strstr (tree, tree, tree);
static tree fold_builtin_strrchr (tree, tree, tree);
static tree fold_builtin_strcat (tree, tree);
static tree fold_builtin_strncat (tree, tree, tree);
static tree fold_builtin_strspn (tree, tree);
static tree fold_builtin_strcspn (tree, tree);
static tree fold_builtin_sprintf (tree, tree, tree, int);
static rtx expand_builtin_object_size (tree);
static rtx expand_builtin_memory_chk (tree, rtx, enum machine_mode,
enum built_in_function);
static void maybe_emit_chk_warning (tree, enum built_in_function);
static void maybe_emit_sprintf_chk_warning (tree, enum built_in_function);
static void maybe_emit_free_warning (tree);
static tree fold_builtin_object_size (tree, tree);
static tree fold_builtin_strcat_chk (tree, tree, tree, tree);
static tree fold_builtin_strncat_chk (tree, tree, tree, tree, tree);
static tree fold_builtin_sprintf_chk (tree, enum built_in_function);
static tree fold_builtin_printf (tree, tree, tree, bool, enum built_in_function);
static tree fold_builtin_fprintf (tree, tree, tree, tree, bool,
enum built_in_function);
static bool init_target_chars (void);
static unsigned HOST_WIDE_INT target_newline;
static unsigned HOST_WIDE_INT target_percent;
static unsigned HOST_WIDE_INT target_c;
static unsigned HOST_WIDE_INT target_s;
static char target_percent_c[3];
static char target_percent_s[3];
static char target_percent_s_newline[4];
static tree do_mpfr_arg1 (tree, tree, int (*)(mpfr_ptr, mpfr_srcptr, mp_rnd_t),
const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, bool);
static tree do_mpfr_arg2 (tree, tree, tree,
int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t));
static tree do_mpfr_arg3 (tree, tree, tree, tree,
int (*)(mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_srcptr, mp_rnd_t));
static tree do_mpfr_sincos (tree, tree, tree);
static tree do_mpfr_bessel_n (tree, tree, tree,
int (*)(mpfr_ptr, long, mpfr_srcptr, mp_rnd_t),
const REAL_VALUE_TYPE *, bool);
static tree do_mpfr_remquo (tree, tree, tree);
static tree do_mpfr_lgamma_r (tree, tree, tree);
/* Return true if NODE should be considered for inline expansion regardless
of the optimization level. This means whenever a function is invoked with
its "internal" name, which normally contains the prefix "__builtin". */
static bool called_as_built_in (tree node)
{
const char *name = IDENTIFIER_POINTER (DECL_NAME (node));
if (strncmp (name, "__builtin_", 10) == 0)
return true;
if (strncmp (name, "__sync_", 7) == 0)
return true;
return false;
}
/* Return the alignment in bits of EXP, an object.
Don't return more than MAX_ALIGN no matter what, ALIGN is the inital
guessed alignment e.g. from type alignment. */
int
get_object_alignment (tree exp, unsigned int align, unsigned int max_align)
{
unsigned int inner;
inner = max_align;
if (handled_component_p (exp))
{
HOST_WIDE_INT bitsize, bitpos;
tree offset;
enum machine_mode mode;
int unsignedp, volatilep;
exp = get_inner_reference (exp, &bitsize, &bitpos, &offset,
&mode, &unsignedp, &volatilep, true);
if (bitpos)
inner = MIN (inner, (unsigned) (bitpos & -bitpos));
while (offset)
{
tree next_offset;
if (TREE_CODE (offset) == PLUS_EXPR)
{
next_offset = TREE_OPERAND (offset, 0);
offset = TREE_OPERAND (offset, 1);
}
else
next_offset = NULL;
if (host_integerp (offset, 1))
{
/* Any overflow in calculating offset_bits won't change
the alignment. */
unsigned offset_bits
= ((unsigned) tree_low_cst (offset, 1) * BITS_PER_UNIT);
if (offset_bits)
inner = MIN (inner, (offset_bits & -offset_bits));
}
else if (TREE_CODE (offset) == MULT_EXPR
&& host_integerp (TREE_OPERAND (offset, 1), 1))
{
/* Any overflow in calculating offset_factor won't change
the alignment. */
unsigned offset_factor
= ((unsigned) tree_low_cst (TREE_OPERAND (offset, 1), 1)
* BITS_PER_UNIT);
if (offset_factor)
inner = MIN (inner, (offset_factor & -offset_factor));
}
else
{
inner = MIN (inner, BITS_PER_UNIT);
break;
}
offset = next_offset;
}
}
if (DECL_P (exp))
align = MIN (inner, DECL_ALIGN (exp));
#ifdef CONSTANT_ALIGNMENT
else if (CONSTANT_CLASS_P (exp))
align = MIN (inner, (unsigned)CONSTANT_ALIGNMENT (exp, align));
#endif
else if (TREE_CODE (exp) == VIEW_CONVERT_EXPR
|| TREE_CODE (exp) == INDIRECT_REF)
align = MIN (TYPE_ALIGN (TREE_TYPE (exp)), inner);
else
align = MIN (align, inner);
return MIN (align, max_align);
}
/* Return the alignment in bits of EXP, a pointer valued expression.
But don't return more than MAX_ALIGN no matter what.
The alignment returned is, by default, the alignment of the thing that
EXP points to. If it is not a POINTER_TYPE, 0 is returned.
Otherwise, look at the expression to see if we can do better, i.e., if the
expression is actually pointing at an object whose alignment is tighter. */
int
get_pointer_alignment (tree exp, unsigned int max_align)
{
unsigned int align, inner;
/* We rely on TER to compute accurate alignment information. */
if (!(optimize && flag_tree_ter))
return 0;
if (!POINTER_TYPE_P (TREE_TYPE (exp)))
return 0;
align = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
align = MIN (align, max_align);
while (1)
{
switch (TREE_CODE (exp))
{
CASE_CONVERT:
exp = TREE_OPERAND (exp, 0);
if (! POINTER_TYPE_P (TREE_TYPE (exp)))
return align;
inner = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
align = MIN (inner, max_align);
break;
case POINTER_PLUS_EXPR:
/* If sum of pointer + int, restrict our maximum alignment to that
imposed by the integer. If not, we can't do any better than
ALIGN. */
if (! host_integerp (TREE_OPERAND (exp, 1), 1))
return align;
while (((tree_low_cst (TREE_OPERAND (exp, 1), 1))
& (max_align / BITS_PER_UNIT - 1))
!= 0)
max_align >>= 1;
exp = TREE_OPERAND (exp, 0);
break;
case ADDR_EXPR:
/* See what we are pointing at and look at its alignment. */
return get_object_alignment (TREE_OPERAND (exp, 0), align, max_align);
default:
return align;
}
}
}
/* Compute the length of a C string. TREE_STRING_LENGTH is not the right
way, because it could contain a zero byte in the middle.
TREE_STRING_LENGTH is the size of the character array, not the string.
ONLY_VALUE should be nonzero if the result is not going to be emitted
into the instruction stream and zero if it is going to be expanded.
E.g. with i++ ? "foo" : "bar", if ONLY_VALUE is nonzero, constant 3
is returned, otherwise NULL, since
len = c_strlen (src, 1); if (len) expand_expr (len, ...); would not
evaluate the side-effects.
The value returned is of type `ssizetype'.
Unfortunately, string_constant can't access the values of const char
arrays with initializers, so neither can we do so here. */
tree
c_strlen (tree src, int only_value)
{
tree offset_node;
HOST_WIDE_INT offset;
int max;
const char *ptr;
STRIP_NOPS (src);
if (TREE_CODE (src) == COND_EXPR
&& (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
{
tree len1, len2;
len1 = c_strlen (TREE_OPERAND (src, 1), only_value);
len2 = c_strlen (TREE_OPERAND (src, 2), only_value);
if (tree_int_cst_equal (len1, len2))
return len1;
}
if (TREE_CODE (src) == COMPOUND_EXPR
&& (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
return c_strlen (TREE_OPERAND (src, 1), only_value);
src = string_constant (src, &offset_node);
if (src == 0)
return NULL_TREE;
max = TREE_STRING_LENGTH (src) - 1;
ptr = TREE_STRING_POINTER (src);
if (offset_node && TREE_CODE (offset_node) != INTEGER_CST)
{
/* If the string has an internal zero byte (e.g., "foo\0bar"), we can't
compute the offset to the following null if we don't know where to
start searching for it. */
int i;
for (i = 0; i < max; i++)
if (ptr[i] == 0)
return NULL_TREE;
/* We don't know the starting offset, but we do know that the string
has no internal zero bytes. We can assume that the offset falls
within the bounds of the string; otherwise, the programmer deserves
what he gets. Subtract the offset from the length of the string,
and return that. This would perhaps not be valid if we were dealing
with named arrays in addition to literal string constants. */
return size_diffop (size_int (max), offset_node);
}
/* We have a known offset into the string. Start searching there for
a null character if we can represent it as a single HOST_WIDE_INT. */
if (offset_node == 0)
offset = 0;
else if (! host_integerp (offset_node, 0))
offset = -1;
else
offset = tree_low_cst (offset_node, 0);
/* If the offset is known to be out of bounds, warn, and call strlen at
runtime. */
if (offset < 0 || offset > max)
{
/* Suppress multiple warnings for propagated constant strings. */
if (! TREE_NO_WARNING (src))
{
warning (0, "offset outside bounds of constant string");
TREE_NO_WARNING (src) = 1;
}
return NULL_TREE;
}
/* Use strlen to search for the first zero byte. Since any strings
constructed with build_string will have nulls appended, we win even
if we get handed something like (char[4])"abcd".
Since OFFSET is our starting index into the string, no further
calculation is needed. */
return ssize_int (strlen (ptr + offset));
}
/* Return a char pointer for a C string if it is a string constant
or sum of string constant and integer constant. */
static const char *
c_getstr (tree src)
{
tree offset_node;
src = string_constant (src, &offset_node);
if (src == 0)
return 0;
if (offset_node == 0)
return TREE_STRING_POINTER (src);
else if (!host_integerp (offset_node, 1)
|| compare_tree_int (offset_node, TREE_STRING_LENGTH (src) - 1) > 0)
return 0;
return TREE_STRING_POINTER (src) + tree_low_cst (offset_node, 1);
}
/* Return a CONST_INT or CONST_DOUBLE corresponding to target reading
GET_MODE_BITSIZE (MODE) bits from string constant STR. */
static rtx
c_readstr (const char *str, enum machine_mode mode)
{
HOST_WIDE_INT c[2];
HOST_WIDE_INT ch;
unsigned int i, j;
gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
c[0] = 0;
c[1] = 0;
ch = 1;
for (i = 0; i < GET_MODE_SIZE (mode); i++)
{
j = i;
if (WORDS_BIG_ENDIAN)
j = GET_MODE_SIZE (mode) - i - 1;
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (mode) > UNITS_PER_WORD)
j = j + UNITS_PER_WORD - 2 * (j % UNITS_PER_WORD) - 1;
j *= BITS_PER_UNIT;
gcc_assert (j <= 2 * HOST_BITS_PER_WIDE_INT);
if (ch)
ch = (unsigned char) str[i];
c[j / HOST_BITS_PER_WIDE_INT] |= ch << (j % HOST_BITS_PER_WIDE_INT);
}
return immed_double_const (c[0], c[1], mode);
}
/* Cast a target constant CST to target CHAR and if that value fits into
host char type, return zero and put that value into variable pointed to by
P. */
static int
target_char_cast (tree cst, char *p)
{
unsigned HOST_WIDE_INT val, hostval;
if (!host_integerp (cst, 1)
|| CHAR_TYPE_SIZE > HOST_BITS_PER_WIDE_INT)
return 1;
val = tree_low_cst (cst, 1);
if (CHAR_TYPE_SIZE < HOST_BITS_PER_WIDE_INT)
val &= (((unsigned HOST_WIDE_INT) 1) << CHAR_TYPE_SIZE) - 1;
hostval = val;
if (HOST_BITS_PER_CHAR < HOST_BITS_PER_WIDE_INT)
hostval &= (((unsigned HOST_WIDE_INT) 1) << HOST_BITS_PER_CHAR) - 1;
if (val != hostval)
return 1;
*p = hostval;
return 0;
}
/* Similar to save_expr, but assumes that arbitrary code is not executed
in between the multiple evaluations. In particular, we assume that a
non-addressable local variable will not be modified. */
static tree
builtin_save_expr (tree exp)
{
if (TREE_ADDRESSABLE (exp) == 0
&& (TREE_CODE (exp) == PARM_DECL
|| (TREE_CODE (exp) == VAR_DECL && !TREE_STATIC (exp))))
return exp;
return save_expr (exp);
}
/* Given TEM, a pointer to a stack frame, follow the dynamic chain COUNT
times to get the address of either a higher stack frame, or a return
address located within it (depending on FNDECL_CODE). */
static rtx
expand_builtin_return_addr (enum built_in_function fndecl_code, int count)
{
int i;
#ifdef INITIAL_FRAME_ADDRESS_RTX
rtx tem = INITIAL_FRAME_ADDRESS_RTX;
#else
rtx tem;
/* For a zero count with __builtin_return_address, we don't care what
frame address we return, because target-specific definitions will
override us. Therefore frame pointer elimination is OK, and using
the soft frame pointer is OK.
For a nonzero count, or a zero count with __builtin_frame_address,
we require a stable offset from the current frame pointer to the
previous one, so we must use the hard frame pointer, and
we must disable frame pointer elimination. */
if (count == 0 && fndecl_code == BUILT_IN_RETURN_ADDRESS)
tem = frame_pointer_rtx;
else
{
tem = hard_frame_pointer_rtx;
/* Tell reload not to eliminate the frame pointer. */
crtl->accesses_prior_frames = 1;
}
#endif
/* Some machines need special handling before we can access
arbitrary frames. For example, on the SPARC, we must first flush
all register windows to the stack. */
#ifdef SETUP_FRAME_ADDRESSES
if (count > 0)
SETUP_FRAME_ADDRESSES ();
#endif
/* On the SPARC, the return address is not in the frame, it is in a
register. There is no way to access it off of the current frame
pointer, but it can be accessed off the previous frame pointer by
reading the value from the register window save area. */
#ifdef RETURN_ADDR_IN_PREVIOUS_FRAME
if (fndecl_code == BUILT_IN_RETURN_ADDRESS)
count--;
#endif
/* Scan back COUNT frames to the specified frame. */
for (i = 0; i < count; i++)
{
/* Assume the dynamic chain pointer is in the word that the
frame address points to, unless otherwise specified. */
#ifdef DYNAMIC_CHAIN_ADDRESS
tem = DYNAMIC_CHAIN_ADDRESS (tem);
#endif
tem = memory_address (Pmode, tem);
tem = gen_frame_mem (Pmode, tem);
tem = copy_to_reg (tem);
}
/* For __builtin_frame_address, return what we've got. But, on
the SPARC for example, we may have to add a bias. */
if (fndecl_code == BUILT_IN_FRAME_ADDRESS)
#ifdef FRAME_ADDR_RTX
return FRAME_ADDR_RTX (tem);
#else
return tem;
#endif
/* For __builtin_return_address, get the return address from that frame. */
#ifdef RETURN_ADDR_RTX
tem = RETURN_ADDR_RTX (count, tem);
#else
tem = memory_address (Pmode,
plus_constant (tem, GET_MODE_SIZE (Pmode)));
tem = gen_frame_mem (Pmode, tem);
#endif
return tem;
}
/* Alias set used for setjmp buffer. */
static alias_set_type setjmp_alias_set = -1;
/* Construct the leading half of a __builtin_setjmp call. Control will
return to RECEIVER_LABEL. This is also called directly by the SJLJ
exception handling code. */
void
expand_builtin_setjmp_setup (rtx buf_addr, rtx receiver_label)
{
enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
rtx stack_save;
rtx mem;
if (setjmp_alias_set == -1)
setjmp_alias_set = new_alias_set ();
buf_addr = convert_memory_address (Pmode, buf_addr);
buf_addr = force_reg (Pmode, force_operand (buf_addr, NULL_RTX));
/* We store the frame pointer and the address of receiver_label in
the buffer and use the rest of it for the stack save area, which
is machine-dependent. */
mem = gen_rtx_MEM (Pmode, buf_addr);
set_mem_alias_set (mem, setjmp_alias_set);
emit_move_insn (mem, targetm.builtin_setjmp_frame_value ());
mem = gen_rtx_MEM (Pmode, plus_constant (buf_addr, GET_MODE_SIZE (Pmode))),
set_mem_alias_set (mem, setjmp_alias_set);
emit_move_insn (validize_mem (mem),
force_reg (Pmode, gen_rtx_LABEL_REF (Pmode, receiver_label)));
stack_save = gen_rtx_MEM (sa_mode,
plus_constant (buf_addr,
2 * GET_MODE_SIZE (Pmode)));
set_mem_alias_set (stack_save, setjmp_alias_set);
emit_stack_save (SAVE_NONLOCAL, &stack_save, NULL_RTX);
/* If there is further processing to do, do it. */
#ifdef HAVE_builtin_setjmp_setup
if (HAVE_builtin_setjmp_setup)
emit_insn (gen_builtin_setjmp_setup (buf_addr));
#endif
/* Tell optimize_save_area_alloca that extra work is going to
need to go on during alloca. */
cfun->calls_setjmp = 1;
/* We have a nonlocal label. */
cfun->has_nonlocal_label = 1;
}
/* Construct the trailing part of a __builtin_setjmp call. This is
also called directly by the SJLJ exception handling code. */
void
expand_builtin_setjmp_receiver (rtx receiver_label ATTRIBUTE_UNUSED)
{
/* Clobber the FP when we get here, so we have to make sure it's
marked as used by this function. */
emit_use (hard_frame_pointer_rtx);
/* Mark the static chain as clobbered here so life information
doesn't get messed up for it. */
emit_clobber (static_chain_rtx);
/* Now put in the code to restore the frame pointer, and argument
pointer, if needed. */
#ifdef HAVE_nonlocal_goto
if (! HAVE_nonlocal_goto)
#endif
{
emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
/* This might change the hard frame pointer in ways that aren't
apparent to early optimization passes, so force a clobber. */
emit_clobber (hard_frame_pointer_rtx);
}
#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
if (fixed_regs[ARG_POINTER_REGNUM])
{
#ifdef ELIMINABLE_REGS
size_t i;
static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
if (elim_regs[i].from == ARG_POINTER_REGNUM
&& elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
break;
if (i == ARRAY_SIZE (elim_regs))
#endif
{
/* Now restore our arg pointer from the address at which it
was saved in our stack frame. */
emit_move_insn (crtl->args.internal_arg_pointer,
copy_to_reg (get_arg_pointer_save_area ()));
}
}
#endif
#ifdef HAVE_builtin_setjmp_receiver
if (HAVE_builtin_setjmp_receiver)
emit_insn (gen_builtin_setjmp_receiver (receiver_label));
else
#endif
#ifdef HAVE_nonlocal_goto_receiver
if (HAVE_nonlocal_goto_receiver)
emit_insn (gen_nonlocal_goto_receiver ());
else
#endif
{ /* Nothing */ }
/* We must not allow the code we just generated to be reordered by
scheduling. Specifically, the update of the frame pointer must
happen immediately, not later. */
emit_insn (gen_blockage ());
}
/* __builtin_longjmp is passed a pointer to an array of five words (not
all will be used on all machines). It operates similarly to the C
library function of the same name, but is more efficient. Much of
the code below is copied from the handling of non-local gotos. */
static void
expand_builtin_longjmp (rtx buf_addr, rtx value)
{
rtx fp, lab, stack, insn, last;
enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
/* DRAP is needed for stack realign if longjmp is expanded to current
function */
if (SUPPORTS_STACK_ALIGNMENT)
crtl->need_drap = true;
if (setjmp_alias_set == -1)
setjmp_alias_set = new_alias_set ();
buf_addr = convert_memory_address (Pmode, buf_addr);
buf_addr = force_reg (Pmode, buf_addr);
/* We used to store value in static_chain_rtx, but that fails if pointers
are smaller than integers. We instead require that the user must pass
a second argument of 1, because that is what builtin_setjmp will
return. This also makes EH slightly more efficient, since we are no
longer copying around a value that we don't care about. */
gcc_assert (value == const1_rtx);
last = get_last_insn ();
#ifdef HAVE_builtin_longjmp
if (HAVE_builtin_longjmp)
emit_insn (gen_builtin_longjmp (buf_addr));
else
#endif
{
fp = gen_rtx_MEM (Pmode, buf_addr);
lab = gen_rtx_MEM (Pmode, plus_constant (buf_addr,
GET_MODE_SIZE (Pmode)));
stack = gen_rtx_MEM (sa_mode, plus_constant (buf_addr,
2 * GET_MODE_SIZE (Pmode)));
set_mem_alias_set (fp, setjmp_alias_set);
set_mem_alias_set (lab, setjmp_alias_set);
set_mem_alias_set (stack, setjmp_alias_set);
/* Pick up FP, label, and SP from the block and jump. This code is
from expand_goto in stmt.c; see there for detailed comments. */
#ifdef HAVE_nonlocal_goto
if (HAVE_nonlocal_goto)
/* We have to pass a value to the nonlocal_goto pattern that will
get copied into the static_chain pointer, but it does not matter
what that value is, because builtin_setjmp does not use it. */
emit_insn (gen_nonlocal_goto (value, lab, stack, fp));
else
#endif
{
lab = copy_to_reg (lab);
emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx));
emit_move_insn (hard_frame_pointer_rtx, fp);
emit_stack_restore (SAVE_NONLOCAL, stack, NULL_RTX);
emit_use (hard_frame_pointer_rtx);
emit_use (stack_pointer_rtx);
emit_indirect_jump (lab);
}
}
/* Search backwards and mark the jump insn as a non-local goto.
Note that this precludes the use of __builtin_longjmp to a
__builtin_setjmp target in the same function. However, we've
already cautioned the user that these functions are for
internal exception handling use only. */
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
{
gcc_assert (insn != last);
if (JUMP_P (insn))
{
add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx);
break;
}
else if (CALL_P (insn))
break;
}
}
/* Expand a call to __builtin_nonlocal_goto. We're passed the target label
and the address of the save area. */
static rtx
expand_builtin_nonlocal_goto (tree exp)
{
tree t_label, t_save_area;
rtx r_label, r_save_area, r_fp, r_sp, insn;
if (!validate_arglist (exp, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
return NULL_RTX;
t_label = CALL_EXPR_ARG (exp, 0);
t_save_area = CALL_EXPR_ARG (exp, 1);
r_label = expand_normal (t_label);
r_label = convert_memory_address (Pmode, r_label);
r_save_area = expand_normal (t_save_area);
r_save_area = convert_memory_address (Pmode, r_save_area);
/* Copy the address of the save location to a register just in case it was based
on the frame pointer. */
r_save_area = copy_to_reg (r_save_area);
r_fp = gen_rtx_MEM (Pmode, r_save_area);
r_sp = gen_rtx_MEM (STACK_SAVEAREA_MODE (SAVE_NONLOCAL),
plus_constant (r_save_area, GET_MODE_SIZE (Pmode)));
crtl->has_nonlocal_goto = 1;
#ifdef HAVE_nonlocal_goto
/* ??? We no longer need to pass the static chain value, afaik. */
if (HAVE_nonlocal_goto)
emit_insn (gen_nonlocal_goto (const0_rtx, r_label, r_sp, r_fp));
else
#endif
{
r_label = copy_to_reg (r_label);
emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
emit_clobber (gen_rtx_MEM (BLKmode, hard_frame_pointer_rtx));
/* Restore frame pointer for containing function.
This sets the actual hard register used for the frame pointer
to the location of the function's incoming static chain info.
The non-local goto handler will then adjust it to contain the
proper value and reload the argument pointer, if needed. */
emit_move_insn (hard_frame_pointer_rtx, r_fp);
emit_stack_restore (SAVE_NONLOCAL, r_sp, NULL_RTX);
/* USE of hard_frame_pointer_rtx added for consistency;
not clear if really needed. */
emit_use (hard_frame_pointer_rtx);
emit_use (stack_pointer_rtx);
/* If the architecture is using a GP register, we must
conservatively assume that the target function makes use of it.
The prologue of functions with nonlocal gotos must therefore
initialize the GP register to the appropriate value, and we
must then make sure that this value is live at the point
of the jump. (Note that this doesn't necessarily apply
to targets with a nonlocal_goto pattern; they are free
to implement it in their own way. Note also that this is
a no-op if the GP register is a global invariant.) */
if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
&& fixed_regs[PIC_OFFSET_TABLE_REGNUM])
emit_use (pic_offset_table_rtx);
emit_indirect_jump (r_label);
}
/* Search backwards to the jump insn and mark it as a
non-local goto. */
for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
{
if (JUMP_P (insn))
{
add_reg_note (insn, REG_NON_LOCAL_GOTO, const0_rtx);
break;
}
else if (CALL_P (insn))
break;
}
return const0_rtx;
}
/* __builtin_update_setjmp_buf is passed a pointer to an array of five words
(not all will be used on all machines) that was passed to __builtin_setjmp.
It updates the stack pointer in that block to correspond to the current
stack pointer. */
static void
expand_builtin_update_setjmp_buf (rtx buf_addr)
{
enum machine_mode sa_mode = Pmode;
rtx stack_save;
#ifdef HAVE_save_stack_nonlocal
if (HAVE_save_stack_nonlocal)
sa_mode = insn_data[(int) CODE_FOR_save_stack_nonlocal].operand[0].mode;
#endif
#ifdef STACK_SAVEAREA_MODE
sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
#endif
stack_save
= gen_rtx_MEM (sa_mode,
memory_address
(sa_mode,
plus_constant (buf_addr, 2 * GET_MODE_SIZE (Pmode))));
#ifdef HAVE_setjmp
if (HAVE_setjmp)
emit_insn (gen_setjmp ());
#endif
emit_stack_save (SAVE_NONLOCAL, &stack_save, NULL_RTX);
}
/* Expand a call to __builtin_prefetch. For a target that does not support
data prefetch, evaluate the memory address argument in case it has side
effects. */
static void
expand_builtin_prefetch (tree exp)
{
tree arg0, arg1, arg2;
int nargs;
rtx op0, op1, op2;
if (!validate_arglist (exp, POINTER_TYPE, 0))
return;
arg0 = CALL_EXPR_ARG (exp, 0);
/* Arguments 1 and 2 are optional; argument 1 (read/write) defaults to
zero (read) and argument 2 (locality) defaults to 3 (high degree of
locality). */
nargs = call_expr_nargs (exp);
if (nargs > 1)
arg1 = CALL_EXPR_ARG (exp, 1);
else
arg1 = integer_zero_node;
if (nargs > 2)
arg2 = CALL_EXPR_ARG (exp, 2);
else
arg2 = build_int_cst (NULL_TREE, 3);
/* Argument 0 is an address. */
op0 = expand_expr (arg0, NULL_RTX, Pmode, EXPAND_NORMAL);
/* Argument 1 (read/write flag) must be a compile-time constant int. */
if (TREE_CODE (arg1) != INTEGER_CST)
{
error ("second argument to %<__builtin_prefetch%> must be a constant");
arg1 = integer_zero_node;
}
op1 = expand_normal (arg1);
/* Argument 1 must be either zero or one. */
if (INTVAL (op1) != 0 && INTVAL (op1) != 1)
{
warning (0, "invalid second argument to %<__builtin_prefetch%>;"
" using zero");
op1 = const0_rtx;
}
/* Argument 2 (locality) must be a compile-time constant int. */
if (TREE_CODE (arg2) != INTEGER_CST)
{
error ("third argument to %<__builtin_prefetch%> must be a constant");
arg2 = integer_zero_node;
}
op2 = expand_normal (arg2);
/* Argument 2 must be 0, 1, 2, or 3. */
if (INTVAL (op2) < 0 || INTVAL (op2) > 3)
{
warning (0, "invalid third argument to %<__builtin_prefetch%>; using zero");
op2 = const0_rtx;
}
#ifdef HAVE_prefetch
if (HAVE_prefetch)
{
if ((! (*insn_data[(int) CODE_FOR_prefetch].operand[0].predicate)
(op0,
insn_data[(int) CODE_FOR_prefetch].operand[0].mode))
|| (GET_MODE (op0) != Pmode))
{
op0 = convert_memory_address (Pmode, op0);
op0 = force_reg (Pmode, op0);
}
emit_insn (gen_prefetch (op0, op1, op2));
}
#endif
/* Don't do anything with direct references to volatile memory, but
generate code to handle other side effects. */
if (!MEM_P (op0) && side_effects_p (op0))
emit_insn (op0);
}
/* Get a MEM rtx for expression EXP which is the address of an operand
to be used in a string instruction (cmpstrsi, movmemsi, ..). LEN is
the maximum length of the block of memory that might be accessed or
NULL if unknown. */
static rtx
get_memory_rtx (tree exp, tree len)
{
tree orig_exp = exp;
rtx addr, mem;
HOST_WIDE_INT off;
/* When EXP is not resolved SAVE_EXPR, MEM_ATTRS can be still derived
from its expression, for expr->a.b only <variable>.a.b is recorded. */
if (TREE_CODE (exp) == SAVE_EXPR && !SAVE_EXPR_RESOLVED_P (exp))
exp = TREE_OPERAND (exp, 0);
addr = expand_expr (orig_exp, NULL_RTX, ptr_mode, EXPAND_NORMAL);
mem = gen_rtx_MEM (BLKmode, memory_address (BLKmode, addr));
/* Get an expression we can use to find the attributes to assign to MEM.
If it is an ADDR_EXPR, use the operand. Otherwise, dereference it if
we can. First remove any nops. */
while (CONVERT_EXPR_P (exp)
&& POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
exp = TREE_OPERAND (exp, 0);
off = 0;
if (TREE_CODE (exp) == POINTER_PLUS_EXPR
&& TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
&& host_integerp (TREE_OPERAND (exp, 1), 0)
&& (off = tree_low_cst (TREE_OPERAND (exp, 1), 0)) > 0)
exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
else if (TREE_CODE (exp) == ADDR_EXPR)
exp = TREE_OPERAND (exp, 0);
else if (POINTER_TYPE_P (TREE_TYPE (exp)))
exp = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (exp)), exp);
else
exp = NULL;
/* Honor attributes derived from exp, except for the alias set
(as builtin stringops may alias with anything) and the size
(as stringops may access multiple array elements). */
if (exp)
{
set_mem_attributes (mem, exp, 0);
if (off)
mem = adjust_automodify_address_nv (mem, BLKmode, NULL, off);
/* Allow the string and memory builtins to overflow from one
field into another, see http://gcc.gnu.org/PR23561.
Thus avoid COMPONENT_REFs in MEM_EXPR unless we know the whole
memory accessed by the string or memory builtin will fit
within the field. */
if (MEM_EXPR (mem) && TREE_CODE (MEM_EXPR (mem)) == COMPONENT_REF)
{
tree mem_expr = MEM_EXPR (mem);
HOST_WIDE_INT offset = -1, length = -1;
tree inner = exp;
while (TREE_CODE (inner) == ARRAY_REF
|| CONVERT_EXPR_P (inner)
|| TREE_CODE (inner) == VIEW_CONVERT_EXPR
|| TREE_CODE (inner) == SAVE_EXPR)
inner = TREE_OPERAND (inner, 0);
gcc_assert (TREE_CODE (inner) == COMPONENT_REF);
if (MEM_OFFSET (mem)
&& GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
offset = INTVAL (MEM_OFFSET (mem));
if (offset >= 0 && len && host_integerp (len, 0))
length = tree_low_cst (len, 0);
while (TREE_CODE (inner) == COMPONENT_REF)
{
tree field = TREE_OPERAND (inner, 1);
gcc_assert (TREE_CODE (mem_expr) == COMPONENT_REF);
gcc_assert (field == TREE_OPERAND (mem_expr, 1));
/* Bitfields are generally not byte-addressable. */
gcc_assert (!DECL_BIT_FIELD (field)
|| ((tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
% BITS_PER_UNIT) == 0
&& host_integerp (DECL_SIZE (field), 0)
&& (TREE_INT_CST_LOW (DECL_SIZE (field))
% BITS_PER_UNIT) == 0));
/* If we can prove that the memory starting at XEXP (mem, 0) and
ending at XEXP (mem, 0) + LENGTH will fit into this field, we
can keep the COMPONENT_REF in MEM_EXPR. But be careful with
fields without DECL_SIZE_UNIT like flexible array members. */
if (length >= 0
&& DECL_SIZE_UNIT (field)
&& host_integerp (DECL_SIZE_UNIT (field), 0))
{
HOST_WIDE_INT size
= TREE_INT_CST_LOW (DECL_SIZE_UNIT (field));
if (offset <= size
&& length <= size
&& offset + length <= size)
break;
}
if (offset >= 0
&& host_integerp (DECL_FIELD_OFFSET (field), 0))
offset += TREE_INT_CST_LOW (DECL_FIELD_OFFSET (field))
+ tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
/ BITS_PER_UNIT;
else
{
offset = -1;
length = -1;
}
mem_expr = TREE_OPERAND (mem_expr, 0);
inner = TREE_OPERAND (inner, 0);
}
if (mem_expr == NULL)
offset = -1;
if (mem_expr != MEM_EXPR (mem))
{
set_mem_expr (mem, mem_expr);
set_mem_offset (mem, offset >= 0 ? GEN_INT (offset) : NULL_RTX);
}
}
set_mem_alias_set (mem, 0);
set_mem_size (mem, NULL_RTX);
}
return mem;
}
/* Built-in functions to perform an untyped call and return. */
/* For each register that may be used for calling a function, this
gives a mode used to copy the register's value. VOIDmode indicates
the register is not used for calling a function. If the machine
has register windows, this gives only the outbound registers.
INCOMING_REGNO gives the corresponding inbound register. */
static enum machine_mode apply_args_mode[FIRST_PSEUDO_REGISTER];
/* For each register that may be used for returning values, this gives
a mode used to copy the register's value. VOIDmode indicates the
register is not used for returning values. If the machine has
register windows, this gives only the outbound registers.
INCOMING_REGNO gives the corresponding inbound register. */
static enum machine_mode apply_result_mode[FIRST_PSEUDO_REGISTER];
/* For each register that may be used for calling a function, this
gives the offset of that register into the block returned by
__builtin_apply_args. 0 indicates that the register is not
used for calling a function. */
static int apply_args_reg_offset[FIRST_PSEUDO_REGISTER];
/* Return the size required for the block returned by __builtin_apply_args,
and initialize apply_args_mode. */
static int
apply_args_size (void)
{
static int size = -1;
int align;
unsigned int regno;
enum machine_mode mode;
/* The values computed by this function never change. */
if (size < 0)
{
/* The first value is the incoming arg-pointer. */
size = GET_MODE_SIZE (Pmode);
/* The second value is the structure value address unless this is
passed as an "invisible" first argument. */
if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
size += GET_MODE_SIZE (Pmode);
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (FUNCTION_ARG_REGNO_P (regno))
{
mode = reg_raw_mode[regno];
gcc_assert (mode != VOIDmode);
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
apply_args_reg_offset[regno] = size;
size += GET_MODE_SIZE (mode);
apply_args_mode[regno] = mode;
}
else
{
apply_args_mode[regno] = VOIDmode;
apply_args_reg_offset[regno] = 0;
}
}
return size;
}
/* Return the size required for the block returned by __builtin_apply,
and initialize apply_result_mode. */
static int
apply_result_size (void)
{
static int size = -1;
int align, regno;
enum machine_mode mode;
/* The values computed by this function never change. */
if (size < 0)
{
size = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (FUNCTION_VALUE_REGNO_P (regno))
{
mode = reg_raw_mode[regno];
gcc_assert (mode != VOIDmode);
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
size += GET_MODE_SIZE (mode);
apply_result_mode[regno] = mode;
}
else
apply_result_mode[regno] = VOIDmode;
/* Allow targets that use untyped_call and untyped_return to override
the size so that machine-specific information can be stored here. */
#ifdef APPLY_RESULT_SIZE
size = APPLY_RESULT_SIZE;
#endif
}
return size;
}
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
/* Create a vector describing the result block RESULT. If SAVEP is true,
the result block is used to save the values; otherwise it is used to
restore the values. */
static rtx
result_vector (int savep, rtx result)
{
int regno, size, align, nelts;
enum machine_mode mode;
rtx reg, mem;
rtx *savevec = XALLOCAVEC (rtx, FIRST_PSEUDO_REGISTER);
size = nelts = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((mode = apply_result_mode[regno]) != VOIDmode)
{
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
reg = gen_rtx_REG (mode, savep ? regno : INCOMING_REGNO (regno));
mem = adjust_address (result, mode, size);
savevec[nelts++] = (savep
? gen_rtx_SET (VOIDmode, mem, reg)
: gen_rtx_SET (VOIDmode, reg, mem));
size += GET_MODE_SIZE (mode);
}
return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelts, savevec));
}
#endif /* HAVE_untyped_call or HAVE_untyped_return */
/* Save the state required to perform an untyped call with the same
arguments as were passed to the current function. */
static rtx
expand_builtin_apply_args_1 (void)
{
rtx registers, tem;
int size, align, regno;
enum machine_mode mode;
rtx struct_incoming_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 1);
/* Create a block where the arg-pointer, structure value address,
and argument registers can be saved. */
registers = assign_stack_local (BLKmode, apply_args_size (), -1);
/* Walk past the arg-pointer and structure value address. */
size = GET_MODE_SIZE (Pmode);
if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
size += GET_MODE_SIZE (Pmode);
/* Save each register used in calling a function to the block. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((mode = apply_args_mode[regno]) != VOIDmode)
{
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
tem = gen_rtx_REG (mode, INCOMING_REGNO (regno));
emit_move_insn (adjust_address (registers, mode, size), tem);
size += GET_MODE_SIZE (mode);
}
/* Save the arg pointer to the block. */
tem = copy_to_reg (crtl->args.internal_arg_pointer);
#ifdef STACK_GROWS_DOWNWARD
/* We need the pointer as the caller actually passed them to us, not
as we might have pretended they were passed. Make sure it's a valid
operand, as emit_move_insn isn't expected to handle a PLUS. */
tem
= force_operand (plus_constant (tem, crtl->args.pretend_args_size),
NULL_RTX);
#endif
emit_move_insn (adjust_address (registers, Pmode, 0), tem);
size = GET_MODE_SIZE (Pmode);
/* Save the structure value address unless this is passed as an
"invisible" first argument. */
if (struct_incoming_value)
{
emit_move_insn (adjust_address (registers, Pmode, size),
copy_to_reg (struct_incoming_value));
size += GET_MODE_SIZE (Pmode);
}
/* Return the address of the block. */
return copy_addr_to_reg (XEXP (registers, 0));
}
/* __builtin_apply_args returns block of memory allocated on
the stack into which is stored the arg pointer, structure
value address, static chain, and all the registers that might
possibly be used in performing a function call. The code is
moved to the start of the function so the incoming values are
saved. */
static rtx
expand_builtin_apply_args (void)
{
/* Don't do __builtin_apply_args more than once in a function.
Save the result of the first call and reuse it. */
if (apply_args_value != 0)
return apply_args_value;
{
/* When this function is called, it means that registers must be
saved on entry to this function. So we migrate the
call to the first insn of this function. */
rtx temp;
rtx seq;
start_sequence ();
temp = expand_builtin_apply_args_1 ();
seq = get_insns ();
end_sequence ();
apply_args_value = temp;
/* Put the insns after the NOTE that starts the function.
If this is inside a start_sequence, make the outer-level insn
chain current, so the code is placed at the start of the
function. If internal_arg_pointer is a non-virtual pseudo,
it needs to be placed after the function that initializes
that pseudo. */
push_topmost_sequence ();
if (REG_P (crtl->args.internal_arg_pointer)
&& REGNO (crtl->args.internal_arg_pointer) > LAST_VIRTUAL_REGISTER)
emit_insn_before (seq, parm_birth_insn);
else
emit_insn_before (seq, NEXT_INSN (entry_of_function ()));
pop_topmost_sequence ();
return temp;
}
}
/* Perform an untyped call and save the state required to perform an
untyped return of whatever value was returned by the given function. */
static rtx
expand_builtin_apply (rtx function, rtx arguments, rtx argsize)
{
int size, align, regno;
enum machine_mode mode;
rtx incoming_args, result, reg, dest, src, call_insn;
rtx old_stack_level = 0;
rtx call_fusage = 0;
rtx struct_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0);
arguments = convert_memory_address (Pmode, arguments);
/* Create a block where the return registers can be saved. */
result = assign_stack_local (BLKmode, apply_result_size (), -1);
/* Fetch the arg pointer from the ARGUMENTS block. */
incoming_args = gen_reg_rtx (Pmode);
emit_move_insn (incoming_args, gen_rtx_MEM (Pmode, arguments));
#ifndef STACK_GROWS_DOWNWARD
incoming_args = expand_simple_binop (Pmode, MINUS, incoming_args, argsize,
incoming_args, 0, OPTAB_LIB_WIDEN);
#endif
/* Push a new argument block and copy the arguments. Do not allow
the (potential) memcpy call below to interfere with our stack
manipulations. */
do_pending_stack_adjust ();
NO_DEFER_POP;
/* Save the stack with nonlocal if available. */
#ifdef HAVE_save_stack_nonlocal
if (HAVE_save_stack_nonlocal)
emit_stack_save (SAVE_NONLOCAL, &old_stack_level, NULL_RTX);
else
#endif
emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
/* Allocate a block of memory onto the stack and copy the memory
arguments to the outgoing arguments address. */
allocate_dynamic_stack_space (argsize, 0, BITS_PER_UNIT);
/* Set DRAP flag to true, even though allocate_dynamic_stack_space
may have already set current_function_calls_alloca to true.
current_function_calls_alloca won't be set if argsize is zero,
so we have to guarantee need_drap is true here. */
if (SUPPORTS_STACK_ALIGNMENT)
crtl->need_drap = true;
dest = virtual_outgoing_args_rtx;
#ifndef STACK_GROWS_DOWNWARD
if (GET_CODE (argsize) == CONST_INT)
dest = plus_constant (dest, -INTVAL (argsize));
else
dest = gen_rtx_PLUS (Pmode, dest, negate_rtx (Pmode, argsize));
#endif
dest = gen_rtx_MEM (BLKmode, dest);
set_mem_align (dest, PARM_BOUNDARY);
src = gen_rtx_MEM (BLKmode, incoming_args);
set_mem_align (src, PARM_BOUNDARY);
emit_block_move (dest, src, argsize, BLOCK_OP_NORMAL);
/* Refer to the argument block. */
apply_args_size ();
arguments = gen_rtx_MEM (BLKmode, arguments);
set_mem_align (arguments, PARM_BOUNDARY);
/* Walk past the arg-pointer and structure value address. */
size = GET_MODE_SIZE (Pmode);
if (struct_value)
size += GET_MODE_SIZE (Pmode);
/* Restore each of the registers previously saved. Make USE insns
for each of these registers for use in making the call. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((mode = apply_args_mode[regno]) != VOIDmode)
{
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
reg = gen_rtx_REG (mode, regno);
emit_move_insn (reg, adjust_address (arguments, mode, size));
use_reg (&call_fusage, reg);
size += GET_MODE_SIZE (mode);
}
/* Restore the structure value address unless this is passed as an
"invisible" first argument. */
size = GET_MODE_SIZE (Pmode);
if (struct_value)
{
rtx value = gen_reg_rtx (Pmode);
emit_move_insn (value, adjust_address (arguments, Pmode, size));
emit_move_insn (struct_value, value);
if (REG_P (struct_value))
use_reg (&call_fusage, struct_value);
size += GET_MODE_SIZE (Pmode);
}
/* All arguments and registers used for the call are set up by now! */
function = prepare_call_address (function, NULL, &call_fusage, 0, 0);
/* Ensure address is valid. SYMBOL_REF is already valid, so no need,
and we don't want to load it into a register as an optimization,
because prepare_call_address already did it if it should be done. */
if (GET_CODE (function) != SYMBOL_REF)
function = memory_address (FUNCTION_MODE, function);
/* Generate the actual call instruction and save the return value. */
#ifdef HAVE_untyped_call
if (HAVE_untyped_call)
emit_call_insn (gen_untyped_call (gen_rtx_MEM (FUNCTION_MODE, function),
result, result_vector (1, result)));
else
#endif
#ifdef HAVE_call_value
if (HAVE_call_value)
{
rtx valreg = 0;
/* Locate the unique return register. It is not possible to
express a call that sets more than one return register using
call_value; use untyped_call for that. In fact, untyped_call
only needs to save the return registers in the given block. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((mode = apply_result_mode[regno]) != VOIDmode)
{
gcc_assert (!valreg); /* HAVE_untyped_call required. */
valreg = gen_rtx_REG (mode, regno);
}
emit_call_insn (GEN_CALL_VALUE (valreg,
gen_rtx_MEM (FUNCTION_MODE, function),
const0_rtx, NULL_RTX, const0_rtx));
emit_move_insn (adjust_address (result, GET_MODE (valreg), 0), valreg);
}
else
#endif
gcc_unreachable ();
/* Find the CALL insn we just emitted, and attach the register usage
information. */
call_insn = last_call_insn ();
add_function_usage_to (call_insn, call_fusage);
/* Restore the stack. */
#ifdef HAVE_save_stack_nonlocal
if (HAVE_save_stack_nonlocal)
emit_stack_restore (SAVE_NONLOCAL, old_stack_level, NULL_RTX);
else
#endif
emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
OK_DEFER_POP;
/* Return the address of the result block. */
result = copy_addr_to_reg (XEXP (result, 0));
return convert_memory_address (ptr_mode, result);
}
/* Perform an untyped return. */
static void
expand_builtin_return (rtx result)
{
int size, align, regno;
enum machine_mode mode;
rtx reg;
rtx call_fusage = 0;
result = convert_memory_address (Pmode, result);
apply_result_size ();
result = gen_rtx_MEM (BLKmode, result);
#ifdef HAVE_untyped_return
if (HAVE_untyped_return)
{
emit_jump_insn (gen_untyped_return (result, result_vector (0, result)));
emit_barrier ();
return;
}
#endif
/* Restore the return value and note that each value is used. */
size = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if ((mode = apply_result_mode[regno]) != VOIDmode)
{
align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
if (size % align != 0)
size = CEIL (size, align) * align;
reg = gen_rtx_REG (mode, INCOMING_REGNO (regno));
emit_move_insn (reg, adjust_address (result, mode, size));
push_to_sequence (call_fusage);
emit_use (reg);
call_fusage = get_insns ();
end_sequence ();
size += GET_MODE_SIZE (mode);
}
/* Put the USE insns before the return. */
emit_insn (call_fusage);
/* Return whatever values was restored by jumping directly to the end
of the function. */
expand_naked_return ();
}
/* Used by expand_builtin_classify_type and fold_builtin_classify_type. */
static enum type_class
type_to_class (tree type)
{
switch (TREE_CODE (type))
{
case VOID_TYPE: return void_type_class;
case INTEGER_TYPE: return integer_type_class;
case ENUMERAL_TYPE: return enumeral_type_class;
case BOOLEAN_TYPE: return boolean_type_class;
case POINTER_TYPE: return pointer_type_class;
case REFERENCE_TYPE: return reference_type_class;
case OFFSET_TYPE: return offset_type_class;
case REAL_TYPE: return real_type_class;
case COMPLEX_TYPE: return complex_type_class;
case FUNCTION_TYPE: return function_type_class;
case METHOD_TYPE: return method_type_class;
case RECORD_TYPE: return record_type_class;
case UNION_TYPE:
case QUAL_UNION_TYPE: return union_type_class;
case ARRAY_TYPE: return (TYPE_STRING_FLAG (type)
? string_type_class : array_type_class);
case LANG_TYPE: return lang_type_class;
default: return no_type_class;
}
}
/* Expand a call EXP to __builtin_classify_type. */
static rtx
expand_builtin_classify_type (tree exp)
{
if (call_expr_nargs (exp))
return GEN_INT (type_to_class (TREE_TYPE (CALL_EXPR_ARG (exp, 0))));
return GEN_INT (no_type_class);
}
/* This helper macro, meant to be used in mathfn_built_in below,
determines which among a set of three builtin math functions is
appropriate for a given type mode. The `F' and `L' cases are
automatically generated from the `double' case. */
#define CASE_MATHFN(BUILT_IN_MATHFN) \
case BUILT_IN_MATHFN: case BUILT_IN_MATHFN##F: case BUILT_IN_MATHFN##L: \
fcode = BUILT_IN_MATHFN; fcodef = BUILT_IN_MATHFN##F ; \
fcodel = BUILT_IN_MATHFN##L ; break;
/* Similar to above, but appends _R after any F/L suffix. */
#define CASE_MATHFN_REENT(BUILT_IN_MATHFN) \
case BUILT_IN_MATHFN##_R: case BUILT_IN_MATHFN##F_R: case BUILT_IN_MATHFN##L_R: \
fcode = BUILT_IN_MATHFN##_R; fcodef = BUILT_IN_MATHFN##F_R ; \
fcodel = BUILT_IN_MATHFN##L_R ; break;
/* Return mathematic function equivalent to FN but operating directly
on TYPE, if available. If IMPLICIT is true find the function in
implicit_built_in_decls[], otherwise use built_in_decls[]. If we
can't do the conversion, return zero. */
static tree
mathfn_built_in_1 (tree type, enum built_in_function fn, bool implicit)
{
tree const *const fn_arr
= implicit ? implicit_built_in_decls : built_in_decls;
enum built_in_function fcode, fcodef, fcodel;
switch (fn)
{
CASE_MATHFN (BUILT_IN_ACOS)
CASE_MATHFN (BUILT_IN_ACOSH)
CASE_MATHFN (BUILT_IN_ASIN)
CASE_MATHFN (BUILT_IN_ASINH)
CASE_MATHFN (BUILT_IN_ATAN)
CASE_MATHFN (BUILT_IN_ATAN2)
CASE_MATHFN (BUILT_IN_ATANH)
CASE_MATHFN (BUILT_IN_CBRT)
CASE_MATHFN (BUILT_IN_CEIL)
CASE_MATHFN (BUILT_IN_CEXPI)
CASE_MATHFN (BUILT_IN_COPYSIGN)
CASE_MATHFN (BUILT_IN_COS)
CASE_MATHFN (BUILT_IN_COSH)
CASE_MATHFN (BUILT_IN_DREM)
CASE_MATHFN (BUILT_IN_ERF)
CASE_MATHFN (BUILT_IN_ERFC)
CASE_MATHFN (BUILT_IN_EXP)
CASE_MATHFN (BUILT_IN_EXP10)
CASE_MATHFN (BUILT_IN_EXP2)
CASE_MATHFN (BUILT_IN_EXPM1)
CASE_MATHFN (BUILT_IN_FABS)
CASE_MATHFN (BUILT_IN_FDIM)
CASE_MATHFN (BUILT_IN_FLOOR)
CASE_MATHFN (BUILT_IN_FMA)
CASE_MATHFN (BUILT_IN_FMAX)
CASE_MATHFN (BUILT_IN_FMIN)
CASE_MATHFN (BUILT_IN_FMOD)
CASE_MATHFN (BUILT_IN_FREXP)
CASE_MATHFN (BUILT_IN_GAMMA)
CASE_MATHFN_REENT (BUILT_IN_GAMMA) /* GAMMA_R */
CASE_MATHFN (BUILT_IN_HUGE_VAL)
CASE_MATHFN (BUILT_IN_HYPOT)
CASE_MATHFN (BUILT_IN_ILOGB)
CASE_MATHFN (BUILT_IN_INF)
CASE_MATHFN (BUILT_IN_ISINF)
CASE_MATHFN (BUILT_IN_J0)
CASE_MATHFN (BUILT_IN_J1)
CASE_MATHFN (BUILT_IN_JN)
CASE_MATHFN (BUILT_IN_LCEIL)
CASE_MATHFN (BUILT_IN_LDEXP)
CASE_MATHFN (BUILT_IN_LFLOOR)
CASE_MATHFN (BUILT_IN_LGAMMA)
CASE_MATHFN_REENT (BUILT_IN_LGAMMA) /* LGAMMA_R */
CASE_MATHFN (BUILT_IN_LLCEIL)
CASE_MATHFN (BUILT_IN_LLFLOOR)
CASE_MATHFN (BUILT_IN_LLRINT)
CASE_MATHFN (BUILT_IN_LLROUND)
CASE_MATHFN (BUILT_IN_LOG)
CASE_MATHFN (BUILT_IN_LOG10)
CASE_MATHFN (BUILT_IN_LOG1P)
CASE_MATHFN (BUILT_IN_LOG2)
CASE_MATHFN (BUILT_IN_LOGB)
CASE_MATHFN (BUILT_IN_LRINT)
CASE_MATHFN (BUILT_IN_LROUND)
CASE_MATHFN (BUILT_IN_MODF)
CASE_MATHFN (BUILT_IN_NAN)
CASE_MATHFN (BUILT_IN_NANS)
CASE_MATHFN (BUILT_IN_NEARBYINT)
CASE_MATHFN (BUILT_IN_NEXTAFTER)
CASE_MATHFN (BUILT_IN_NEXTTOWARD)
CASE_MATHFN (BUILT_IN_POW)
CASE_MATHFN (BUILT_IN_POWI)
CASE_MATHFN (BUILT_IN_POW10)
CASE_MATHFN (BUILT_IN_REMAINDER)
CASE_MATHFN (BUILT_IN_REMQUO)
CASE_MATHFN (BUILT_IN_RINT)
CASE_MATHFN (BUILT_IN_ROUND)
CASE_MATHFN (BUILT_IN_SCALB)
CASE_MATHFN (BUILT_IN_SCALBLN)
CASE_MATHFN (BUILT_IN_SCALBN)
CASE_MATHFN (BUILT_IN_SIGNBIT)
CASE_MATHFN (BUILT_IN_SIGNIFICAND)
CASE_MATHFN (BUILT_IN_SIN)
CASE_MATHFN (BUILT_IN_SINCOS)
CASE_MATHFN (BUILT_IN_SINH)
CASE_MATHFN (BUILT_IN_SQRT)
CASE_MATHFN (BUILT_IN_TAN)
CASE_MATHFN (BUILT_IN_TANH)
CASE_MATHFN (BUILT_IN_TGAMMA)
CASE_MATHFN (BUILT_IN_TRUNC)
CASE_MATHFN (BUILT_IN_Y0)
CASE_MATHFN (BUILT_IN_Y1)
CASE_MATHFN (BUILT_IN_YN)
default:
return NULL_TREE;
}
if (TYPE_MAIN_VARIANT (type) == double_type_node)
return fn_arr[fcode];
else if (TYPE_MAIN_VARIANT (type) == float_type_node)
return fn_arr[fcodef];
else if (TYPE_MAIN_VARIANT (type) == long_double_type_node)
return fn_arr[fcodel];
else
return NULL_TREE;
}
/* Like mathfn_built_in_1(), but always use the implicit array. */
tree
mathfn_built_in (tree type, enum built_in_function fn)
{
return mathfn_built_in_1 (type, fn, /*implicit=*/ 1);
}
/* If errno must be maintained, expand the RTL to check if the result,
TARGET, of a built-in function call, EXP, is NaN, and if so set
errno to EDOM. */
static void
expand_errno_check (tree exp, rtx target)
{
rtx lab = gen_label_rtx ();
/* Test the result; if it is NaN, set errno=EDOM because
the argument was not in the domain. */
emit_cmp_and_jump_insns (target, target, EQ, 0, GET_MODE (target),
0, lab);
#ifdef TARGET_EDOM
/* If this built-in doesn't throw an exception, set errno directly. */
if (TREE_NOTHROW (TREE_OPERAND (CALL_EXPR_FN (exp), 0)))
{
#ifdef GEN_ERRNO_RTX
rtx errno_rtx = GEN_ERRNO_RTX;
#else
rtx errno_rtx
= gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno"));
#endif
emit_move_insn (errno_rtx, GEN_INT (TARGET_EDOM));
emit_label (lab);
return;
}
#endif
/* Make sure the library call isn't expanded as a tail call. */
CALL_EXPR_TAILCALL (exp) = 0;
/* We can't set errno=EDOM directly; let the library call do it.
Pop the arguments right away in case the call gets deleted. */
NO_DEFER_POP;
expand_call (exp, target, 0);
OK_DEFER_POP;
emit_label (lab);
}
/* Expand a call to one of the builtin math functions (sqrt, exp, or log).
Return NULL_RTX if a normal call should be emitted rather than expanding
the function in-line. EXP is the expression that is a call to the builtin
function; if convenient, the result should be placed in TARGET.
SUBTARGET may be used as the target for computing one of EXP's operands. */
static rtx
expand_builtin_mathfn (tree exp, rtx target, rtx subtarget)
{
optab builtin_optab;
rtx op0, insns, before_call;
tree fndecl = get_callee_fndecl (exp);
enum machine_mode mode;
bool errno_set = false;
tree arg;
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
return NULL_RTX;
arg = CALL_EXPR_ARG (exp, 0);
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_SQRT):
errno_set = ! tree_expr_nonnegative_p (arg);
builtin_optab = sqrt_optab;
break;
CASE_FLT_FN (BUILT_IN_EXP):
errno_set = true; builtin_optab = exp_optab; break;
CASE_FLT_FN (BUILT_IN_EXP10):
CASE_FLT_FN (BUILT_IN_POW10):
errno_set = true; builtin_optab = exp10_optab; break;
CASE_FLT_FN (BUILT_IN_EXP2):
errno_set = true; builtin_optab = exp2_optab; break;
CASE_FLT_FN (BUILT_IN_EXPM1):
errno_set = true; builtin_optab = expm1_optab; break;
CASE_FLT_FN (BUILT_IN_LOGB):
errno_set = true; builtin_optab = logb_optab; break;
CASE_FLT_FN (BUILT_IN_LOG):
errno_set = true; builtin_optab = log_optab; break;
CASE_FLT_FN (BUILT_IN_LOG10):
errno_set = true; builtin_optab = log10_optab; break;
CASE_FLT_FN (BUILT_IN_LOG2):
errno_set = true; builtin_optab = log2_optab; break;
CASE_FLT_FN (BUILT_IN_LOG1P):
errno_set = true; builtin_optab = log1p_optab; break;
CASE_FLT_FN (BUILT_IN_ASIN):
builtin_optab = asin_optab; break;
CASE_FLT_FN (BUILT_IN_ACOS):
builtin_optab = acos_optab; break;
CASE_FLT_FN (BUILT_IN_TAN):
builtin_optab = tan_optab; break;
CASE_FLT_FN (BUILT_IN_ATAN):
builtin_optab = atan_optab; break;
CASE_FLT_FN (BUILT_IN_FLOOR):
builtin_optab = floor_optab; break;
CASE_FLT_FN (BUILT_IN_CEIL):
builtin_optab = ceil_optab; break;
CASE_FLT_FN (BUILT_IN_TRUNC):
builtin_optab = btrunc_optab; break;
CASE_FLT_FN (BUILT_IN_ROUND):
builtin_optab = round_optab; break;
CASE_FLT_FN (BUILT_IN_NEARBYINT):
builtin_optab = nearbyint_optab;
if (flag_trapping_math)
break;
/* Else fallthrough and expand as rint. */
CASE_FLT_FN (BUILT_IN_RINT):
builtin_optab = rint_optab; break;
default:
gcc_unreachable ();
}
/* Make a suitable register to place result in. */
mode = TYPE_MODE (TREE_TYPE (exp));
if (! flag_errno_math || ! HONOR_NANS (mode))
errno_set = false;
/* Before working hard, check whether the instruction is available. */
if (optab_handler (builtin_optab, mode)->insn_code != CODE_FOR_nothing)
{
target = gen_reg_rtx (mode);
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
need to expand the argument again. This way, we will not perform
side-effects more the once. */
CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
start_sequence ();
/* Compute into TARGET.
Set TARGET to wherever the result comes back. */
target = expand_unop (mode, builtin_optab, op0, target, 0);
if (target != 0)
{
if (errno_set)
expand_errno_check (exp, target);
/* Output the entire sequence. */
insns = get_insns ();
end_sequence ();
emit_insn (insns);
return target;
}
/* If we were unable to expand via the builtin, stop the sequence
(without outputting the insns) and call to the library function
with the stabilized argument list. */
end_sequence ();
}
before_call = get_last_insn ();
return expand_call (exp, target, target == const0_rtx);
}
/* Expand a call to the builtin binary math functions (pow and atan2).
Return NULL_RTX if a normal call should be emitted rather than expanding the
function in-line. EXP is the expression that is a call to the builtin
function; if convenient, the result should be placed in TARGET.
SUBTARGET may be used as the target for computing one of EXP's
operands. */
static rtx
expand_builtin_mathfn_2 (tree exp, rtx target, rtx subtarget)
{
optab builtin_optab;
rtx op0, op1, insns;
int op1_type = REAL_TYPE;
tree fndecl = get_callee_fndecl (exp);
tree arg0, arg1;
enum machine_mode mode;
bool errno_set = true;
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_SCALBN):
CASE_FLT_FN (BUILT_IN_SCALBLN):
CASE_FLT_FN (BUILT_IN_LDEXP):
op1_type = INTEGER_TYPE;
default:
break;
}
if (!validate_arglist (exp, REAL_TYPE, op1_type, VOID_TYPE))
return NULL_RTX;
arg0 = CALL_EXPR_ARG (exp, 0);
arg1 = CALL_EXPR_ARG (exp, 1);
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_POW):
builtin_optab = pow_optab; break;
CASE_FLT_FN (BUILT_IN_ATAN2):
builtin_optab = atan2_optab; break;
CASE_FLT_FN (BUILT_IN_SCALB):
if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (exp)))->b != 2)
return 0;
builtin_optab = scalb_optab; break;
CASE_FLT_FN (BUILT_IN_SCALBN):
CASE_FLT_FN (BUILT_IN_SCALBLN):
if (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (exp)))->b != 2)
return 0;
/* Fall through... */
CASE_FLT_FN (BUILT_IN_LDEXP):
builtin_optab = ldexp_optab; break;
CASE_FLT_FN (BUILT_IN_FMOD):
builtin_optab = fmod_optab; break;
CASE_FLT_FN (BUILT_IN_REMAINDER):
CASE_FLT_FN (BUILT_IN_DREM):
builtin_optab = remainder_optab; break;
default:
gcc_unreachable ();
}
/* Make a suitable register to place result in. */
mode = TYPE_MODE (TREE_TYPE (exp));
/* Before working hard, check whether the instruction is available. */
if (optab_handler (builtin_optab, mode)->insn_code == CODE_FOR_nothing)
return NULL_RTX;
target = gen_reg_rtx (mode);
if (! flag_errno_math || ! HONOR_NANS (mode))
errno_set = false;
/* Always stabilize the argument list. */
CALL_EXPR_ARG (exp, 0) = arg0 = builtin_save_expr (arg0);
CALL_EXPR_ARG (exp, 1) = arg1 = builtin_save_expr (arg1);
op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL);
op1 = expand_normal (arg1);
start_sequence ();
/* Compute into TARGET.
Set TARGET to wherever the result comes back. */
target = expand_binop (mode, builtin_optab, op0, op1,
target, 0, OPTAB_DIRECT);
/* If we were unable to expand via the builtin, stop the sequence
(without outputting the insns) and call to the library function
with the stabilized argument list. */
if (target == 0)
{
end_sequence ();
return expand_call (exp, target, target == const0_rtx);
}
if (errno_set)
expand_errno_check (exp, target);
/* Output the entire sequence. */
insns = get_insns ();
end_sequence ();
emit_insn (insns);
return target;
}
/* Expand a call to the builtin sin and cos math functions.
Return NULL_RTX if a normal call should be emitted rather than expanding the
function in-line. EXP is the expression that is a call to the builtin
function; if convenient, the result should be placed in TARGET.
SUBTARGET may be used as the target for computing one of EXP's
operands. */
static rtx
expand_builtin_mathfn_3 (tree exp, rtx target, rtx subtarget)
{
optab builtin_optab;
rtx op0, insns;
tree fndecl = get_callee_fndecl (exp);
enum machine_mode mode;
tree arg;
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
return NULL_RTX;
arg = CALL_EXPR_ARG (exp, 0);
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_SIN):
CASE_FLT_FN (BUILT_IN_COS):
builtin_optab = sincos_optab; break;
default:
gcc_unreachable ();
}
/* Make a suitable register to place result in. */
mode = TYPE_MODE (TREE_TYPE (exp));
/* Check if sincos insn is available, otherwise fallback
to sin or cos insn. */
if (optab_handler (builtin_optab, mode)->insn_code == CODE_FOR_nothing)
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_SIN):
builtin_optab = sin_optab; break;
CASE_FLT_FN (BUILT_IN_COS):
builtin_optab = cos_optab; break;
default:
gcc_unreachable ();
}
/* Before working hard, check whether the instruction is available. */
if (optab_handler (builtin_optab, mode)->insn_code != CODE_FOR_nothing)
{
target = gen_reg_rtx (mode);
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
need to expand the argument again. This way, we will not perform
side-effects more the once. */
CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
start_sequence ();
/* Compute into TARGET.
Set TARGET to wherever the result comes back. */
if (builtin_optab == sincos_optab)
{
int result;
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_SIN):
result = expand_twoval_unop (builtin_optab, op0, 0, target, 0);
break;
CASE_FLT_FN (BUILT_IN_COS):
result = expand_twoval_unop (builtin_optab, op0, target, 0, 0);
break;
default:
gcc_unreachable ();
}
gcc_assert (result);
}
else
{
target = expand_unop (mode, builtin_optab, op0, target, 0);
}
if (target != 0)
{
/* Output the entire sequence. */
insns = get_insns ();
end_sequence ();
emit_insn (insns);
return target;
}
/* If we were unable to expand via the builtin, stop the sequence
(without outputting the insns) and call to the library function
with the stabilized argument list. */
end_sequence ();
}
target = expand_call (exp, target, target == const0_rtx);
return target;
}
/* Expand a call to one of the builtin math functions that operate on
floating point argument and output an integer result (ilogb, isinf,
isnan, etc).
Return 0 if a normal call should be emitted rather than expanding the
function in-line. EXP is the expression that is a call to the builtin
function; if convenient, the result should be placed in TARGET.
SUBTARGET may be used as the target for computing one of EXP's operands. */
static rtx
expand_builtin_interclass_mathfn (tree exp, rtx target, rtx subtarget)
{
optab builtin_optab = 0;
enum insn_code icode = CODE_FOR_nothing;
rtx op0;
tree fndecl = get_callee_fndecl (exp);
enum machine_mode mode;
bool errno_set = false;
tree arg;
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
return NULL_RTX;
arg = CALL_EXPR_ARG (exp, 0);
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_ILOGB):
errno_set = true; builtin_optab = ilogb_optab; break;
CASE_FLT_FN (BUILT_IN_ISINF):
builtin_optab = isinf_optab; break;
case BUILT_IN_ISNORMAL:
case BUILT_IN_ISFINITE:
CASE_FLT_FN (BUILT_IN_FINITE):
/* These builtins have no optabs (yet). */
break;
default:
gcc_unreachable ();
}
/* There's no easy way to detect the case we need to set EDOM. */
if (flag_errno_math && errno_set)
return NULL_RTX;
/* Optab mode depends on the mode of the input argument. */
mode = TYPE_MODE (TREE_TYPE (arg));
if (builtin_optab)
icode = optab_handler (builtin_optab, mode)->insn_code;
/* Before working hard, check whether the instruction is available. */
if (icode != CODE_FOR_nothing)
{
/* Make a suitable register to place result in. */
if (!target
|| GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
gcc_assert (insn_data[icode].operand[0].predicate
(target, GET_MODE (target)));
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
need to expand the argument again. This way, we will not perform
side-effects more the once. */
CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
if (mode != GET_MODE (op0))
op0 = convert_to_mode (mode, op0, 0);
/* Compute into TARGET.
Set TARGET to wherever the result comes back. */
emit_unop_insn (icode, target, op0, UNKNOWN);
return target;
}
/* If there is no optab, try generic code. */
switch (DECL_FUNCTION_CODE (fndecl))
{
tree result;
CASE_FLT_FN (BUILT_IN_ISINF):
{
/* isinf(x) -> isgreater(fabs(x),DBL_MAX). */
tree const isgr_fn = built_in_decls[BUILT_IN_ISGREATER];
tree const type = TREE_TYPE (arg);
REAL_VALUE_TYPE r;
char buf[128];
get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
real_from_string (&r, buf);
result = build_call_expr (isgr_fn, 2,
fold_build1 (ABS_EXPR, type, arg),
build_real (type, r));
return expand_expr (result, target, VOIDmode, EXPAND_NORMAL);
}
CASE_FLT_FN (BUILT_IN_FINITE):
case BUILT_IN_ISFINITE:
{
/* isfinite(x) -> islessequal(fabs(x),DBL_MAX). */
tree const isle_fn = built_in_decls[BUILT_IN_ISLESSEQUAL];
tree const type = TREE_TYPE (arg);
REAL_VALUE_TYPE r;
char buf[128];
get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
real_from_string (&r, buf);
result = build_call_expr (isle_fn, 2,
fold_build1 (ABS_EXPR, type, arg),
build_real (type, r));
return expand_expr (result, target, VOIDmode, EXPAND_NORMAL);
}
case BUILT_IN_ISNORMAL:
{
/* isnormal(x) -> isgreaterequal(fabs(x),DBL_MIN) &
islessequal(fabs(x),DBL_MAX). */
tree const isle_fn = built_in_decls[BUILT_IN_ISLESSEQUAL];
tree const isge_fn = built_in_decls[BUILT_IN_ISGREATEREQUAL];
tree const type = TREE_TYPE (arg);
REAL_VALUE_TYPE rmax, rmin;
char buf[128];
get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
real_from_string (&rmax, buf);
sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (mode)->emin - 1);
real_from_string (&rmin, buf);
arg = builtin_save_expr (fold_build1 (ABS_EXPR, type, arg));
result = build_call_expr (isle_fn, 2, arg,
build_real (type, rmax));
result = fold_build2 (BIT_AND_EXPR, integer_type_node, result,
build_call_expr (isge_fn, 2, arg,
build_real (type, rmin)));
return expand_expr (result, target, VOIDmode, EXPAND_NORMAL);
}
default:
break;
}
target = expand_call (exp, target, target == const0_rtx);
return target;
}
/* Expand a call to the builtin sincos math function.
Return NULL_RTX if a normal call should be emitted rather than expanding the
function in-line. EXP is the expression that is a call to the builtin
function. */
static rtx
expand_builtin_sincos (tree exp)
{
rtx op0, op1, op2, target1, target2;
enum machine_mode mode;
tree arg, sinp, cosp;
int result;
if (!validate_arglist (exp, REAL_TYPE,
POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
return NULL_RTX;
arg = CALL_EXPR_ARG (exp, 0);
sinp = CALL_EXPR_ARG (exp, 1);
cosp = CALL_EXPR_ARG (exp, 2);
/* Make a suitable register to place result in. */
mode = TYPE_MODE (TREE_TYPE (arg));
/* Check if sincos insn is available, otherwise emit the call. */
if (optab_handler (sincos_optab, mode)->insn_code == CODE_FOR_nothing)
return NULL_RTX;
target1 = gen_reg_rtx (mode);
target2 = gen_reg_rtx (mode);
op0 = expand_normal (arg);
op1 = expand_normal (build_fold_indirect_ref (sinp));
op2 = expand_normal (build_fold_indirect_ref (cosp));
/* Compute into target1 and target2.
Set TARGET to wherever the result comes back. */
result = expand_twoval_unop (sincos_optab, op0, target2, target1, 0);
gcc_assert (result);
/* Move target1 and target2 to the memory locations indicated
by op1 and op2. */
emit_move_insn (op1, target1);
emit_move_insn (op2, target2);
return const0_rtx;
}
/* Expand a call to the internal cexpi builtin to the sincos math function.
EXP is the expression that is a call to the builtin function; if convenient,
the result should be placed in TARGET. SUBTARGET may be used as the target
for computing one of EXP's operands. */
static rtx
expand_builtin_cexpi (tree exp, rtx target, rtx subtarget)
{
tree fndecl = get_callee_fndecl (exp);
tree arg, type;
enum machine_mode mode;
rtx op0, op1, op2;
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
return NULL_RTX;
arg = CALL_EXPR_ARG (exp, 0);
type = TREE_TYPE (arg);
mode = TYPE_MODE (TREE_TYPE (arg));
/* Try expanding via a sincos optab, fall back to emitting a libcall
to sincos or cexp. We are sure we have sincos or cexp because cexpi
is only generated from sincos, cexp or if we have either of them. */
if (optab_handler (sincos_optab, mode)->insn_code != CODE_FOR_nothing)
{
op1 = gen_reg_rtx (mode);
op2 = gen_reg_rtx (mode);
op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
/* Compute into op1 and op2. */
expand_twoval_unop (sincos_optab, op0, op2, op1, 0);
}
else if (TARGET_HAS_SINCOS)
{
tree call, fn = NULL_TREE;
tree top1, top2;
rtx op1a, op2a;
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
fn = built_in_decls[BUILT_IN_SINCOSF];
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
fn = built_in_decls[BUILT_IN_SINCOS];
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
fn = built_in_decls[BUILT_IN_SINCOSL];
else
gcc_unreachable ();
op1 = assign_temp (TREE_TYPE (arg), 0, 1, 1);
op2 = assign_temp (TREE_TYPE (arg), 0, 1, 1);
op1a = copy_to_mode_reg (Pmode, XEXP (op1, 0));
op2a = copy_to_mode_reg (Pmode, XEXP (op2, 0));
top1 = make_tree (build_pointer_type (TREE_TYPE (arg)), op1a);
top2 = make_tree (build_pointer_type (TREE_TYPE (arg)), op2a);
/* Make sure not to fold the sincos call again. */
call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
expand_normal (build_call_nary (TREE_TYPE (TREE_TYPE (fn)),
call, 3, arg, top1, top2));
}
else
{
tree call, fn = NULL_TREE, narg;
tree ctype = build_complex_type (type);
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
fn = built_in_decls[BUILT_IN_CEXPF];
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
fn = built_in_decls[BUILT_IN_CEXP];
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
fn = built_in_decls[BUILT_IN_CEXPL];
else
gcc_unreachable ();
/* If we don't have a decl for cexp create one. This is the
friendliest fallback if the user calls __builtin_cexpi
without full target C99 function support. */
if (fn == NULL_TREE)
{
tree fntype;
const char *name = NULL;
if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIF)
name = "cexpf";
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPI)
name = "cexp";
else if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CEXPIL)
name = "cexpl";
fntype = build_function_type_list (ctype, ctype, NULL_TREE);
fn = build_fn_decl (name, fntype);
}
narg = fold_build2 (COMPLEX_EXPR, ctype,
build_real (type, dconst0), arg);
/* Make sure not to fold the cexp call again. */
call = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
return expand_expr (build_call_nary (ctype, call, 1, narg),
target, VOIDmode, EXPAND_NORMAL);
}
/* Now build the proper return type. */
return expand_expr (build2 (COMPLEX_EXPR, build_complex_type (type),
make_tree (TREE_TYPE (arg), op2),
make_tree (TREE_TYPE (arg), op1)),
target, VOIDmode, EXPAND_NORMAL);
}
/* Expand a call to one of the builtin rounding functions gcc defines
as an extension (lfloor and lceil). As these are gcc extensions we
do not need to worry about setting errno to EDOM.
If expanding via optab fails, lower expression to (int)(floor(x)).
EXP is the expression that is a call to the builtin function;
if convenient, the result should be placed in TARGET. */
static rtx
expand_builtin_int_roundingfn (tree exp, rtx target)
{
convert_optab builtin_optab;
rtx op0, insns, tmp;
tree fndecl = get_callee_fndecl (exp);
enum built_in_function fallback_fn;
tree fallback_fndecl;
enum machine_mode mode;
tree arg;
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
gcc_unreachable ();
arg = CALL_EXPR_ARG (exp, 0);
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_LCEIL):
CASE_FLT_FN (BUILT_IN_LLCEIL):
builtin_optab = lceil_optab;
fallback_fn = BUILT_IN_CEIL;
break;
CASE_FLT_FN (BUILT_IN_LFLOOR):
CASE_FLT_FN (BUILT_IN_LLFLOOR):
builtin_optab = lfloor_optab;
fallback_fn = BUILT_IN_FLOOR;
break;
default:
gcc_unreachable ();
}
/* Make a suitable register to place result in. */
mode = TYPE_MODE (TREE_TYPE (exp));
target = gen_reg_rtx (mode);
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
need to expand the argument again. This way, we will not perform
side-effects more the once. */
CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL);
start_sequence ();
/* Compute into TARGET. */
if (expand_sfix_optab (target, op0, builtin_optab))
{
/* Output the entire sequence. */
insns = get_insns ();
end_sequence ();
emit_insn (insns);
return target;
}
/* If we were unable to expand via the builtin, stop the sequence
(without outputting the insns). */
end_sequence ();
/* Fall back to floating point rounding optab. */
fallback_fndecl = mathfn_built_in (TREE_TYPE (arg), fallback_fn);
/* For non-C99 targets we may end up without a fallback fndecl here
if the user called __builtin_lfloor directly. In this case emit
a call to the floor/ceil variants nevertheless. This should result
in the best user experience for not full C99 targets. */
if (fallback_fndecl == NULL_TREE)
{
tree fntype;
const char *name = NULL;
switch (DECL_FUNCTION_CODE (fndecl))
{
case BUILT_IN_LCEIL:
case BUILT_IN_LLCEIL:
name = "ceil";
break;
case BUILT_IN_LCEILF:
case BUILT_IN_LLCEILF:
name = "ceilf";
break;
case BUILT_IN_LCEILL:
case BUILT_IN_LLCEILL:
name = "ceill";
break;
case BUILT_IN_LFLOOR:
case BUILT_IN_LLFLOOR:
name = "floor";
break;
case BUILT_IN_LFLOORF:
case BUILT_IN_LLFLOORF:
name = "floorf";
break;
case BUILT_IN_LFLOORL:
case BUILT_IN_LLFLOORL:
name = "floorl";
break;
default:
gcc_unreachable ();
}
fntype = build_function_type_list (TREE_TYPE (arg),
TREE_TYPE (arg), NULL_TREE);
fallback_fndecl = build_fn_decl (name, fntype);
}
exp = build_call_expr (fallback_fndecl, 1, arg);
tmp = expand_normal (exp);
/* Truncate the result of floating point optab to integer
via expand_fix (). */
target = gen_reg_rtx (mode);
expand_fix (target, tmp, 0);
return target;
}
/* Expand a call to one of the builtin math functions doing integer
conversion (lrint).
Return 0 if a normal call should be emitted rather than expanding the
function in-line. EXP is the expression that is a call to the builtin
function; if convenient, the result should be placed in TARGET. */
static rtx
expand_builtin_int_roundingfn_2 (tree exp, rtx target)
{
convert_optab builtin_optab;
rtx op0, insns;
tree fndecl = get_callee_fndecl (exp);
tree arg;
enum machine_mode mode;
/* There's no easy way to detect the case we need to set EDOM. */
if (flag_errno_math)
return NULL_RTX;
if (!validate_arglist (exp, REAL_TYPE, VOID_TYPE))
gcc_unreachable ();
arg = CALL_EXPR_ARG (exp, 0);
switch (DECL_FUNCTION_CODE (fndecl))
{
CASE_FLT_FN (BUILT_IN_LRINT):
CASE_FLT_FN (BUILT_IN_LLRINT):
builtin_optab = lrint_optab; break;
CASE_FLT_FN (BUILT_IN_LROUND):
CASE_FLT_FN (BUILT_IN_LLROUND):
builtin_optab = lround_optab; break;
default:
gcc_unreachable ();
}
/* Make a suitable register to place result in. */
mode = TYPE_MODE (TREE_TYPE (exp));
target = gen_reg_rtx (mode);
/* Wrap the computation of the argument in a SAVE_EXPR, as we may
need to expand the argument again. This way, we will not perform
side-effects more the once. */
CALL_EXPR_ARG (exp, 0) = arg = builtin_save_expr (arg);
op0 = expand_expr (arg, NULL, VOIDmode, EXPAND_NORMAL);
start_sequence ();
if (expand_sfix_optab (target, op0, builtin_optab))
{
/* Output the entire sequence. */
insns = get_insns ();
end_sequence ();
emit_insn (insns);
return target;
}
/* If we were unable to expand via the builtin, stop the sequence
(without outputting the insns) and call to the library function
with the stabilized argument list. */
end_sequence ();
target = expand_call (exp, target, target == const0_rtx);
return target;
}
/* To evaluate powi(x,n), the floating point value x raised to the
constant integer exponent n, we use a hybrid algorithm that
combines the "window method" with look-up tables. For an
introduction to exponentiation algorithms and "addition chains",
see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
"Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
/* Provide a default value for POWI_MAX_MULTS, the maximum number of
multiplications to inline before calling the system library's pow
function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
so this default never requires calling pow, powf or powl. */
#ifndef POWI_MAX_MULTS
#define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
#endif
/* The size of the "optimal power tree" lookup table. All
exponents less than this value are simply looked up in the
powi_table below. This threshold is also used to size the
cache of pseudo registers that hold intermediate results. */
#define POWI_TABLE_SIZE 256
/* The size, in bits of the window, used in the "window method"
exponentiation algorithm. This is equivalent to a radix of
(1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
#define POWI_WINDOW_SIZE 3
/* The following table is an efficient representation of an
"optimal power tree". For each value, i, the corresponding
value, j, in the table states than an optimal evaluation
sequence for calculating pow(x,i) can be found by evaluating
pow(x,j)*pow(x,i-j). An optimal power tree for the first
100 integers is given in Knuth's "Seminumerical algorithms". */
static const unsigned char powi_table[POWI_TABLE_SIZE] =
{
0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */