blob: 2b862056324865a999ab52068739b4c165dada9a [file] [log] [blame]
/* mpfr_gamma -- gamma function
Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
#define IS_GAMMA
#include "lngamma.c"
#undef IS_GAMMA
/* return a sufficient precision such that 2-x is exact, assuming x < 0 */
static mp_prec_t
mpfr_gamma_2_minus_x_exact (mpfr_srcptr x)
{
/* Since x < 0, 2-x = 2+y with y := -x.
If y < 2, a precision w >= PREC(y) + EXP(2)-EXP(y) = PREC(y) + 2 - EXP(y)
is enough, since no overlap occurs in 2+y, so no carry happens.
If y >= 2, either ULP(y) <= 2, and we need w >= PREC(y)+1 since a
carry can occur, or ULP(y) > 2, and we need w >= EXP(y)-1:
(a) if EXP(y) <= 1, w = PREC(y) + 2 - EXP(y)
(b) if EXP(y) > 1 and EXP(y)-PREC(y) <= 1, w = PREC(y) + 1
(c) if EXP(y) > 1 and EXP(y)-PREC(y) > 1, w = EXP(y) - 1 */
return (MPFR_GET_EXP(x) <= 1) ? MPFR_PREC(x) + 2 - MPFR_GET_EXP(x)
: ((MPFR_GET_EXP(x) <= MPFR_PREC(x) + 1) ? MPFR_PREC(x) + 1
: MPFR_GET_EXP(x) - 1);
}
/* return a sufficient precision such that 1-x is exact, assuming x < 1 */
static mp_prec_t
mpfr_gamma_1_minus_x_exact (mpfr_srcptr x)
{
if (MPFR_IS_POS(x))
return MPFR_PREC(x) - MPFR_GET_EXP(x);
else if (MPFR_GET_EXP(x) <= 0)
return MPFR_PREC(x) + 1 - MPFR_GET_EXP(x);
else if (MPFR_PREC(x) >= MPFR_GET_EXP(x))
return MPFR_PREC(x) + 1;
else
return MPFR_GET_EXP(x);
}
/* returns a lower bound of the number of significant bits of n!
(not counting the low zero bits).
We know n! >= (n/e)^n*sqrt(2*Pi*n) for n >= 1, and the number of zero bits
is floor(n/2) + floor(n/4) + floor(n/8) + ...
This approximation is exact for n <= 500000, except for n = 219536, 235928,
298981, 355854, 464848, 493725, 498992 where it returns a value 1 too small.
*/
static unsigned long
bits_fac (unsigned long n)
{
mpfr_t x, y;
unsigned long r, k;
mpfr_init2 (x, 38);
mpfr_init2 (y, 38);
mpfr_set_ui (x, n, GMP_RNDZ);
mpfr_set_str_binary (y, "10.101101111110000101010001011000101001"); /* upper bound of e */
mpfr_div (x, x, y, GMP_RNDZ);
mpfr_pow_ui (x, x, n, GMP_RNDZ);
mpfr_const_pi (y, GMP_RNDZ);
mpfr_mul_ui (y, y, 2 * n, GMP_RNDZ);
mpfr_sqrt (y, y, GMP_RNDZ);
mpfr_mul (x, x, y, GMP_RNDZ);
mpfr_log2 (x, x, GMP_RNDZ);
r = mpfr_get_ui (x, GMP_RNDU);
for (k = 2; k <= n; k *= 2)
r -= n / k;
mpfr_clear (x);
mpfr_clear (y);
return r;
}
/* We use the reflection formula
Gamma(1+t) Gamma(1-t) = - Pi t / sin(Pi (1 + t))
in order to treat the case x <= 1,
i.e. with x = 1-t, then Gamma(x) = -Pi*(1-x)/sin(Pi*(2-x))/GAMMA(2-x)
*/
int
mpfr_gamma (mpfr_ptr gamma, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
mpfr_t xp, GammaTrial, tmp, tmp2;
mpz_t fact;
mp_prec_t realprec;
int compared, inex, is_integer;
MPFR_GROUP_DECL (group);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("gamma[%#R]=%R inexact=%d", gamma, gamma, inex));
/* Trivial cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (gamma);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
if (MPFR_IS_NEG (x))
{
MPFR_SET_NAN (gamma);
MPFR_RET_NAN;
}
else
{
MPFR_SET_INF (gamma);
MPFR_SET_POS (gamma);
MPFR_RET (0); /* exact */
}
}
else /* x is zero */
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
MPFR_SET_INF(gamma);
MPFR_SET_SAME_SIGN(gamma, x);
MPFR_RET (0); /* exact */
}
}
/* Check for tiny arguments, where gamma(x) ~ 1/x - euler + ....
We know from "Bound on Runs of Zeros and Ones for Algebraic Functions",
Proceedings of Arith15, T. Lang and J.-M. Muller, 2001, that the maximal
number of consecutive zeroes or ones after the round bit is n-1 for an
input of n bits. But we need a more precise lower bound. Assume x has
n bits, and 1/x is near a floating-point number y of n+1 bits. We can
write x = X*2^e, y = Y/2^f with X, Y integers of n and n+1 bits.
Thus X*Y^2^(e-f) is near from 1, i.e., X*Y is near from 2^(f-e).
Two cases can happen:
(i) either X*Y is exactly 2^(f-e), but this can happen only if X and Y
are themselves powers of two, i.e., x is a power of two;
(ii) or X*Y is at distance at least one from 2^(f-e), thus
|xy-1| >= 2^(e-f), or |y-1/x| >= 2^(e-f)/x = 2^(-f)/X >= 2^(-f-n).
Since ufp(y) = 2^(n-f) [ufp = unit in first place], this means
that the distance |y-1/x| >= 2^(-2n) ufp(y).
Now assuming |gamma(x)-1/x| <= 1, which is true for x <= 1,
if 2^(-2n) ufp(y) >= 2, the error is at most 2^(-2n-1) ufp(y),
and round(1/x) with precision >= 2n+2 gives the correct result.
If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
A sufficient condition is thus EXP(x) + 2 <= -2 MAX(PREC(x),PREC(Y)).
*/
if (MPFR_EXP(x) + 2 <= -2 * (mp_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(gamma)))
{
int positive = MPFR_IS_POS (x);
inex = mpfr_ui_div (gamma, 1, x, rnd_mode);
if (inex == 0) /* x is a power of two */
{
if (positive)
{
if (rnd_mode == GMP_RNDU || rnd_mode == GMP_RNDN)
inex = 1;
else /* round to zero or to -Inf */
{
mpfr_nextbelow (gamma); /* 2^k - epsilon */
inex = -1;
}
}
else /* negative */
{
if (rnd_mode == GMP_RNDU || rnd_mode == GMP_RNDZ)
{
mpfr_nextabove (gamma); /* -2^k + epsilon */
inex = 1;
}
else /* round to nearest and to -Inf */
inex = -1;
}
}
return inex;
}
is_integer = mpfr_integer_p (x);
/* gamma(x) for x a negative integer gives NaN */
if (is_integer && MPFR_IS_NEG(x))
{
MPFR_SET_NAN (gamma);
MPFR_RET_NAN;
}
compared = mpfr_cmp_ui (x, 1);
if (compared == 0)
return mpfr_set_ui (gamma, 1, rnd_mode);
/* if x is an integer that fits into an unsigned long, use mpfr_fac_ui
if argument is not too large.
If precision is p, fac_ui costs O(u*p), whereas gamma costs O(p*M(p)),
so for u <= M(p), fac_ui should be faster.
We approximate here M(p) by p*log(p)^2, which is not a bad guess.
Warning: since the generic code does not handle exact cases,
we want all cases where gamma(x) is exact to be treated here.
*/
if (is_integer && mpfr_fits_ulong_p (x, GMP_RNDN))
{
unsigned long int u;
mp_prec_t p = MPFR_PREC(gamma);
u = mpfr_get_ui (x, GMP_RNDN);
if (u < 44787929UL && bits_fac (u - 1) <= p + (rnd_mode == GMP_RNDN))
/* bits_fac: lower bound on the number of bits of m,
where gamma(x) = (u-1)! = m*2^e with m odd. */
return mpfr_fac_ui (gamma, u - 1, rnd_mode);
/* if bits_fac(...) > p (resp. p+1 for rounding to nearest),
then gamma(x) cannot be exact in precision p (resp. p+1).
FIXME: remove the test u < 44787929UL after changing bits_fac
to return a mpz_t or mpfr_t. */
}
/* check for overflow: according to (6.1.37) in Abramowitz & Stegun,
gamma(x) >= exp(-x) * x^(x-1/2) * sqrt(2*Pi)
>= 2 * (x/e)^x / x for x >= 1 */
if (compared > 0)
{
mpfr_t yp;
MPFR_BLOCK_DECL (flags);
/* 1/e rounded down to 53 bits */
#define EXPM1_STR "0.010111100010110101011000110110001011001110111100111"
mpfr_init2 (xp, 53);
mpfr_init2 (yp, 53);
mpfr_set_str_binary (xp, EXPM1_STR);
mpfr_mul (xp, x, xp, GMP_RNDZ);
mpfr_sub_ui (yp, x, 2, GMP_RNDZ);
mpfr_pow (xp, xp, yp, GMP_RNDZ); /* (x/e)^(x-2) */
mpfr_set_str_binary (yp, EXPM1_STR);
mpfr_mul (xp, xp, yp, GMP_RNDZ); /* x^(x-2) / e^(x-1) */
mpfr_mul (xp, xp, yp, GMP_RNDZ); /* x^(x-2) / e^x */
mpfr_mul (xp, xp, x, GMP_RNDZ); /* lower bound on x^(x-1) / e^x */
MPFR_BLOCK (flags, mpfr_mul_2ui (xp, xp, 1, GMP_RNDZ));
mpfr_clear (xp);
mpfr_clear (yp);
return MPFR_OVERFLOW (flags) ? mpfr_overflow (gamma, rnd_mode, 1)
: mpfr_gamma_aux (gamma, x, rnd_mode);
}
/* now compared < 0 */
MPFR_SAVE_EXPO_MARK (expo);
/* check for underflow: for x < 1,
gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x).
Since gamma(2-x) >= 2 * ((2-x)/e)^(2-x) / (2-x), we have
|gamma(x)| <= Pi*(1-x)*(2-x)/2/((2-x)/e)^(2-x) / |sin(Pi*(2-x))|
<= 12 * ((2-x)/e)^x / |sin(Pi*(2-x))|.
To avoid an underflow in ((2-x)/e)^x, we compute the logarithm.
*/
if (MPFR_IS_NEG(x))
{
int underflow = 0, sgn, ck;
mp_prec_t w;
mpfr_init2 (xp, 53);
mpfr_init2 (tmp, 53);
mpfr_init2 (tmp2, 53);
/* we want an upper bound for x * [log(2-x)-1].
since x < 0, we need a lower bound on log(2-x) */
mpfr_ui_sub (xp, 2, x, GMP_RNDD);
mpfr_log (xp, xp, GMP_RNDD);
mpfr_sub_ui (xp, xp, 1, GMP_RNDD);
mpfr_mul (xp, xp, x, GMP_RNDU);
/* we need an upper bound on 1/|sin(Pi*(2-x))|,
thus a lower bound on |sin(Pi*(2-x))|.
If 2-x is exact, then the error of Pi*(2-x) is (1+u)^2 with u = 2^(-p)
thus the error on sin(Pi*(2-x)) is less than 1/2ulp + 3Pi(2-x)u,
assuming u <= 1, thus <= u + 3Pi(2-x)u */
w = mpfr_gamma_2_minus_x_exact (x); /* 2-x is exact for prec >= w */
w += 17; /* to get tmp2 small enough */
mpfr_set_prec (tmp, w);
mpfr_set_prec (tmp2, w);
ck = mpfr_ui_sub (tmp, 2, x, GMP_RNDN);
MPFR_ASSERTD (ck == 0);
mpfr_const_pi (tmp2, GMP_RNDN);
mpfr_mul (tmp2, tmp2, tmp, GMP_RNDN); /* Pi*(2-x) */
mpfr_sin (tmp, tmp2, GMP_RNDN); /* sin(Pi*(2-x)) */
sgn = mpfr_sgn (tmp);
mpfr_abs (tmp, tmp, GMP_RNDN);
mpfr_mul_ui (tmp2, tmp2, 3, GMP_RNDU); /* 3Pi(2-x) */
mpfr_add_ui (tmp2, tmp2, 1, GMP_RNDU); /* 3Pi(2-x)+1 */
mpfr_div_2ui (tmp2, tmp2, mpfr_get_prec (tmp), GMP_RNDU);
/* if tmp2<|tmp|, we get a lower bound */
if (mpfr_cmp (tmp2, tmp) < 0)
{
mpfr_sub (tmp, tmp, tmp2, GMP_RNDZ); /* low bnd on |sin(Pi*(2-x))| */
mpfr_ui_div (tmp, 12, tmp, GMP_RNDU); /* upper bound */
mpfr_log (tmp, tmp, GMP_RNDU);
mpfr_add (tmp, tmp, xp, GMP_RNDU);
underflow = mpfr_cmp_si (xp, expo.saved_emin - 2) <= 0;
}
mpfr_clear (xp);
mpfr_clear (tmp);
mpfr_clear (tmp2);
if (underflow) /* the sign is the opposite of that of sin(Pi*(2-x)) */
{
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_underflow (gamma, (rnd_mode == GMP_RNDN) ? GMP_RNDZ : rnd_mode, -sgn);
}
}
realprec = MPFR_PREC (gamma);
/* we want both 1-x and 2-x to be exact */
{
mp_prec_t w;
w = mpfr_gamma_1_minus_x_exact (x);
if (realprec < w)
realprec = w;
w = mpfr_gamma_2_minus_x_exact (x);
if (realprec < w)
realprec = w;
}
realprec = realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20;
MPFR_ASSERTD(realprec >= 5);
MPFR_GROUP_INIT_4 (group, realprec + MPFR_INT_CEIL_LOG2 (realprec) + 20,
xp, tmp, tmp2, GammaTrial);
mpz_init (fact);
MPFR_ZIV_INIT (loop, realprec);
for (;;)
{
mp_exp_t err_g;
int ck;
MPFR_GROUP_REPREC_4 (group, realprec, xp, tmp, tmp2, GammaTrial);
/* reflection formula: gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x) */
ck = mpfr_ui_sub (xp, 2, x, GMP_RNDN);
MPFR_ASSERTD(ck == 0); /* 2-x, exact */
mpfr_gamma (tmp, xp, GMP_RNDN); /* gamma(2-x), error (1+u) */
mpfr_const_pi (tmp2, GMP_RNDN); /* Pi, error (1+u) */
mpfr_mul (GammaTrial, tmp2, xp, GMP_RNDN); /* Pi*(2-x), error (1+u)^2 */
err_g = MPFR_GET_EXP(GammaTrial);
mpfr_sin (GammaTrial, GammaTrial, GMP_RNDN); /* sin(Pi*(2-x)) */
err_g = err_g + 1 - MPFR_GET_EXP(GammaTrial);
/* let g0 the true value of Pi*(2-x), g the computed value.
We have g = g0 + h with |h| <= |(1+u^2)-1|*g.
Thus sin(g) = sin(g0) + h' with |h'| <= |(1+u^2)-1|*g.
The relative error is thus bounded by |(1+u^2)-1|*g/sin(g)
<= |(1+u^2)-1|*2^err_g. <= 2.25*u*2^err_g for |u|<=1/4.
With the rounding error, this gives (0.5 + 2.25*2^err_g)*u. */
ck = mpfr_sub_ui (xp, x, 1, GMP_RNDN);
MPFR_ASSERTD(ck == 0); /* x-1, exact */
mpfr_mul (xp, tmp2, xp, GMP_RNDN); /* Pi*(x-1), error (1+u)^2 */
mpfr_mul (GammaTrial, GammaTrial, tmp, GMP_RNDN);
/* [1 + (0.5 + 2.25*2^err_g)*u]*(1+u)^2 = 1 + (2.5 + 2.25*2^err_g)*u
+ (0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2.
For err_g <= realprec-2, we have (0.5 + 2.25*2^err_g)*u <=
0.5*u + 2.25/4 <= 0.6875 and u^2 <= u/4, thus
(0.5 + 2.25*2^err_g)*u*(2u+u^2) + u^2 <= 0.6875*(2u+u/4) + u/4
<= 1.8*u, thus the rel. error is bounded by (4.5 + 2.25*2^err_g)*u. */
mpfr_div (GammaTrial, xp, GammaTrial, GMP_RNDN);
/* the error is of the form (1+u)^3/[1 + (4.5 + 2.25*2^err_g)*u].
For realprec >= 5 and err_g <= realprec-2, [(4.5 + 2.25*2^err_g)*u]^2
<= 0.71, and for |y|<=0.71, 1/(1-y) can be written 1+a*y with a<=4.
(1+u)^3 * (1+4*(4.5 + 2.25*2^err_g)*u)
= 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (55+27*2^err_g)*u^3
+ (18+9*2^err_g)*u^4
<= 1 + (21 + 9*2^err_g)*u + (57+27*2^err_g)*u^2 + (56+28*2^err_g)*u^3
<= 1 + (21 + 9*2^err_g)*u + (59+28*2^err_g)*u^2
<= 1 + (23 + 10*2^err_g)*u.
The final error is thus bounded by (23 + 10*2^err_g) ulps,
which is <= 2^6 for err_g<=2, and <= 2^(err_g+4) for err_g >= 2. */
err_g = (err_g <= 2) ? 6 : err_g + 4;
if (MPFR_LIKELY (MPFR_CAN_ROUND (GammaTrial, realprec - err_g,
MPFR_PREC(gamma), rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, realprec);
}
MPFR_ZIV_FREE (loop);
inex = mpfr_set (gamma, GammaTrial, rnd_mode);
MPFR_GROUP_CLEAR (group);
mpz_clear (fact);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (gamma, inex, rnd_mode);
}