blob: c433849bd4433e1284dfd1331a5add16b2f82f6d [file] [log] [blame]
/* mpfr_rem1 -- internal function
mpfr_fmod -- compute the floating-point remainder of x/y
mpfr_remquo and mpfr_remainder -- argument reduction functions
Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
# include "mpfr-impl.h"
/* we return as many bits as we can, keeping just one bit for the sign */
# define WANTED_BITS (sizeof(long) * CHAR_BIT - 1)
/*
rem1 works as follows:
The first rounding mode rnd_q indicate if we are actually computing
a fmod (GMP_RNDZ) or a remainder/remquo (GMP_RNDN).
Let q = x/y rounded to an integer in the direction rnd_q.
Put x - q*y in rem, rounded according to rnd.
If quo is not null, the value stored in *quo has the sign of q,
and agrees with q with the 2^n low order bits.
In other words, *quo = q (mod 2^n) and *quo q >= 0.
If rem is zero, then it has the sign of x.
The returned 'int' is the inexact flag giving the place of rem wrt x - q*y.
If x or y is NaN: *quo is undefined, rem is NaN.
If x is Inf, whatever y: *quo is undefined, rem is NaN.
If y is Inf, x not NaN nor Inf: *quo is 0, rem is x.
If y is 0, whatever x: *quo is undefined, rem is NaN.
If x is 0, whatever y (not NaN nor 0): *quo is 0, rem is x.
Otherwise if x and y are neither NaN, Inf nor 0, q is always defined,
thus *quo is.
Since |x - q*y| <= y/2, no overflow is possible.
Only an underflow is possible when y is very small.
*/
static int
mpfr_rem1 (mpfr_ptr rem, long *quo, mp_rnd_t rnd_q,
mpfr_srcptr x, mpfr_srcptr y, mp_rnd_t rnd)
{
mp_exp_t ex, ey;
int compare, inex, q_is_odd, sign, signx = MPFR_SIGN (x);
mpz_t mx, my, r;
MPFR_ASSERTD (rnd_q == GMP_RNDN || rnd_q == GMP_RNDZ);
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x) || MPFR_IS_SINGULAR (y)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_NAN (y) || MPFR_IS_INF (x)
|| MPFR_IS_ZERO (y))
{
/* for remquo, quo is undefined */
MPFR_SET_NAN (rem);
MPFR_RET_NAN;
}
else /* either y is Inf and x is 0 or non-special,
or x is 0 and y is non-special,
in both cases the quotient is zero. */
{
if (quo)
*quo = 0;
return mpfr_set (rem, x, rnd);
}
}
/* now neither x nor y is NaN, Inf or zero */
mpz_init (mx);
mpz_init (my);
mpz_init (r);
ex = mpfr_get_z_exp (mx, x); /* x = mx*2^ex */
ey = mpfr_get_z_exp (my, y); /* y = my*2^ey */
/* to get rid of sign problems, we compute it separately:
quo(-x,-y) = quo(x,y), rem(-x,-y) = -rem(x,y)
quo(-x,y) = -quo(x,y), rem(-x,y) = -rem(x,y)
thus quo = sign(x/y)*quo(|x|,|y|), rem = sign(x)*rem(|x|,|y|) */
sign = (signx == MPFR_SIGN (y)) ? 1 : -1;
mpz_abs (mx, mx);
mpz_abs (my, my);
q_is_odd = 0;
/* divide my by 2^k if possible to make operations mod my easier */
{
unsigned long k = mpz_scan1 (my, 0);
ey += k;
mpz_div_2exp (my, my, k);
}
if (ex <= ey)
{
/* q = x/y = mx/(my*2^(ey-ex)) */
mpz_mul_2exp (my, my, ey - ex); /* divide mx by my*2^(ey-ex) */
if (rnd_q == GMP_RNDZ)
/* 0 <= |r| <= |my|, r has the same sign as mx */
mpz_tdiv_qr (mx, r, mx, my);
else
/* 0 <= |r| <= |my|, r has the same sign as my */
mpz_fdiv_qr (mx, r, mx, my);
if (rnd_q == GMP_RNDN)
q_is_odd = mpz_tstbit (mx, 0);
if (quo) /* mx is the quotient */
{
mpz_tdiv_r_2exp (mx, mx, WANTED_BITS);
*quo = mpz_get_si (mx);
}
}
else /* ex > ey */
{
if (quo)
/* for remquo, to get the low WANTED_BITS more bits of the quotient,
we first compute R = X mod Y*2^WANTED_BITS, where X and Y are
defined below. Then the low WANTED_BITS of the quotient are
floor(R/Y). */
mpz_mul_2exp (my, my, WANTED_BITS); /* 2^WANTED_BITS*Y */
else
/* Let X = mx*2^(ex-ey) and Y = my. Then both X and Y are integers.
Assume X = R mod Y, then x = X*2^ey = R*2^ey mod (Y*2^ey=y).
To be able to perform the rounding, we need the least significant
bit of the quotient, i.e., one more bit in the remainder,
which is obtained by dividing by 2Y. */
mpz_mul_2exp (my, my, 1); /* 2Y */
mpz_set_ui (r, 2);
mpz_powm_ui (r, r, ex - ey, my); /* 2^(ex-ey) mod my */
mpz_mul (r, r, mx);
mpz_mod (r, r, my);
if (quo) /* now 0 <= r < 2^WANTED_BITS*Y */
{
mpz_div_2exp (my, my, WANTED_BITS); /* back to Y */
mpz_tdiv_qr (mx, r, r, my);
/* oldr = mx*my + newr */
*quo = mpz_get_si (mx);
q_is_odd = *quo & 1;
}
else /* now 0 <= r < 2Y */
{
mpz_div_2exp (my, my, 1); /* back to Y */
if (rnd_q == GMP_RNDN)
{
/* least significant bit of q */
q_is_odd = mpz_cmpabs (r, my) >= 0;
if (q_is_odd)
mpz_sub (r, r, my);
}
}
/* now 0 <= |r| < |my|, and if needed,
q_is_odd is the least significant bit of q */
}
if (mpz_cmp_ui (r, 0) == 0)
inex = mpfr_set_ui (rem, 0, GMP_RNDN);
else
{
if (rnd_q == GMP_RNDN)
{
/* FIXME: the comparison 2*r < my could be done more efficiently
at the mpn level */
mpz_mul_2exp (r, r, 1);
compare = mpz_cmpabs (r, my);
mpz_div_2exp (r, r, 1);
compare = ((compare > 0) ||
((rnd_q == GMP_RNDN) && (compare == 0) && q_is_odd));
/* if compare != 0, we need to subtract my to r, and add 1 to quo */
if (compare)
{
mpz_sub (r, r, my);
if (quo && (rnd_q == GMP_RNDN))
*quo += 1;
}
}
inex = mpfr_set_z (rem, r, rnd);
/* if ex > ey, rem should be multiplied by 2^ey, else by 2^ex */
MPFR_EXP (rem) += (ex > ey) ? ey : ex;
}
if (quo)
*quo *= sign;
/* take into account sign of x */
if (signx < 0)
{
mpfr_neg (rem, rem, GMP_RNDN);
inex = -inex;
}
mpz_clear (mx);
mpz_clear (my);
mpz_clear (r);
return inex;
}
int
mpfr_remainder (mpfr_ptr rem, mpfr_srcptr x, mpfr_srcptr y, mp_rnd_t rnd)
{
return mpfr_rem1 (rem, (long *) 0, GMP_RNDN, x, y, rnd);
}
int
mpfr_remquo (mpfr_ptr rem, long *quo,
mpfr_srcptr x, mpfr_srcptr y, mp_rnd_t rnd)
{
return mpfr_rem1 (rem, quo, GMP_RNDN, x, y, rnd);
}
int
mpfr_fmod (mpfr_ptr rem, mpfr_srcptr x, mpfr_srcptr y, mp_rnd_t rnd)
{
return mpfr_rem1 (rem, (long *) 0, GMP_RNDZ, x, y, rnd);
}