blob: 873005b8b1a6d0ed5c0182566a4030de32340dca [file] [log] [blame] [edit]
// Algorithm implementation -*- C++ -*-
// Copyright (C) 2001-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file bits/stl_algo.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{algorithm}
*/
#ifndef _STL_ALGO_H
#define _STL_ALGO_H 1
#include <cstdlib> // for rand
#include <bits/algorithmfwd.h>
#include <bits/stl_heap.h>
#include <bits/stl_tempbuf.h> // for _Temporary_buffer
#if __cplusplus >= 201103L
#include <random> // for std::uniform_int_distribution
#include <functional> // for std::bind
#endif
// See concept_check.h for the __glibcxx_*_requires macros.
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/// Swaps the median value of *__a, *__b and *__c to *__a
template<typename _Iterator>
void
__move_median_first(_Iterator __a, _Iterator __b, _Iterator __c)
{
// concept requirements
__glibcxx_function_requires(_LessThanComparableConcept<
typename iterator_traits<_Iterator>::value_type>)
if (*__a < *__b)
{
if (*__b < *__c)
std::iter_swap(__a, __b);
else if (*__a < *__c)
std::iter_swap(__a, __c);
}
else if (*__a < *__c)
return;
else if (*__b < *__c)
std::iter_swap(__a, __c);
else
std::iter_swap(__a, __b);
}
/// Swaps the median value of *__a, *__b and *__c under __comp to *__a
template<typename _Iterator, typename _Compare>
void
__move_median_first(_Iterator __a, _Iterator __b, _Iterator __c,
_Compare __comp)
{
// concept requirements
__glibcxx_function_requires(_BinaryFunctionConcept<_Compare, bool,
typename iterator_traits<_Iterator>::value_type,
typename iterator_traits<_Iterator>::value_type>)
if (__comp(*__a, *__b))
{
if (__comp(*__b, *__c))
std::iter_swap(__a, __b);
else if (__comp(*__a, *__c))
std::iter_swap(__a, __c);
}
else if (__comp(*__a, *__c))
return;
else if (__comp(*__b, *__c))
std::iter_swap(__a, __c);
else
std::iter_swap(__a, __b);
}
// for_each
/// This is an overload used by find() for the Input Iterator case.
template<typename _InputIterator, typename _Tp>
inline _InputIterator
__find(_InputIterator __first, _InputIterator __last,
const _Tp& __val, input_iterator_tag)
{
while (__first != __last && !(*__first == __val))
++__first;
return __first;
}
/// This is an overload used by find_if() for the Input Iterator case.
template<typename _InputIterator, typename _Predicate>
inline _InputIterator
__find_if(_InputIterator __first, _InputIterator __last,
_Predicate __pred, input_iterator_tag)
{
while (__first != __last && !bool(__pred(*__first)))
++__first;
return __first;
}
/// This is an overload used by find() for the RAI case.
template<typename _RandomAccessIterator, typename _Tp>
_RandomAccessIterator
__find(_RandomAccessIterator __first, _RandomAccessIterator __last,
const _Tp& __val, random_access_iterator_tag)
{
typename iterator_traits<_RandomAccessIterator>::difference_type
__trip_count = (__last - __first) >> 2;
for (; __trip_count > 0; --__trip_count)
{
if (*__first == __val)
return __first;
++__first;
if (*__first == __val)
return __first;
++__first;
if (*__first == __val)
return __first;
++__first;
if (*__first == __val)
return __first;
++__first;
}
switch (__last - __first)
{
case 3:
if (*__first == __val)
return __first;
++__first;
case 2:
if (*__first == __val)
return __first;
++__first;
case 1:
if (*__first == __val)
return __first;
++__first;
case 0:
default:
return __last;
}
}
/// This is an overload used by find_if() for the RAI case.
template<typename _RandomAccessIterator, typename _Predicate>
_RandomAccessIterator
__find_if(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Predicate __pred, random_access_iterator_tag)
{
typename iterator_traits<_RandomAccessIterator>::difference_type
__trip_count = (__last - __first) >> 2;
for (; __trip_count > 0; --__trip_count)
{
if (__pred(*__first))
return __first;
++__first;
if (__pred(*__first))
return __first;
++__first;
if (__pred(*__first))
return __first;
++__first;
if (__pred(*__first))
return __first;
++__first;
}
switch (__last - __first)
{
case 3:
if (__pred(*__first))
return __first;
++__first;
case 2:
if (__pred(*__first))
return __first;
++__first;
case 1:
if (__pred(*__first))
return __first;
++__first;
case 0:
default:
return __last;
}
}
/// This is an overload used by find_if_not() for the Input Iterator case.
template<typename _InputIterator, typename _Predicate>
inline _InputIterator
__find_if_not(_InputIterator __first, _InputIterator __last,
_Predicate __pred, input_iterator_tag)
{
while (__first != __last && bool(__pred(*__first)))
++__first;
return __first;
}
/// This is an overload used by find_if_not() for the RAI case.
template<typename _RandomAccessIterator, typename _Predicate>
_RandomAccessIterator
__find_if_not(_RandomAccessIterator __first, _RandomAccessIterator __last,
_Predicate __pred, random_access_iterator_tag)
{
typename iterator_traits<_RandomAccessIterator>::difference_type
__trip_count = (__last - __first) >> 2;
for (; __trip_count > 0; --__trip_count)
{
if (!bool(__pred(*__first)))
return __first;
++__first;
if (!bool(__pred(*__first)))
return __first;
++__first;
if (!bool(__pred(*__first)))
return __first;
++__first;
if (!bool(__pred(*__first)))
return __first;
++__first;
}
switch (__last - __first)
{
case 3:
if (!bool(__pred(*__first)))
return __first;
++__first;
case 2:
if (!bool(__pred(*__first)))
return __first;
++__first;
case 1:
if (!bool(__pred(*__first)))
return __first;
++__first;
case 0:
default:
return __last;
}
}
/// Provided for stable_partition to use.
template<typename _InputIterator, typename _Predicate>
inline _InputIterator
__find_if_not(_InputIterator __first, _InputIterator __last,
_Predicate __pred)
{
return std::__find_if_not(__first, __last, __pred,
std::__iterator_category(__first));
}
/// Like find_if_not(), but uses and updates a count of the
/// remaining range length instead of comparing against an end
/// iterator.
template<typename _InputIterator, typename _Predicate, typename _Distance>
_InputIterator
__find_if_not_n(_InputIterator __first, _Distance& __len, _Predicate __pred)
{
for (; __len; --__len, ++__first)
if (!bool(__pred(*__first)))
break;
return __first;
}
// set_difference
// set_intersection
// set_symmetric_difference
// set_union
// for_each
// find
// find_if
// find_first_of
// adjacent_find
// count
// count_if
// search
/**
* This is an uglified
* search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&)
* overloaded for forward iterators.
*/
template<typename _ForwardIterator, typename _Integer, typename _Tp>
_ForwardIterator
__search_n(_ForwardIterator __first, _ForwardIterator __last,
_Integer __count, const _Tp& __val,
std::forward_iterator_tag)
{
__first = _GLIBCXX_STD_A::find(__first, __last, __val);
while (__first != __last)
{
typename iterator_traits<_ForwardIterator>::difference_type
__n = __count;
_ForwardIterator __i = __first;
++__i;
while (__i != __last && __n != 1 && *__i == __val)
{
++__i;
--__n;
}
if (__n == 1)
return __first;
if (__i == __last)
return __last;
__first = _GLIBCXX_STD_A::find(++__i, __last, __val);
}
return __last;
}
/**
* This is an uglified
* search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&)
* overloaded for random access iterators.
*/
template<typename _RandomAccessIter, typename _Integer, typename _Tp>
_RandomAccessIter
__search_n(_RandomAccessIter __first, _RandomAccessIter __last,
_Integer __count, const _Tp& __val,
std::random_access_iterator_tag)
{
typedef typename std::iterator_traits<_RandomAccessIter>::difference_type
_DistanceType;
_DistanceType __tailSize = __last - __first;
const _DistanceType __pattSize = __count;
if (__tailSize < __pattSize)
return __last;
const _DistanceType __skipOffset = __pattSize - 1;
_RandomAccessIter __lookAhead = __first + __skipOffset;
__tailSize -= __pattSize;
while (1) // the main loop...
{
// __lookAhead here is always pointing to the last element of next
// possible match.
while (!(*__lookAhead == __val)) // the skip loop...
{
if (__tailSize < __pattSize)
return __last; // Failure
__lookAhead += __pattSize;
__tailSize -= __pattSize;
}
_DistanceType __remainder = __skipOffset;
for (_RandomAccessIter __backTrack = __lookAhead - 1;
*__backTrack == __val; --__backTrack)
{
if (--__remainder == 0)
return (__lookAhead - __skipOffset); // Success
}
if (__remainder > __tailSize)
return __last; // Failure
__lookAhead += __remainder;
__tailSize -= __remainder;
}
}
// search_n
/**
* This is an uglified
* search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&,
* _BinaryPredicate)
* overloaded for forward iterators.
*/
template<typename _ForwardIterator, typename _Integer, typename _Tp,
typename _BinaryPredicate>
_ForwardIterator
__search_n(_ForwardIterator __first, _ForwardIterator __last,
_Integer __count, const _Tp& __val,
_BinaryPredicate __binary_pred, std::forward_iterator_tag)
{
while (__first != __last && !bool(__binary_pred(*__first, __val)))
++__first;
while (__first != __last)
{
typename iterator_traits<_ForwardIterator>::difference_type
__n = __count;
_ForwardIterator __i = __first;
++__i;
while (__i != __last && __n != 1 && bool(__binary_pred(*__i, __val)))
{
++__i;
--__n;
}
if (__n == 1)
return __first;
if (__i == __last)
return __last;
__first = ++__i;
while (__first != __last
&& !bool(__binary_pred(*__first, __val)))
++__first;
}
return __last;
}
/**
* This is an uglified
* search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&,
* _BinaryPredicate)
* overloaded for random access iterators.
*/
template<typename _RandomAccessIter, typename _Integer, typename _Tp,
typename _BinaryPredicate>
_RandomAccessIter
__search_n(_RandomAccessIter __first, _RandomAccessIter __last,
_Integer __count, const _Tp& __val,
_BinaryPredicate __binary_pred, std::random_access_iterator_tag)
{
typedef typename std::iterator_traits<_RandomAccessIter>::difference_type
_DistanceType;
_DistanceType __tailSize = __last - __first;
const _DistanceType __pattSize = __count;
if (__tailSize < __pattSize)
return __last;
const _DistanceType __skipOffset = __pattSize - 1;
_RandomAccessIter __lookAhead = __first + __skipOffset;
__tailSize -= __pattSize;
while (1) // the main loop...
{
// __lookAhead here is always pointing to the last element of next
// possible match.
while (!bool(__binary_pred(*__lookAhead, __val))) // the skip loop...
{
if (__tailSize < __pattSize)
return __last; // Failure
__lookAhead += __pattSize;
__tailSize -= __pattSize;
}
_DistanceType __remainder = __skipOffset;
for (_RandomAccessIter __backTrack = __lookAhead - 1;
__binary_pred(*__backTrack, __val); --__backTrack)
{
if (--__remainder == 0)
return (__lookAhead - __skipOffset); // Success
}
if (__remainder > __tailSize)
return __last; // Failure
__lookAhead += __remainder;
__tailSize -= __remainder;
}
}
// find_end for forward iterators.
template<typename _ForwardIterator1, typename _ForwardIterator2>
_ForwardIterator1
__find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2, _ForwardIterator2 __last2,
forward_iterator_tag, forward_iterator_tag)
{
if (__first2 == __last2)
return __last1;
else
{
_ForwardIterator1 __result = __last1;
while (1)
{
_ForwardIterator1 __new_result
= _GLIBCXX_STD_A::search(__first1, __last1, __first2, __last2);
if (__new_result == __last1)
return __result;
else
{
__result = __new_result;
__first1 = __new_result;
++__first1;
}
}
}
}
template<typename _ForwardIterator1, typename _ForwardIterator2,
typename _BinaryPredicate>
_ForwardIterator1
__find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2, _ForwardIterator2 __last2,
forward_iterator_tag, forward_iterator_tag,
_BinaryPredicate __comp)
{
if (__first2 == __last2)
return __last1;
else
{
_ForwardIterator1 __result = __last1;
while (1)
{
_ForwardIterator1 __new_result
= _GLIBCXX_STD_A::search(__first1, __last1, __first2,
__last2, __comp);
if (__new_result == __last1)
return __result;
else
{
__result = __new_result;
__first1 = __new_result;
++__first1;
}
}
}
}
// find_end for bidirectional iterators (much faster).
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2>
_BidirectionalIterator1
__find_end(_BidirectionalIterator1 __first1,
_BidirectionalIterator1 __last1,
_BidirectionalIterator2 __first2,
_BidirectionalIterator2 __last2,
bidirectional_iterator_tag, bidirectional_iterator_tag)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<
_BidirectionalIterator1>)
__glibcxx_function_requires(_BidirectionalIteratorConcept<
_BidirectionalIterator2>)
typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1;
typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2;
_RevIterator1 __rlast1(__first1);
_RevIterator2 __rlast2(__first2);
_RevIterator1 __rresult = _GLIBCXX_STD_A::search(_RevIterator1(__last1),
__rlast1,
_RevIterator2(__last2),
__rlast2);
if (__rresult == __rlast1)
return __last1;
else
{
_BidirectionalIterator1 __result = __rresult.base();
std::advance(__result, -std::distance(__first2, __last2));
return __result;
}
}
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
typename _BinaryPredicate>
_BidirectionalIterator1
__find_end(_BidirectionalIterator1 __first1,
_BidirectionalIterator1 __last1,
_BidirectionalIterator2 __first2,
_BidirectionalIterator2 __last2,
bidirectional_iterator_tag, bidirectional_iterator_tag,
_BinaryPredicate __comp)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<
_BidirectionalIterator1>)
__glibcxx_function_requires(_BidirectionalIteratorConcept<
_BidirectionalIterator2>)
typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1;
typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2;
_RevIterator1 __rlast1(__first1);
_RevIterator2 __rlast2(__first2);
_RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1,
_RevIterator2(__last2), __rlast2,
__comp);
if (__rresult == __rlast1)
return __last1;
else
{
_BidirectionalIterator1 __result = __rresult.base();
std::advance(__result, -std::distance(__first2, __last2));
return __result;
}
}
/**
* @brief Find last matching subsequence in a sequence.
* @ingroup non_mutating_algorithms
* @param __first1 Start of range to search.
* @param __last1 End of range to search.
* @param __first2 Start of sequence to match.
* @param __last2 End of sequence to match.
* @return The last iterator @c i in the range
* @p [__first1,__last1-(__last2-__first2)) such that @c *(i+N) ==
* @p *(__first2+N) for each @c N in the range @p
* [0,__last2-__first2), or @p __last1 if no such iterator exists.
*
* Searches the range @p [__first1,__last1) for a sub-sequence that
* compares equal value-by-value with the sequence given by @p
* [__first2,__last2) and returns an iterator to the __first
* element of the sub-sequence, or @p __last1 if the sub-sequence
* is not found. The sub-sequence will be the last such
* subsequence contained in [__first,__last1).
*
* Because the sub-sequence must lie completely within the range @p
* [__first1,__last1) it must start at a position less than @p
* __last1-(__last2-__first2) where @p __last2-__first2 is the
* length of the sub-sequence. This means that the returned
* iterator @c i will be in the range @p
* [__first1,__last1-(__last2-__first2))
*/
template<typename _ForwardIterator1, typename _ForwardIterator2>
inline _ForwardIterator1
find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2, _ForwardIterator2 __last2)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_ForwardIterator1>::value_type,
typename iterator_traits<_ForwardIterator2>::value_type>)
__glibcxx_requires_valid_range(__first1, __last1);
__glibcxx_requires_valid_range(__first2, __last2);
return std::__find_end(__first1, __last1, __first2, __last2,
std::__iterator_category(__first1),
std::__iterator_category(__first2));
}
/**
* @brief Find last matching subsequence in a sequence using a predicate.
* @ingroup non_mutating_algorithms
* @param __first1 Start of range to search.
* @param __last1 End of range to search.
* @param __first2 Start of sequence to match.
* @param __last2 End of sequence to match.
* @param __comp The predicate to use.
* @return The last iterator @c i in the range @p
* [__first1,__last1-(__last2-__first2)) such that @c
* predicate(*(i+N), @p (__first2+N)) is true for each @c N in the
* range @p [0,__last2-__first2), or @p __last1 if no such iterator
* exists.
*
* Searches the range @p [__first1,__last1) for a sub-sequence that
* compares equal value-by-value with the sequence given by @p
* [__first2,__last2) using comp as a predicate and returns an
* iterator to the first element of the sub-sequence, or @p __last1
* if the sub-sequence is not found. The sub-sequence will be the
* last such subsequence contained in [__first,__last1).
*
* Because the sub-sequence must lie completely within the range @p
* [__first1,__last1) it must start at a position less than @p
* __last1-(__last2-__first2) where @p __last2-__first2 is the
* length of the sub-sequence. This means that the returned
* iterator @c i will be in the range @p
* [__first1,__last1-(__last2-__first2))
*/
template<typename _ForwardIterator1, typename _ForwardIterator2,
typename _BinaryPredicate>
inline _ForwardIterator1
find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1,
_ForwardIterator2 __first2, _ForwardIterator2 __last2,
_BinaryPredicate __comp)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>)
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>)
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_ForwardIterator1>::value_type,
typename iterator_traits<_ForwardIterator2>::value_type>)
__glibcxx_requires_valid_range(__first1, __last1);
__glibcxx_requires_valid_range(__first2, __last2);
return std::__find_end(__first1, __last1, __first2, __last2,
std::__iterator_category(__first1),
std::__iterator_category(__first2),
__comp);
}
#if __cplusplus >= 201103L
/**
* @brief Checks that a predicate is true for all the elements
* of a sequence.
* @ingroup non_mutating_algorithms
* @param __first An input iterator.
* @param __last An input iterator.
* @param __pred A predicate.
* @return True if the check is true, false otherwise.
*
* Returns true if @p __pred is true for each element in the range
* @p [__first,__last), and false otherwise.
*/
template<typename _InputIterator, typename _Predicate>
inline bool
all_of(_InputIterator __first, _InputIterator __last, _Predicate __pred)
{ return __last == std::find_if_not(__first, __last, __pred); }
/**
* @brief Checks that a predicate is false for all the elements
* of a sequence.
* @ingroup non_mutating_algorithms
* @param __first An input iterator.
* @param __last An input iterator.
* @param __pred A predicate.
* @return True if the check is true, false otherwise.
*
* Returns true if @p __pred is false for each element in the range
* @p [__first,__last), and false otherwise.
*/
template<typename _InputIterator, typename _Predicate>
inline bool
none_of(_InputIterator __first, _InputIterator __last, _Predicate __pred)
{ return __last == _GLIBCXX_STD_A::find_if(__first, __last, __pred); }
/**
* @brief Checks that a predicate is false for at least an element
* of a sequence.
* @ingroup non_mutating_algorithms
* @param __first An input iterator.
* @param __last An input iterator.
* @param __pred A predicate.
* @return True if the check is true, false otherwise.
*
* Returns true if an element exists in the range @p
* [__first,__last) such that @p __pred is true, and false
* otherwise.
*/
template<typename _InputIterator, typename _Predicate>
inline bool
any_of(_InputIterator __first, _InputIterator __last, _Predicate __pred)
{ return !std::none_of(__first, __last, __pred); }
/**
* @brief Find the first element in a sequence for which a
* predicate is false.
* @ingroup non_mutating_algorithms
* @param __first An input iterator.
* @param __last An input iterator.
* @param __pred A predicate.
* @return The first iterator @c i in the range @p [__first,__last)
* such that @p __pred(*i) is false, or @p __last if no such iterator exists.
*/
template<typename _InputIterator, typename _Predicate>
inline _InputIterator
find_if_not(_InputIterator __first, _InputIterator __last,
_Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
return std::__find_if_not(__first, __last, __pred);
}
/**
* @brief Checks whether the sequence is partitioned.
* @ingroup mutating_algorithms
* @param __first An input iterator.
* @param __last An input iterator.
* @param __pred A predicate.
* @return True if the range @p [__first,__last) is partioned by @p __pred,
* i.e. if all elements that satisfy @p __pred appear before those that
* do not.
*/
template<typename _InputIterator, typename _Predicate>
inline bool
is_partitioned(_InputIterator __first, _InputIterator __last,
_Predicate __pred)
{
__first = std::find_if_not(__first, __last, __pred);
return std::none_of(__first, __last, __pred);
}
/**
* @brief Find the partition point of a partitioned range.
* @ingroup mutating_algorithms
* @param __first An iterator.
* @param __last Another iterator.
* @param __pred A predicate.
* @return An iterator @p mid such that @p all_of(__first, mid, __pred)
* and @p none_of(mid, __last, __pred) are both true.
*/
template<typename _ForwardIterator, typename _Predicate>
_ForwardIterator
partition_point(_ForwardIterator __first, _ForwardIterator __last,
_Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_ForwardIterator>::value_type>)
// A specific debug-mode test will be necessary...
__glibcxx_requires_valid_range(__first, __last);
typedef typename iterator_traits<_ForwardIterator>::difference_type
_DistanceType;
_DistanceType __len = std::distance(__first, __last);
_DistanceType __half;
_ForwardIterator __middle;
while (__len > 0)
{
__half = __len >> 1;
__middle = __first;
std::advance(__middle, __half);
if (__pred(*__middle))
{
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else
__len = __half;
}
return __first;
}
#endif
/**
* @brief Copy a sequence, removing elements of a given value.
* @ingroup mutating_algorithms
* @param __first An input iterator.
* @param __last An input iterator.
* @param __result An output iterator.
* @param __value The value to be removed.
* @return An iterator designating the end of the resulting sequence.
*
* Copies each element in the range @p [__first,__last) not equal
* to @p __value to the range beginning at @p __result.
* remove_copy() is stable, so the relative order of elements that
* are copied is unchanged.
*/
template<typename _InputIterator, typename _OutputIterator, typename _Tp>
_OutputIterator
remove_copy(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, const _Tp& __value)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_InputIterator>::value_type, _Tp>)
__glibcxx_requires_valid_range(__first, __last);
for (; __first != __last; ++__first)
if (!(*__first == __value))
{
*__result = *__first;
++__result;
}
return __result;
}
/**
* @brief Copy a sequence, removing elements for which a predicate is true.
* @ingroup mutating_algorithms
* @param __first An input iterator.
* @param __last An input iterator.
* @param __result An output iterator.
* @param __pred A predicate.
* @return An iterator designating the end of the resulting sequence.
*
* Copies each element in the range @p [__first,__last) for which
* @p __pred returns false to the range beginning at @p __result.
*
* remove_copy_if() is stable, so the relative order of elements that are
* copied is unchanged.
*/
template<typename _InputIterator, typename _OutputIterator,
typename _Predicate>
_OutputIterator
remove_copy_if(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
for (; __first != __last; ++__first)
if (!bool(__pred(*__first)))
{
*__result = *__first;
++__result;
}
return __result;
}
#if __cplusplus >= 201103L
/**
* @brief Copy the elements of a sequence for which a predicate is true.
* @ingroup mutating_algorithms
* @param __first An input iterator.
* @param __last An input iterator.
* @param __result An output iterator.
* @param __pred A predicate.
* @return An iterator designating the end of the resulting sequence.
*
* Copies each element in the range @p [__first,__last) for which
* @p __pred returns true to the range beginning at @p __result.
*
* copy_if() is stable, so the relative order of elements that are
* copied is unchanged.
*/
template<typename _InputIterator, typename _OutputIterator,
typename _Predicate>
_OutputIterator
copy_if(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
for (; __first != __last; ++__first)
if (__pred(*__first))
{
*__result = *__first;
++__result;
}
return __result;
}
template<typename _InputIterator, typename _Size, typename _OutputIterator>
_OutputIterator
__copy_n(_InputIterator __first, _Size __n,
_OutputIterator __result, input_iterator_tag)
{
if (__n > 0)
{
while (true)
{
*__result = *__first;
++__result;
if (--__n > 0)
++__first;
else
break;
}
}
return __result;
}
template<typename _RandomAccessIterator, typename _Size,
typename _OutputIterator>
inline _OutputIterator
__copy_n(_RandomAccessIterator __first, _Size __n,
_OutputIterator __result, random_access_iterator_tag)
{ return std::copy(__first, __first + __n, __result); }
/**
* @brief Copies the range [first,first+n) into [result,result+n).
* @ingroup mutating_algorithms
* @param __first An input iterator.
* @param __n The number of elements to copy.
* @param __result An output iterator.
* @return result+n.
*
* This inline function will boil down to a call to @c memmove whenever
* possible. Failing that, if random access iterators are passed, then the
* loop count will be known (and therefore a candidate for compiler
* optimizations such as unrolling).
*/
template<typename _InputIterator, typename _Size, typename _OutputIterator>
inline _OutputIterator
copy_n(_InputIterator __first, _Size __n, _OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_InputIterator>::value_type>)
return std::__copy_n(__first, __n, __result,
std::__iterator_category(__first));
}
/**
* @brief Copy the elements of a sequence to separate output sequences
* depending on the truth value of a predicate.
* @ingroup mutating_algorithms
* @param __first An input iterator.
* @param __last An input iterator.
* @param __out_true An output iterator.
* @param __out_false An output iterator.
* @param __pred A predicate.
* @return A pair designating the ends of the resulting sequences.
*
* Copies each element in the range @p [__first,__last) for which
* @p __pred returns true to the range beginning at @p out_true
* and each element for which @p __pred returns false to @p __out_false.
*/
template<typename _InputIterator, typename _OutputIterator1,
typename _OutputIterator2, typename _Predicate>
pair<_OutputIterator1, _OutputIterator2>
partition_copy(_InputIterator __first, _InputIterator __last,
_OutputIterator1 __out_true, _OutputIterator2 __out_false,
_Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator1,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator2,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_InputIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
for (; __first != __last; ++__first)
if (__pred(*__first))
{
*__out_true = *__first;
++__out_true;
}
else
{
*__out_false = *__first;
++__out_false;
}
return pair<_OutputIterator1, _OutputIterator2>(__out_true, __out_false);
}
#endif
/**
* @brief Remove elements from a sequence.
* @ingroup mutating_algorithms
* @param __first An input iterator.
* @param __last An input iterator.
* @param __value The value to be removed.
* @return An iterator designating the end of the resulting sequence.
*
* All elements equal to @p __value are removed from the range
* @p [__first,__last).
*
* remove() is stable, so the relative order of elements that are
* not removed is unchanged.
*
* Elements between the end of the resulting sequence and @p __last
* are still present, but their value is unspecified.
*/
template<typename _ForwardIterator, typename _Tp>
_ForwardIterator
remove(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __value)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
_ForwardIterator>)
__glibcxx_function_requires(_EqualOpConcept<
typename iterator_traits<_ForwardIterator>::value_type, _Tp>)
__glibcxx_requires_valid_range(__first, __last);
__first = _GLIBCXX_STD_A::find(__first, __last, __value);
if(__first == __last)
return __first;
_ForwardIterator __result = __first;
++__first;
for(; __first != __last; ++__first)
if(!(*__first == __value))
{
*__result = _GLIBCXX_MOVE(*__first);
++__result;
}
return __result;
}
/**
* @brief Remove elements from a sequence using a predicate.
* @ingroup mutating_algorithms
* @param __first A forward iterator.
* @param __last A forward iterator.
* @param __pred A predicate.
* @return An iterator designating the end of the resulting sequence.
*
* All elements for which @p __pred returns true are removed from the range
* @p [__first,__last).
*
* remove_if() is stable, so the relative order of elements that are
* not removed is unchanged.
*
* Elements between the end of the resulting sequence and @p __last
* are still present, but their value is unspecified.
*/
template<typename _ForwardIterator, typename _Predicate>
_ForwardIterator
remove_if(_ForwardIterator __first, _ForwardIterator __last,
_Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
_ForwardIterator>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_ForwardIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
__first = _GLIBCXX_STD_A::find_if(__first, __last, __pred);
if(__first == __last)
return __first;
_ForwardIterator __result = __first;
++__first;
for(; __first != __last; ++__first)
if(!bool(__pred(*__first)))
{
*__result = _GLIBCXX_MOVE(*__first);
++__result;
}
return __result;
}
/**
* @brief Remove consecutive duplicate values from a sequence.
* @ingroup mutating_algorithms
* @param __first A forward iterator.
* @param __last A forward iterator.
* @return An iterator designating the end of the resulting sequence.
*
* Removes all but the first element from each group of consecutive
* values that compare equal.
* unique() is stable, so the relative order of elements that are
* not removed is unchanged.
* Elements between the end of the resulting sequence and @p __last
* are still present, but their value is unspecified.
*/
template<typename _ForwardIterator>
_ForwardIterator
unique(_ForwardIterator __first, _ForwardIterator __last)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
_ForwardIterator>)
__glibcxx_function_requires(_EqualityComparableConcept<
typename iterator_traits<_ForwardIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
// Skip the beginning, if already unique.
__first = _GLIBCXX_STD_A::adjacent_find(__first, __last);
if (__first == __last)
return __last;
// Do the real copy work.
_ForwardIterator __dest = __first;
++__first;
while (++__first != __last)
if (!(*__dest == *__first))
*++__dest = _GLIBCXX_MOVE(*__first);
return ++__dest;
}
/**
* @brief Remove consecutive values from a sequence using a predicate.
* @ingroup mutating_algorithms
* @param __first A forward iterator.
* @param __last A forward iterator.
* @param __binary_pred A binary predicate.
* @return An iterator designating the end of the resulting sequence.
*
* Removes all but the first element from each group of consecutive
* values for which @p __binary_pred returns true.
* unique() is stable, so the relative order of elements that are
* not removed is unchanged.
* Elements between the end of the resulting sequence and @p __last
* are still present, but their value is unspecified.
*/
template<typename _ForwardIterator, typename _BinaryPredicate>
_ForwardIterator
unique(_ForwardIterator __first, _ForwardIterator __last,
_BinaryPredicate __binary_pred)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_ForwardIterator>::value_type,
typename iterator_traits<_ForwardIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
// Skip the beginning, if already unique.
__first = _GLIBCXX_STD_A::adjacent_find(__first, __last, __binary_pred);
if (__first == __last)
return __last;
// Do the real copy work.
_ForwardIterator __dest = __first;
++__first;
while (++__first != __last)
if (!bool(__binary_pred(*__dest, *__first)))
*++__dest = _GLIBCXX_MOVE(*__first);
return ++__dest;
}
/**
* This is an uglified unique_copy(_InputIterator, _InputIterator,
* _OutputIterator)
* overloaded for forward iterators and output iterator as result.
*/
template<typename _ForwardIterator, typename _OutputIterator>
_OutputIterator
__unique_copy(_ForwardIterator __first, _ForwardIterator __last,
_OutputIterator __result,
forward_iterator_tag, output_iterator_tag)
{
// concept requirements -- taken care of in dispatching function
_ForwardIterator __next = __first;
*__result = *__first;
while (++__next != __last)
if (!(*__first == *__next))
{
__first = __next;
*++__result = *__first;
}
return ++__result;
}
/**
* This is an uglified unique_copy(_InputIterator, _InputIterator,
* _OutputIterator)
* overloaded for input iterators and output iterator as result.
*/
template<typename _InputIterator, typename _OutputIterator>
_OutputIterator
__unique_copy(_InputIterator __first, _InputIterator __last,
_OutputIterator __result,
input_iterator_tag, output_iterator_tag)
{
// concept requirements -- taken care of in dispatching function
typename iterator_traits<_InputIterator>::value_type __value = *__first;
*__result = __value;
while (++__first != __last)
if (!(__value == *__first))
{
__value = *__first;
*++__result = __value;
}
return ++__result;
}
/**
* This is an uglified unique_copy(_InputIterator, _InputIterator,
* _OutputIterator)
* overloaded for input iterators and forward iterator as result.
*/
template<typename _InputIterator, typename _ForwardIterator>
_ForwardIterator
__unique_copy(_InputIterator __first, _InputIterator __last,
_ForwardIterator __result,
input_iterator_tag, forward_iterator_tag)
{
// concept requirements -- taken care of in dispatching function
*__result = *__first;
while (++__first != __last)
if (!(*__result == *__first))
*++__result = *__first;
return ++__result;
}
/**
* This is an uglified
* unique_copy(_InputIterator, _InputIterator, _OutputIterator,
* _BinaryPredicate)
* overloaded for forward iterators and output iterator as result.
*/
template<typename _ForwardIterator, typename _OutputIterator,
typename _BinaryPredicate>
_OutputIterator
__unique_copy(_ForwardIterator __first, _ForwardIterator __last,
_OutputIterator __result, _BinaryPredicate __binary_pred,
forward_iterator_tag, output_iterator_tag)
{
// concept requirements -- iterators already checked
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_ForwardIterator>::value_type,
typename iterator_traits<_ForwardIterator>::value_type>)
_ForwardIterator __next = __first;
*__result = *__first;
while (++__next != __last)
if (!bool(__binary_pred(*__first, *__next)))
{
__first = __next;
*++__result = *__first;
}
return ++__result;
}
/**
* This is an uglified
* unique_copy(_InputIterator, _InputIterator, _OutputIterator,
* _BinaryPredicate)
* overloaded for input iterators and output iterator as result.
*/
template<typename _InputIterator, typename _OutputIterator,
typename _BinaryPredicate>
_OutputIterator
__unique_copy(_InputIterator __first, _InputIterator __last,
_OutputIterator __result, _BinaryPredicate __binary_pred,
input_iterator_tag, output_iterator_tag)
{
// concept requirements -- iterators already checked
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_InputIterator>::value_type,
typename iterator_traits<_InputIterator>::value_type>)
typename iterator_traits<_InputIterator>::value_type __value = *__first;
*__result = __value;
while (++__first != __last)
if (!bool(__binary_pred(__value, *__first)))
{
__value = *__first;
*++__result = __value;
}
return ++__result;
}
/**
* This is an uglified
* unique_copy(_InputIterator, _InputIterator, _OutputIterator,
* _BinaryPredicate)
* overloaded for input iterators and forward iterator as result.
*/
template<typename _InputIterator, typename _ForwardIterator,
typename _BinaryPredicate>
_ForwardIterator
__unique_copy(_InputIterator __first, _InputIterator __last,
_ForwardIterator __result, _BinaryPredicate __binary_pred,
input_iterator_tag, forward_iterator_tag)
{
// concept requirements -- iterators already checked
__glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate,
typename iterator_traits<_ForwardIterator>::value_type,
typename iterator_traits<_InputIterator>::value_type>)
*__result = *__first;
while (++__first != __last)
if (!bool(__binary_pred(*__result, *__first)))
*++__result = *__first;
return ++__result;
}
/**
* This is an uglified reverse(_BidirectionalIterator,
* _BidirectionalIterator)
* overloaded for bidirectional iterators.
*/
template<typename _BidirectionalIterator>
void
__reverse(_BidirectionalIterator __first, _BidirectionalIterator __last,
bidirectional_iterator_tag)
{
while (true)
if (__first == __last || __first == --__last)
return;
else
{
std::iter_swap(__first, __last);
++__first;
}
}
/**
* This is an uglified reverse(_BidirectionalIterator,
* _BidirectionalIterator)
* overloaded for random access iterators.
*/
template<typename _RandomAccessIterator>
void
__reverse(_RandomAccessIterator __first, _RandomAccessIterator __last,
random_access_iterator_tag)
{
if (__first == __last)
return;
--__last;
while (__first < __last)
{
std::iter_swap(__first, __last);
++__first;
--__last;
}
}
/**
* @brief Reverse a sequence.
* @ingroup mutating_algorithms
* @param __first A bidirectional iterator.
* @param __last A bidirectional iterator.
* @return reverse() returns no value.
*
* Reverses the order of the elements in the range @p [__first,__last),
* so that the first element becomes the last etc.
* For every @c i such that @p 0<=i<=(__last-__first)/2), @p reverse()
* swaps @p *(__first+i) and @p *(__last-(i+1))
*/
template<typename _BidirectionalIterator>
inline void
reverse(_BidirectionalIterator __first, _BidirectionalIterator __last)
{
// concept requirements
__glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
_BidirectionalIterator>)
__glibcxx_requires_valid_range(__first, __last);
std::__reverse(__first, __last, std::__iterator_category(__first));
}
/**
* @brief Copy a sequence, reversing its elements.
* @ingroup mutating_algorithms
* @param __first A bidirectional iterator.
* @param __last A bidirectional iterator.
* @param __result An output iterator.
* @return An iterator designating the end of the resulting sequence.
*
* Copies the elements in the range @p [__first,__last) to the
* range @p [__result,__result+(__last-__first)) such that the
* order of the elements is reversed. For every @c i such that @p
* 0<=i<=(__last-__first), @p reverse_copy() performs the
* assignment @p *(__result+(__last-__first)-1-i) = *(__first+i).
* The ranges @p [__first,__last) and @p
* [__result,__result+(__last-__first)) must not overlap.
*/
template<typename _BidirectionalIterator, typename _OutputIterator>
_OutputIterator
reverse_copy(_BidirectionalIterator __first, _BidirectionalIterator __last,
_OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_BidirectionalIteratorConcept<
_BidirectionalIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_BidirectionalIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
while (__first != __last)
{
--__last;
*__result = *__last;
++__result;
}
return __result;
}
/**
* This is a helper function for the rotate algorithm specialized on RAIs.
* It returns the greatest common divisor of two integer values.
*/
template<typename _EuclideanRingElement>
_EuclideanRingElement
__gcd(_EuclideanRingElement __m, _EuclideanRingElement __n)
{
while (__n != 0)
{
_EuclideanRingElement __t = __m % __n;
__m = __n;
__n = __t;
}
return __m;
}
/// This is a helper function for the rotate algorithm.
template<typename _ForwardIterator>
void
__rotate(_ForwardIterator __first,
_ForwardIterator __middle,
_ForwardIterator __last,
forward_iterator_tag)
{
if (__first == __middle || __last == __middle)
return;
_ForwardIterator __first2 = __middle;
do
{
std::iter_swap(__first, __first2);
++__first;
++__first2;
if (__first == __middle)
__middle = __first2;
}
while (__first2 != __last);
__first2 = __middle;
while (__first2 != __last)
{
std::iter_swap(__first, __first2);
++__first;
++__first2;
if (__first == __middle)
__middle = __first2;
else if (__first2 == __last)
__first2 = __middle;
}
}
/// This is a helper function for the rotate algorithm.
template<typename _BidirectionalIterator>
void
__rotate(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last,
bidirectional_iterator_tag)
{
// concept requirements
__glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<
_BidirectionalIterator>)
if (__first == __middle || __last == __middle)
return;
std::__reverse(__first, __middle, bidirectional_iterator_tag());
std::__reverse(__middle, __last, bidirectional_iterator_tag());
while (__first != __middle && __middle != __last)
{
std::iter_swap(__first, --__last);
++__first;
}
if (__first == __middle)
std::__reverse(__middle, __last, bidirectional_iterator_tag());
else
std::__reverse(__first, __middle, bidirectional_iterator_tag());
}
/// This is a helper function for the rotate algorithm.
template<typename _RandomAccessIterator>
void
__rotate(_RandomAccessIterator __first,
_RandomAccessIterator __middle,
_RandomAccessIterator __last,
random_access_iterator_tag)
{
// concept requirements
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
_RandomAccessIterator>)
if (__first == __middle || __last == __middle)
return;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type
_Distance;
typedef typename iterator_traits<_RandomAccessIterator>::value_type
_ValueType;
_Distance __n = __last - __first;
_Distance __k = __middle - __first;
if (__k == __n - __k)
{
std::swap_ranges(__first, __middle, __middle);
return;
}
_RandomAccessIterator __p = __first;
for (;;)
{
if (__k < __n - __k)
{
if (__is_pod(_ValueType) && __k == 1)
{
_ValueType __t = _GLIBCXX_MOVE(*__p);
_GLIBCXX_MOVE3(__p + 1, __p + __n, __p);
*(__p + __n - 1) = _GLIBCXX_MOVE(__t);
return;
}
_RandomAccessIterator __q = __p + __k;
for (_Distance __i = 0; __i < __n - __k; ++ __i)
{
std::iter_swap(__p, __q);
++__p;
++__q;
}
__n %= __k;
if (__n == 0)
return;
std::swap(__n, __k);
__k = __n - __k;
}
else
{
__k = __n - __k;
if (__is_pod(_ValueType) && __k == 1)
{
_ValueType __t = _GLIBCXX_MOVE(*(__p + __n - 1));
_GLIBCXX_MOVE_BACKWARD3(__p, __p + __n - 1, __p + __n);
*__p = _GLIBCXX_MOVE(__t);
return;
}
_RandomAccessIterator __q = __p + __n;
__p = __q - __k;
for (_Distance __i = 0; __i < __n - __k; ++ __i)
{
--__p;
--__q;
std::iter_swap(__p, __q);
}
__n %= __k;
if (__n == 0)
return;
std::swap(__n, __k);
}
}
}
/**
* @brief Rotate the elements of a sequence.
* @ingroup mutating_algorithms
* @param __first A forward iterator.
* @param __middle A forward iterator.
* @param __last A forward iterator.
* @return Nothing.
*
* Rotates the elements of the range @p [__first,__last) by
* @p (__middle - __first) positions so that the element at @p __middle
* is moved to @p __first, the element at @p __middle+1 is moved to
* @p __first+1 and so on for each element in the range
* @p [__first,__last).
*
* This effectively swaps the ranges @p [__first,__middle) and
* @p [__middle,__last).
*
* Performs
* @p *(__first+(n+(__last-__middle))%(__last-__first))=*(__first+n)
* for each @p n in the range @p [0,__last-__first).
*/
template<typename _ForwardIterator>
inline void
rotate(_ForwardIterator __first, _ForwardIterator __middle,
_ForwardIterator __last)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
_ForwardIterator>)
__glibcxx_requires_valid_range(__first, __middle);
__glibcxx_requires_valid_range(__middle, __last);
typedef typename iterator_traits<_ForwardIterator>::iterator_category
_IterType;
std::__rotate(__first, __middle, __last, _IterType());
}
/**
* @brief Copy a sequence, rotating its elements.
* @ingroup mutating_algorithms
* @param __first A forward iterator.
* @param __middle A forward iterator.
* @param __last A forward iterator.
* @param __result An output iterator.
* @return An iterator designating the end of the resulting sequence.
*
* Copies the elements of the range @p [__first,__last) to the
* range beginning at @result, rotating the copied elements by
* @p (__middle-__first) positions so that the element at @p __middle
* is moved to @p __result, the element at @p __middle+1 is moved
* to @p __result+1 and so on for each element in the range @p
* [__first,__last).
*
* Performs
* @p *(__result+(n+(__last-__middle))%(__last-__first))=*(__first+n)
* for each @p n in the range @p [0,__last-__first).
*/
template<typename _ForwardIterator, typename _OutputIterator>
_OutputIterator
rotate_copy(_ForwardIterator __first, _ForwardIterator __middle,
_ForwardIterator __last, _OutputIterator __result)
{
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator,
typename iterator_traits<_ForwardIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __middle);
__glibcxx_requires_valid_range(__middle, __last);
return std::copy(__first, __middle,
std::copy(__middle, __last, __result));
}
/// This is a helper function...
template<typename _ForwardIterator, typename _Predicate>
_ForwardIterator
__partition(_ForwardIterator __first, _ForwardIterator __last,
_Predicate __pred, forward_iterator_tag)
{
if (__first == __last)
return __first;
while (__pred(*__first))
if (++__first == __last)
return __first;
_ForwardIterator __next = __first;
while (++__next != __last)
if (__pred(*__next))
{
std::iter_swap(__first, __next);
++__first;
}
return __first;
}
/// This is a helper function...
template<typename _BidirectionalIterator, typename _Predicate>
_BidirectionalIterator
__partition(_BidirectionalIterator __first, _BidirectionalIterator __last,
_Predicate __pred, bidirectional_iterator_tag)
{
while (true)
{
while (true)
if (__first == __last)
return __first;
else if (__pred(*__first))
++__first;
else
break;
--__last;
while (true)
if (__first == __last)
return __first;
else if (!bool(__pred(*__last)))
--__last;
else
break;
std::iter_swap(__first, __last);
++__first;
}
}
// partition
/// This is a helper function...
/// Requires __len != 0 and !__pred(*__first),
/// same as __stable_partition_adaptive.
template<typename _ForwardIterator, typename _Predicate, typename _Distance>
_ForwardIterator
__inplace_stable_partition(_ForwardIterator __first,
_Predicate __pred, _Distance __len)
{
if (__len == 1)
return __first;
_ForwardIterator __middle = __first;
std::advance(__middle, __len / 2);
_ForwardIterator __left_split =
std::__inplace_stable_partition(__first, __pred, __len / 2);
// Advance past true-predicate values to satisfy this
// function's preconditions.
_Distance __right_len = __len - __len / 2;
_ForwardIterator __right_split =
std::__find_if_not_n(__middle, __right_len, __pred);
if (__right_len)
__right_split = std::__inplace_stable_partition(__middle,
__pred,
__right_len);
std::rotate(__left_split, __middle, __right_split);
std::advance(__left_split, std::distance(__middle, __right_split));
return __left_split;
}
/// This is a helper function...
/// Requires __first != __last and !__pred(*__first)
/// and __len == distance(__first, __last).
///
/// !__pred(*__first) allows us to guarantee that we don't
/// move-assign an element onto itself.
template<typename _ForwardIterator, typename _Pointer, typename _Predicate,
typename _Distance>
_ForwardIterator
__stable_partition_adaptive(_ForwardIterator __first,
_ForwardIterator __last,
_Predicate __pred, _Distance __len,
_Pointer __buffer,
_Distance __buffer_size)
{
if (__len <= __buffer_size)
{
_ForwardIterator __result1 = __first;
_Pointer __result2 = __buffer;
// The precondition guarantees that !__pred(*__first), so
// move that element to the buffer before starting the loop.
// This ensures that we only call __pred once per element.
*__result2 = _GLIBCXX_MOVE(*__first);
++__result2;
++__first;
for (; __first != __last; ++__first)
if (__pred(*__first))
{
*__result1 = _GLIBCXX_MOVE(*__first);
++__result1;
}
else
{
*__result2 = _GLIBCXX_MOVE(*__first);
++__result2;
}
_GLIBCXX_MOVE3(__buffer, __result2, __result1);
return __result1;
}
else
{
_ForwardIterator __middle = __first;
std::advance(__middle, __len / 2);
_ForwardIterator __left_split =
std::__stable_partition_adaptive(__first, __middle, __pred,
__len / 2, __buffer,
__buffer_size);
// Advance past true-predicate values to satisfy this
// function's preconditions.
_Distance __right_len = __len - __len / 2;
_ForwardIterator __right_split =
std::__find_if_not_n(__middle, __right_len, __pred);
if (__right_len)
__right_split =
std::__stable_partition_adaptive(__right_split, __last, __pred,
__right_len,
__buffer, __buffer_size);
std::rotate(__left_split, __middle, __right_split);
std::advance(__left_split, std::distance(__middle, __right_split));
return __left_split;
}
}
/**
* @brief Move elements for which a predicate is true to the beginning
* of a sequence, preserving relative ordering.
* @ingroup mutating_algorithms
* @param __first A forward iterator.
* @param __last A forward iterator.
* @param __pred A predicate functor.
* @return An iterator @p middle such that @p __pred(i) is true for each
* iterator @p i in the range @p [first,middle) and false for each @p i
* in the range @p [middle,last).
*
* Performs the same function as @p partition() with the additional
* guarantee that the relative ordering of elements in each group is
* preserved, so any two elements @p x and @p y in the range
* @p [__first,__last) such that @p __pred(x)==__pred(y) will have the same
* relative ordering after calling @p stable_partition().
*/
template<typename _ForwardIterator, typename _Predicate>
_ForwardIterator
stable_partition(_ForwardIterator __first, _ForwardIterator __last,
_Predicate __pred)
{
// concept requirements
__glibcxx_function_requires(_Mutable_ForwardIteratorConcept<
_ForwardIterator>)
__glibcxx_function_requires(_UnaryPredicateConcept<_Predicate,
typename iterator_traits<_ForwardIterator>::value_type>)
__glibcxx_requires_valid_range(__first, __last);
__first = std::__find_if_not(__first, __last, __pred);
if (__first == __last)
return __first;
else
{
typedef typename iterator_traits<_ForwardIterator>::value_type
_ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type
_DistanceType;
_Temporary_buffer<_ForwardIterator, _ValueType> __buf(__first,
__last);
if (__buf.size() > 0)
return
std::__stable_partition_adaptive(__first, __last, __pred,
_DistanceType(__buf.requested_size()),
__buf.begin(),
_DistanceType(__buf.size()));
else
return
std::__inplace_stable_partition(__first, __pred,
_DistanceType(__buf.requested_size()));
}
}
/// This is a helper function for the sort routines.
template<typename _RandomAccessIterator>
void
__heap_select(_RandomAccessIterator __first,
_RandomAccessIterator __middle,
_RandomAccessIterator __last)
{
std::make_heap(__first, __middle);
for (_RandomAccessIterator __i = __middle; __i < __last; ++__i)
if (*__i < *__first)
std::__pop_heap(__first, __middle, __i);
}
/// This is a helper function for the sort routines.
template<typename _RandomAccessIterator, typename _Compare>
void
__heap_select(_RandomAccessIterator __first,
_RandomAccessIterator __middle,
_RandomAccessIterator __last, _Compare __comp)
{
std::make_heap(__first, __middle, __comp);
for (_RandomAccessIterator __i = __middle; __i < __last; ++__i)
if (__comp(*__i, *__first))
std::__pop_heap(__first, __middle, __i, __comp);
}
// partial_sort
/**
* @brief Copy the smallest elements of a sequence.
* @ingroup sorting_algorithms
* @param __first An iterator.
* @param __last Another iterator.
* @param __result_first A random-access iterator.
* @param __result_last Another random-access iterator.
* @return An iterator indicating the end of the resulting sequence.
*
* Copies and sorts the smallest N values from the range @p [__first,__last)
* to the range beginning at @p __result_first, where the number of
* elements to be copied, @p N, is the smaller of @p (__last-__first) and
* @p (__result_last-__result_first).
* After the sort if @e i and @e j are iterators in the range
* @p [__result_first,__result_first+N) such that i precedes j then
* *j<*i is false.
* The value returned is @p __result_first+N.
*/
template<typename _InputIterator, typename _RandomAccessIterator>
_RandomAccessIterator
partial_sort_copy(_InputIterator __first, _InputIterator __last,
_RandomAccessIterator __result_first,
_RandomAccessIterator __result_last)
{
typedef typename iterator_traits<_InputIterator>::value_type
_InputValueType;
typedef typename iterator_traits<_RandomAccessIterator>::value_type
_OutputValueType;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type
_DistanceType;
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_ConvertibleConcept<_InputValueType,
_OutputValueType>)
__glibcxx_function_requires(_LessThanOpConcept<_InputValueType,
_OutputValueType>)
__glibcxx_function_requires(_LessThanComparableConcept<_OutputValueType>)
__glibcxx_requires_valid_range(__first, __last);
__glibcxx_requires_valid_range(__result_first, __result_last);
if (__result_first == __result_last)
return __result_last;
_RandomAccessIterator __result_real_last = __result_first;
while(__first != __last && __result_real_last != __result_last)
{
*__result_real_last = *__first;
++__result_real_last;
++__first;
}
std::make_heap(__result_first, __result_real_last);
while (__first != __last)
{
if (*__first < *__result_first)
std::__adjust_heap(__result_first, _DistanceType(0),
_DistanceType(__result_real_last
- __result_first),
_InputValueType(*__first));
++__first;
}
std::sort_heap(__result_first, __result_real_last);
return __result_real_last;
}
/**
* @brief Copy the smallest elements of a sequence using a predicate for
* comparison.
* @ingroup sorting_algorithms
* @param __first An input iterator.
* @param __last Another input iterator.
* @param __result_first A random-access iterator.
* @param __result_last Another random-access iterator.
* @param __comp A comparison functor.
* @return An iterator indicating the end of the resulting sequence.
*
* Copies and sorts the smallest N values from the range @p [__first,__last)
* to the range beginning at @p result_first, where the number of
* elements to be copied, @p N, is the smaller of @p (__last-__first) and
* @p (__result_last-__result_first).
* After the sort if @e i and @e j are iterators in the range
* @p [__result_first,__result_first+N) such that i precedes j then
* @p __comp(*j,*i) is false.
* The value returned is @p __result_first+N.
*/
template<typename _InputIterator, typename _RandomAccessIterator, typename _Compare>
_RandomAccessIterator
partial_sort_copy(_InputIterator __first, _InputIterator __last,
_RandomAccessIterator __result_first,
_RandomAccessIterator __result_last,
_Compare __comp)
{
typedef typename iterator_traits<_InputIterator>::value_type
_InputValueType;
typedef typename iterator_traits<_RandomAccessIterator>::value_type
_OutputValueType;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type
_DistanceType;
// concept requirements
__glibcxx_function_requires(_InputIteratorConcept<_InputIterator>)
__glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept<
_RandomAccessIterator>)
__glibcxx_function_requires(_ConvertibleConcept<_InputValueType,
_OutputValueType>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_InputValueType, _OutputValueType>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_OutputValueType, _OutputValueType>)
__glibcxx_requires_valid_range(__first, __last);
__glibcxx_requires_valid_range(__result_first, __result_last);
if (__result_first == __result_last)
return __result_last;
_RandomAccessIterator __result_real_last = __result_first;
while(__first != __last && __result_real_last != __result_last)
{
*__result_real_last = *__first;
++__result_real_last;
++__first;
}
std::make_heap(__result_first, __result_real_last, __comp);
while (__first != __last)
{
if (__comp(*__first, *__result_first))
std::__adjust_heap(__result_first, _DistanceType(0),
_DistanceType(__result_real_last
- __result_first),
_InputValueType(*__first),
__comp);
++__first;
}
std::sort_heap(__result_first, __result_real_last, __comp);
return __result_real_last;
}
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator>
void
__unguarded_linear_insert(_RandomAccessIterator __last)
{
typename iterator_traits<_RandomAccessIterator>::value_type
__val = _GLIBCXX_MOVE(*__last);
_RandomAccessIterator __next = __last;
--__next;
while (__val < *__next)
{
*__last = _GLIBCXX_MOVE(*__next);
__last = __next;
--__next;
}
*__last = _GLIBCXX_MOVE(__val);
}
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator, typename _Compare>
void
__unguarded_linear_insert(_RandomAccessIterator __last,
_Compare __comp)
{
typename iterator_traits<_RandomAccessIterator>::value_type
__val = _GLIBCXX_MOVE(*__last);
_RandomAccessIterator __next = __last;
--__next;
while (__comp(__val, *__next))
{
*__last = _GLIBCXX_MOVE(*__next);
__last = __next;
--__next;
}
*__last = _GLIBCXX_MOVE(__val);
}
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator>
void
__insertion_sort(_RandomAccessIterator __first,
_RandomAccessIterator __last)
{
if (__first == __last)
return;
for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
{
if (*__i < *__first)
{
typename iterator_traits<_RandomAccessIterator>::value_type
__val = _GLIBCXX_MOVE(*__i);
_GLIBCXX_MOVE_BACKWARD3(__first, __i, __i + 1);
*__first = _GLIBCXX_MOVE(__val);
}
else
std::__unguarded_linear_insert(__i);
}
}
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator, typename _Compare>
void
__insertion_sort(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
if (__first == __last) return;
for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i)
{
if (__comp(*__i, *__first))
{
typename iterator_traits<_RandomAccessIterator>::value_type
__val = _GLIBCXX_MOVE(*__i);
_GLIBCXX_MOVE_BACKWARD3(__first, __i, __i + 1);
*__first = _GLIBCXX_MOVE(__val);
}
else
std::__unguarded_linear_insert(__i, __comp);
}
}
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator>
inline void
__unguarded_insertion_sort(_RandomAccessIterator __first,
_RandomAccessIterator __last)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type
_ValueType;
for (_RandomAccessIterator __i = __first; __i != __last; ++__i)
std::__unguarded_linear_insert(__i);
}
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator, typename _Compare>
inline void
__unguarded_insertion_sort(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type
_ValueType;
for (_RandomAccessIterator __i = __first; __i != __last; ++__i)
std::__unguarded_linear_insert(__i, __comp);
}
/**
* @doctodo
* This controls some aspect of the sort routines.
*/
enum { _S_threshold = 16 };
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator>
void
__final_insertion_sort(_RandomAccessIterator __first,
_RandomAccessIterator __last)
{
if (__last - __first > int(_S_threshold))
{
std::__insertion_sort(__first, __first + int(_S_threshold));
std::__unguarded_insertion_sort(__first + int(_S_threshold), __last);
}
else
std::__insertion_sort(__first, __last);
}
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator, typename _Compare>
void
__final_insertion_sort(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
if (__last - __first > int(_S_threshold))
{
std::__insertion_sort(__first, __first + int(_S_threshold), __comp);
std::__unguarded_insertion_sort(__first + int(_S_threshold), __last,
__comp);
}
else
std::__insertion_sort(__first, __last, __comp);
}
/// This is a helper function...
template<typename _RandomAccessIterator, typename _Tp>
_RandomAccessIterator
__unguarded_partition(_RandomAccessIterator __first,
_RandomAccessIterator __last, const _Tp& __pivot)
{
while (true)
{
while (*__first < __pivot)
++__first;
--__last;
while (__pivot < *__last)
--__last;
if (!(__first < __last))
return __first;
std::iter_swap(__first, __last);
++__first;
}
}
/// This is a helper function...
template<typename _RandomAccessIterator, typename _Tp, typename _Compare>
_RandomAccessIterator
__unguarded_partition(_RandomAccessIterator __first,
_RandomAccessIterator __last,
const _Tp& __pivot, _Compare __comp)
{
while (true)
{
while (__comp(*__first, __pivot))
++__first;
--__last;
while (__comp(__pivot, *__last))
--__last;
if (!(__first < __last))
return __first;
std::iter_swap(__first, __last);
++__first;
}
}
/// This is a helper function...
template<typename _RandomAccessIterator>
inline _RandomAccessIterator
__unguarded_partition_pivot(_RandomAccessIterator __first,
_RandomAccessIterator __last)
{
_RandomAccessIterator __mid = __first + (__last - __first) / 2;
std::__move_median_first(__first, __mid, (__last - 1));
return std::__unguarded_partition(__first + 1, __last, *__first);
}
/// This is a helper function...
template<typename _RandomAccessIterator, typename _Compare>
inline _RandomAccessIterator
__unguarded_partition_pivot(_RandomAccessIterator __first,
_RandomAccessIterator __last, _Compare __comp)
{
_RandomAccessIterator __mid = __first + (__last - __first) / 2;
std::__move_median_first(__first, __mid, (__last - 1), __comp);
return std::__unguarded_partition(__first + 1, __last, *__first, __comp);
}
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator, typename _Size>
void
__introsort_loop(_RandomAccessIterator __first,
_RandomAccessIterator __last,
_Size __depth_limit)
{
while (__last - __first > int(_S_threshold))
{
if (__depth_limit == 0)
{
_GLIBCXX_STD_A::partial_sort(__first, __last, __last);
return;
}
--__depth_limit;
_RandomAccessIterator __cut =
std::__unguarded_partition_pivot(__first, __last);
std::__introsort_loop(__cut, __last, __depth_limit);
__last = __cut;
}
}
/// This is a helper function for the sort routine.
template<typename _RandomAccessIterator, typename _Size, typename _Compare>
void
__introsort_loop(_RandomAccessIterator __first,
_RandomAccessIterator __last,
_Size __depth_limit, _Compare __comp)
{
while (__last - __first > int(_S_threshold))
{
if (__depth_limit == 0)
{
_GLIBCXX_STD_A::partial_sort(__first, __last, __last, __comp);
return;
}
--__depth_limit;
_RandomAccessIterator __cut =
std::__unguarded_partition_pivot(__first, __last, __comp);
std::__introsort_loop(__cut, __last, __depth_limit, __comp);
__last = __cut;
}
}
// sort
template<typename _RandomAccessIterator, typename _Size>
void
__introselect(_RandomAccessIterator __first, _RandomAccessIterator __nth,
_RandomAccessIterator __last, _Size __depth_limit)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type
_ValueType;
while (__last - __first > 3)
{
if (__depth_limit == 0)
{
std::__heap_select(__first, __nth + 1, __last);
// Place the nth largest element in its final position.
std::iter_swap(__first, __nth);
return;
}
--__depth_limit;
_RandomAccessIterator __cut =
std::__unguarded_partition_pivot(__first, __last);
if (__cut <= __nth)
__first = __cut;
else
__last = __cut;
}
std::__insertion_sort(__first, __last);
}
template<typename _RandomAccessIterator, typename _Size, typename _Compare>
void
__introselect(_RandomAccessIterator __first, _RandomAccessIterator __nth,
_RandomAccessIterator __last, _Size __depth_limit,
_Compare __comp)
{
typedef typename iterator_traits<_RandomAccessIterator>::value_type
_ValueType;
while (__last - __first > 3)
{
if (__depth_limit == 0)
{
std::__heap_select(__first, __nth + 1, __last, __comp);
// Place the nth largest element in its final position.
std::iter_swap(__first, __nth);
return;
}
--__depth_limit;
_RandomAccessIterator __cut =
std::__unguarded_partition_pivot(__first, __last, __comp);
if (__cut <= __nth)
__first = __cut;
else
__last = __cut;
}
std::__insertion_sort(__first, __last, __comp);
}
// nth_element
// lower_bound moved to stl_algobase.h
/**
* @brief Finds the first position in which @p __val could be inserted
* without changing the ordering.
* @ingroup binary_search_algorithms
* @param __first An iterator.
* @param __last Another iterator.
* @param __val The search term.
* @param __comp A functor to use for comparisons.
* @return An iterator pointing to the first element <em>not less
* than</em> @p __val, or end() if every element is less
* than @p __val.
* @ingroup binary_search_algorithms
*
* The comparison function should have the same effects on ordering as
* the function used for the initial sort.
*/
template<typename _ForwardIterator, typename _Tp, typename _Compare>
_ForwardIterator
lower_bound(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val, _Compare __comp)
{
typedef typename iterator_traits<_ForwardIterator>::value_type
_ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type
_DistanceType;
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_ValueType, _Tp>)
__glibcxx_requires_partitioned_lower_pred(__first, __last,
__val, __comp);
_DistanceType __len = std::distance(__first, __last);
while (__len > 0)
{
_DistanceType __half = __len >> 1;
_ForwardIterator __middle = __first;
std::advance(__middle, __half);
if (__comp(*__middle, __val))
{
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else
__len = __half;
}
return __first;
}
/**
* @brief Finds the last position in which @p __val could be inserted
* without changing the ordering.
* @ingroup binary_search_algorithms
* @param __first An iterator.
* @param __last Another iterator.
* @param __val The search term.
* @return An iterator pointing to the first element greater than @p __val,
* or end() if no elements are greater than @p __val.
* @ingroup binary_search_algorithms
*/
template<typename _ForwardIterator, typename _Tp>
_ForwardIterator
upper_bound(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val)
{
typedef typename iterator_traits<_ForwardIterator>::value_type
_ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type
_DistanceType;
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_LessThanOpConcept<_Tp, _ValueType>)
__glibcxx_requires_partitioned_upper(__first, __last, __val);
_DistanceType __len = std::distance(__first, __last);
while (__len > 0)
{
_DistanceType __half = __len >> 1;
_ForwardIterator __middle = __first;
std::advance(__middle, __half);
if (__val < *__middle)
__len = __half;
else
{
__first = __middle;
++__first;
__len = __len - __half - 1;
}
}
return __first;
}
/**
* @brief Finds the last position in which @p __val could be inserted
* without changing the ordering.
* @ingroup binary_search_algorithms
* @param __first An iterator.
* @param __last Another iterator.
* @param __val The search term.
* @param __comp A functor to use for comparisons.
* @return An iterator pointing to the first element greater than @p __val,
* or end() if no elements are greater than @p __val.
* @ingroup binary_search_algorithms
*
* The comparison function should have the same effects on ordering as
* the function used for the initial sort.
*/
template<typename _ForwardIterator, typename _Tp, typename _Compare>
_ForwardIterator
upper_bound(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val, _Compare __comp)
{
typedef typename iterator_traits<_ForwardIterator>::value_type
_ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type
_DistanceType;
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_Tp, _ValueType>)
__glibcxx_requires_partitioned_upper_pred(__first, __last,
__val, __comp);
_DistanceType __len = std::distance(__first, __last);
while (__len > 0)
{
_DistanceType __half = __len >> 1;
_ForwardIterator __middle = __first;
std::advance(__middle, __half);
if (__comp(__val, *__middle))
__len = __half;
else
{
__first = __middle;
++__first;
__len = __len - __half - 1;
}
}
return __first;
}
/**
* @brief Finds the largest subrange in which @p __val could be inserted
* at any place in it without changing the ordering.
* @ingroup binary_search_algorithms
* @param __first An iterator.
* @param __last Another iterator.
* @param __val The search term.
* @return An pair of iterators defining the subrange.
* @ingroup binary_search_algorithms
*
* This is equivalent to
* @code
* std::make_pair(lower_bound(__first, __last, __val),
* upper_bound(__first, __last, __val))
* @endcode
* but does not actually call those functions.
*/
template<typename _ForwardIterator, typename _Tp>
pair<_ForwardIterator, _ForwardIterator>
equal_range(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val)
{
typedef typename iterator_traits<_ForwardIterator>::value_type
_ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type
_DistanceType;
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_LessThanOpConcept<_ValueType, _Tp>)
__glibcxx_function_requires(_LessThanOpConcept<_Tp, _ValueType>)
__glibcxx_requires_partitioned_lower(__first, __last, __val);
__glibcxx_requires_partitioned_upper(__first, __last, __val);
_DistanceType __len = std::distance(__first, __last);
while (__len > 0)
{
_DistanceType __half = __len >> 1;
_ForwardIterator __middle = __first;
std::advance(__middle, __half);
if (*__middle < __val)
{
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else if (__val < *__middle)
__len = __half;
else
{
_ForwardIterator __left = std::lower_bound(__first, __middle,
__val);
std::advance(__first, __len);
_ForwardIterator __right = std::upper_bound(++__middle, __first,
__val);
return pair<_ForwardIterator, _ForwardIterator>(__left, __right);
}
}
return pair<_ForwardIterator, _ForwardIterator>(__first, __first);
}
/**
* @brief Finds the largest subrange in which @p __val could be inserted
* at any place in it without changing the ordering.
* @param __first An iterator.
* @param __last Another iterator.
* @param __val The search term.
* @param __comp A functor to use for comparisons.
* @return An pair of iterators defining the subrange.
* @ingroup binary_search_algorithms
*
* This is equivalent to
* @code
* std::make_pair(lower_bound(__first, __last, __val, __comp),
* upper_bound(__first, __last, __val, __comp))
* @endcode
* but does not actually call those functions.
*/
template<typename _ForwardIterator, typename _Tp, typename _Compare>
pair<_ForwardIterator, _ForwardIterator>
equal_range(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val, _Compare __comp)
{
typedef typename iterator_traits<_ForwardIterator>::value_type
_ValueType;
typedef typename iterator_traits<_ForwardIterator>::difference_type
_DistanceType;
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_ValueType, _Tp>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_Tp, _ValueType>)
__glibcxx_requires_partitioned_lower_pred(__first, __last,
__val, __comp);
__glibcxx_requires_partitioned_upper_pred(__first, __last,
__val, __comp);
_DistanceType __len = std::distance(__first, __last);
while (__len > 0)
{
_DistanceType __half = __len >> 1;
_ForwardIterator __middle = __first;
std::advance(__middle, __half);
if (__comp(*__middle, __val))
{
__first = __middle;
++__first;
__len = __len - __half - 1;
}
else if (__comp(__val, *__middle))
__len = __half;
else
{
_ForwardIterator __left = std::lower_bound(__first, __middle,
__val, __comp);
std::advance(__first, __len);
_ForwardIterator __right = std::upper_bound(++__middle, __first,
__val, __comp);
return pair<_ForwardIterator, _ForwardIterator>(__left, __right);
}
}
return pair<_ForwardIterator, _ForwardIterator>(__first, __first);
}
/**
* @brief Determines whether an element exists in a range.
* @ingroup binary_search_algorithms
* @param __first An iterator.
* @param __last Another iterator.
* @param __val The search term.
* @return True if @p __val (or its equivalent) is in [@p
* __first,@p __last ].
*
* Note that this does not actually return an iterator to @p __val. For
* that, use std::find or a container's specialized find member functions.
*/
template<typename _ForwardIterator, typename _Tp>
bool
binary_search(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val)
{
typedef typename iterator_traits<_ForwardIterator>::value_type
_ValueType;
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_LessThanOpConcept<_Tp, _ValueType>)
__glibcxx_requires_partitioned_lower(__first, __last, __val);
__glibcxx_requires_partitioned_upper(__first, __last, __val);
_ForwardIterator __i = std::lower_bound(__first, __last, __val);
return __i != __last && !(__val < *__i);
}
/**
* @brief Determines whether an element exists in a range.
* @ingroup binary_search_algorithms
* @param __first An iterator.
* @param __last Another iterator.
* @param __val The search term.
* @param __comp A functor to use for comparisons.
* @return True if @p __val (or its equivalent) is in @p [__first,__last].
*
* Note that this does not actually return an iterator to @p __val. For
* that, use std::find or a container's specialized find member functions.
*
* The comparison function should have the same effects on ordering as
* the function used for the initial sort.
*/
template<typename _ForwardIterator, typename _Tp, typename _Compare>
bool
binary_search(_ForwardIterator __first, _ForwardIterator __last,
const _Tp& __val, _Compare __comp)
{
typedef typename iterator_traits<_ForwardIterator>::value_type
_ValueType;
// concept requirements
__glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
__glibcxx_function_requires(_BinaryPredicateConcept<_Compare,
_Tp, _ValueType>)
__glibcxx_requires_partitioned_lower_pred(__first, __last,
__val, __comp);
__glibcxx_requires_partitioned_upper_pred(__first, __last,
__val, __comp);
_ForwardIterator __i = std::lower_bound(__first, __last, __val, __comp);
return __i != __last && !bool(__comp(__val, *__i));
}
// merge
/// This is a helper function for the __merge_adaptive routines.
template<typename _InputIterator1, typename _InputIterator2,
typename _OutputIterator>
void
__move_merge_adaptive(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result)
{
while (__first1 != __last1 && __first2 != __last2)
{
if (*__first2 < *__first1)
{
*__result = _GLIBCXX_MOVE(*__first2);
++__first2;
}
else
{
*__result = _GLIBCXX_MOVE(*__first1);
++__first1;
}
++__result;
}
if (__first1 != __last1)
_GLIBCXX_MOVE3(__first1, __last1, __result);
}
/// This is a helper function for the __merge_adaptive routines.
template<typename _InputIterator1, typename _InputIterator2,
typename _OutputIterator, typename _Compare>
void
__move_merge_adaptive(_InputIterator1 __first1, _InputIterator1 __last1,
_InputIterator2 __first2, _InputIterator2 __last2,
_OutputIterator __result, _Compare __comp)
{
while (__first1 != __last1 && __first2 != __last2)
{
if (__comp(*__first2, *__first1))
{
*__result = _GLIBCXX_MOVE(*__first2);
++__first2;
}
else
{
*__result = _GLIBCXX_MOVE(*__first1);
++__first1;
}
++__result;
}
if (__first1 != __last1)
_GLIBCXX_MOVE3(__first1, __last1, __result);
}
/// This is a helper function for the __merge_adaptive routines.
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
typename _BidirectionalIterator3>
void
__move_merge_adaptive_backward(_BidirectionalIterator1 __first1,
_BidirectionalIterator1 __last1,
_BidirectionalIterator2 __first2,
_BidirectionalIterator2 __last2,
_BidirectionalIterator3 __result)
{
if (__first1 == __last1)
{
_GLIBCXX_MOVE_BACKWARD3(__first2, __last2, __result);
return;
}
else if (__first2 == __last2)
return;
--__last1;
--__last2;
while (true)
{
if (*__last2 < *__last1)
{
*--__result = _GLIBCXX_MOVE(*__last1);
if (__first1 == __last1)
{
_GLIBCXX_MOVE_BACKWARD3(__first2, ++__last2, __result);
return;
}
--__last1;
}
else
{
*--__result = _GLIBCXX_MOVE(*__last2);
if (__first2 == __last2)
return;
--__last2;
}
}
}
/// This is a helper function for the __merge_adaptive routines.
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
typename _BidirectionalIterator3, typename _Compare>
void
__move_merge_adaptive_backward(_BidirectionalIterator1 __first1,
_BidirectionalIterator1 __last1,
_BidirectionalIterator2 __first2,
_BidirectionalIterator2 __last2,
_BidirectionalIterator3 __result,
_Compare __comp)
{
if (__first1 == __last1)
{
_GLIBCXX_MOVE_BACKWARD3(__first2, __last2, __result);
return;
}
else if (__first2 == __last2)
return;
--__last1;
--__last2;
while (true)
{
if (__comp(*__last2, *__last1))
{
*--__result = _GLIBCXX_MOVE(*__last1);
if (__first1 == __last1)
{
_GLIBCXX_MOVE_BACKWARD3(__first2, ++__last2, __result);
return;
}
--__last1;
}
else
{
*--__result = _GLIBCXX_MOVE(*__last2);
if (__first2 == __last2)
return;
--__last2;
}
}
}
/// This is a helper function for the merge routines.
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2,
typename _Distance>
_BidirectionalIterator1
__rotate_adaptive(_BidirectionalIterator1 __first,
_BidirectionalIterator1 __middle,
_BidirectionalIterator1 __last,
_Distance __len1, _Distance __len2,
_BidirectionalIterator2 __buffer,
_Distance __buffer_size)
{
_BidirectionalIterator2 __buffer_end;
if (__len1 > __len2 && __len2 <= __buffer_size)
{
if (__len2)
{
__buffer_end = _GLIBCXX_MOVE3(__middle, __last, __buffer);
_GLIBCXX_MOVE_BACKWARD3(__first, __middle, __last);
return _GLIBCXX_MOVE3(__buffer, __buffer_end, __first);
}
else
return __first;
}
else if (__len1 <= __buffer_size)
{
if (__len1)
{
__buffer_end = _GLIBCXX_MOVE3(__first, __middle, __buffer);
_GLIBCXX_MOVE3(__middle, __last, __first);
return _GLIBCXX_MOVE_BACKWARD3(__buffer, __buffer_end, __last);
}
else
return __last;
}
else
{
std::rotate(__first, __middle, __last);
std::advance(__first, std::distance(__middle, __last));
return __first;
}
}
/// This is a helper function for the merge routines.
template<typename _BidirectionalIterator, typename _Distance,
typename _Pointer>
void
__merge_adaptive(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last,
_Distance __len1, _Distance __len2,
_Pointer __buffer, _Distance __buffer_size)
{
if (__len1 <= __len2 && __len1 <= __buffer_size)
{
_Pointer __buffer_end = _GLIBCXX_MOVE3(__first, __middle, __buffer);
std::__move_merge_adaptive(__buffer, __buffer_end, __middle, __last,
__first);
}
else if (__len2 <= __buffer_size)
{
_Pointer __buffer_end = _GLIBCXX_MOVE3(__middle, __last, __buffer);
std::__move_merge_adaptive_backward(__first, __middle, __buffer,
__buffer_end, __last);
}
else
{
_BidirectionalIterator __first_cut = __first;
_BidirectionalIterator __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2)
{
__len11 = __len1 / 2;
std::advance(__first_cut, __len11);
__second_cut = std::lower_bound(__middle, __last,
*__first_cut);
__len22 = std::distance(__middle, __second_cut);
}
else
{
__len22 = __len2 / 2;
std::advance(__second_cut, __len22);
__first_cut = std::upper_bound(__first, __middle,
*__second_cut);
__len11 = std::distance(__first, __first_cut);
}
_BidirectionalIterator __new_middle =
std::__rotate_adaptive(__first_cut, __middle, __second_cut,
__len1 - __len11, __len22, __buffer,
__buffer_size);
std::__merge_adaptive(__first, __first_cut, __new_middle, __len11,
__len22, __buffer, __buffer_size);
std::__merge_adaptive(__new_middle, __second_cut, __last,
__len1 - __len11,
__len2 - __len22, __buffer, __buffer_size);
}
}
/// This is a helper function for the merge routines.
template<typename _BidirectionalIterator, typename _Distance,
typename _Pointer, typename _Compare>
void
__merge_adaptive(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last,
_Distance __len1, _Distance __len2,
_Pointer __buffer, _Distance __buffer_size,
_Compare __comp)
{
if (__len1 <= __len2 && __len1 <= __buffer_size)
{
_Pointer __buffer_end = _GLIBCXX_MOVE3(__first, __middle, __buffer);
std::__move_merge_adaptive(__buffer, __buffer_end, __middle, __last,
__first, __comp);
}
else if (__len2 <= __buffer_size)
{
_Pointer __buffer_end = _GLIBCXX_MOVE3(__middle, __last, __buffer);
std::__move_merge_adaptive_backward(__first, __middle, __buffer,
__buffer_end, __last, __comp);
}
else
{
_BidirectionalIterator __first_cut = __first;
_BidirectionalIterator __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2)
{
__len11 = __len1 / 2;
std::advance(__first_cut, __len11);
__second_cut = std::lower_bound(__middle, __last, *__first_cut,
__comp);
__len22 = std::distance(__middle, __second_cut);
}
else
{
__len22 = __len2 / 2;
std::advance(__second_cut, __len22);
__first_cut = std::upper_bound(__first, __middle, *__second_cut,
__comp);
__len11 = std::distance(__first, __first_cut);
}
_BidirectionalIterator __new_middle =
std::__rotate_adaptive(__first_cut, __middle, __second_cut,
__len1 - __len11, __len22, __buffer,
__buffer_size);
std::__merge_adaptive(__first, __first_cut, __new_middle, __len11,
__len22, __buffer, __buffer_size, __comp);
std::__merge_adaptive(__new_middle, __second_cut, __last,
__len1 - __len11,
__len2 - __len22, __buffer,
__buffer_size, __comp);
}
}
/// This is a helper function for the merge routines.
template<typename _BidirectionalIterator, typename _Distance>
void
__merge_without_buffer(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last,
_Distance __len1, _Distance __len2)
{
if (__len1 == 0 || __len2 == 0)
return;
if (__len1 + __len2 == 2)
{
if (*__middle < *__first)
std::iter_swap(__first, __middle);
return;
}
_BidirectionalIterator __first_cut = __first;
_BidirectionalIterator __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2)
{
__len11 = __len1 / 2;
std::advance(__first_cut, __len11);
__second_cut = std::lower_bound(__middle, __last, *__first_cut);
__len22 = std::distance(__middle, __second_cut);
}
else
{
__len22 = __len2 / 2;
std::advance(__second_cut, __len22);
__first_cut = std::upper_bound(__first, __middle, *__second_cut);
__len11 = std::distance(__first, __first_cut);
}
std::rotate(__first_cut, __middle, __second_cut);
_BidirectionalIterator __new_middle = __first_cut;
std::advance(__new_middle, std::distance(__middle, __second_cut));
std::__merge_without_buffer(__first, __first_cut, __new_middle,
__len11, __len22);
std::__merge_without_buffer(__new_middle, __second_cut, __last,
__len1 - __len11, __len2 - __len22);
}
/// This is a helper function for the merge routines.
template<typename _BidirectionalIterator, typename _Distance,
typename _Compare>
void
__merge_without_buffer(_BidirectionalIterator __first,
_BidirectionalIterator __middle,
_BidirectionalIterator __last,
_Distance __len1, _Distance __len2,
_Compare __comp)
{
if (__len1 == 0 || __len2 == 0)
return;
if (__len1 + __len2 == 2)
{
if (__comp(*__middle, *__first))
std::iter_swap(__first, __middle);
return;
}
_BidirectionalIterator __first_cut = __first;
_BidirectionalIterator __second_cut = __middle;
_Distance __len11 = 0;
_Distance __len22 = 0;
if (__len1 > __len2)
{
__len11 = __len1 / 2;
std::advance(__first_cut, __len11);
__second_cut = std::lower_bound(__middle, __last, *__first_cut,
__comp);
__len22 = std::distance(__middle, __second_cut);
}
else
{
__len22 = __len2 / 2;
std::advance(__second_cut, __len22);
__first_cut = std::upper_bound(__first, __middle, *__second_cut,
__comp);
__len11 = std::distance(__first, __first_cut);
}
std::rotate(__first_cut, __middle, __second_cut);
_BidirectionalIterator __new_middle = __first_cut;
std::advance(__new_middle, std::distance(__middle, __second_cut));
std::__merge_without_buffer(__first, __first_cut, __new_middle,
__len11, __len22, __comp);
std::__merge_without_buffer(__new_middle, __second_cut, __last,
__len1 - __len11, __len2 - __len22, __comp);
}
/**
* @brief Merges two sorted ranges in place.
* @ingroup sorting_algorithms
* @param __first An iterator.
* @param __middle Another iterator.
* @param __last Another iterator.