| /* mpfr_tanh -- hyperbolic tangent |
| |
| Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
| Contributed by the Arenaire and Cacao projects, INRIA. |
| |
| This file is part of the GNU MPFR Library. |
| |
| The GNU MPFR Library is free software; you can redistribute it and/or modify |
| it under the terms of the GNU Lesser General Public License as published by |
| the Free Software Foundation; either version 2.1 of the License, or (at your |
| option) any later version. |
| |
| The GNU MPFR Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
| License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public License |
| along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to |
| the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| #define MPFR_NEED_LONGLONG_H |
| #include "mpfr-impl.h" |
| |
| int |
| mpfr_tanh (mpfr_ptr y, mpfr_srcptr xt , mp_rnd_t rnd_mode) |
| { |
| /****** Declaration ******/ |
| mpfr_t x; |
| int inexact; |
| MPFR_SAVE_EXPO_DECL (expo); |
| |
| MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", xt, xt, rnd_mode), |
| ("y[%#R]=%R inexact=%d", y, y, inexact)); |
| |
| /* Special value checking */ |
| if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt))) |
| { |
| if (MPFR_IS_NAN (xt)) |
| { |
| MPFR_SET_NAN (y); |
| MPFR_RET_NAN; |
| } |
| else if (MPFR_IS_INF (xt)) |
| { |
| /* tanh(inf) = 1 && tanh(-inf) = -1 */ |
| return mpfr_set_si (y, MPFR_INT_SIGN (xt), rnd_mode); |
| } |
| else /* tanh (0) = 0 and xt is zero */ |
| { |
| MPFR_ASSERTD (MPFR_IS_ZERO(xt)); |
| MPFR_SET_ZERO (y); |
| MPFR_SET_SAME_SIGN (y, xt); |
| MPFR_RET (0); |
| } |
| } |
| |
| /* tanh(x) = x - x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */ |
| MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP (xt), 1, 0, |
| rnd_mode, {}); |
| |
| MPFR_TMP_INIT_ABS (x, xt); |
| |
| MPFR_SAVE_EXPO_MARK (expo); |
| |
| /* General case */ |
| { |
| /* Declaration of the intermediary variable */ |
| mpfr_t t, te; |
| mp_exp_t d; |
| |
| /* Declaration of the size variable */ |
| mp_prec_t Ny = MPFR_PREC(y); /* target precision */ |
| mp_prec_t Nt; /* working precision */ |
| long int err; /* error */ |
| int sign = MPFR_SIGN (xt); |
| MPFR_ZIV_DECL (loop); |
| MPFR_GROUP_DECL (group); |
| |
| /* First check for BIG overflow of exp(2*x): |
| For x > 0, exp(2*x) > 2^(2*x) |
| If 2 ^(2*x) > 2^emax or x>emax/2, there is an overflow */ |
| if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax/2) >= 0)) { |
| /* initialise of intermediary variables |
| since 'set_one' label assumes the variables have been |
| initialize */ |
| MPFR_GROUP_INIT_2 (group, MPFR_PREC_MIN, t, te); |
| goto set_one; |
| } |
| |
| /* Compute the precision of intermediary variable */ |
| /* The optimal number of bits: see algorithms.tex */ |
| Nt = Ny + MPFR_INT_CEIL_LOG2 (Ny) + 4; |
| /* if x is small, there will be a cancellation in exp(2x)-1 */ |
| if (MPFR_GET_EXP (x) < 0) |
| Nt += -MPFR_GET_EXP (x); |
| |
| /* initialise of intermediary variable */ |
| MPFR_GROUP_INIT_2 (group, Nt, t, te); |
| |
| MPFR_ZIV_INIT (loop, Nt); |
| for (;;) { |
| /* tanh = (exp(2x)-1)/(exp(2x)+1) */ |
| mpfr_mul_2ui (te, x, 1, GMP_RNDN); /* 2x */ |
| /* since x > 0, we can only have an overflow */ |
| mpfr_exp (te, te, GMP_RNDN); /* exp(2x) */ |
| if (MPFR_UNLIKELY (MPFR_IS_INF (te))) { |
| set_one: |
| inexact = MPFR_FROM_SIGN_TO_INT (sign); |
| mpfr_set4 (y, __gmpfr_one, GMP_RNDN, sign); |
| if (MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG_SIGN (sign))) |
| { |
| inexact = -inexact; |
| mpfr_nexttozero (y); |
| } |
| break; |
| } |
| d = MPFR_GET_EXP (te); /* For Error calculation */ |
| mpfr_add_ui (t, te, 1, GMP_RNDD); /* exp(2x) + 1*/ |
| mpfr_sub_ui (te, te, 1, GMP_RNDU); /* exp(2x) - 1*/ |
| d = d - MPFR_GET_EXP (te); |
| mpfr_div (t, te, t, GMP_RNDN); /* (exp(2x)-1)/(exp(2x)+1)*/ |
| |
| /* Calculation of the error */ |
| d = MAX(3, d + 1); |
| err = Nt - (d + 1); |
| |
| if (MPFR_LIKELY ((d <= Nt / 2) && MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) |
| { |
| inexact = mpfr_set4 (y, t, rnd_mode, sign); |
| break; |
| } |
| |
| /* if t=1, we still can round since |sinh(x)| < 1 */ |
| if (MPFR_GET_EXP (t) == 1) |
| goto set_one; |
| |
| /* Actualisation of the precision */ |
| MPFR_ZIV_NEXT (loop, Nt); |
| MPFR_GROUP_REPREC_2 (group, Nt, t, te); |
| } |
| MPFR_ZIV_FREE (loop); |
| MPFR_GROUP_CLEAR (group); |
| } |
| MPFR_SAVE_EXPO_FREE (expo); |
| inexact = mpfr_check_range (y, inexact, rnd_mode); |
| |
| return inexact; |
| } |
| |