blob: ef1b2acca96d588798c28e902e6062c76b181baa [file] [log] [blame]
/* Gimple IR definitions.
Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by Aldy Hernandez <aldyh@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_GIMPLE_H
#define GCC_GIMPLE_H
#include "pointer-set.h"
#include "vec.h"
#include "ggc.h"
#include "tm.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "tree-ssa-operands.h"
DEF_VEC_P(gimple);
DEF_VEC_ALLOC_P(gimple,heap);
DEF_VEC_ALLOC_P(gimple,gc);
DEF_VEC_P(gimple_seq);
DEF_VEC_ALLOC_P(gimple_seq,gc);
DEF_VEC_ALLOC_P(gimple_seq,heap);
/* For each block, the PHI nodes that need to be rewritten are stored into
these vectors. */
typedef VEC(gimple, heap) *gimple_vec;
DEF_VEC_P (gimple_vec);
DEF_VEC_ALLOC_P (gimple_vec, heap);
enum gimple_code {
#define DEFGSCODE(SYM, STRING, STRUCT) SYM,
#include "gimple.def"
#undef DEFGSCODE
LAST_AND_UNUSED_GIMPLE_CODE
};
extern const char *const gimple_code_name[];
extern const unsigned char gimple_rhs_class_table[];
/* Error out if a gimple tuple is addressed incorrectly. */
#if defined ENABLE_GIMPLE_CHECKING
extern void gimple_check_failed (const_gimple, const char *, int, \
const char *, enum gimple_code, \
enum tree_code) ATTRIBUTE_NORETURN;
#define GIMPLE_CHECK(GS, CODE) \
do { \
const_gimple __gs = (GS); \
if (gimple_code (__gs) != (CODE)) \
gimple_check_failed (__gs, __FILE__, __LINE__, __FUNCTION__, \
(CODE), 0); \
} while (0)
#else /* not ENABLE_GIMPLE_CHECKING */
#define GIMPLE_CHECK(GS, CODE) (void)0
#endif
/* Class of GIMPLE expressions suitable for the RHS of assignments. See
get_gimple_rhs_class. */
enum gimple_rhs_class
{
GIMPLE_INVALID_RHS, /* The expression cannot be used on the RHS. */
GIMPLE_BINARY_RHS, /* The expression is a binary operation. */
GIMPLE_UNARY_RHS, /* The expression is a unary operation. */
GIMPLE_SINGLE_RHS /* The expression is a single object (an SSA
name, a _DECL, a _REF, etc. */
};
/* Specific flags for individual GIMPLE statements. These flags are
always stored in gimple_statement_base.subcode and they may only be
defined for statement codes that do not use sub-codes.
Values for the masks can overlap as long as the overlapping values
are never used in the same statement class.
The maximum mask value that can be defined is 1 << 15 (i.e., each
statement code can hold up to 16 bitflags).
Keep this list sorted. */
enum gf_mask {
GF_ASM_INPUT = 1 << 0,
GF_ASM_VOLATILE = 1 << 1,
GF_CALL_CANNOT_INLINE = 1 << 0,
GF_CALL_FROM_THUNK = 1 << 1,
GF_CALL_RETURN_SLOT_OPT = 1 << 2,
GF_CALL_TAILCALL = 1 << 3,
GF_CALL_VA_ARG_PACK = 1 << 4,
GF_OMP_PARALLEL_COMBINED = 1 << 0,
/* True on an GIMPLE_OMP_RETURN statement if the return does not require
a thread synchronization via some sort of barrier. The exact barrier
that would otherwise be emitted is dependent on the OMP statement with
which this return is associated. */
GF_OMP_RETURN_NOWAIT = 1 << 0,
GF_OMP_SECTION_LAST = 1 << 0,
GF_PREDICT_TAKEN = 1 << 15
};
/* Masks for selecting a pass local flag (PLF) to work on. These
masks are used by gimple_set_plf and gimple_plf. */
enum plf_mask {
GF_PLF_1 = 1 << 0,
GF_PLF_2 = 1 << 1
};
/* A node in a gimple_seq_d. */
struct gimple_seq_node_d GTY((chain_next ("%h.next"), chain_prev ("%h.prev")))
{
gimple stmt;
struct gimple_seq_node_d *prev;
struct gimple_seq_node_d *next;
};
/* A double-linked sequence of gimple statements. */
struct gimple_seq_d GTY ((chain_next ("%h.next_free")))
{
/* First and last statements in the sequence. */
gimple_seq_node first;
gimple_seq_node last;
/* Sequences are created/destroyed frequently. To minimize
allocation activity, deallocated sequences are kept in a pool of
available sequences. This is the pointer to the next free
sequence in the pool. */
gimple_seq next_free;
};
/* Return the first node in GIMPLE sequence S. */
static inline gimple_seq_node
gimple_seq_first (const_gimple_seq s)
{
return s ? s->first : NULL;
}
/* Return the first statement in GIMPLE sequence S. */
static inline gimple
gimple_seq_first_stmt (const_gimple_seq s)
{
gimple_seq_node n = gimple_seq_first (s);
return (n) ? n->stmt : NULL;
}
/* Return the last node in GIMPLE sequence S. */
static inline gimple_seq_node
gimple_seq_last (const_gimple_seq s)
{
return s ? s->last : NULL;
}
/* Return the last statement in GIMPLE sequence S. */
static inline gimple
gimple_seq_last_stmt (const_gimple_seq s)
{
gimple_seq_node n = gimple_seq_last (s);
return (n) ? n->stmt : NULL;
}
/* Set the last node in GIMPLE sequence S to LAST. */
static inline void
gimple_seq_set_last (gimple_seq s, gimple_seq_node last)
{
s->last = last;
}
/* Set the first node in GIMPLE sequence S to FIRST. */
static inline void
gimple_seq_set_first (gimple_seq s, gimple_seq_node first)
{
s->first = first;
}
/* Return true if GIMPLE sequence S is empty. */
static inline bool
gimple_seq_empty_p (const_gimple_seq s)
{
return s == NULL || s->first == NULL;
}
void gimple_seq_add_stmt (gimple_seq *, gimple);
/* Allocate a new sequence and initialize its first element with STMT. */
static inline gimple_seq
gimple_seq_alloc_with_stmt (gimple stmt)
{
gimple_seq seq = NULL;
gimple_seq_add_stmt (&seq, stmt);
return seq;
}
/* Returns the sequence of statements in BB. */
static inline gimple_seq
bb_seq (const_basic_block bb)
{
return (!(bb->flags & BB_RTL) && bb->il.gimple) ? bb->il.gimple->seq : NULL;
}
/* Sets the sequence of statements in BB to SEQ. */
static inline void
set_bb_seq (basic_block bb, gimple_seq seq)
{
gcc_assert (!(bb->flags & BB_RTL));
bb->il.gimple->seq = seq;
}
/* Iterator object for GIMPLE statement sequences. */
typedef struct
{
/* Sequence node holding the current statement. */
gimple_seq_node ptr;
/* Sequence and basic block holding the statement. These fields
are necessary to handle edge cases such as when statement is
added to an empty basic block or when the last statement of a
block/sequence is removed. */
gimple_seq seq;
basic_block bb;
} gimple_stmt_iterator;
/* Data structure definitions for GIMPLE tuples. NOTE: word markers
are for 64 bit hosts. */
struct gimple_statement_base GTY(())
{
/* [ WORD 1 ]
Main identifying code for a tuple. */
ENUM_BITFIELD(gimple_code) code : 8;
/* Nonzero if a warning should not be emitted on this tuple. */
unsigned int no_warning : 1;
/* Nonzero if this tuple has been visited. Passes are responsible
for clearing this bit before using it. */
unsigned int visited : 1;
/* Nonzero if this tuple represents a non-temporal move. */
unsigned int nontemporal_move : 1;
/* Pass local flags. These flags are free for any pass to use as
they see fit. Passes should not assume that these flags contain
any useful value when the pass starts. Any initial state that
the pass requires should be set on entry to the pass. See
gimple_set_plf and gimple_plf for usage. */
unsigned int plf : 2;
/* Nonzero if this statement has been modified and needs to have its
operands rescanned. */
unsigned modified : 1;
/* Nonzero if this statement contains volatile operands. */
unsigned has_volatile_ops : 1;
/* Nonzero if this statement contains memory refernces. */
unsigned references_memory_p : 1;
/* The SUBCODE field can be used for tuple-specific flags for tuples
that do not require subcodes. Note that SUBCODE should be at
least as wide as tree codes, as several tuples store tree codes
in there. */
unsigned int subcode : 16;
/* UID of this statement. This is used by passes that want to
assign IDs to statements. It must be assigned and used by each
pass. By default it should be assumed to contain garbage. */
unsigned uid;
/* [ WORD 2 ]
Locus information for debug info. */
location_t location;
/* Number of operands in this tuple. */
unsigned num_ops;
/* [ WORD 3 ]
Basic block holding this statement. */
struct basic_block_def *bb;
/* [ WORD 4 ]
Lexical block holding this statement. */
tree block;
};
/* Base structure for tuples with operands. */
struct gimple_statement_with_ops_base GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* [ WORD 5 ]
Symbols whose addresses are taken by this statement (i.e., they
appear inside ADDR_EXPR nodes). */
bitmap GTY((skip (""))) addresses_taken;
/* [ WORD 6-7 ]
SSA operand vectors. NOTE: It should be possible to
amalgamate these vectors with the operand vector OP. However,
the SSA operand vectors are organized differently and contain
more information (like immediate use chaining). */
struct def_optype_d GTY((skip (""))) *def_ops;
struct use_optype_d GTY((skip (""))) *use_ops;
};
/* Statements that take register operands. */
struct gimple_statement_with_ops GTY(())
{
/* [ WORD 1-7 ] */
struct gimple_statement_with_ops_base opbase;
/* [ WORD 8 ]
Operand vector. NOTE! This must always be the last field
of this structure. In particular, this means that this
structure cannot be embedded inside another one. */
tree GTY((length ("%h.opbase.gsbase.num_ops"))) op[1];
};
/* Base for statements that take both memory and register operands. */
struct gimple_statement_with_memory_ops_base GTY(())
{
/* [ WORD 1-7 ] */
struct gimple_statement_with_ops_base opbase;
/* [ WORD 8-9 ]
Vectors for virtual operands. */
struct voptype_d GTY((skip (""))) *vdef_ops;
struct voptype_d GTY((skip (""))) *vuse_ops;
/* [ WORD 9-10 ]
Symbols stored/loaded by this statement. */
bitmap GTY((skip (""))) stores;
bitmap GTY((skip (""))) loads;
};
/* Statements that take both memory and register operands. */
struct gimple_statement_with_memory_ops GTY(())
{
/* [ WORD 1-10 ] */
struct gimple_statement_with_memory_ops_base membase;
/* [ WORD 11 ]
Operand vector. NOTE! This must always be the last field
of this structure. In particular, this means that this
structure cannot be embedded inside another one. */
tree GTY((length ("%h.membase.opbase.gsbase.num_ops"))) op[1];
};
/* OpenMP statements (#pragma omp). */
struct gimple_statement_omp GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* [ WORD 5 ] */
gimple_seq body;
};
/* GIMPLE_BIND */
struct gimple_statement_bind GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* [ WORD 5 ]
Variables declared in this scope. */
tree vars;
/* [ WORD 6 ]
This is different than the BLOCK field in gimple_statement_base,
which is analogous to TREE_BLOCK (i.e., the lexical block holding
this statement). This field is the equivalent of BIND_EXPR_BLOCK
in tree land (i.e., the lexical scope defined by this bind). See
gimple-low.c. */
tree block;
/* [ WORD 7 ] */
gimple_seq body;
};
/* GIMPLE_CATCH */
struct gimple_statement_catch GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* [ WORD 5 ] */
tree types;
/* [ WORD 6 ] */
gimple_seq handler;
};
/* GIMPLE_EH_FILTER */
struct gimple_statement_eh_filter GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* Subcode: EH_FILTER_MUST_NOT_THROW. A boolean flag analogous to
the tree counterpart. */
/* [ WORD 5 ]
Filter types. */
tree types;
/* [ WORD 6 ]
Failure actions. */
gimple_seq failure;
};
/* GIMPLE_PHI */
struct gimple_statement_phi GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* [ WORD 5 ] */
unsigned capacity;
unsigned nargs;
/* [ WORD 6 ] */
tree result;
/* [ WORD 7 ] */
struct phi_arg_d GTY ((length ("%h.nargs"))) args[1];
};
/* GIMPLE_RESX */
struct gimple_statement_resx GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* [ WORD 5 ]
Exception region number. */
int region;
};
/* GIMPLE_TRY */
struct gimple_statement_try GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* [ WORD 5 ]
Expression to evaluate. */
gimple_seq eval;
/* [ WORD 6 ]
Cleanup expression. */
gimple_seq cleanup;
};
/* Kind of GIMPLE_TRY statements. */
enum gimple_try_flags
{
/* A try/catch. */
GIMPLE_TRY_CATCH = 1 << 0,
/* A try/finally. */
GIMPLE_TRY_FINALLY = 1 << 1,
GIMPLE_TRY_KIND = GIMPLE_TRY_CATCH | GIMPLE_TRY_FINALLY,
/* Analogous to TRY_CATCH_IS_CLEANUP. */
GIMPLE_TRY_CATCH_IS_CLEANUP = 1 << 2
};
/* GIMPLE_WITH_CLEANUP_EXPR */
struct gimple_statement_wce GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* Subcode: CLEANUP_EH_ONLY. True if the cleanup should only be
executed if an exception is thrown, not on normal exit of its
scope. This flag is analogous to the CLEANUP_EH_ONLY flag
in TARGET_EXPRs. */
/* [ WORD 5 ]
Cleanup expression. */
gimple_seq cleanup;
};
/* GIMPLE_ASM */
struct gimple_statement_asm GTY(())
{
/* [ WORD 1-10 ] */
struct gimple_statement_with_memory_ops_base membase;
/* [ WORD 11 ]
__asm__ statement. */
const char *string;
/* [ WORD 12 ]
Number of inputs, outputs and clobbers. */
unsigned char ni;
unsigned char no;
unsigned short nc;
/* [ WORD 13 ]
Operand vector. NOTE! This must always be the last field
of this structure. In particular, this means that this
structure cannot be embedded inside another one. */
tree GTY((length ("%h.membase.opbase.gsbase.num_ops"))) op[1];
};
/* GIMPLE_OMP_CRITICAL */
struct gimple_statement_omp_critical GTY(())
{
/* [ WORD 1-5 ] */
struct gimple_statement_omp omp;
/* [ WORD 6 ]
Critical section name. */
tree name;
};
struct gimple_omp_for_iter GTY(())
{
/* Condition code. */
enum tree_code cond;
/* Index variable. */
tree index;
/* Initial value. */
tree initial;
/* Final value. */
tree final;
/* Increment. */
tree incr;
};
/* GIMPLE_OMP_FOR */
struct gimple_statement_omp_for GTY(())
{
/* [ WORD 1-5 ] */
struct gimple_statement_omp omp;
/* [ WORD 6 ] */
tree clauses;
/* [ WORD 7 ]
Number of elements in iter array. */
size_t collapse;
/* [ WORD 8 ] */
struct gimple_omp_for_iter * GTY((length ("%h.collapse"))) iter;
/* [ WORD 9 ]
Pre-body evaluated before the loop body begins. */
gimple_seq pre_body;
};
/* GIMPLE_OMP_PARALLEL */
struct gimple_statement_omp_parallel GTY(())
{
/* [ WORD 1-5 ] */
struct gimple_statement_omp omp;
/* [ WORD 6 ]
Clauses. */
tree clauses;
/* [ WORD 7 ]
Child function holding the body of the parallel region. */
tree child_fn;
/* [ WORD 8 ]
Shared data argument. */
tree data_arg;
};
/* GIMPLE_OMP_TASK */
struct gimple_statement_omp_task GTY(())
{
/* [ WORD 1-8 ] */
struct gimple_statement_omp_parallel par;
/* [ WORD 9 ]
Child function holding firstprivate initialization if needed. */
tree copy_fn;
/* [ WORD 10-11 ]
Size and alignment in bytes of the argument data block. */
tree arg_size;
tree arg_align;
};
/* GIMPLE_OMP_SECTION */
/* Uses struct gimple_statement_omp. */
/* GIMPLE_OMP_SECTIONS */
struct gimple_statement_omp_sections GTY(())
{
/* [ WORD 1-5 ] */
struct gimple_statement_omp omp;
/* [ WORD 6 ] */
tree clauses;
/* [ WORD 7 ]
The control variable used for deciding which of the sections to
execute. */
tree control;
};
/* GIMPLE_OMP_CONTINUE.
Note: This does not inherit from gimple_statement_omp, because we
do not need the body field. */
struct gimple_statement_omp_continue GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* [ WORD 5 ] */
tree control_def;
/* [ WORD 6 ] */
tree control_use;
};
/* GIMPLE_OMP_SINGLE */
struct gimple_statement_omp_single GTY(())
{
/* [ WORD 1-5 ] */
struct gimple_statement_omp omp;
/* [ WORD 6 ] */
tree clauses;
};
/* GIMPLE_OMP_ATOMIC_LOAD.
Note: This is based on gimple_statement_base, not g_s_omp, because g_s_omp
contains a sequence, which we don't need here. */
struct gimple_statement_omp_atomic_load GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* [ WORD 5-6 ] */
tree rhs, lhs;
};
/* GIMPLE_OMP_ATOMIC_STORE.
See note on GIMPLE_OMP_ATOMIC_LOAD. */
struct gimple_statement_omp_atomic_store GTY(())
{
/* [ WORD 1-4 ] */
struct gimple_statement_base gsbase;
/* [ WORD 5 ] */
tree val;
};
enum gimple_statement_structure_enum {
#define DEFGSSTRUCT(SYM, STRING) SYM,
#include "gsstruct.def"
#undef DEFGSSTRUCT
LAST_GSS_ENUM
};
/* Define the overall contents of a gimple tuple. It may be any of the
structures declared above for various types of tuples. */
union gimple_statement_d GTY ((desc ("gimple_statement_structure (&%h)")))
{
struct gimple_statement_base GTY ((tag ("GSS_BASE"))) gsbase;
struct gimple_statement_with_ops GTY ((tag ("GSS_WITH_OPS"))) gsops;
struct gimple_statement_with_memory_ops GTY ((tag ("GSS_WITH_MEM_OPS"))) gsmem;
struct gimple_statement_omp GTY ((tag ("GSS_OMP"))) omp;
struct gimple_statement_bind GTY ((tag ("GSS_BIND"))) gimple_bind;
struct gimple_statement_catch GTY ((tag ("GSS_CATCH"))) gimple_catch;
struct gimple_statement_eh_filter GTY ((tag ("GSS_EH_FILTER"))) gimple_eh_filter;
struct gimple_statement_phi GTY ((tag ("GSS_PHI"))) gimple_phi;
struct gimple_statement_resx GTY ((tag ("GSS_RESX"))) gimple_resx;
struct gimple_statement_try GTY ((tag ("GSS_TRY"))) gimple_try;
struct gimple_statement_wce GTY ((tag ("GSS_WCE"))) gimple_wce;
struct gimple_statement_asm GTY ((tag ("GSS_ASM"))) gimple_asm;
struct gimple_statement_omp_critical GTY ((tag ("GSS_OMP_CRITICAL"))) gimple_omp_critical;
struct gimple_statement_omp_for GTY ((tag ("GSS_OMP_FOR"))) gimple_omp_for;
struct gimple_statement_omp_parallel GTY ((tag ("GSS_OMP_PARALLEL"))) gimple_omp_parallel;
struct gimple_statement_omp_task GTY ((tag ("GSS_OMP_TASK"))) gimple_omp_task;
struct gimple_statement_omp_sections GTY ((tag ("GSS_OMP_SECTIONS"))) gimple_omp_sections;
struct gimple_statement_omp_single GTY ((tag ("GSS_OMP_SINGLE"))) gimple_omp_single;
struct gimple_statement_omp_continue GTY ((tag ("GSS_OMP_CONTINUE"))) gimple_omp_continue;
struct gimple_statement_omp_atomic_load GTY ((tag ("GSS_OMP_ATOMIC_LOAD"))) gimple_omp_atomic_load;
struct gimple_statement_omp_atomic_store GTY ((tag ("GSS_OMP_ATOMIC_STORE"))) gimple_omp_atomic_store;
};
/* In gimple.c. */
gimple gimple_build_return (tree);
gimple gimple_build_assign_stat (tree, tree MEM_STAT_DECL);
#define gimple_build_assign(l,r) gimple_build_assign_stat (l, r MEM_STAT_INFO)
void extract_ops_from_tree (tree, enum tree_code *, tree *, tree *);
gimple gimple_build_assign_with_ops_stat (enum tree_code, tree, tree,
tree MEM_STAT_DECL);
#define gimple_build_assign_with_ops(c,o1,o2,o3) \
gimple_build_assign_with_ops_stat (c, o1, o2, o3 MEM_STAT_INFO)
gimple gimple_build_call_vec (tree, VEC(tree, heap) *);
gimple gimple_build_call (tree, unsigned, ...);
gimple gimple_build_call_from_tree (tree);
gimple gimplify_assign (tree, tree, gimple_seq *);
gimple gimple_build_cond (enum tree_code, tree, tree, tree, tree);
gimple gimple_build_label (tree label);
gimple gimple_build_goto (tree dest);
gimple gimple_build_nop (void);
gimple gimple_build_bind (tree, gimple_seq, tree);
gimple gimple_build_asm (const char *, unsigned, unsigned, unsigned, ...);
gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *, VEC(tree,gc) *,
VEC(tree,gc) *);
gimple gimple_build_catch (tree, gimple_seq);
gimple gimple_build_eh_filter (tree, gimple_seq);
gimple gimple_build_try (gimple_seq, gimple_seq, enum gimple_try_flags);
gimple gimple_build_wce (gimple_seq);
gimple gimple_build_resx (int);
gimple gimple_build_switch (unsigned, tree, tree, ...);
gimple gimple_build_switch_vec (tree, tree, VEC(tree,heap) *);
gimple gimple_build_omp_parallel (gimple_seq, tree, tree, tree);
gimple gimple_build_omp_task (gimple_seq, tree, tree, tree, tree, tree, tree);
gimple gimple_build_omp_for (gimple_seq, tree, size_t, gimple_seq);
gimple gimple_build_omp_critical (gimple_seq, tree);
gimple gimple_build_omp_section (gimple_seq);
gimple gimple_build_omp_continue (tree, tree);
gimple gimple_build_omp_master (gimple_seq);
gimple gimple_build_omp_return (bool);
gimple gimple_build_omp_ordered (gimple_seq);
gimple gimple_build_omp_sections (gimple_seq, tree);
gimple gimple_build_omp_sections_switch (void);
gimple gimple_build_omp_single (gimple_seq, tree);
gimple gimple_build_cdt (tree, tree);
gimple gimple_build_omp_atomic_load (tree, tree);
gimple gimple_build_omp_atomic_store (tree);
gimple gimple_build_predict (enum br_predictor, enum prediction);
enum gimple_statement_structure_enum gimple_statement_structure (gimple);
enum gimple_statement_structure_enum gss_for_assign (enum tree_code);
void sort_case_labels (VEC(tree,heap) *);
void gimple_set_body (tree, gimple_seq);
gimple_seq gimple_body (tree);
bool gimple_has_body_p (tree);
gimple_seq gimple_seq_alloc (void);
void gimple_seq_free (gimple_seq);
void gimple_seq_add_seq (gimple_seq *, gimple_seq);
gimple_seq gimple_seq_copy (gimple_seq);
int gimple_call_flags (const_gimple);
bool gimple_assign_copy_p (gimple);
bool gimple_assign_ssa_name_copy_p (gimple);
bool gimple_assign_single_p (gimple);
bool gimple_assign_unary_nop_p (gimple);
void gimple_set_bb (gimple, struct basic_block_def *);
tree gimple_fold (const_gimple);
void gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *, tree);
void gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *, enum tree_code,
tree, tree);
tree gimple_get_lhs (const_gimple);
void gimple_set_lhs (gimple, tree);
gimple gimple_copy (gimple);
bool is_gimple_operand (const_tree);
void gimple_set_modified (gimple, bool);
void gimple_cond_get_ops_from_tree (tree, enum tree_code *, tree *, tree *);
gimple gimple_build_cond_from_tree (tree, tree, tree);
void gimple_cond_set_condition_from_tree (gimple, tree);
bool gimple_has_side_effects (const_gimple);
bool gimple_rhs_has_side_effects (const_gimple);
bool gimple_could_trap_p (gimple);
bool gimple_assign_rhs_could_trap_p (gimple);
void gimple_regimplify_operands (gimple, gimple_stmt_iterator *);
bool empty_body_p (gimple_seq);
unsigned get_gimple_rhs_num_ops (enum tree_code);
/* Returns true iff T is a valid GIMPLE statement. */
extern bool is_gimple_stmt (tree);
/* Returns true iff TYPE is a valid type for a scalar register variable. */
extern bool is_gimple_reg_type (tree);
/* Returns true iff T is a scalar register variable. */
extern bool is_gimple_reg (tree);
/* Returns true if T is a GIMPLE temporary variable, false otherwise. */
extern bool is_gimple_formal_tmp_var (tree);
/* Returns true if T is a GIMPLE temporary register variable. */
extern bool is_gimple_formal_tmp_reg (tree);
/* Returns true iff T is any sort of variable. */
extern bool is_gimple_variable (tree);
/* Returns true iff T is any sort of symbol. */
extern bool is_gimple_id (tree);
/* Returns true iff T is a variable or an INDIRECT_REF (of a variable). */
extern bool is_gimple_min_lval (tree);
/* Returns true iff T is something whose address can be taken. */
extern bool is_gimple_addressable (tree);
/* Returns true iff T is any valid GIMPLE lvalue. */
extern bool is_gimple_lvalue (tree);
/* Returns true iff T is a GIMPLE address. */
bool is_gimple_address (const_tree);
/* Returns true iff T is a GIMPLE invariant address. */
bool is_gimple_invariant_address (const_tree);
/* Returns true iff T is a GIMPLE invariant address at interprocedural
level. */
bool is_gimple_ip_invariant_address (const_tree);
/* Returns true iff T is a valid GIMPLE constant. */
bool is_gimple_constant (const_tree);
/* Returns true iff T is a GIMPLE restricted function invariant. */
extern bool is_gimple_min_invariant (const_tree);
/* Returns true iff T is a GIMPLE restricted interprecodural invariant. */
extern bool is_gimple_ip_invariant (const_tree);
/* Returns true iff T is a GIMPLE rvalue. */
extern bool is_gimple_val (tree);
/* Returns true iff T is a GIMPLE asm statement input. */
extern bool is_gimple_asm_val (tree);
/* Returns true iff T is a valid rhs for a MODIFY_EXPR where the LHS is a
GIMPLE temporary, a renamed user variable, or something else,
respectively. */
extern bool is_gimple_formal_tmp_rhs (tree);
extern bool is_gimple_reg_rhs (tree);
extern bool is_gimple_mem_rhs (tree);
/* Returns true iff T is a valid if-statement condition. */
extern bool is_gimple_condexpr (tree);
/* Returns true iff T is a type conversion. */
extern bool is_gimple_cast (tree);
/* Returns true iff T is a variable that does not need to live in memory. */
extern bool is_gimple_non_addressable (tree t);
/* Returns true iff T is a valid call address expression. */
extern bool is_gimple_call_addr (tree);
/* If T makes a function call, returns the CALL_EXPR operand. */
extern tree get_call_expr_in (tree t);
extern void recalculate_side_effects (tree);
/* In gimplify.c */
extern tree create_tmp_var_raw (tree, const char *);
extern tree create_tmp_var_name (const char *);
extern tree create_tmp_var (tree, const char *);
extern tree get_initialized_tmp_var (tree, gimple_seq *, gimple_seq *);
extern tree get_formal_tmp_var (tree, gimple_seq *);
extern void declare_vars (tree, gimple, bool);
extern void tree_annotate_all_with_location (tree *, location_t);
extern void annotate_all_with_location (gimple_seq, location_t);
/* Validation of GIMPLE expressions. Note that these predicates only check
the basic form of the expression, they don't recurse to make sure that
underlying nodes are also of the right form. */
typedef bool (*gimple_predicate)(tree);
/* FIXME we should deduce this from the predicate. */
typedef enum fallback_t {
fb_none = 0, /* Do not generate a temporary. */
fb_rvalue = 1, /* Generate an rvalue to hold the result of a
gimplified expression. */
fb_lvalue = 2, /* Generate an lvalue to hold the result of a
gimplified expression. */
fb_mayfail = 4, /* Gimplification may fail. Error issued
afterwards. */
fb_either= fb_rvalue | fb_lvalue
} fallback_t;
enum gimplify_status {
GS_ERROR = -2, /* Something Bad Seen. */
GS_UNHANDLED = -1, /* A langhook result for "I dunno". */
GS_OK = 0, /* We did something, maybe more to do. */
GS_ALL_DONE = 1 /* The expression is fully gimplified. */
};
struct gimplify_ctx
{
struct gimplify_ctx *prev_context;
VEC(gimple,heap) *bind_expr_stack;
tree temps;
gimple_seq conditional_cleanups;
tree exit_label;
tree return_temp;
VEC(tree,heap) *case_labels;
/* The formal temporary table. Should this be persistent? */
htab_t temp_htab;
int conditions;
bool save_stack;
bool into_ssa;
bool allow_rhs_cond_expr;
};
extern enum gimplify_status gimplify_expr (tree *, gimple_seq *, gimple_seq *,
bool (*) (tree), fallback_t);
extern void gimplify_type_sizes (tree, gimple_seq *);
extern void gimplify_one_sizepos (tree *, gimple_seq *);
extern bool gimplify_stmt (tree *, gimple_seq *);
extern gimple gimplify_body (tree *, tree, bool);
extern void push_gimplify_context (struct gimplify_ctx *);
extern void pop_gimplify_context (gimple);
extern void gimplify_and_add (tree, gimple_seq *);
/* Miscellaneous helpers. */
extern void gimple_add_tmp_var (tree);
extern gimple gimple_current_bind_expr (void);
extern VEC(gimple, heap) *gimple_bind_expr_stack (void);
extern tree voidify_wrapper_expr (tree, tree);
extern tree build_and_jump (tree *);
extern tree alloc_stmt_list (void);
extern void free_stmt_list (tree);
extern tree force_labels_r (tree *, int *, void *);
extern enum gimplify_status gimplify_va_arg_expr (tree *, gimple_seq *,
gimple_seq *);
struct gimplify_omp_ctx;
extern void omp_firstprivatize_variable (struct gimplify_omp_ctx *, tree);
extern tree gimple_boolify (tree);
extern gimple_predicate rhs_predicate_for (tree);
extern tree canonicalize_cond_expr_cond (tree);
/* In omp-low.c. */
extern void diagnose_omp_structured_block_errors (tree);
extern tree omp_reduction_init (tree, tree);
/* In tree-nested.c. */
extern void lower_nested_functions (tree);
extern void insert_field_into_struct (tree, tree);
/* In gimplify.c. */
extern void gimplify_function_tree (tree);
/* In cfgexpand.c. */
extern tree gimple_assign_rhs_to_tree (gimple);
/* In builtins.c */
extern bool validate_gimple_arglist (const_gimple, ...);
/* In tree-ssa-operands.c */
extern void gimple_add_to_addresses_taken (gimple, tree);
/* In tree-ssa.c */
extern bool tree_ssa_useless_type_conversion (tree);
extern bool useless_type_conversion_p (tree, tree);
extern bool types_compatible_p (tree, tree);
/* Return the code for GIMPLE statement G. */
static inline enum gimple_code
gimple_code (const_gimple g)
{
return g->gsbase.code;
}
/* Return true if statement G has sub-statements. This is only true for
High GIMPLE statements. */
static inline bool
gimple_has_substatements (gimple g)
{
switch (gimple_code (g))
{
case GIMPLE_BIND:
case GIMPLE_CATCH:
case GIMPLE_EH_FILTER:
case GIMPLE_TRY:
case GIMPLE_OMP_FOR:
case GIMPLE_OMP_MASTER:
case GIMPLE_OMP_ORDERED:
case GIMPLE_OMP_SECTION:
case GIMPLE_OMP_PARALLEL:
case GIMPLE_OMP_TASK:
case GIMPLE_OMP_SECTIONS:
case GIMPLE_OMP_SINGLE:
case GIMPLE_OMP_CRITICAL:
case GIMPLE_WITH_CLEANUP_EXPR:
return true;
default:
return false;
}
}
/* Return the basic block holding statement G. */
static inline struct basic_block_def *
gimple_bb (const_gimple g)
{
return g->gsbase.bb;
}
/* Return the lexical scope block holding statement G. */
static inline tree
gimple_block (const_gimple g)
{
return g->gsbase.block;
}
/* Set BLOCK to be the lexical scope block holding statement G. */
static inline void
gimple_set_block (gimple g, tree block)
{
g->gsbase.block = block;
}
/* Return location information for statement G. */
static inline location_t
gimple_location (const_gimple g)
{
return g->gsbase.location;
}
/* Return pointer to location information for statement G. */
static inline const location_t *
gimple_location_ptr (const_gimple g)
{
return &g->gsbase.location;
}
/* Set location information for statement G. */
static inline void
gimple_set_location (gimple g, location_t location)
{
g->gsbase.location = location;
}
/* Return true if G contains location information. */
static inline bool
gimple_has_location (const_gimple g)
{
return gimple_location (g) != UNKNOWN_LOCATION;
}
/* Return the file name of the location of STMT. */
static inline const char *
gimple_filename (const_gimple stmt)
{
return LOCATION_FILE (gimple_location (stmt));
}
/* Return the line number of the location of STMT. */
static inline int
gimple_lineno (const_gimple stmt)
{
return LOCATION_LINE (gimple_location (stmt));
}
/* Determine whether SEQ is a singleton. */
static inline bool
gimple_seq_singleton_p (gimple_seq seq)
{
return ((gimple_seq_first (seq) != NULL)
&& (gimple_seq_first (seq) == gimple_seq_last (seq)));
}
/* Return true if no warnings should be emitted for statement STMT. */
static inline bool
gimple_no_warning_p (const_gimple stmt)
{
return stmt->gsbase.no_warning;
}
/* Set the no_warning flag of STMT to NO_WARNING. */
static inline void
gimple_set_no_warning (gimple stmt, bool no_warning)
{
stmt->gsbase.no_warning = (unsigned) no_warning;
}
/* Set the visited status on statement STMT to VISITED_P. */
static inline void
gimple_set_visited (gimple stmt, bool visited_p)
{
stmt->gsbase.visited = (unsigned) visited_p;
}
/* Return the visited status for statement STMT. */
static inline bool
gimple_visited_p (gimple stmt)
{
return stmt->gsbase.visited;
}
/* Set pass local flag PLF on statement STMT to VAL_P. */
static inline void
gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p)
{
if (val_p)
stmt->gsbase.plf |= (unsigned int) plf;
else
stmt->gsbase.plf &= ~((unsigned int) plf);
}
/* Return the value of pass local flag PLF on statement STMT. */
static inline unsigned int
gimple_plf (gimple stmt, enum plf_mask plf)
{
return stmt->gsbase.plf & ((unsigned int) plf);
}
/* Set the UID of statement. */
static inline void
gimple_set_uid (gimple g, unsigned uid)
{
g->gsbase.uid = uid;
}
/* Return the UID of statement. */
static inline unsigned
gimple_uid (const_gimple g)
{
return g->gsbase.uid;
}
/* Return true if GIMPLE statement G has register or memory operands. */
static inline bool
gimple_has_ops (const_gimple g)
{
return gimple_code (g) >= GIMPLE_COND && gimple_code (g) <= GIMPLE_RETURN;
}
/* Return true if GIMPLE statement G has memory operands. */
static inline bool
gimple_has_mem_ops (const_gimple g)
{
return gimple_code (g) >= GIMPLE_ASSIGN && gimple_code (g) <= GIMPLE_RETURN;
}
/* Return the set of addresses taken by statement G. */
static inline bitmap
gimple_addresses_taken (const_gimple g)
{
if (gimple_has_ops (g))
return g->gsops.opbase.addresses_taken;
else
return NULL;
}
/* Return a pointer to the set of addresses taken by statement G. */
static inline bitmap *
gimple_addresses_taken_ptr (gimple g)
{
if (gimple_has_ops (g))
return &g->gsops.opbase.addresses_taken;
else
return NULL;
}
/* Set B to be the set of addresses taken by statement G. The
previous set is freed. */
static inline void
gimple_set_addresses_taken (gimple g, bitmap b)
{
gcc_assert (gimple_has_ops (g));
BITMAP_FREE (g->gsops.opbase.addresses_taken);
g->gsops.opbase.addresses_taken = b;
}
/* Return the set of DEF operands for statement G. */
static inline struct def_optype_d *
gimple_def_ops (const_gimple g)
{
if (!gimple_has_ops (g))
return NULL;
return g->gsops.opbase.def_ops;
}
/* Set DEF to be the set of DEF operands for statement G. */
static inline void
gimple_set_def_ops (gimple g, struct def_optype_d *def)
{
gcc_assert (gimple_has_ops (g));
g->gsops.opbase.def_ops = def;
}
/* Return the set of USE operands for statement G. */
static inline struct use_optype_d *
gimple_use_ops (const_gimple g)
{
if (!gimple_has_ops (g))
return NULL;
return g->gsops.opbase.use_ops;
}
/* Set USE to be the set of USE operands for statement G. */
static inline void
gimple_set_use_ops (gimple g, struct use_optype_d *use)
{
gcc_assert (gimple_has_ops (g));
g->gsops.opbase.use_ops = use;
}
/* Return the set of VUSE operands for statement G. */
static inline struct voptype_d *
gimple_vuse_ops (const_gimple g)
{
if (!gimple_has_mem_ops (g))
return NULL;
return g->gsmem.membase.vuse_ops;
}
/* Set OPS to be the set of VUSE operands for statement G. */
static inline void
gimple_set_vuse_ops (gimple g, struct voptype_d *ops)
{
gcc_assert (gimple_has_mem_ops (g));
g->gsmem.membase.vuse_ops = ops;
}
/* Return the set of VDEF operands for statement G. */
static inline struct voptype_d *
gimple_vdef_ops (const_gimple g)
{
if (!gimple_has_mem_ops (g))
return NULL;
return g->gsmem.membase.vdef_ops;
}
/* Set OPS to be the set of VDEF operands for statement G. */
static inline void
gimple_set_vdef_ops (gimple g, struct voptype_d *ops)
{
gcc_assert (gimple_has_mem_ops (g));
g->gsmem.membase.vdef_ops = ops;
}
/* Return the set of symbols loaded by statement G. Each element of the
set is the DECL_UID of the corresponding symbol. */
static inline bitmap
gimple_loaded_syms (const_gimple g)
{
if (!gimple_has_mem_ops (g))
return NULL;
return g->gsmem.membase.loads;
}
/* Return the set of symbols stored by statement G. Each element of
the set is the DECL_UID of the corresponding symbol. */
static inline bitmap
gimple_stored_syms (const_gimple g)
{
if (!gimple_has_mem_ops (g))
return NULL;
return g->gsmem.membase.stores;
}
/* Return true if statement G has operands and the modified field has
been set. */
static inline bool
gimple_modified_p (const_gimple g)
{
return (gimple_has_ops (g)) ? (bool) g->gsbase.modified : false;
}
/* Return the tree code for the expression computed by STMT. This is
only valid for GIMPLE_COND, GIMPLE_CALL and GIMPLE_ASSIGN. For
GIMPLE_CALL, return CALL_EXPR as the expression code for
consistency. This is useful when the caller needs to deal with the
three kinds of computation that GIMPLE supports. */
static inline enum tree_code
gimple_expr_code (const_gimple stmt)
{
enum gimple_code code = gimple_code (stmt);
if (code == GIMPLE_ASSIGN || code == GIMPLE_COND)
return (enum tree_code) stmt->gsbase.subcode;
else if (code == GIMPLE_CALL)
return CALL_EXPR;
else
gcc_unreachable ();
}
/* Mark statement S as modified, and update it. */
static inline void
update_stmt (gimple s)
{
if (gimple_has_ops (s))
{
gimple_set_modified (s, true);
update_stmt_operands (s);
}
}
/* Update statement S if it has been optimized. */
static inline void
update_stmt_if_modified (gimple s)
{
if (gimple_modified_p (s))
update_stmt_operands (s);
}
/* Return true if statement STMT contains volatile operands. */
static inline bool
gimple_has_volatile_ops (const_gimple stmt)
{
if (gimple_has_mem_ops (stmt))
return stmt->gsbase.has_volatile_ops;
else
return false;
}
/* Set the HAS_VOLATILE_OPS flag to VOLATILEP. */
static inline void
gimple_set_has_volatile_ops (gimple stmt, bool volatilep)
{
if (gimple_has_mem_ops (stmt))
stmt->gsbase.has_volatile_ops = (unsigned) volatilep;
}
/* Return true if statement STMT may access memory. */
static inline bool
gimple_references_memory_p (gimple stmt)
{
return gimple_has_mem_ops (stmt) && stmt->gsbase.references_memory_p;
}
/* Set the REFERENCES_MEMORY_P flag for STMT to MEM_P. */
static inline void
gimple_set_references_memory (gimple stmt, bool mem_p)
{
if (gimple_has_mem_ops (stmt))
stmt->gsbase.references_memory_p = (unsigned) mem_p;
}
/* Return the subcode for OMP statement S. */
static inline unsigned
gimple_omp_subcode (const_gimple s)
{
gcc_assert (gimple_code (s) >= GIMPLE_OMP_ATOMIC_LOAD
&& gimple_code (s) <= GIMPLE_OMP_SINGLE);
return s->gsbase.subcode;
}
/* Set the subcode for OMP statement S to SUBCODE. */
static inline void
gimple_omp_set_subcode (gimple s, unsigned int subcode)
{
/* We only have 16 bits for the subcode. Assert that we are not
overflowing it. */
gcc_assert (subcode < (1 << 16));
s->gsbase.subcode = subcode;
}
/* Set the nowait flag on OMP_RETURN statement S. */
static inline void
gimple_omp_return_set_nowait (gimple s)
{
GIMPLE_CHECK (s, GIMPLE_OMP_RETURN);
s->gsbase.subcode |= GF_OMP_RETURN_NOWAIT;
}
/* Return true if OMP return statement G has the GF_OMP_RETURN_NOWAIT
flag set. */
static inline bool
gimple_omp_return_nowait_p (const_gimple g)
{
GIMPLE_CHECK (g, GIMPLE_OMP_RETURN);
return (gimple_omp_subcode (g) & GF_OMP_RETURN_NOWAIT) != 0;
}
/* Return true if OMP section statement G has the GF_OMP_SECTION_LAST
flag set. */
static inline bool
gimple_omp_section_last_p (const_gimple g)
{
GIMPLE_CHECK (g, GIMPLE_OMP_SECTION);
return (gimple_omp_subcode (g) & GF_OMP_SECTION_LAST) != 0;
}
/* Set the GF_OMP_SECTION_LAST flag on G. */
static inline void
gimple_omp_section_set_last (gimple g)
{
GIMPLE_CHECK (g, GIMPLE_OMP_SECTION);
g->gsbase.subcode |= GF_OMP_SECTION_LAST;
}
/* Return true if OMP parallel statement G has the
GF_OMP_PARALLEL_COMBINED flag set. */
static inline bool
gimple_omp_parallel_combined_p (const_gimple g)
{
GIMPLE_CHECK (g, GIMPLE_OMP_PARALLEL);
return (gimple_omp_subcode (g) & GF_OMP_PARALLEL_COMBINED) != 0;
}
/* Set the GF_OMP_PARALLEL_COMBINED field in G depending on the boolean
value of COMBINED_P. */
static inline void
gimple_omp_parallel_set_combined_p (gimple g, bool combined_p)
{
GIMPLE_CHECK (g, GIMPLE_OMP_PARALLEL);
if (combined_p)
g->gsbase.subcode |= GF_OMP_PARALLEL_COMBINED;
else
g->gsbase.subcode &= ~GF_OMP_PARALLEL_COMBINED;
}
/* Return the number of operands for statement GS. */
static inline unsigned
gimple_num_ops (const_gimple gs)
{
return gs->gsbase.num_ops;
}
/* Set the number of operands for statement GS. */
static inline void
gimple_set_num_ops (gimple gs, unsigned num_ops)
{
gs->gsbase.num_ops = num_ops;
}
/* Return the array of operands for statement GS. */
static inline tree *
gimple_ops (gimple gs)
{
/* Offset in bytes to the location of the operand vector in every
tuple structure. Defined in gimple.c */
extern size_t const gimple_ops_offset_[];
if (!gimple_has_ops (gs))
return NULL;
/* All the tuples have their operand vector at the very bottom
of the structure. */
return ((tree *) ((char *) gs + gimple_ops_offset_[gimple_code (gs)]));
}
/* Return operand I for statement GS. */
static inline tree
gimple_op (const_gimple gs, unsigned i)
{
if (gimple_has_ops (gs))
{
gcc_assert (i < gimple_num_ops (gs));
return gimple_ops (CONST_CAST_GIMPLE (gs))[i];
}
else
return NULL_TREE;
}
/* Return a pointer to operand I for statement GS. */
static inline tree *
gimple_op_ptr (const_gimple gs, unsigned i)
{
if (gimple_has_ops (gs))
{
gcc_assert (i < gimple_num_ops (gs));
return gimple_ops (CONST_CAST_GIMPLE (gs)) + i;
}
else
return NULL;
}
/* Set operand I of statement GS to OP. */
static inline void
gimple_set_op (gimple gs, unsigned i, tree op)
{
gcc_assert (gimple_has_ops (gs) && i < gimple_num_ops (gs));
/* Note. It may be tempting to assert that OP matches
is_gimple_operand, but that would be wrong. Different tuples
accept slightly different sets of tree operands. Each caller
should perform its own validation. */
gimple_ops (gs)[i] = op;
}
/* Return true if GS is a GIMPLE_ASSIGN. */
static inline bool
is_gimple_assign (const_gimple gs)
{
return gimple_code (gs) == GIMPLE_ASSIGN;
}
/* Determine if expression CODE is one of the valid expressions that can
be used on the RHS of GIMPLE assignments. */
static inline enum gimple_rhs_class
get_gimple_rhs_class (enum tree_code code)
{
return (enum gimple_rhs_class) gimple_rhs_class_table[(int) code];
}
/* Return the LHS of assignment statement GS. */
static inline tree
gimple_assign_lhs (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
return gimple_op (gs, 0);
}
/* Return a pointer to the LHS of assignment statement GS. */
static inline tree *
gimple_assign_lhs_ptr (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
return gimple_op_ptr (gs, 0);
}
/* Set LHS to be the LHS operand of assignment statement GS. */
static inline void
gimple_assign_set_lhs (gimple gs, tree lhs)
{
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
gcc_assert (is_gimple_operand (lhs));
gimple_set_op (gs, 0, lhs);
if (lhs && TREE_CODE (lhs) == SSA_NAME)
SSA_NAME_DEF_STMT (lhs) = gs;
}
/* Return the first operand on the RHS of assignment statement GS. */
static inline tree
gimple_assign_rhs1 (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
return gimple_op (gs, 1);
}
/* Return a pointer to the first operand on the RHS of assignment
statement GS. */
static inline tree *
gimple_assign_rhs1_ptr (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
return gimple_op_ptr (gs, 1);
}
/* Set RHS to be the first operand on the RHS of assignment statement GS. */
static inline void
gimple_assign_set_rhs1 (gimple gs, tree rhs)
{
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
/* If there are 3 or more operands, the 2 operands on the RHS must be
GIMPLE values. */
if (gimple_num_ops (gs) >= 3)
gcc_assert (is_gimple_val (rhs));
else
gcc_assert (is_gimple_operand (rhs));
gimple_set_op (gs, 1, rhs);
}
/* Return the second operand on the RHS of assignment statement GS.
If GS does not have two operands, NULL is returned instead. */
static inline tree
gimple_assign_rhs2 (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
if (gimple_num_ops (gs) >= 3)
return gimple_op (gs, 2);
else
return NULL_TREE;
}
/* Return a pointer to the second operand on the RHS of assignment
statement GS. */
static inline tree *
gimple_assign_rhs2_ptr (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
return gimple_op_ptr (gs, 2);
}
/* Set RHS to be the second operand on the RHS of assignment statement GS. */
static inline void
gimple_assign_set_rhs2 (gimple gs, tree rhs)
{
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
/* The 2 operands on the RHS must be GIMPLE values. */
gcc_assert (is_gimple_val (rhs));
gimple_set_op (gs, 2, rhs);
}
/* Returns true if GS is a nontemporal move. */
static inline bool
gimple_assign_nontemporal_move_p (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
return gs->gsbase.nontemporal_move;
}
/* Sets nontemporal move flag of GS to NONTEMPORAL. */
static inline void
gimple_assign_set_nontemporal_move (gimple gs, bool nontemporal)
{
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
gs->gsbase.nontemporal_move = nontemporal;
}
/* Return the code of the expression computed on the rhs of assignment
statement GS. In case that the RHS is a single object, returns the
tree code of the object. */
static inline enum tree_code
gimple_assign_rhs_code (const_gimple gs)
{
enum tree_code code;
GIMPLE_CHECK (gs, GIMPLE_ASSIGN);
code = gimple_expr_code (gs);
if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
code = TREE_CODE (gimple_assign_rhs1 (gs));
return code;
}
/* Set CODE to be the code for the expression computed on the RHS of
assignment S. */
static inline void
gimple_assign_set_rhs_code (gimple s, enum tree_code code)
{
GIMPLE_CHECK (s, GIMPLE_ASSIGN);
s->gsbase.subcode = code;
}
/* Return the gimple rhs class of the code of the expression computed on
the rhs of assignment statement GS.
This will never return GIMPLE_INVALID_RHS. */
static inline enum gimple_rhs_class
gimple_assign_rhs_class (const_gimple gs)
{
return get_gimple_rhs_class (gimple_assign_rhs_code (gs));
}
/* Return true if S is a type-cast assignment. */
static inline bool
gimple_assign_cast_p (gimple s)
{
if (is_gimple_assign (s))
{
enum tree_code sc = gimple_assign_rhs_code (s);
return CONVERT_EXPR_CODE_P (sc)
|| sc == VIEW_CONVERT_EXPR
|| sc == FIX_TRUNC_EXPR;
}
return false;
}
/* Return true if GS is a GIMPLE_CALL. */
static inline bool
is_gimple_call (const_gimple gs)
{
return gimple_code (gs) == GIMPLE_CALL;
}
/* Return the LHS of call statement GS. */
static inline tree
gimple_call_lhs (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
return gimple_op (gs, 0);
}
/* Return a pointer to the LHS of call statement GS. */
static inline tree *
gimple_call_lhs_ptr (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
return gimple_op_ptr (gs, 0);
}
/* Set LHS to be the LHS operand of call statement GS. */
static inline void
gimple_call_set_lhs (gimple gs, tree lhs)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
gcc_assert (!lhs || is_gimple_operand (lhs));
gimple_set_op (gs, 0, lhs);
if (lhs && TREE_CODE (lhs) == SSA_NAME)
SSA_NAME_DEF_STMT (lhs) = gs;
}
/* Return the tree node representing the function called by call
statement GS. */
static inline tree
gimple_call_fn (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
return gimple_op (gs, 1);
}
/* Return a pointer to the tree node representing the function called by call
statement GS. */
static inline tree *
gimple_call_fn_ptr (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
return gimple_op_ptr (gs, 1);
}
/* Set FN to be the function called by call statement GS. */
static inline void
gimple_call_set_fn (gimple gs, tree fn)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
gcc_assert (is_gimple_operand (fn));
gimple_set_op (gs, 1, fn);
}
/* Set FNDECL to be the function called by call statement GS. */
static inline void
gimple_call_set_fndecl (gimple gs, tree decl)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
gimple_set_op (gs, 1, build_fold_addr_expr (decl));
}
/* If a given GIMPLE_CALL's callee is a FUNCTION_DECL, return it.
Otherwise return NULL. This function is analogous to
get_callee_fndecl in tree land. */
static inline tree
gimple_call_fndecl (const_gimple gs)
{
tree addr = gimple_call_fn (gs);
if (TREE_CODE (addr) == ADDR_EXPR)
{
gcc_assert (TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL);
return TREE_OPERAND (addr, 0);
}
return NULL_TREE;
}
/* Return the type returned by call statement GS. */
static inline tree
gimple_call_return_type (const_gimple gs)
{
tree fn = gimple_call_fn (gs);
tree type = TREE_TYPE (fn);
/* See through the pointer. */
gcc_assert (POINTER_TYPE_P (type));
type = TREE_TYPE (type);
gcc_assert (TREE_CODE (type) == FUNCTION_TYPE
|| TREE_CODE (type) == METHOD_TYPE);
/* The type returned by a FUNCTION_DECL is the type of its
function type. */
return TREE_TYPE (type);
}
/* Return the static chain for call statement GS. */
static inline tree
gimple_call_chain (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
return gimple_op (gs, 2);
}
/* Return a pointer to the static chain for call statement GS. */
static inline tree *
gimple_call_chain_ptr (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
return gimple_op_ptr (gs, 2);
}
/* Set CHAIN to be the static chain for call statement GS. */
static inline void
gimple_call_set_chain (gimple gs, tree chain)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
gcc_assert (chain == NULL
|| TREE_CODE (chain) == ADDR_EXPR
|| SSA_VAR_P (chain));
gimple_set_op (gs, 2, chain);
}
/* Return the number of arguments used by call statement GS. */
static inline unsigned
gimple_call_num_args (const_gimple gs)
{
unsigned num_ops;
GIMPLE_CHECK (gs, GIMPLE_CALL);
num_ops = gimple_num_ops (gs);
gcc_assert (num_ops >= 3);
return num_ops - 3;
}
/* Return the argument at position INDEX for call statement GS. */
static inline tree
gimple_call_arg (const_gimple gs, unsigned index)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
return gimple_op (gs, index + 3);
}
/* Return a pointer to the argument at position INDEX for call
statement GS. */
static inline tree *
gimple_call_arg_ptr (const_gimple gs, unsigned index)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
return gimple_op_ptr (gs, index + 3);
}
/* Set ARG to be the argument at position INDEX for call statement GS. */
static inline void
gimple_call_set_arg (gimple gs, unsigned index, tree arg)
{
GIMPLE_CHECK (gs, GIMPLE_CALL);
gcc_assert (is_gimple_operand (arg));
gimple_set_op (gs, index + 3, arg);
}
/* If TAIL_P is true, mark call statement S as being a tail call
(i.e., a call just before the exit of a function). These calls are
candidate for tail call optimization. */
static inline void
gimple_call_set_tail (gimple s, bool tail_p)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
if (tail_p)
s->gsbase.subcode |= GF_CALL_TAILCALL;
else
s->gsbase.subcode &= ~GF_CALL_TAILCALL;
}
/* Return true if GIMPLE_CALL S is marked as a tail call. */
static inline bool
gimple_call_tail_p (gimple s)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
return (s->gsbase.subcode & GF_CALL_TAILCALL) != 0;
}
/* Set the inlinable status of GIMPLE_CALL S to INLINABLE_P. */
static inline void
gimple_call_set_cannot_inline (gimple s, bool inlinable_p)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
if (inlinable_p)
s->gsbase.subcode |= GF_CALL_CANNOT_INLINE;
else
s->gsbase.subcode &= ~GF_CALL_CANNOT_INLINE;
}
/* Return true if GIMPLE_CALL S cannot be inlined. */
static inline bool
gimple_call_cannot_inline_p (gimple s)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
return (s->gsbase.subcode & GF_CALL_CANNOT_INLINE) != 0;
}
/* If RETURN_SLOT_OPT_P is true mark GIMPLE_CALL S as valid for return
slot optimization. This transformation uses the target of the call
expansion as the return slot for calls that return in memory. */
static inline void
gimple_call_set_return_slot_opt (gimple s, bool return_slot_opt_p)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
if (return_slot_opt_p)
s->gsbase.subcode |= GF_CALL_RETURN_SLOT_OPT;
else
s->gsbase.subcode &= ~GF_CALL_RETURN_SLOT_OPT;
}
/* Return true if S is marked for return slot optimization. */
static inline bool
gimple_call_return_slot_opt_p (gimple s)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
return (s->gsbase.subcode & GF_CALL_RETURN_SLOT_OPT) != 0;
}
/* If FROM_THUNK_P is true, mark GIMPLE_CALL S as being the jump from a
thunk to the thunked-to function. */
static inline void
gimple_call_set_from_thunk (gimple s, bool from_thunk_p)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
if (from_thunk_p)
s->gsbase.subcode |= GF_CALL_FROM_THUNK;
else
s->gsbase.subcode &= ~GF_CALL_FROM_THUNK;
}
/* Return true if GIMPLE_CALL S is a jump from a thunk. */
static inline bool
gimple_call_from_thunk_p (gimple s)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
return (s->gsbase.subcode & GF_CALL_FROM_THUNK) != 0;
}
/* If PASS_ARG_PACK_P is true, GIMPLE_CALL S is a stdarg call that needs the
argument pack in its argument list. */
static inline void
gimple_call_set_va_arg_pack (gimple s, bool pass_arg_pack_p)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
if (pass_arg_pack_p)
s->gsbase.subcode |= GF_CALL_VA_ARG_PACK;
else
s->gsbase.subcode &= ~GF_CALL_VA_ARG_PACK;
}
/* Return true if GIMPLE_CALL S is a stdarg call that needs the
argument pack in its argument list. */
static inline bool
gimple_call_va_arg_pack_p (gimple s)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
return (s->gsbase.subcode & GF_CALL_VA_ARG_PACK) != 0;
}
/* Return true if S is a noreturn call. */
static inline bool
gimple_call_noreturn_p (gimple s)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
return (gimple_call_flags (s) & ECF_NORETURN) != 0;
}
/* Return true if S is a nothrow call. */
static inline bool
gimple_call_nothrow_p (gimple s)
{
GIMPLE_CHECK (s, GIMPLE_CALL);
return (gimple_call_flags (s) & ECF_NOTHROW) != 0;
}
/* Copy all the GF_CALL_* flags from ORIG_CALL to DEST_CALL. */
static inline void
gimple_call_copy_flags (gimple dest_call, gimple orig_call)
{
GIMPLE_CHECK (dest_call, GIMPLE_CALL);
GIMPLE_CHECK (orig_call, GIMPLE_CALL);
dest_call->gsbase.subcode = orig_call->gsbase.subcode;
}
/* Returns true if this is a GIMPLE_ASSIGN or a GIMPLE_CALL with a
non-NULL lhs. */
static inline bool
gimple_has_lhs (gimple stmt)
{
return (is_gimple_assign (stmt)
|| (is_gimple_call (stmt)
&& gimple_call_lhs (stmt) != NULL_TREE));
}
/* Return the code of the predicate computed by conditional statement GS. */
static inline enum tree_code
gimple_cond_code (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
return gs->gsbase.subcode;
}
/* Set CODE to be the predicate code for the conditional statement GS. */
static inline void
gimple_cond_set_code (gimple gs, enum tree_code code)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
gs->gsbase.subcode = code;
}
/* Return the LHS of the predicate computed by conditional statement GS. */
static inline tree
gimple_cond_lhs (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
return gimple_op (gs, 0);
}
/* Return the pointer to the LHS of the predicate computed by conditional
statement GS. */
static inline tree *
gimple_cond_lhs_ptr (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
return gimple_op_ptr (gs, 0);
}
/* Set LHS to be the LHS operand of the predicate computed by
conditional statement GS. */
static inline void
gimple_cond_set_lhs (gimple gs, tree lhs)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
gcc_assert (is_gimple_operand (lhs));
gimple_set_op (gs, 0, lhs);
}
/* Return the RHS operand of the predicate computed by conditional GS. */
static inline tree
gimple_cond_rhs (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
return gimple_op (gs, 1);
}
/* Return the pointer to the RHS operand of the predicate computed by
conditional GS. */
static inline tree *
gimple_cond_rhs_ptr (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
return gimple_op_ptr (gs, 1);
}
/* Set RHS to be the RHS operand of the predicate computed by
conditional statement GS. */
static inline void
gimple_cond_set_rhs (gimple gs, tree rhs)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
gcc_assert (is_gimple_operand (rhs));
gimple_set_op (gs, 1, rhs);
}
/* Return the label used by conditional statement GS when its
predicate evaluates to true. */
static inline tree
gimple_cond_true_label (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
return gimple_op (gs, 2);
}
/* Set LABEL to be the label used by conditional statement GS when its
predicate evaluates to true. */
static inline void
gimple_cond_set_true_label (gimple gs, tree label)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
gcc_assert (!label || TREE_CODE (label) == LABEL_DECL);
gimple_set_op (gs, 2, label);
}
/* Set LABEL to be the label used by conditional statement GS when its
predicate evaluates to false. */
static inline void
gimple_cond_set_false_label (gimple gs, tree label)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
gcc_assert (!label || TREE_CODE (label) == LABEL_DECL);
gimple_set_op (gs, 3, label);
}
/* Return the label used by conditional statement GS when its
predicate evaluates to false. */
static inline tree
gimple_cond_false_label (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_COND);
return gimple_op (gs, 3);
}
/* Set the conditional COND_STMT to be of the form 'if (1 == 0)'. */
static inline void
gimple_cond_make_false (gimple gs)
{
gimple_cond_set_lhs (gs, boolean_true_node);
gimple_cond_set_rhs (gs, boolean_false_node);
gs->gsbase.subcode = EQ_EXPR;
}
/* Set the conditional COND_STMT to be of the form 'if (1 == 1)'. */
static inline void
gimple_cond_make_true (gimple gs)
{
gimple_cond_set_lhs (gs, boolean_true_node);
gimple_cond_set_rhs (gs, boolean_true_node);
gs->gsbase.subcode = EQ_EXPR;
}
/* Check if conditional statemente GS is of the form 'if (1 == 1)',
'if (0 == 0)', 'if (1 != 0)' or 'if (0 != 1)' */
static inline bool
gimple_cond_true_p (const_gimple gs)
{
tree lhs = gimple_cond_lhs (gs);
tree rhs = gimple_cond_rhs (gs);
enum tree_code code = gimple_cond_code (gs);
if (lhs != boolean_true_node && lhs != boolean_false_node)
return false;
if (rhs != boolean_true_node && rhs != boolean_false_node)
return false;
if (code == NE_EXPR && lhs != rhs)
return true;
if (code == EQ_EXPR && lhs == rhs)
return true;
return false;
}
/* Check if conditional statement GS is of the form 'if (1 != 1)',
'if (0 != 0)', 'if (1 == 0)' or 'if (0 == 1)' */
static inline bool
gimple_cond_false_p (const_gimple gs)
{
tree lhs = gimple_cond_lhs (gs);
tree rhs = gimple_cond_rhs (gs);
enum tree_code code = gimple_cond_code (gs);
if (lhs != boolean_true_node && lhs != boolean_false_node)
return false;
if (rhs != boolean_true_node && rhs != boolean_false_node)
return false;
if (code == NE_EXPR && lhs == rhs)
return true;
if (code == EQ_EXPR && lhs != rhs)
return true;
return false;
}
/* Check if conditional statement GS is of the form 'if (var != 0)' or
'if (var == 1)' */
static inline bool
gimple_cond_single_var_p (gimple gs)
{
if (gimple_cond_code (gs) == NE_EXPR
&& gimple_cond_rhs (gs) == boolean_false_node)
return true;
if (gimple_cond_code (gs) == EQ_EXPR
&& gimple_cond_rhs (gs) == boolean_true_node)
return true;
return false;
}
/* Set the code, LHS and RHS of GIMPLE_COND STMT from CODE, LHS and RHS. */
static inline void
gimple_cond_set_condition (gimple stmt, enum tree_code code, tree lhs, tree rhs)
{
gimple_cond_set_code (stmt, code);
gimple_cond_set_lhs (stmt, lhs);
gimple_cond_set_rhs (stmt, rhs);
}
/* Return the LABEL_DECL node used by GIMPLE_LABEL statement GS. */
static inline tree
gimple_label_label (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_LABEL);
return gimple_op (gs, 0);
}
/* Set LABEL to be the LABEL_DECL node used by GIMPLE_LABEL statement
GS. */
static inline void
gimple_label_set_label (gimple gs, tree label)
{
GIMPLE_CHECK (gs, GIMPLE_LABEL);
gcc_assert (TREE_CODE (label) == LABEL_DECL);
gimple_set_op (gs, 0, label);
}
/* Return the destination of the unconditional jump GS. */
static inline tree
gimple_goto_dest (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_GOTO);
return gimple_op (gs, 0);
}
/* Set DEST to be the destination of the unconditonal jump GS. */
static inline void
gimple_goto_set_dest (gimple gs, tree dest)
{
GIMPLE_CHECK (gs, GIMPLE_GOTO);
gcc_assert (is_gimple_operand (dest));
gimple_set_op (gs, 0, dest);
}
/* Return the variables declared in the GIMPLE_BIND statement GS. */
static inline tree
gimple_bind_vars (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_BIND);
return gs->gimple_bind.vars;
}
/* Set VARS to be the set of variables declared in the GIMPLE_BIND
statement GS. */
static inline void
gimple_bind_set_vars (gimple gs, tree vars)
{
GIMPLE_CHECK (gs, GIMPLE_BIND);
gs->gimple_bind.vars = vars;
}
/* Append VARS to the set of variables declared in the GIMPLE_BIND
statement GS. */
static inline void
gimple_bind_append_vars (gimple gs, tree vars)
{
GIMPLE_CHECK (gs, GIMPLE_BIND);
gs->gimple_bind.vars = chainon (gs->gimple_bind.vars, vars);
}
/* Return the GIMPLE sequence contained in the GIMPLE_BIND statement GS. */
static inline gimple_seq
gimple_bind_body (gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_BIND);
return gs->gimple_bind.body;
}
/* Set SEQ to be the GIMPLE sequence contained in the GIMPLE_BIND
statement GS. */
static inline void
gimple_bind_set_body (gimple gs, gimple_seq seq)
{
GIMPLE_CHECK (gs, GIMPLE_BIND);
gs->gimple_bind.body = seq;
}
/* Append a statement to the end of a GIMPLE_BIND's body. */
static inline void
gimple_bind_add_stmt (gimple gs, gimple stmt)
{
GIMPLE_CHECK (gs, GIMPLE_BIND);
gimple_seq_add_stmt (&gs->gimple_bind.body, stmt);
}
/* Append a sequence of statements to the end of a GIMPLE_BIND's body. */
static inline void
gimple_bind_add_seq (gimple gs, gimple_seq seq)
{
GIMPLE_CHECK (gs, GIMPLE_BIND);
gimple_seq_add_seq (&gs->gimple_bind.body, seq);
}
/* Return the TREE_BLOCK node associated with GIMPLE_BIND statement
GS. This is analogous to the BIND_EXPR_BLOCK field in trees. */
static inline tree
gimple_bind_block (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_BIND);
return gs->gimple_bind.block;
}
/* Set BLOCK to be the TREE_BLOCK node associated with GIMPLE_BIND
statement GS. */
static inline void
gimple_bind_set_block (gimple gs, tree block)
{
GIMPLE_CHECK (gs, GIMPLE_BIND);
gcc_assert (block == NULL_TREE || TREE_CODE (block) == BLOCK);
gs->gimple_bind.block = block;
}
/* Return the number of input operands for GIMPLE_ASM GS. */
static inline unsigned
gimple_asm_ninputs (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
return gs->gimple_asm.ni;
}
/* Return the number of output operands for GIMPLE_ASM GS. */
static inline unsigned
gimple_asm_noutputs (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
return gs->gimple_asm.no;
}
/* Return the number of clobber operands for GIMPLE_ASM GS. */
static inline unsigned
gimple_asm_nclobbers (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
return gs->gimple_asm.nc;
}
/* Return input operand INDEX of GIMPLE_ASM GS. */
static inline tree
gimple_asm_input_op (const_gimple gs, unsigned index)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
gcc_assert (index <= gs->gimple_asm.ni);
return gimple_op (gs, index);
}
/* Return a pointer to input operand INDEX of GIMPLE_ASM GS. */
static inline tree *
gimple_asm_input_op_ptr (const_gimple gs, unsigned index)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
gcc_assert (index <= gs->gimple_asm.ni);
return gimple_op_ptr (gs, index);
}
/* Set IN_OP to be input operand INDEX in GIMPLE_ASM GS. */
static inline void
gimple_asm_set_input_op (gimple gs, unsigned index, tree in_op)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
gcc_assert (index <= gs->gimple_asm.ni);
gcc_assert (TREE_CODE (in_op) == TREE_LIST);
gimple_set_op (gs, index, in_op);
}
/* Return output operand INDEX of GIMPLE_ASM GS. */
static inline tree
gimple_asm_output_op (const_gimple gs, unsigned index)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
gcc_assert (index <= gs->gimple_asm.no);
return gimple_op (gs, index + gs->gimple_asm.ni);
}
/* Return a pointer to output operand INDEX of GIMPLE_ASM GS. */
static inline tree *
gimple_asm_output_op_ptr (const_gimple gs, unsigned index)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
gcc_assert (index <= gs->gimple_asm.no);
return gimple_op_ptr (gs, index + gs->gimple_asm.ni);
}
/* Set OUT_OP to be output operand INDEX in GIMPLE_ASM GS. */
static inline void
gimple_asm_set_output_op (gimple gs, unsigned index, tree out_op)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
gcc_assert (index <= gs->gimple_asm.no);
gcc_assert (TREE_CODE (out_op) == TREE_LIST);
gimple_set_op (gs, index + gs->gimple_asm.ni, out_op);
}
/* Return clobber operand INDEX of GIMPLE_ASM GS. */
static inline tree
gimple_asm_clobber_op (const_gimple gs, unsigned index)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
gcc_assert (index <= gs->gimple_asm.nc);
return gimple_op (gs, index + gs->gimple_asm.ni + gs->gimple_asm.no);
}
/* Set CLOBBER_OP to be clobber operand INDEX in GIMPLE_ASM GS. */
static inline void
gimple_asm_set_clobber_op (gimple gs, unsigned index, tree clobber_op)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
gcc_assert (index <= gs->gimple_asm.nc);
gcc_assert (TREE_CODE (clobber_op) == TREE_LIST);
gimple_set_op (gs, index + gs->gimple_asm.ni + gs->gimple_asm.no, clobber_op);
}
/* Return the string representing the assembly instruction in
GIMPLE_ASM GS. */
static inline const char *
gimple_asm_string (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
return gs->gimple_asm.string;
}
/* Return true if GS is an asm statement marked volatile. */
static inline bool
gimple_asm_volatile_p (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
return (gs->gsbase.subcode & GF_ASM_VOLATILE) != 0;
}
/* If VOLATLE_P is true, mark asm statement GS as volatile. */
static inline void
gimple_asm_set_volatile (gimple gs, bool volatile_p)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
if (volatile_p)
gs->gsbase.subcode |= GF_ASM_VOLATILE;
else
gs->gsbase.subcode &= ~GF_ASM_VOLATILE;
}
/* If INPUT_P is true, mark asm GS as an ASM_INPUT. */
static inline void
gimple_asm_set_input (gimple gs, bool input_p)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
if (input_p)
gs->gsbase.subcode |= GF_ASM_INPUT;
else
gs->gsbase.subcode &= ~GF_ASM_INPUT;
}
/* Return true if asm GS is an ASM_INPUT. */
static inline bool
gimple_asm_input_p (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_ASM);
return (gs->gsbase.subcode & GF_ASM_INPUT) != 0;
}
/* Return the types handled by GIMPLE_CATCH statement GS. */
static inline tree
gimple_catch_types (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_CATCH);
return gs->gimple_catch.types;
}
/* Return a pointer to the types handled by GIMPLE_CATCH statement GS. */
static inline tree *
gimple_catch_types_ptr (gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_CATCH);
return &gs->gimple_catch.types;
}
/* Return the GIMPLE sequence representing the body of the handler of
GIMPLE_CATCH statement GS. */
static inline gimple_seq
gimple_catch_handler (gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_CATCH);
return gs->gimple_catch.handler;
}
/* Return a pointer to the GIMPLE sequence representing the body of
the handler of GIMPLE_CATCH statement GS. */
static inline gimple_seq *
gimple_catch_handler_ptr (gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_CATCH);
return &gs->gimple_catch.handler;
}
/* Set T to be the set of types handled by GIMPLE_CATCH GS. */
static inline void
gimple_catch_set_types (gimple gs, tree t)
{
GIMPLE_CHECK (gs, GIMPLE_CATCH);
gs->gimple_catch.types = t;
}
/* Set HANDLER to be the body of GIMPLE_CATCH GS. */
static inline void
gimple_catch_set_handler (gimple gs, gimple_seq handler)
{
GIMPLE_CHECK (gs, GIMPLE_CATCH);
gs->gimple_catch.handler = handler;
}
/* Return the types handled by GIMPLE_EH_FILTER statement GS. */
static inline tree
gimple_eh_filter_types (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_EH_FILTER);
return gs->gimple_eh_filter.types;
}
/* Return a pointer to the types handled by GIMPLE_EH_FILTER statement
GS. */
static inline tree *
gimple_eh_filter_types_ptr (gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_EH_FILTER);
return &gs->gimple_eh_filter.types;
}
/* Return the sequence of statement to execute when GIMPLE_EH_FILTER
statement fails. */
static inline gimple_seq
gimple_eh_filter_failure (gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_EH_FILTER);
return gs->gimple_eh_filter.failure;
}
/* Set TYPES to be the set of types handled by GIMPLE_EH_FILTER GS. */
static inline void
gimple_eh_filter_set_types (gimple gs, tree types)
{
GIMPLE_CHECK (gs, GIMPLE_EH_FILTER);
gs->gimple_eh_filter.types = types;
}
/* Set FAILURE to be the sequence of statements to execute on failure
for GIMPLE_EH_FILTER GS. */
static inline void
gimple_eh_filter_set_failure (gimple gs, gimple_seq failure)
{
GIMPLE_CHECK (gs, GIMPLE_EH_FILTER);
gs->gimple_eh_filter.failure = failure;
}
/* Return the EH_FILTER_MUST_NOT_THROW flag. */
static inline bool
gimple_eh_filter_must_not_throw (gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_EH_FILTER);
return gs->gsbase.subcode != 0;
}
/* Set the EH_FILTER_MUST_NOT_THROW flag to the value MNTP. */
static inline void
gimple_eh_filter_set_must_not_throw (gimple gs, bool mntp)
{
GIMPLE_CHECK (gs, GIMPLE_EH_FILTER);
gs->gsbase.subcode = (unsigned int) mntp;
}
/* GIMPLE_TRY accessors. */
/* Return the kind of try block represented by GIMPLE_TRY GS. This is
either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY. */
static inline enum gimple_try_flags
gimple_try_kind (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_TRY);
return (enum gimple_try_flags) (gs->gsbase.subcode & GIMPLE_TRY_KIND);
}
/* Set the kind of try block represented by GIMPLE_TRY GS. */
static inline void
gimple_try_set_kind (gimple gs, enum gimple_try_flags kind)
{
GIMPLE_CHECK (gs, GIMPLE_TRY);
gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
if (gimple_try_kind (gs) != kind)
gs->gsbase.subcode = (unsigned int) kind;
}
/* Return the GIMPLE_TRY_CATCH_IS_CLEANUP flag. */
static inline bool
gimple_try_catch_is_cleanup (const_gimple gs)
{
gcc_assert (gimple_try_kind (gs) == GIMPLE_TRY_CATCH);
return (gs->gsbase.subcode & GIMPLE_TRY_CATCH_IS_CLEANUP) != 0;
}
/* Return the sequence of statements used as the body for GIMPLE_TRY GS. */
static inline gimple_seq
gimple_try_eval (gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_TRY);
return gs->gimple_try.eval;
}
/* Return the sequence of statements used as the cleanup body for
GIMPLE_TRY GS. */
static inline gimple_seq
gimple_try_cleanup (gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_TRY);
return gs->gimple_try.cleanup;
}
/* Set the GIMPLE_TRY_CATCH_IS_CLEANUP flag. */
static inline void
gimple_try_set_catch_is_cleanup (gimple g, bool catch_is_cleanup)
{
gcc_assert (gimple_try_kind (g) == GIMPLE_TRY_CATCH);
if (catch_is_cleanup)
g->gsbase.subcode |= GIMPLE_TRY_CATCH_IS_CLEANUP;
else
g->gsbase.subcode &= ~GIMPLE_TRY_CATCH_IS_CLEANUP;
}
/* Set EVAL to be the sequence of statements to use as the body for
GIMPLE_TRY GS. */
static inline void
gimple_try_set_eval (gimple gs, gimple_seq eval)
{
GIMPLE_CHECK (gs, GIMPLE_TRY);
gs->gimple_try.eval = eval;
}
/* Set CLEANUP to be the sequence of statements to use as the cleanup
body for GIMPLE_TRY GS. */
static inline void
gimple_try_set_cleanup (gimple gs, gimple_seq cleanup)
{
GIMPLE_CHECK (gs, GIMPLE_TRY);
gs->gimple_try.cleanup = cleanup;
}
/* Return the cleanup sequence for cleanup statement GS. */
static inline gimple_seq
gimple_wce_cleanup (gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_WITH_CLEANUP_EXPR);
return gs->gimple_wce.cleanup;
}
/* Set CLEANUP to be the cleanup sequence for GS. */
static inline void
gimple_wce_set_cleanup (gimple gs, gimple_seq cleanup)
{
GIMPLE_CHECK (gs, GIMPLE_WITH_CLEANUP_EXPR);
gs->gimple_wce.cleanup = cleanup;
}
/* Return the CLEANUP_EH_ONLY flag for a WCE tuple. */
static inline bool
gimple_wce_cleanup_eh_only (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_WITH_CLEANUP_EXPR);
return gs->gsbase.subcode != 0;
}
/* Set the CLEANUP_EH_ONLY flag for a WCE tuple. */
static inline void
gimple_wce_set_cleanup_eh_only (gimple gs, bool eh_only_p)
{
GIMPLE_CHECK (gs, GIMPLE_WITH_CLEANUP_EXPR);
gs->gsbase.subcode = (unsigned int) eh_only_p;
}
/* Return the maximum number of arguments supported by GIMPLE_PHI GS. */
static inline unsigned
gimple_phi_capacity (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_PHI);
return gs->gimple_phi.capacity;
}
/* Return the number of arguments in GIMPLE_PHI GS. This must always
be exactly the number of incoming edges for the basic block holding
GS. */
static inline unsigned
gimple_phi_num_args (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_PHI);
return gs->gimple_phi.nargs;
}
/* Return the SSA name created by GIMPLE_PHI GS. */
static inline tree
gimple_phi_result (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_PHI);
return gs->gimple_phi.result;
}
/* Return a pointer to the SSA name created by GIMPLE_PHI GS. */
static inline tree *
gimple_phi_result_ptr (gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_PHI);
return &gs->gimple_phi.result;
}
/* Set RESULT to be the SSA name created by GIMPLE_PHI GS. */
static inline void
gimple_phi_set_result (gimple gs, tree result)
{
GIMPLE_CHECK (gs, GIMPLE_PHI);
gs->gimple_phi.result = result;
}
/* Return the PHI argument corresponding to incoming edge INDEX for
GIMPLE_PHI GS. */
static inline struct phi_arg_d *
gimple_phi_arg (gimple gs, unsigned index)
{
GIMPLE_CHECK (gs, GIMPLE_PHI);
gcc_assert (index <= gs->gimple_phi.capacity);
return &(gs->gimple_phi.args[index]);
}
/* Set PHIARG to be the argument corresponding to incoming edge INDEX
for GIMPLE_PHI GS. */
static inline void
gimple_phi_set_arg (gimple gs, unsigned index, struct phi_arg_d * phiarg)
{
GIMPLE_CHECK (gs, GIMPLE_PHI);
gcc_assert (index <= gs->gimple_phi.nargs);
memcpy (gs->gimple_phi.args + index, phiarg, sizeof (struct phi_arg_d));
}
/* Return the region number for GIMPLE_RESX GS. */
static inline int
gimple_resx_region (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_RESX);
return gs->gimple_resx.region;
}
/* Set REGION to be the region number for GIMPLE_RESX GS. */
static inline void
gimple_resx_set_region (gimple gs, int region)
{
GIMPLE_CHECK (gs, GIMPLE_RESX);
gs->gimple_resx.region = region;
}
/* Return the number of labels associated with the switch statement GS. */
static inline unsigned
gimple_switch_num_labels (const_gimple gs)
{
unsigned num_ops;
GIMPLE_CHECK (gs, GIMPLE_SWITCH);
num_ops = gimple_num_ops (gs);
gcc_assert (num_ops > 1);
return num_ops - 1;
}
/* Set NLABELS to be the number of labels for the switch statement GS. */
static inline void
gimple_switch_set_num_labels (gimple g, unsigned nlabels)
{
GIMPLE_CHECK (g, GIMPLE_SWITCH);
gimple_set_num_ops (g, nlabels + 1);
}
/* Return the index variable used by the switch statement GS. */
static inline tree
gimple_switch_index (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_SWITCH);
return gimple_op (gs, 0);
}
/* Return a pointer to the index variable for the switch statement GS. */
static inline tree *
gimple_switch_index_ptr (const_gimple gs)
{
GIMPLE_CHECK (gs, GIMPLE_SWITCH);
return gimple_op_ptr (gs, 0);
}
/* Set INDEX to be the index variable for switch statement GS. */
static inline void
gimple_switch_set_index (gimple gs, tree index)
{
GIMPLE_CHECK (gs, GIMPLE_SWITCH);
gcc_assert (SSA_VAR_P (index) || CONSTANT_CLASS_P (index));
gimple_set_op (gs, 0, index);
}
/* Return the label numbered INDEX. The default label is 0, followed by any
labels in a switch statement. */
static inline tree
gimple_switch_label (const_gimple gs, unsigned index)
{
GIMPLE_CHECK (gs, GIMPLE_SWITCH);
gcc_assert (gimple_num_ops (gs) > index + 1);
return