| // hashtable.h header -*- C++ -*- |
| |
| // Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012, 2013 |
| // Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /** @file bits/hashtable.h |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{unordered_map, unordered_set} |
| */ |
| |
| #ifndef _HASHTABLE_H |
| #define _HASHTABLE_H 1 |
| |
| #pragma GCC system_header |
| |
| #include <bits/hashtable_policy.h> |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| // Class template _Hashtable, class definition. |
| |
| // Meaning of class template _Hashtable's template parameters |
| |
| // _Key and _Value: arbitrary CopyConstructible types. |
| |
| // _Allocator: an allocator type ([lib.allocator.requirements]) whose |
| // value type is Value. As a conforming extension, we allow for |
| // value type != Value. |
| |
| // _ExtractKey: function object that takes an object of type Value |
| // and returns a value of type _Key. |
| |
| // _Equal: function object that takes two objects of type k and returns |
| // a bool-like value that is true if the two objects are considered equal. |
| |
| // _H1: the hash function. A unary function object with argument type |
| // Key and result type size_t. Return values should be distributed |
| // over the entire range [0, numeric_limits<size_t>:::max()]. |
| |
| // _H2: the range-hashing function (in the terminology of Tavori and |
| // Dreizin). A binary function object whose argument types and result |
| // type are all size_t. Given arguments r and N, the return value is |
| // in the range [0, N). |
| |
| // _Hash: the ranged hash function (Tavori and Dreizin). A binary function |
| // whose argument types are _Key and size_t and whose result type is |
| // size_t. Given arguments k and N, the return value is in the range |
| // [0, N). Default: hash(k, N) = h2(h1(k), N). If _Hash is anything other |
| // than the default, _H1 and _H2 are ignored. |
| |
| // _RehashPolicy: Policy class with three members, all of which govern |
| // the bucket count. _M_next_bkt(n) returns a bucket count no smaller |
| // than n. _M_bkt_for_elements(n) returns a bucket count appropriate |
| // for an element count of n. _M_need_rehash(n_bkt, n_elt, n_ins) |
| // determines whether, if the current bucket count is n_bkt and the |
| // current element count is n_elt, we need to increase the bucket |
| // count. If so, returns make_pair(true, n), where n is the new |
| // bucket count. If not, returns make_pair(false, <anything>). |
| |
| // __cache_hash_code: bool. true if we store the value of the hash |
| // function along with the value. This is a time-space tradeoff. |
| // Storing it may improve lookup speed by reducing the number of times |
| // we need to call the Equal function. |
| |
| // __constant_iterators: bool. true if iterator and const_iterator are |
| // both constant iterator types. This is true for unordered_set and |
| // unordered_multiset, false for unordered_map and unordered_multimap. |
| |
| // __unique_keys: bool. true if the return value of _Hashtable::count(k) |
| // is always at most one, false if it may be an arbitrary number. This |
| // true for unordered_set and unordered_map, false for unordered_multiset |
| // and unordered_multimap. |
| /** |
| * Here's _Hashtable data structure, each _Hashtable has: |
| * - _Bucket[] _M_buckets |
| * - _Hash_node_base _M_before_begin |
| * - size_type _M_bucket_count |
| * - size_type _M_element_count |
| * |
| * with _Bucket being _Hash_node* and _Hash_node containing: |
| * - _Hash_node* _M_next |
| * - Tp _M_value |
| * - size_t _M_hash_code if cache_hash_code is true |
| * |
| * In terms of Standard containers the hashtable is like the aggregation of: |
| * - std::forward_list<_Node> containing the elements |
| * - std::vector<std::forward_list<_Node>::iterator> representing the buckets |
| * |
| * The non-empty buckets contain the node before the first node in the |
| * bucket. This design makes it possible to implement something like a |
| * std::forward_list::insert_after on container insertion and |
| * std::forward_list::erase_after on container erase calls. |
| * _M_before_begin is equivalent to std::foward_list::before_begin. |
| * Empty buckets contain nullptr. |
| * Note that one of the non-empty buckets contains &_M_before_begin which is |
| * not a dereferenceable node so the node pointer in a bucket shall never be |
| * dereferenced, only its next node can be. |
| * |
| * Walking through a bucket's nodes requires a check on the hash code to see |
| * if each node is still in the bucket. Such a design assumes a quite |
| * efficient hash functor and is one of the reasons it is |
| * highly advisable to set __cache_hash_code to true. |
| * |
| * The container iterators are simply built from nodes. This way incrementing |
| * the iterator is perfectly efficient independent of how many empty buckets |
| * there are in the container. |
| * |
| * On insert we compute the element's hash code and use it to it find the |
| * bucket index. If the element must be inserted in an empty bucket we add |
| * it at the beginning of the singly linked list and make the bucket point to |
| * _M_before_begin. The bucket that used to point to _M_before_begin, if any, |
| * is updated to point to its new before begin node. |
| * |
| * On erase, the simple iterator design requires using the hash functor to |
| * get the index of the bucket to update. For this reason, when |
| * __cache_hash_code is set to false, the hash functor must not throw |
| * and this is enforced by a statied assertion. |
| */ |
| |
| template<typename _Key, typename _Value, typename _Allocator, |
| typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, |
| typename _RehashPolicy, |
| bool __cache_hash_code, |
| bool __constant_iterators, |
| bool __unique_keys> |
| class _Hashtable |
| : public __detail::_Rehash_base<_RehashPolicy, |
| _Hashtable<_Key, _Value, _Allocator, |
| _ExtractKey, |
| _Equal, _H1, _H2, _Hash, |
| _RehashPolicy, |
| __cache_hash_code, |
| __constant_iterators, |
| __unique_keys> >, |
| public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, __cache_hash_code>, |
| public __detail::_Map_base<_Key, _Value, _ExtractKey, __unique_keys, |
| _Hashtable<_Key, _Value, _Allocator, |
| _ExtractKey, |
| _Equal, _H1, _H2, _Hash, |
| _RehashPolicy, |
| __cache_hash_code, |
| __constant_iterators, |
| __unique_keys> >, |
| public __detail::_Equality_base<_ExtractKey, __unique_keys, |
| _Hashtable<_Key, _Value, _Allocator, |
| _ExtractKey, |
| _Equal, _H1, _H2, _Hash, |
| _RehashPolicy, |
| __cache_hash_code, |
| __constant_iterators, |
| __unique_keys> > |
| { |
| template<typename _Cond> |
| using __if_hash_code_cached |
| = __or_<__not_<integral_constant<bool, __cache_hash_code>>, _Cond>; |
| |
| template<typename _Cond> |
| using __if_hash_code_not_cached |
| = __or_<integral_constant<bool, __cache_hash_code>, _Cond>; |
| |
| // When hash codes are not cached the hash functor shall not throw |
| // because it is used in methods (erase, swap...) that shall not throw. |
| static_assert(__if_hash_code_not_cached<__detail::__is_noexcept_hash<_Key, |
| _H1>>::value, |
| "Cache the hash code or qualify your hash functor with noexcept"); |
| |
| // Following two static assertions are necessary to guarantee that |
| // swapping two hashtable instances won't invalidate associated local |
| // iterators. |
| |
| // When hash codes are cached local iterator only uses H2 which must then |
| // be empty. |
| static_assert(__if_hash_code_cached<is_empty<_H2>>::value, |
| "Functor used to map hash code to bucket index must be empty"); |
| |
| typedef __detail::_Hash_code_base<_Key, _Value, _ExtractKey, |
| _H1, _H2, _Hash, |
| __cache_hash_code> _HCBase; |
| |
| // When hash codes are not cached local iterator is going to use _HCBase |
| // above to compute node bucket index so it has to be empty. |
| static_assert(__if_hash_code_not_cached<is_empty<_HCBase>>::value, |
| "Cache the hash code or make functors involved in hash code" |
| " and bucket index computation empty"); |
| |
| public: |
| typedef _Allocator allocator_type; |
| typedef _Value value_type; |
| typedef _Key key_type; |
| typedef _Equal key_equal; |
| // mapped_type, if present, comes from _Map_base. |
| // hasher, if present, comes from _Hash_code_base. |
| typedef typename _Allocator::pointer pointer; |
| typedef typename _Allocator::const_pointer const_pointer; |
| typedef typename _Allocator::reference reference; |
| typedef typename _Allocator::const_reference const_reference; |
| |
| typedef std::size_t size_type; |
| typedef std::ptrdiff_t difference_type; |
| typedef __detail::_Local_iterator<key_type, value_type, _ExtractKey, |
| _H1, _H2, _Hash, |
| __constant_iterators, |
| __cache_hash_code> |
| local_iterator; |
| typedef __detail::_Local_const_iterator<key_type, value_type, _ExtractKey, |
| _H1, _H2, _Hash, |
| __constant_iterators, |
| __cache_hash_code> |
| const_local_iterator; |
| typedef __detail::_Node_iterator<value_type, __constant_iterators, |
| __cache_hash_code> |
| iterator; |
| typedef __detail::_Node_const_iterator<value_type, |
| __constant_iterators, |
| __cache_hash_code> |
| const_iterator; |
| |
| template<typename _Key2, typename _Value2, typename _Ex2, bool __unique2, |
| typename _Hashtable2> |
| friend struct __detail::_Map_base; |
| |
| private: |
| typedef typename _RehashPolicy::_State _RehashPolicyState; |
| typedef __detail::_Hash_node<_Value, __cache_hash_code> _Node; |
| typedef typename _Allocator::template rebind<_Node>::other |
| _Node_allocator_type; |
| typedef __detail::_Hash_node_base _BaseNode; |
| typedef _BaseNode* _Bucket; |
| typedef typename _Allocator::template rebind<_Bucket>::other |
| _Bucket_allocator_type; |
| |
| typedef typename _Allocator::template rebind<_Value>::other |
| _Value_allocator_type; |
| |
| _Node_allocator_type _M_node_allocator; |
| _Bucket* _M_buckets; |
| size_type _M_bucket_count; |
| _BaseNode _M_before_begin; |
| size_type _M_element_count; |
| _RehashPolicy _M_rehash_policy; |
| |
| template<typename... _Args> |
| _Node* |
| _M_allocate_node(_Args&&... __args); |
| |
| void |
| _M_deallocate_node(_Node* __n); |
| |
| // Deallocate the linked list of nodes pointed to by __n |
| void |
| _M_deallocate_nodes(_Node* __n); |
| |
| _Bucket* |
| _M_allocate_buckets(size_type __n); |
| |
| void |
| _M_deallocate_buckets(_Bucket*, size_type __n); |
| |
| // Gets bucket begin, deals with the fact that non-empty buckets contain |
| // their before begin node. |
| _Node* |
| _M_bucket_begin(size_type __bkt) const; |
| |
| _Node* |
| _M_begin() const |
| { return static_cast<_Node*>(_M_before_begin._M_nxt); } |
| |
| public: |
| // Constructor, destructor, assignment, swap |
| _Hashtable(size_type __bucket_hint, |
| const _H1&, const _H2&, const _Hash&, |
| const _Equal&, const _ExtractKey&, |
| const allocator_type&); |
| |
| template<typename _InputIterator> |
| _Hashtable(_InputIterator __first, _InputIterator __last, |
| size_type __bucket_hint, |
| const _H1&, const _H2&, const _Hash&, |
| const _Equal&, const _ExtractKey&, |
| const allocator_type&); |
| |
| _Hashtable(const _Hashtable&); |
| |
| _Hashtable(_Hashtable&&); |
| |
| _Hashtable& |
| operator=(const _Hashtable& __ht) |
| { |
| _Hashtable __tmp(__ht); |
| this->swap(__tmp); |
| return *this; |
| } |
| |
| _Hashtable& |
| operator=(_Hashtable&& __ht) |
| { |
| // NB: DR 1204. |
| // NB: DR 675. |
| this->clear(); |
| this->swap(__ht); |
| return *this; |
| } |
| |
| ~_Hashtable() noexcept; |
| |
| void swap(_Hashtable&); |
| |
| // Basic container operations |
| iterator |
| begin() noexcept |
| { return iterator(_M_begin()); } |
| |
| const_iterator |
| begin() const noexcept |
| { return const_iterator(_M_begin()); } |
| |
| iterator |
| end() noexcept |
| { return iterator(nullptr); } |
| |
| const_iterator |
| end() const noexcept |
| { return const_iterator(nullptr); } |
| |
| const_iterator |
| cbegin() const noexcept |
| { return const_iterator(_M_begin()); } |
| |
| const_iterator |
| cend() const noexcept |
| { return const_iterator(nullptr); } |
| |
| size_type |
| size() const noexcept |
| { return _M_element_count; } |
| |
| bool |
| empty() const noexcept |
| { return size() == 0; } |
| |
| allocator_type |
| get_allocator() const noexcept |
| { return allocator_type(_M_node_allocator); } |
| |
| size_type |
| max_size() const noexcept |
| { return _M_node_allocator.max_size(); } |
| |
| // Observers |
| key_equal |
| key_eq() const |
| { return this->_M_eq(); } |
| |
| // hash_function, if present, comes from _Hash_code_base. |
| |
| // Bucket operations |
| size_type |
| bucket_count() const noexcept |
| { return _M_bucket_count; } |
| |
| size_type |
| max_bucket_count() const noexcept |
| { return max_size(); } |
| |
| size_type |
| bucket_size(size_type __n) const |
| { return std::distance(begin(__n), end(__n)); } |
| |
| size_type |
| bucket(const key_type& __k) const |
| { return _M_bucket_index(__k, this->_M_hash_code(__k)); } |
| |
| local_iterator |
| begin(size_type __n) |
| { return local_iterator(_M_bucket_begin(__n), __n, |
| _M_bucket_count); } |
| |
| local_iterator |
| end(size_type __n) |
| { return local_iterator(nullptr, __n, _M_bucket_count); } |
| |
| const_local_iterator |
| begin(size_type __n) const |
| { return const_local_iterator(_M_bucket_begin(__n), __n, |
| _M_bucket_count); } |
| |
| const_local_iterator |
| end(size_type __n) const |
| { return const_local_iterator(nullptr, __n, _M_bucket_count); } |
| |
| // DR 691. |
| const_local_iterator |
| cbegin(size_type __n) const |
| { return const_local_iterator(_M_bucket_begin(__n), __n, |
| _M_bucket_count); } |
| |
| const_local_iterator |
| cend(size_type __n) const |
| { return const_local_iterator(nullptr, __n, _M_bucket_count); } |
| |
| float |
| load_factor() const noexcept |
| { |
| return static_cast<float>(size()) / static_cast<float>(bucket_count()); |
| } |
| |
| // max_load_factor, if present, comes from _Rehash_base. |
| |
| // Generalization of max_load_factor. Extension, not found in TR1. Only |
| // useful if _RehashPolicy is something other than the default. |
| const _RehashPolicy& |
| __rehash_policy() const |
| { return _M_rehash_policy; } |
| |
| void |
| __rehash_policy(const _RehashPolicy&); |
| |
| // Lookup. |
| iterator |
| find(const key_type& __k); |
| |
| const_iterator |
| find(const key_type& __k) const; |
| |
| size_type |
| count(const key_type& __k) const; |
| |
| std::pair<iterator, iterator> |
| equal_range(const key_type& __k); |
| |
| std::pair<const_iterator, const_iterator> |
| equal_range(const key_type& __k) const; |
| |
| private: |
| // Bucket index computation helpers. |
| size_type |
| _M_bucket_index(_Node* __n) const |
| { return _HCBase::_M_bucket_index(__n, _M_bucket_count); } |
| |
| size_type |
| _M_bucket_index(const key_type& __k, |
| typename _Hashtable::_Hash_code_type __c) const |
| { return _HCBase::_M_bucket_index(__k, __c, _M_bucket_count); } |
| |
| // Find and insert helper functions and types |
| // Find the node before the one matching the criteria. |
| _BaseNode* |
| _M_find_before_node(size_type, const key_type&, |
| typename _Hashtable::_Hash_code_type) const; |
| |
| _Node* |
| _M_find_node(size_type __bkt, const key_type& __key, |
| typename _Hashtable::_Hash_code_type __c) const |
| { |
| _BaseNode* __before_n = _M_find_before_node(__bkt, __key, __c); |
| if (__before_n) |
| return static_cast<_Node*>(__before_n->_M_nxt); |
| return nullptr; |
| } |
| |
| // Insert a node at the beginning of a bucket. |
| void |
| _M_insert_bucket_begin(size_type, _Node*); |
| |
| // Remove the bucket first node |
| void |
| _M_remove_bucket_begin(size_type __bkt, _Node* __next_n, |
| size_type __next_bkt); |
| |
| // Get the node before __n in the bucket __bkt |
| _BaseNode* |
| _M_get_previous_node(size_type __bkt, _BaseNode* __n); |
| |
| template<typename _Arg> |
| iterator |
| _M_insert_bucket(_Arg&&, size_type, |
| typename _Hashtable::_Hash_code_type); |
| |
| typedef typename std::conditional<__unique_keys, |
| std::pair<iterator, bool>, |
| iterator>::type |
| _Insert_Return_Type; |
| |
| typedef typename std::conditional<__unique_keys, |
| std::_Select1st<_Insert_Return_Type>, |
| std::_Identity<_Insert_Return_Type> |
| >::type |
| _Insert_Conv_Type; |
| |
| protected: |
| template<typename... _Args> |
| std::pair<iterator, bool> |
| _M_emplace(std::true_type, _Args&&... __args); |
| |
| template<typename... _Args> |
| iterator |
| _M_emplace(std::false_type, _Args&&... __args); |
| |
| template<typename _Arg> |
| std::pair<iterator, bool> |
| _M_insert(_Arg&&, std::true_type); |
| |
| template<typename _Arg> |
| iterator |
| _M_insert(_Arg&&, std::false_type); |
| |
| public: |
| // Emplace, insert and erase |
| template<typename... _Args> |
| _Insert_Return_Type |
| emplace(_Args&&... __args) |
| { return _M_emplace(integral_constant<bool, __unique_keys>(), |
| std::forward<_Args>(__args)...); } |
| |
| template<typename... _Args> |
| iterator |
| emplace_hint(const_iterator, _Args&&... __args) |
| { return _Insert_Conv_Type()(emplace(std::forward<_Args>(__args)...)); } |
| |
| _Insert_Return_Type |
| insert(const value_type& __v) |
| { return _M_insert(__v, integral_constant<bool, __unique_keys>()); } |
| |
| iterator |
| insert(const_iterator, const value_type& __v) |
| { return _Insert_Conv_Type()(insert(__v)); } |
| |
| template<typename _Pair, typename = typename |
| std::enable_if<__and_<integral_constant<bool, !__constant_iterators>, |
| std::is_constructible<value_type, |
| _Pair&&>>::value>::type> |
| _Insert_Return_Type |
| insert(_Pair&& __v) |
| { return _M_insert(std::forward<_Pair>(__v), |
| integral_constant<bool, __unique_keys>()); } |
| |
| template<typename _Pair, typename = typename |
| std::enable_if<__and_<integral_constant<bool, !__constant_iterators>, |
| std::is_constructible<value_type, |
| _Pair&&>>::value>::type> |
| iterator |
| insert(const_iterator, _Pair&& __v) |
| { return _Insert_Conv_Type()(insert(std::forward<_Pair>(__v))); } |
| |
| template<typename _InputIterator> |
| void |
| insert(_InputIterator __first, _InputIterator __last); |
| |
| void |
| insert(initializer_list<value_type> __l) |
| { this->insert(__l.begin(), __l.end()); } |
| |
| iterator |
| erase(const_iterator); |
| |
| // LWG 2059. |
| iterator |
| erase(iterator __it) |
| { return erase(const_iterator(__it)); } |
| |
| size_type |
| erase(const key_type&); |
| |
| iterator |
| erase(const_iterator, const_iterator); |
| |
| void |
| clear() noexcept; |
| |
| // Set number of buckets to be appropriate for container of n element. |
| void rehash(size_type __n); |
| |
| // DR 1189. |
| // reserve, if present, comes from _Rehash_base. |
| |
| private: |
| // Helper rehash method used when keys are unique. |
| void _M_rehash_aux(size_type __n, std::true_type); |
| |
| // Helper rehash method used when keys can be non-unique. |
| void _M_rehash_aux(size_type __n, std::false_type); |
| |
| // Unconditionally change size of bucket array to n, restore hash policy |
| // state to __state on exception. |
| void _M_rehash(size_type __n, const _RehashPolicyState& __state); |
| }; |
| |
| |
| // Definitions of class template _Hashtable's out-of-line member functions. |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| template<typename... _Args> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::_Node* |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_allocate_node(_Args&&... __args) |
| { |
| _Node* __n = _M_node_allocator.allocate(1); |
| __try |
| { |
| _M_node_allocator.construct(__n, std::forward<_Args>(__args)...); |
| return __n; |
| } |
| __catch(...) |
| { |
| _M_node_allocator.deallocate(__n, 1); |
| __throw_exception_again; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_deallocate_node(_Node* __n) |
| { |
| _M_node_allocator.destroy(__n); |
| _M_node_allocator.deallocate(__n, 1); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_deallocate_nodes(_Node* __n) |
| { |
| while (__n) |
| { |
| _Node* __tmp = __n; |
| __n = __n->_M_next(); |
| _M_deallocate_node(__tmp); |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::_Bucket* |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_allocate_buckets(size_type __n) |
| { |
| _Bucket_allocator_type __alloc(_M_node_allocator); |
| |
| _Bucket* __p = __alloc.allocate(__n); |
| __builtin_memset(__p, 0, __n * sizeof(_Bucket)); |
| return __p; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_deallocate_buckets(_Bucket* __p, size_type __n) |
| { |
| _Bucket_allocator_type __alloc(_M_node_allocator); |
| __alloc.deallocate(__p, __n); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, |
| _Equal, _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::_Node* |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_bucket_begin(size_type __bkt) const |
| { |
| _BaseNode* __n = _M_buckets[__bkt]; |
| return __n ? static_cast<_Node*>(__n->_M_nxt) : nullptr; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _Hashtable(size_type __bucket_hint, |
| const _H1& __h1, const _H2& __h2, const _Hash& __h, |
| const _Equal& __eq, const _ExtractKey& __exk, |
| const allocator_type& __a) |
| : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(), |
| __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, __chc>(__exk, __h1, __h2, __h, |
| __eq), |
| __detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(), |
| _M_node_allocator(__a), |
| _M_bucket_count(0), |
| _M_element_count(0), |
| _M_rehash_policy() |
| { |
| _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint); |
| // We don't want the rehash policy to ask for the hashtable to shrink |
| // on the first insertion so we need to reset its previous resize level. |
| _M_rehash_policy._M_prev_resize = 0; |
| _M_buckets = _M_allocate_buckets(_M_bucket_count); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| template<typename _InputIterator> |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _Hashtable(_InputIterator __f, _InputIterator __l, |
| size_type __bucket_hint, |
| const _H1& __h1, const _H2& __h2, const _Hash& __h, |
| const _Equal& __eq, const _ExtractKey& __exk, |
| const allocator_type& __a) |
| : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(), |
| __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, __chc>(__exk, __h1, __h2, __h, |
| __eq), |
| __detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(), |
| _M_node_allocator(__a), |
| _M_bucket_count(0), |
| _M_element_count(0), |
| _M_rehash_policy() |
| { |
| _M_bucket_count = |
| _M_rehash_policy._M_bkt_for_elements(__detail::__distance_fw(__f, |
| __l)); |
| if (_M_bucket_count <= __bucket_hint) |
| _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint); |
| |
| // We don't want the rehash policy to ask for the hashtable to shrink |
| // on the first insertion so we need to reset its previous resize |
| // level. |
| _M_rehash_policy._M_prev_resize = 0; |
| _M_buckets = _M_allocate_buckets(_M_bucket_count); |
| __try |
| { |
| for (; __f != __l; ++__f) |
| this->insert(*__f); |
| } |
| __catch(...) |
| { |
| clear(); |
| _M_deallocate_buckets(_M_buckets, _M_bucket_count); |
| __throw_exception_again; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _Hashtable(const _Hashtable& __ht) |
| : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(__ht), |
| __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, __chc>(__ht), |
| __detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(__ht), |
| _M_node_allocator(__ht._M_node_allocator), |
| _M_bucket_count(__ht._M_bucket_count), |
| _M_element_count(__ht._M_element_count), |
| _M_rehash_policy(__ht._M_rehash_policy) |
| { |
| _M_buckets = _M_allocate_buckets(_M_bucket_count); |
| __try |
| { |
| if (!__ht._M_before_begin._M_nxt) |
| return; |
| |
| // First deal with the special first node pointed to by |
| // _M_before_begin. |
| const _Node* __ht_n = __ht._M_begin(); |
| _Node* __this_n = _M_allocate_node(__ht_n->_M_v); |
| this->_M_copy_code(__this_n, __ht_n); |
| _M_before_begin._M_nxt = __this_n; |
| _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin; |
| |
| // Then deal with other nodes. |
| _BaseNode* __prev_n = __this_n; |
| for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next()) |
| { |
| __this_n = _M_allocate_node(__ht_n->_M_v); |
| __prev_n->_M_nxt = __this_n; |
| this->_M_copy_code(__this_n, __ht_n); |
| size_type __bkt = _M_bucket_index(__this_n); |
| if (!_M_buckets[__bkt]) |
| _M_buckets[__bkt] = __prev_n; |
| __prev_n = __this_n; |
| } |
| } |
| __catch(...) |
| { |
| clear(); |
| _M_deallocate_buckets(_M_buckets, _M_bucket_count); |
| __throw_exception_again; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _Hashtable(_Hashtable&& __ht) |
| : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(__ht), |
| __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, __chc>(__ht), |
| __detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(__ht), |
| _M_node_allocator(std::move(__ht._M_node_allocator)), |
| _M_buckets(__ht._M_buckets), |
| _M_bucket_count(__ht._M_bucket_count), |
| _M_before_begin(__ht._M_before_begin._M_nxt), |
| _M_element_count(__ht._M_element_count), |
| _M_rehash_policy(__ht._M_rehash_policy) |
| { |
| // Update, if necessary, bucket pointing to before begin that hasn't move. |
| if (_M_begin()) |
| _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin; |
| __ht._M_rehash_policy = _RehashPolicy(); |
| __ht._M_bucket_count = __ht._M_rehash_policy._M_next_bkt(0); |
| __ht._M_buckets = __ht._M_allocate_buckets(__ht._M_bucket_count); |
| __ht._M_before_begin._M_nxt = nullptr; |
| __ht._M_element_count = 0; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| ~_Hashtable() noexcept |
| { |
| clear(); |
| _M_deallocate_buckets(_M_buckets, _M_bucket_count); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| swap(_Hashtable& __x) |
| { |
| // The only base class with member variables is hash_code_base. We |
| // define _Hash_code_base::_M_swap because different specializations |
| // have different members. |
| this->_M_swap(__x); |
| |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // 431. Swapping containers with unequal allocators. |
| std::__alloc_swap<_Node_allocator_type>::_S_do_it(_M_node_allocator, |
| __x._M_node_allocator); |
| |
| std::swap(_M_rehash_policy, __x._M_rehash_policy); |
| std::swap(_M_buckets, __x._M_buckets); |
| std::swap(_M_bucket_count, __x._M_bucket_count); |
| std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt); |
| std::swap(_M_element_count, __x._M_element_count); |
| // Fix buckets containing the _M_before_begin pointers that can't be |
| // swapped. |
| if (_M_begin()) |
| _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin; |
| if (__x._M_begin()) |
| __x._M_buckets[__x._M_bucket_index(__x._M_begin())] |
| = &(__x._M_before_begin); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| __rehash_policy(const _RehashPolicy& __pol) |
| { |
| size_type __n_bkt = __pol._M_bkt_for_elements(_M_element_count); |
| if (__n_bkt != _M_bucket_count) |
| _M_rehash(__n_bkt, _M_rehash_policy._M_state()); |
| _M_rehash_policy = __pol; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::iterator |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| find(const key_type& __k) |
| { |
| typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k); |
| std::size_t __n = _M_bucket_index(__k, __code); |
| _Node* __p = _M_find_node(__n, __k, __code); |
| return __p ? iterator(__p) : this->end(); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::const_iterator |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| find(const key_type& __k) const |
| { |
| typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k); |
| std::size_t __n = _M_bucket_index(__k, __code); |
| _Node* __p = _M_find_node(__n, __k, __code); |
| return __p ? const_iterator(__p) : this->end(); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::size_type |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| count(const key_type& __k) const |
| { |
| typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k); |
| std::size_t __n = _M_bucket_index(__k, __code); |
| _Node* __p = _M_bucket_begin(__n); |
| if (!__p) |
| return 0; |
| |
| std::size_t __result = 0; |
| for (;; __p = __p->_M_next()) |
| { |
| if (this->_M_equals(__k, __code, __p)) |
| ++__result; |
| else if (__result) |
| // All equivalent values are next to each other, if we found a not |
| // equivalent value after an equivalent one it means that we won't |
| // find any more equivalent values. |
| break; |
| if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n) |
| break; |
| } |
| return __result; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| std::pair<typename _Hashtable<_Key, _Value, _Allocator, |
| _ExtractKey, _Equal, _H1, |
| _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::iterator, |
| typename _Hashtable<_Key, _Value, _Allocator, |
| _ExtractKey, _Equal, _H1, |
| _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::iterator> |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| equal_range(const key_type& __k) |
| { |
| typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k); |
| std::size_t __n = _M_bucket_index(__k, __code); |
| _Node* __p = _M_find_node(__n, __k, __code); |
| |
| if (__p) |
| { |
| _Node* __p1 = __p->_M_next(); |
| while (__p1 && _M_bucket_index(__p1) == __n |
| && this->_M_equals(__k, __code, __p1)) |
| __p1 = __p1->_M_next(); |
| |
| return std::make_pair(iterator(__p), iterator(__p1)); |
| } |
| else |
| return std::make_pair(this->end(), this->end()); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| std::pair<typename _Hashtable<_Key, _Value, _Allocator, |
| _ExtractKey, _Equal, _H1, |
| _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::const_iterator, |
| typename _Hashtable<_Key, _Value, _Allocator, |
| _ExtractKey, _Equal, _H1, |
| _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::const_iterator> |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| equal_range(const key_type& __k) const |
| { |
| typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k); |
| std::size_t __n = _M_bucket_index(__k, __code); |
| _Node* __p = _M_find_node(__n, __k, __code); |
| |
| if (__p) |
| { |
| _Node* __p1 = __p->_M_next(); |
| while (__p1 && _M_bucket_index(__p1) == __n |
| && this->_M_equals(__k, __code, __p1)) |
| __p1 = __p1->_M_next(); |
| |
| return std::make_pair(const_iterator(__p), const_iterator(__p1)); |
| } |
| else |
| return std::make_pair(this->end(), this->end()); |
| } |
| |
| // Find the node whose key compares equal to k in the bucket n. Return nullptr |
| // if no node is found. |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, |
| _Equal, _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::_BaseNode* |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_find_before_node(size_type __n, const key_type& __k, |
| typename _Hashtable::_Hash_code_type __code) const |
| { |
| _BaseNode* __prev_p = _M_buckets[__n]; |
| if (!__prev_p) |
| return nullptr; |
| _Node* __p = static_cast<_Node*>(__prev_p->_M_nxt); |
| for (;; __p = __p->_M_next()) |
| { |
| if (this->_M_equals(__k, __code, __p)) |
| return __prev_p; |
| if (!(__p->_M_nxt) || _M_bucket_index(__p->_M_next()) != __n) |
| break; |
| __prev_p = __p; |
| } |
| return nullptr; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_insert_bucket_begin(size_type __bkt, _Node* __new_node) |
| { |
| if (_M_buckets[__bkt]) |
| { |
| // Bucket is not empty, we just need to insert the new node after the |
| // bucket before begin. |
| __new_node->_M_nxt = _M_buckets[__bkt]->_M_nxt; |
| _M_buckets[__bkt]->_M_nxt = __new_node; |
| } |
| else |
| { |
| // The bucket is empty, the new node is inserted at the beginning of |
| // the singly-linked list and the bucket will contain _M_before_begin |
| // pointer. |
| __new_node->_M_nxt = _M_before_begin._M_nxt; |
| _M_before_begin._M_nxt = __new_node; |
| if (__new_node->_M_nxt) |
| // We must update former begin bucket that is pointing to |
| // _M_before_begin. |
| _M_buckets[_M_bucket_index(__new_node->_M_next())] = __new_node; |
| _M_buckets[__bkt] = &_M_before_begin; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_remove_bucket_begin(size_type __bkt, _Node* __next, size_type __next_bkt) |
| { |
| if (!__next || __next_bkt != __bkt) |
| { |
| // Bucket is now empty |
| // First update next bucket if any |
| if (__next) |
| _M_buckets[__next_bkt] = _M_buckets[__bkt]; |
| // Second update before begin node if necessary |
| if (&_M_before_begin == _M_buckets[__bkt]) |
| _M_before_begin._M_nxt = __next; |
| _M_buckets[__bkt] = nullptr; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, |
| _Equal, _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::_BaseNode* |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_get_previous_node(size_type __bkt, _BaseNode* __n) |
| { |
| _BaseNode* __prev_n = _M_buckets[__bkt]; |
| while (__prev_n->_M_nxt != __n) |
| __prev_n = __prev_n->_M_nxt; |
| return __prev_n; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| template<typename... _Args> |
| std::pair<typename _Hashtable<_Key, _Value, _Allocator, |
| _ExtractKey, _Equal, _H1, |
| _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::iterator, bool> |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_emplace(std::true_type, _Args&&... __args) |
| { |
| // First build the node to get access to the hash code |
| _Node* __new_node = _M_allocate_node(std::forward<_Args>(__args)...); |
| __try |
| { |
| const key_type& __k = this->_M_extract()(__new_node->_M_v); |
| typename _Hashtable::_Hash_code_type __code |
| = this->_M_hash_code(__k); |
| size_type __bkt = _M_bucket_index(__k, __code); |
| |
| if (_Node* __p = _M_find_node(__bkt, __k, __code)) |
| { |
| // There is already an equivalent node, no insertion |
| _M_deallocate_node(__new_node); |
| return std::make_pair(iterator(__p), false); |
| } |
| |
| // We are going to insert this node |
| this->_M_store_code(__new_node, __code); |
| const _RehashPolicyState& __saved_state |
| = _M_rehash_policy._M_state(); |
| std::pair<bool, std::size_t> __do_rehash |
| = _M_rehash_policy._M_need_rehash(_M_bucket_count, |
| _M_element_count, 1); |
| |
| if (__do_rehash.first) |
| { |
| _M_rehash(__do_rehash.second, __saved_state); |
| __bkt = _M_bucket_index(__k, __code); |
| } |
| |
| _M_insert_bucket_begin(__bkt, __new_node); |
| ++_M_element_count; |
| return std::make_pair(iterator(__new_node), true); |
| } |
| __catch(...) |
| { |
| _M_deallocate_node(__new_node); |
| __throw_exception_again; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| template<typename... _Args> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::iterator |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_emplace(std::false_type, _Args&&... __args) |
| { |
| const _RehashPolicyState& __saved_state = _M_rehash_policy._M_state(); |
| std::pair<bool, std::size_t> __do_rehash |
| = _M_rehash_policy._M_need_rehash(_M_bucket_count, |
| _M_element_count, 1); |
| |
| // First build the node to get its hash code. |
| _Node* __new_node = _M_allocate_node(std::forward<_Args>(__args)...); |
| __try |
| { |
| const key_type& __k = this->_M_extract()(__new_node->_M_v); |
| typename _Hashtable::_Hash_code_type __code |
| = this->_M_hash_code(__k); |
| this->_M_store_code(__new_node, __code); |
| |
| // Second, do rehash if necessary. |
| if (__do_rehash.first) |
| _M_rehash(__do_rehash.second, __saved_state); |
| |
| // Third, find the node before an equivalent one. |
| size_type __bkt = _M_bucket_index(__k, __code); |
| _BaseNode* __prev = _M_find_before_node(__bkt, __k, __code); |
| |
| if (__prev) |
| { |
| // Insert after the node before the equivalent one. |
| __new_node->_M_nxt = __prev->_M_nxt; |
| __prev->_M_nxt = __new_node; |
| } |
| else |
| // The inserted node has no equivalent in the hashtable. We must |
| // insert the new node at the beginning of the bucket to preserve |
| // equivalent elements' relative positions. |
| _M_insert_bucket_begin(__bkt, __new_node); |
| ++_M_element_count; |
| return iterator(__new_node); |
| } |
| __catch(...) |
| { |
| _M_deallocate_node(__new_node); |
| __throw_exception_again; |
| } |
| } |
| |
| // Insert v in bucket n (assumes no element with its key already present). |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| template<typename _Arg> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::iterator |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_insert_bucket(_Arg&& __v, size_type __n, |
| typename _Hashtable::_Hash_code_type __code) |
| { |
| const _RehashPolicyState& __saved_state = _M_rehash_policy._M_state(); |
| std::pair<bool, std::size_t> __do_rehash |
| = _M_rehash_policy._M_need_rehash(_M_bucket_count, |
| _M_element_count, 1); |
| |
| if (__do_rehash.first) |
| { |
| const key_type& __k = this->_M_extract()(__v); |
| __n = _HCBase::_M_bucket_index(__k, __code, __do_rehash.second); |
| } |
| |
| _Node* __new_node = nullptr; |
| __try |
| { |
| // Allocate the new node before doing the rehash so that we |
| // don't do a rehash if the allocation throws. |
| __new_node = _M_allocate_node(std::forward<_Arg>(__v)); |
| this->_M_store_code(__new_node, __code); |
| if (__do_rehash.first) |
| _M_rehash(__do_rehash.second, __saved_state); |
| |
| _M_insert_bucket_begin(__n, __new_node); |
| ++_M_element_count; |
| return iterator(__new_node); |
| } |
| __catch(...) |
| { |
| if (!__new_node) |
| _M_rehash_policy._M_reset(__saved_state); |
| else |
| _M_deallocate_node(__new_node); |
| __throw_exception_again; |
| } |
| } |
| |
| // Insert v if no element with its key is already present. |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| template<typename _Arg> |
| std::pair<typename _Hashtable<_Key, _Value, _Allocator, |
| _ExtractKey, _Equal, _H1, |
| _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::iterator, bool> |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_insert(_Arg&& __v, std::true_type) |
| { |
| const key_type& __k = this->_M_extract()(__v); |
| typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k); |
| size_type __n = _M_bucket_index(__k, __code); |
| |
| if (_Node* __p = _M_find_node(__n, __k, __code)) |
| return std::make_pair(iterator(__p), false); |
| return std::make_pair(_M_insert_bucket(std::forward<_Arg>(__v), |
| __n, __code), true); |
| } |
| |
| // Insert v unconditionally. |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| template<typename _Arg> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::iterator |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_insert(_Arg&& __v, std::false_type) |
| { |
| const _RehashPolicyState& __saved_state = _M_rehash_policy._M_state(); |
| std::pair<bool, std::size_t> __do_rehash |
| = _M_rehash_policy._M_need_rehash(_M_bucket_count, |
| _M_element_count, 1); |
| |
| // First compute the hash code so that we don't do anything if it throws. |
| typename _Hashtable::_Hash_code_type __code |
| = this->_M_hash_code(this->_M_extract()(__v)); |
| |
| _Node* __new_node = nullptr; |
| __try |
| { |
| // Second allocate new node so that we don't rehash if it throws. |
| __new_node = _M_allocate_node(std::forward<_Arg>(__v)); |
| this->_M_store_code(__new_node, __code); |
| if (__do_rehash.first) |
| _M_rehash(__do_rehash.second, __saved_state); |
| |
| // Third, find the node before an equivalent one. |
| size_type __bkt = _M_bucket_index(__new_node); |
| _BaseNode* __prev |
| = _M_find_before_node(__bkt, this->_M_extract()(__new_node->_M_v), |
| __code); |
| if (__prev) |
| { |
| // Insert after the node before the equivalent one. |
| __new_node->_M_nxt = __prev->_M_nxt; |
| __prev->_M_nxt = __new_node; |
| } |
| else |
| // The inserted node has no equivalent in the hashtable. We must |
| // insert the new node at the beginning of the bucket to preserve |
| // equivalent elements relative positions. |
| _M_insert_bucket_begin(__bkt, __new_node); |
| ++_M_element_count; |
| return iterator(__new_node); |
| } |
| __catch(...) |
| { |
| if (!__new_node) |
| _M_rehash_policy._M_reset(__saved_state); |
| else |
| _M_deallocate_node(__new_node); |
| __throw_exception_again; |
| } |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| template<typename _InputIterator> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| insert(_InputIterator __first, _InputIterator __last) |
| { |
| size_type __n_elt = __detail::__distance_fw(__first, __last); |
| const _RehashPolicyState& __saved_state = _M_rehash_policy._M_state(); |
| std::pair<bool, std::size_t> __do_rehash |
| = _M_rehash_policy._M_need_rehash(_M_bucket_count, |
| _M_element_count, __n_elt); |
| if (__do_rehash.first) |
| _M_rehash(__do_rehash.second, __saved_state); |
| |
| for (; __first != __last; ++__first) |
| this->insert(*__first); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::iterator |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| erase(const_iterator __it) |
| { |
| _Node* __n = __it._M_cur; |
| std::size_t __bkt = _M_bucket_index(__n); |
| |
| // Look for previous node to unlink it from the erased one, this is why |
| // we need buckets to contain the before begin to make this search fast. |
| _BaseNode* __prev_n = _M_get_previous_node(__bkt, __n); |
| if (__n == _M_bucket_begin(__bkt)) |
| _M_remove_bucket_begin(__bkt, __n->_M_next(), |
| __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0); |
| else if (__n->_M_nxt) |
| { |
| size_type __next_bkt = _M_bucket_index(__n->_M_next()); |
| if (__next_bkt != __bkt) |
| _M_buckets[__next_bkt] = __prev_n; |
| } |
| |
| __prev_n->_M_nxt = __n->_M_nxt; |
| iterator __result(__n->_M_next()); |
| _M_deallocate_node(__n); |
| --_M_element_count; |
| |
| return __result; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::size_type |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| erase(const key_type& __k) |
| { |
| typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k); |
| std::size_t __bkt = _M_bucket_index(__k, __code); |
| // Look for the node before the first matching node. |
| _BaseNode* __prev_n = _M_find_before_node(__bkt, __k, __code); |
| if (!__prev_n) |
| return 0; |
| _Node* __n = static_cast<_Node*>(__prev_n->_M_nxt); |
| bool __is_bucket_begin = _M_buckets[__bkt] == __prev_n; |
| |
| // We found a matching node, start deallocation loop from it |
| std::size_t __next_bkt = __bkt; |
| _Node* __next_n = __n; |
| size_type __result = 0; |
| _Node* __saved_n = nullptr; |
| do |
| { |
| _Node* __p = __next_n; |
| __next_n = __p->_M_next(); |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // 526. Is it undefined if a function in the standard changes |
| // in parameters? |
| if (std::__addressof(this->_M_extract()(__p->_M_v)) |
| != std::__addressof(__k)) |
| _M_deallocate_node(__p); |
| else |
| __saved_n = __p; |
| --_M_element_count; |
| ++__result; |
| if (!__next_n) |
| break; |
| __next_bkt = _M_bucket_index(__next_n); |
| } |
| while (__next_bkt == __bkt && this->_M_equals(__k, __code, __next_n)); |
| |
| if (__saved_n) |
| _M_deallocate_node(__saved_n); |
| if (__is_bucket_begin) |
| _M_remove_bucket_begin(__bkt, __next_n, __next_bkt); |
| else if (__next_n && __next_bkt != __bkt) |
| _M_buckets[__next_bkt] = __prev_n; |
| if (__prev_n) |
| __prev_n->_M_nxt = __next_n; |
| return __result; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, |
| __chc, __cit, __uk>::iterator |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| erase(const_iterator __first, const_iterator __last) |
| { |
| _Node* __n = __first._M_cur; |
| _Node* __last_n = __last._M_cur; |
| if (__n == __last_n) |
| return iterator(__n); |
| |
| std::size_t __bkt = _M_bucket_index(__n); |
| |
| _BaseNode* __prev_n = _M_get_previous_node(__bkt, __n); |
| bool __is_bucket_begin = __n == _M_bucket_begin(__bkt); |
| std::size_t __n_bkt = __bkt; |
| for (;;) |
| { |
| do |
| { |
| _Node* __tmp = __n; |
| __n = __n->_M_next(); |
| _M_deallocate_node(__tmp); |
| --_M_element_count; |
| if (!__n) |
| break; |
| __n_bkt = _M_bucket_index(__n); |
| } |
| while (__n != __last_n && __n_bkt == __bkt); |
| if (__is_bucket_begin) |
| _M_remove_bucket_begin(__bkt, __n, __n_bkt); |
| if (__n == __last_n) |
| break; |
| __is_bucket_begin = true; |
| __bkt = __n_bkt; |
| } |
| |
| if (__n && (__n_bkt != __bkt || __is_bucket_begin)) |
| _M_buckets[__n_bkt] = __prev_n; |
| __prev_n->_M_nxt = __n; |
| return iterator(__n); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| clear() noexcept |
| { |
| _M_deallocate_nodes(_M_begin()); |
| __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(_Bucket)); |
| _M_element_count = 0; |
| _M_before_begin._M_nxt = nullptr; |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| rehash(size_type __n) |
| { |
| const _RehashPolicyState& __saved_state = _M_rehash_policy._M_state(); |
| std::size_t __buckets |
| = _M_rehash_policy._M_bkt_for_elements(_M_element_count + 1); |
| if (__buckets <= __n) |
| __buckets = _M_rehash_policy._M_next_bkt(__n); |
| |
| if (__buckets != _M_bucket_count) |
| { |
| _M_rehash(__buckets, __saved_state); |
| |
| // We don't want the rehash policy to ask for the hashtable to shrink |
| // on the next insertion so we need to reset its previous resize |
| // level. |
| _M_rehash_policy._M_prev_resize = 0; |
| } |
| else |
| // No rehash, restore previous state to keep a consistent state. |
| _M_rehash_policy._M_reset(__saved_state); |
| } |
| |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_rehash(size_type __n, const _RehashPolicyState& __state) |
| { |
| __try |
| { |
| _M_rehash_aux(__n, integral_constant<bool, __uk>()); |
| } |
| __catch(...) |
| { |
| // A failure here means that buckets allocation failed. We only |
| // have to restore hash policy previous state. |
| _M_rehash_policy._M_reset(__state); |
| __throw_exception_again; |
| } |
| } |
| |
| // Rehash when there is no equivalent elements. |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_rehash_aux(size_type __n, std::true_type) |
| { |
| _Bucket* __new_buckets = _M_allocate_buckets(__n); |
| _Node* __p = _M_begin(); |
| _M_before_begin._M_nxt = nullptr; |
| std::size_t __bbegin_bkt = 0; |
| while (__p) |
| { |
| _Node* __next = __p->_M_next(); |
| std::size_t __bkt = _HCBase::_M_bucket_index(__p, __n); |
| if (!__new_buckets[__bkt]) |
| { |
| __p->_M_nxt = _M_before_begin._M_nxt; |
| _M_before_begin._M_nxt = __p; |
| __new_buckets[__bkt] = &_M_before_begin; |
| if (__p->_M_nxt) |
| __new_buckets[__bbegin_bkt] = __p; |
| __bbegin_bkt = __bkt; |
| } |
| else |
| { |
| __p->_M_nxt = __new_buckets[__bkt]->_M_nxt; |
| __new_buckets[__bkt]->_M_nxt = __p; |
| } |
| __p = __next; |
| } |
| _M_deallocate_buckets(_M_buckets, _M_bucket_count); |
| _M_bucket_count = __n; |
| _M_buckets = __new_buckets; |
| } |
| |
| // Rehash when there can be equivalent elements, preserve their relative |
| // order. |
| template<typename _Key, typename _Value, |
| typename _Allocator, typename _ExtractKey, typename _Equal, |
| typename _H1, typename _H2, typename _Hash, typename _RehashPolicy, |
| bool __chc, bool __cit, bool __uk> |
| void |
| _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal, |
| _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>:: |
| _M_rehash_aux(size_type __n, std::false_type) |
| { |
| _Bucket* __new_buckets = _M_allocate_buckets(__n); |
| |
| _Node* __p = _M_begin(); |
| _M_before_begin._M_nxt = nullptr; |
| std::size_t __bbegin_bkt = 0; |
| std::size_t __prev_bkt = 0; |
| _Node* __prev_p = nullptr; |
| bool __check_bucket = false; |
| |
| while (__p) |
| { |
| _Node* __next = __p->_M_next(); |
| std::size_t __bkt = _HCBase::_M_bucket_index(__p, __n); |
| |
| if (__prev_p && __prev_bkt == __bkt) |
| { |
| // Previous insert was already in this bucket, we insert after |
| // the previously inserted one to preserve equivalent elements |
| // relative order. |
| __p->_M_nxt = __prev_p->_M_nxt; |
| __prev_p->_M_nxt = __p; |
| |
| // Inserting after a node in a bucket require to check that we |
| // haven't change the bucket last node, in this case next |
| // bucket containing its before begin node must be updated. We |
| // schedule a check as soon as we move out of the sequence of |
| // equivalent nodes to limit the number of checks. |
| __check_bucket = true; |
| } |
| else |
| { |
| if (__check_bucket) |
| { |
| // Check if we shall update the next bucket because of |
| // insertions into __prev_bkt bucket. |
| if (__prev_p->_M_nxt) |
| { |
| std::size_t __next_bkt |
| = _HCBase::_M_bucket_index(__prev_p->_M_next(), __n); |
| if (__next_bkt != __prev_bkt) |
| __new_buckets[__next_bkt] = __prev_p; |
| } |
| __check_bucket = false; |
| } |
| if (!__new_buckets[__bkt]) |
| { |
| __p->_M_nxt = _M_before_begin._M_nxt; |
| _M_before_begin._M_nxt = __p; |
| __new_buckets[__bkt] = &_M_before_begin; |
| if (__p->_M_nxt) |
| __new_buckets[__bbegin_bkt] = __p; |
| __bbegin_bkt = __bkt; |
| } |
| else |
| { |
| __p->_M_nxt = __new_buckets[__bkt]->_M_nxt; |
| __new_buckets[__bkt]->_M_nxt = __p; |
| } |
| } |
| |
| __prev_p = __p; |
| __prev_bkt = __bkt; |
| __p = __next; |
| } |
| |
| if (__check_bucket && __prev_p->_M_nxt) |
| { |
| std::size_t __next_bkt |
| = _HCBase::_M_bucket_index(__prev_p->_M_next(), __n); |
| if (__next_bkt != __prev_bkt) |
| __new_buckets[__next_bkt] = __prev_p; |
| } |
| |
| _M_deallocate_buckets(_M_buckets, _M_bucket_count); |
| _M_bucket_count = __n; |
| _M_buckets = __new_buckets; |
| } |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace std |
| |
| #endif // _HASHTABLE_H |