| // Deque implementation -*- C++ -*- |
| |
| // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, |
| // 2011 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /* |
| * |
| * Copyright (c) 1994 |
| * Hewlett-Packard Company |
| * |
| * Permission to use, copy, modify, distribute and sell this software |
| * and its documentation for any purpose is hereby granted without fee, |
| * provided that the above copyright notice appear in all copies and |
| * that both that copyright notice and this permission notice appear |
| * in supporting documentation. Hewlett-Packard Company makes no |
| * representations about the suitability of this software for any |
| * purpose. It is provided "as is" without express or implied warranty. |
| * |
| * |
| * Copyright (c) 1997 |
| * Silicon Graphics Computer Systems, Inc. |
| * |
| * Permission to use, copy, modify, distribute and sell this software |
| * and its documentation for any purpose is hereby granted without fee, |
| * provided that the above copyright notice appear in all copies and |
| * that both that copyright notice and this permission notice appear |
| * in supporting documentation. Silicon Graphics makes no |
| * representations about the suitability of this software for any |
| * purpose. It is provided "as is" without express or implied warranty. |
| */ |
| |
| /** @file bits/stl_deque.h |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{deque} |
| */ |
| |
| #ifndef _STL_DEQUE_H |
| #define _STL_DEQUE_H 1 |
| |
| #include <bits/concept_check.h> |
| #include <bits/stl_iterator_base_types.h> |
| #include <bits/stl_iterator_base_funcs.h> |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| #include <initializer_list> |
| #endif |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_CONTAINER |
| |
| /** |
| * @brief This function controls the size of memory nodes. |
| * @param __size The size of an element. |
| * @return The number (not byte size) of elements per node. |
| * |
| * This function started off as a compiler kludge from SGI, but |
| * seems to be a useful wrapper around a repeated constant |
| * expression. The @b 512 is tunable (and no other code needs to |
| * change), but no investigation has been done since inheriting the |
| * SGI code. Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what |
| * you are doing, however: changing it breaks the binary |
| * compatibility!! |
| */ |
| |
| #ifndef _GLIBCXX_DEQUE_BUF_SIZE |
| #define _GLIBCXX_DEQUE_BUF_SIZE 512 |
| #endif |
| |
| inline size_t |
| __deque_buf_size(size_t __size) |
| { return (__size < _GLIBCXX_DEQUE_BUF_SIZE |
| ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); } |
| |
| |
| /** |
| * @brief A deque::iterator. |
| * |
| * Quite a bit of intelligence here. Much of the functionality of |
| * deque is actually passed off to this class. A deque holds two |
| * of these internally, marking its valid range. Access to |
| * elements is done as offsets of either of those two, relying on |
| * operator overloading in this class. |
| * |
| * All the functions are op overloads except for _M_set_node. |
| */ |
| template<typename _Tp, typename _Ref, typename _Ptr> |
| struct _Deque_iterator |
| { |
| typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; |
| typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; |
| |
| static size_t _S_buffer_size() |
| { return __deque_buf_size(sizeof(_Tp)); } |
| |
| typedef std::random_access_iterator_tag iterator_category; |
| typedef _Tp value_type; |
| typedef _Ptr pointer; |
| typedef _Ref reference; |
| typedef size_t size_type; |
| typedef ptrdiff_t difference_type; |
| typedef _Tp** _Map_pointer; |
| typedef _Deque_iterator _Self; |
| |
| _Tp* _M_cur; |
| _Tp* _M_first; |
| _Tp* _M_last; |
| _Map_pointer _M_node; |
| |
| _Deque_iterator(_Tp* __x, _Map_pointer __y) |
| : _M_cur(__x), _M_first(*__y), |
| _M_last(*__y + _S_buffer_size()), _M_node(__y) { } |
| |
| _Deque_iterator() |
| : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { } |
| |
| _Deque_iterator(const iterator& __x) |
| : _M_cur(__x._M_cur), _M_first(__x._M_first), |
| _M_last(__x._M_last), _M_node(__x._M_node) { } |
| |
| reference |
| operator*() const |
| { return *_M_cur; } |
| |
| pointer |
| operator->() const |
| { return _M_cur; } |
| |
| _Self& |
| operator++() |
| { |
| ++_M_cur; |
| if (_M_cur == _M_last) |
| { |
| _M_set_node(_M_node + 1); |
| _M_cur = _M_first; |
| } |
| return *this; |
| } |
| |
| _Self |
| operator++(int) |
| { |
| _Self __tmp = *this; |
| ++*this; |
| return __tmp; |
| } |
| |
| _Self& |
| operator--() |
| { |
| if (_M_cur == _M_first) |
| { |
| _M_set_node(_M_node - 1); |
| _M_cur = _M_last; |
| } |
| --_M_cur; |
| return *this; |
| } |
| |
| _Self |
| operator--(int) |
| { |
| _Self __tmp = *this; |
| --*this; |
| return __tmp; |
| } |
| |
| _Self& |
| operator+=(difference_type __n) |
| { |
| const difference_type __offset = __n + (_M_cur - _M_first); |
| if (__offset >= 0 && __offset < difference_type(_S_buffer_size())) |
| _M_cur += __n; |
| else |
| { |
| const difference_type __node_offset = |
| __offset > 0 ? __offset / difference_type(_S_buffer_size()) |
| : -difference_type((-__offset - 1) |
| / _S_buffer_size()) - 1; |
| _M_set_node(_M_node + __node_offset); |
| _M_cur = _M_first + (__offset - __node_offset |
| * difference_type(_S_buffer_size())); |
| } |
| return *this; |
| } |
| |
| _Self |
| operator+(difference_type __n) const |
| { |
| _Self __tmp = *this; |
| return __tmp += __n; |
| } |
| |
| _Self& |
| operator-=(difference_type __n) |
| { return *this += -__n; } |
| |
| _Self |
| operator-(difference_type __n) const |
| { |
| _Self __tmp = *this; |
| return __tmp -= __n; |
| } |
| |
| reference |
| operator[](difference_type __n) const |
| { return *(*this + __n); } |
| |
| /** |
| * Prepares to traverse new_node. Sets everything except |
| * _M_cur, which should therefore be set by the caller |
| * immediately afterwards, based on _M_first and _M_last. |
| */ |
| void |
| _M_set_node(_Map_pointer __new_node) |
| { |
| _M_node = __new_node; |
| _M_first = *__new_node; |
| _M_last = _M_first + difference_type(_S_buffer_size()); |
| } |
| }; |
| |
| // Note: we also provide overloads whose operands are of the same type in |
| // order to avoid ambiguous overload resolution when std::rel_ops operators |
| // are in scope (for additional details, see libstdc++/3628) |
| template<typename _Tp, typename _Ref, typename _Ptr> |
| inline bool |
| operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, |
| const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) |
| { return __x._M_cur == __y._M_cur; } |
| |
| template<typename _Tp, typename _RefL, typename _PtrL, |
| typename _RefR, typename _PtrR> |
| inline bool |
| operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, |
| const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) |
| { return __x._M_cur == __y._M_cur; } |
| |
| template<typename _Tp, typename _Ref, typename _Ptr> |
| inline bool |
| operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, |
| const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) |
| { return !(__x == __y); } |
| |
| template<typename _Tp, typename _RefL, typename _PtrL, |
| typename _RefR, typename _PtrR> |
| inline bool |
| operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, |
| const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) |
| { return !(__x == __y); } |
| |
| template<typename _Tp, typename _Ref, typename _Ptr> |
| inline bool |
| operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, |
| const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) |
| { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) |
| : (__x._M_node < __y._M_node); } |
| |
| template<typename _Tp, typename _RefL, typename _PtrL, |
| typename _RefR, typename _PtrR> |
| inline bool |
| operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, |
| const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) |
| { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) |
| : (__x._M_node < __y._M_node); } |
| |
| template<typename _Tp, typename _Ref, typename _Ptr> |
| inline bool |
| operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, |
| const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) |
| { return __y < __x; } |
| |
| template<typename _Tp, typename _RefL, typename _PtrL, |
| typename _RefR, typename _PtrR> |
| inline bool |
| operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, |
| const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) |
| { return __y < __x; } |
| |
| template<typename _Tp, typename _Ref, typename _Ptr> |
| inline bool |
| operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, |
| const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) |
| { return !(__y < __x); } |
| |
| template<typename _Tp, typename _RefL, typename _PtrL, |
| typename _RefR, typename _PtrR> |
| inline bool |
| operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, |
| const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) |
| { return !(__y < __x); } |
| |
| template<typename _Tp, typename _Ref, typename _Ptr> |
| inline bool |
| operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, |
| const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) |
| { return !(__x < __y); } |
| |
| template<typename _Tp, typename _RefL, typename _PtrL, |
| typename _RefR, typename _PtrR> |
| inline bool |
| operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, |
| const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) |
| { return !(__x < __y); } |
| |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // According to the resolution of DR179 not only the various comparison |
| // operators but also operator- must accept mixed iterator/const_iterator |
| // parameters. |
| template<typename _Tp, typename _Ref, typename _Ptr> |
| inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type |
| operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, |
| const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) |
| { |
| return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type |
| (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size()) |
| * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) |
| + (__y._M_last - __y._M_cur); |
| } |
| |
| template<typename _Tp, typename _RefL, typename _PtrL, |
| typename _RefR, typename _PtrR> |
| inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type |
| operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, |
| const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) |
| { |
| return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type |
| (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) |
| * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) |
| + (__y._M_last - __y._M_cur); |
| } |
| |
| template<typename _Tp, typename _Ref, typename _Ptr> |
| inline _Deque_iterator<_Tp, _Ref, _Ptr> |
| operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x) |
| { return __x + __n; } |
| |
| template<typename _Tp> |
| void |
| fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&, |
| const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&); |
| |
| template<typename _Tp> |
| _Deque_iterator<_Tp, _Tp&, _Tp*> |
| copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, |
| _Deque_iterator<_Tp, const _Tp&, const _Tp*>, |
| _Deque_iterator<_Tp, _Tp&, _Tp*>); |
| |
| template<typename _Tp> |
| inline _Deque_iterator<_Tp, _Tp&, _Tp*> |
| copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, |
| _Deque_iterator<_Tp, _Tp&, _Tp*> __last, |
| _Deque_iterator<_Tp, _Tp&, _Tp*> __result) |
| { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first), |
| _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last), |
| __result); } |
| |
| template<typename _Tp> |
| _Deque_iterator<_Tp, _Tp&, _Tp*> |
| copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, |
| _Deque_iterator<_Tp, const _Tp&, const _Tp*>, |
| _Deque_iterator<_Tp, _Tp&, _Tp*>); |
| |
| template<typename _Tp> |
| inline _Deque_iterator<_Tp, _Tp&, _Tp*> |
| copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, |
| _Deque_iterator<_Tp, _Tp&, _Tp*> __last, |
| _Deque_iterator<_Tp, _Tp&, _Tp*> __result) |
| { return std::copy_backward(_Deque_iterator<_Tp, |
| const _Tp&, const _Tp*>(__first), |
| _Deque_iterator<_Tp, |
| const _Tp&, const _Tp*>(__last), |
| __result); } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| template<typename _Tp> |
| _Deque_iterator<_Tp, _Tp&, _Tp*> |
| move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, |
| _Deque_iterator<_Tp, const _Tp&, const _Tp*>, |
| _Deque_iterator<_Tp, _Tp&, _Tp*>); |
| |
| template<typename _Tp> |
| inline _Deque_iterator<_Tp, _Tp&, _Tp*> |
| move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, |
| _Deque_iterator<_Tp, _Tp&, _Tp*> __last, |
| _Deque_iterator<_Tp, _Tp&, _Tp*> __result) |
| { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first), |
| _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last), |
| __result); } |
| |
| template<typename _Tp> |
| _Deque_iterator<_Tp, _Tp&, _Tp*> |
| move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>, |
| _Deque_iterator<_Tp, const _Tp&, const _Tp*>, |
| _Deque_iterator<_Tp, _Tp&, _Tp*>); |
| |
| template<typename _Tp> |
| inline _Deque_iterator<_Tp, _Tp&, _Tp*> |
| move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first, |
| _Deque_iterator<_Tp, _Tp&, _Tp*> __last, |
| _Deque_iterator<_Tp, _Tp&, _Tp*> __result) |
| { return std::move_backward(_Deque_iterator<_Tp, |
| const _Tp&, const _Tp*>(__first), |
| _Deque_iterator<_Tp, |
| const _Tp&, const _Tp*>(__last), |
| __result); } |
| #endif |
| |
| /** |
| * Deque base class. This class provides the unified face for %deque's |
| * allocation. This class's constructor and destructor allocate and |
| * deallocate (but do not initialize) storage. This makes %exception |
| * safety easier. |
| * |
| * Nothing in this class ever constructs or destroys an actual Tp element. |
| * (Deque handles that itself.) Only/All memory management is performed |
| * here. |
| */ |
| template<typename _Tp, typename _Alloc> |
| class _Deque_base |
| { |
| public: |
| typedef _Alloc allocator_type; |
| |
| allocator_type |
| get_allocator() const _GLIBCXX_NOEXCEPT |
| { return allocator_type(_M_get_Tp_allocator()); } |
| |
| typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; |
| typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; |
| |
| _Deque_base() |
| : _M_impl() |
| { _M_initialize_map(0); } |
| |
| _Deque_base(size_t __num_elements) |
| : _M_impl() |
| { _M_initialize_map(__num_elements); } |
| |
| _Deque_base(const allocator_type& __a, size_t __num_elements) |
| : _M_impl(__a) |
| { _M_initialize_map(__num_elements); } |
| |
| _Deque_base(const allocator_type& __a) |
| : _M_impl(__a) |
| { } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| _Deque_base(_Deque_base&& __x) |
| : _M_impl(std::move(__x._M_get_Tp_allocator())) |
| { |
| _M_initialize_map(0); |
| if (__x._M_impl._M_map) |
| { |
| std::swap(this->_M_impl._M_start, __x._M_impl._M_start); |
| std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); |
| std::swap(this->_M_impl._M_map, __x._M_impl._M_map); |
| std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size); |
| } |
| } |
| #endif |
| |
| ~_Deque_base(); |
| |
| protected: |
| //This struct encapsulates the implementation of the std::deque |
| //standard container and at the same time makes use of the EBO |
| //for empty allocators. |
| typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type; |
| |
| typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type; |
| |
| struct _Deque_impl |
| : public _Tp_alloc_type |
| { |
| _Tp** _M_map; |
| size_t _M_map_size; |
| iterator _M_start; |
| iterator _M_finish; |
| |
| _Deque_impl() |
| : _Tp_alloc_type(), _M_map(0), _M_map_size(0), |
| _M_start(), _M_finish() |
| { } |
| |
| _Deque_impl(const _Tp_alloc_type& __a) |
| : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0), |
| _M_start(), _M_finish() |
| { } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| _Deque_impl(_Tp_alloc_type&& __a) |
| : _Tp_alloc_type(std::move(__a)), _M_map(0), _M_map_size(0), |
| _M_start(), _M_finish() |
| { } |
| #endif |
| }; |
| |
| _Tp_alloc_type& |
| _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT |
| { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); } |
| |
| const _Tp_alloc_type& |
| _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT |
| { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); } |
| |
| _Map_alloc_type |
| _M_get_map_allocator() const _GLIBCXX_NOEXCEPT |
| { return _Map_alloc_type(_M_get_Tp_allocator()); } |
| |
| _Tp* |
| _M_allocate_node() |
| { |
| return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp))); |
| } |
| |
| void |
| _M_deallocate_node(_Tp* __p) |
| { |
| _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp))); |
| } |
| |
| _Tp** |
| _M_allocate_map(size_t __n) |
| { return _M_get_map_allocator().allocate(__n); } |
| |
| void |
| _M_deallocate_map(_Tp** __p, size_t __n) |
| { _M_get_map_allocator().deallocate(__p, __n); } |
| |
| protected: |
| void _M_initialize_map(size_t); |
| void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish); |
| void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish); |
| enum { _S_initial_map_size = 8 }; |
| |
| _Deque_impl _M_impl; |
| }; |
| |
| template<typename _Tp, typename _Alloc> |
| _Deque_base<_Tp, _Alloc>:: |
| ~_Deque_base() |
| { |
| if (this->_M_impl._M_map) |
| { |
| _M_destroy_nodes(this->_M_impl._M_start._M_node, |
| this->_M_impl._M_finish._M_node + 1); |
| _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); |
| } |
| } |
| |
| /** |
| * @brief Layout storage. |
| * @param __num_elements The count of T's for which to allocate space |
| * at first. |
| * @return Nothing. |
| * |
| * The initial underlying memory layout is a bit complicated... |
| */ |
| template<typename _Tp, typename _Alloc> |
| void |
| _Deque_base<_Tp, _Alloc>:: |
| _M_initialize_map(size_t __num_elements) |
| { |
| const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp)) |
| + 1); |
| |
| this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size, |
| size_t(__num_nodes + 2)); |
| this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size); |
| |
| // For "small" maps (needing less than _M_map_size nodes), allocation |
| // starts in the middle elements and grows outwards. So nstart may be |
| // the beginning of _M_map, but for small maps it may be as far in as |
| // _M_map+3. |
| |
| _Tp** __nstart = (this->_M_impl._M_map |
| + (this->_M_impl._M_map_size - __num_nodes) / 2); |
| _Tp** __nfinish = __nstart + __num_nodes; |
| |
| __try |
| { _M_create_nodes(__nstart, __nfinish); } |
| __catch(...) |
| { |
| _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); |
| this->_M_impl._M_map = 0; |
| this->_M_impl._M_map_size = 0; |
| __throw_exception_again; |
| } |
| |
| this->_M_impl._M_start._M_set_node(__nstart); |
| this->_M_impl._M_finish._M_set_node(__nfinish - 1); |
| this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first; |
| this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first |
| + __num_elements |
| % __deque_buf_size(sizeof(_Tp))); |
| } |
| |
| template<typename _Tp, typename _Alloc> |
| void |
| _Deque_base<_Tp, _Alloc>:: |
| _M_create_nodes(_Tp** __nstart, _Tp** __nfinish) |
| { |
| _Tp** __cur; |
| __try |
| { |
| for (__cur = __nstart; __cur < __nfinish; ++__cur) |
| *__cur = this->_M_allocate_node(); |
| } |
| __catch(...) |
| { |
| _M_destroy_nodes(__nstart, __cur); |
| __throw_exception_again; |
| } |
| } |
| |
| template<typename _Tp, typename _Alloc> |
| void |
| _Deque_base<_Tp, _Alloc>:: |
| _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) |
| { |
| for (_Tp** __n = __nstart; __n < __nfinish; ++__n) |
| _M_deallocate_node(*__n); |
| } |
| |
| /** |
| * @brief A standard container using fixed-size memory allocation and |
| * constant-time manipulation of elements at either end. |
| * |
| * @ingroup sequences |
| * |
| * Meets the requirements of a <a href="tables.html#65">container</a>, a |
| * <a href="tables.html#66">reversible container</a>, and a |
| * <a href="tables.html#67">sequence</a>, including the |
| * <a href="tables.html#68">optional sequence requirements</a>. |
| * |
| * In previous HP/SGI versions of deque, there was an extra template |
| * parameter so users could control the node size. This extension turned |
| * out to violate the C++ standard (it can be detected using template |
| * template parameters), and it was removed. |
| * |
| * Here's how a deque<Tp> manages memory. Each deque has 4 members: |
| * |
| * - Tp** _M_map |
| * - size_t _M_map_size |
| * - iterator _M_start, _M_finish |
| * |
| * map_size is at least 8. %map is an array of map_size |
| * pointers-to-@a nodes. (The name %map has nothing to do with the |
| * std::map class, and @b nodes should not be confused with |
| * std::list's usage of @a node.) |
| * |
| * A @a node has no specific type name as such, but it is referred |
| * to as @a node in this file. It is a simple array-of-Tp. If Tp |
| * is very large, there will be one Tp element per node (i.e., an |
| * @a array of one). For non-huge Tp's, node size is inversely |
| * related to Tp size: the larger the Tp, the fewer Tp's will fit |
| * in a node. The goal here is to keep the total size of a node |
| * relatively small and constant over different Tp's, to improve |
| * allocator efficiency. |
| * |
| * Not every pointer in the %map array will point to a node. If |
| * the initial number of elements in the deque is small, the |
| * /middle/ %map pointers will be valid, and the ones at the edges |
| * will be unused. This same situation will arise as the %map |
| * grows: available %map pointers, if any, will be on the ends. As |
| * new nodes are created, only a subset of the %map's pointers need |
| * to be copied @a outward. |
| * |
| * Class invariants: |
| * - For any nonsingular iterator i: |
| * - i.node points to a member of the %map array. (Yes, you read that |
| * correctly: i.node does not actually point to a node.) The member of |
| * the %map array is what actually points to the node. |
| * - i.first == *(i.node) (This points to the node (first Tp element).) |
| * - i.last == i.first + node_size |
| * - i.cur is a pointer in the range [i.first, i.last). NOTE: |
| * the implication of this is that i.cur is always a dereferenceable |
| * pointer, even if i is a past-the-end iterator. |
| * - Start and Finish are always nonsingular iterators. NOTE: this |
| * means that an empty deque must have one node, a deque with <N |
| * elements (where N is the node buffer size) must have one node, a |
| * deque with N through (2N-1) elements must have two nodes, etc. |
| * - For every node other than start.node and finish.node, every |
| * element in the node is an initialized object. If start.node == |
| * finish.node, then [start.cur, finish.cur) are initialized |
| * objects, and the elements outside that range are uninitialized |
| * storage. Otherwise, [start.cur, start.last) and [finish.first, |
| * finish.cur) are initialized objects, and [start.first, start.cur) |
| * and [finish.cur, finish.last) are uninitialized storage. |
| * - [%map, %map + map_size) is a valid, non-empty range. |
| * - [start.node, finish.node] is a valid range contained within |
| * [%map, %map + map_size). |
| * - A pointer in the range [%map, %map + map_size) points to an allocated |
| * node if and only if the pointer is in the range |
| * [start.node, finish.node]. |
| * |
| * Here's the magic: nothing in deque is @b aware of the discontiguous |
| * storage! |
| * |
| * The memory setup and layout occurs in the parent, _Base, and the iterator |
| * class is entirely responsible for @a leaping from one node to the next. |
| * All the implementation routines for deque itself work only through the |
| * start and finish iterators. This keeps the routines simple and sane, |
| * and we can use other standard algorithms as well. |
| */ |
| template<typename _Tp, typename _Alloc = std::allocator<_Tp> > |
| class deque : protected _Deque_base<_Tp, _Alloc> |
| { |
| // concept requirements |
| typedef typename _Alloc::value_type _Alloc_value_type; |
| __glibcxx_class_requires(_Tp, _SGIAssignableConcept) |
| __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept) |
| |
| typedef _Deque_base<_Tp, _Alloc> _Base; |
| typedef typename _Base::_Tp_alloc_type _Tp_alloc_type; |
| |
| public: |
| typedef _Tp value_type; |
| typedef typename _Tp_alloc_type::pointer pointer; |
| typedef typename _Tp_alloc_type::const_pointer const_pointer; |
| typedef typename _Tp_alloc_type::reference reference; |
| typedef typename _Tp_alloc_type::const_reference const_reference; |
| typedef typename _Base::iterator iterator; |
| typedef typename _Base::const_iterator const_iterator; |
| typedef std::reverse_iterator<const_iterator> const_reverse_iterator; |
| typedef std::reverse_iterator<iterator> reverse_iterator; |
| typedef size_t size_type; |
| typedef ptrdiff_t difference_type; |
| typedef _Alloc allocator_type; |
| |
| protected: |
| typedef pointer* _Map_pointer; |
| |
| static size_t _S_buffer_size() |
| { return __deque_buf_size(sizeof(_Tp)); } |
| |
| // Functions controlling memory layout, and nothing else. |
| using _Base::_M_initialize_map; |
| using _Base::_M_create_nodes; |
| using _Base::_M_destroy_nodes; |
| using _Base::_M_allocate_node; |
| using _Base::_M_deallocate_node; |
| using _Base::_M_allocate_map; |
| using _Base::_M_deallocate_map; |
| using _Base::_M_get_Tp_allocator; |
| |
| /** |
| * A total of four data members accumulated down the hierarchy. |
| * May be accessed via _M_impl.* |
| */ |
| using _Base::_M_impl; |
| |
| public: |
| // [23.2.1.1] construct/copy/destroy |
| // (assign() and get_allocator() are also listed in this section) |
| /** |
| * @brief Default constructor creates no elements. |
| */ |
| deque() |
| : _Base() { } |
| |
| /** |
| * @brief Creates a %deque with no elements. |
| * @param __a An allocator object. |
| */ |
| explicit |
| deque(const allocator_type& __a) |
| : _Base(__a, 0) { } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| /** |
| * @brief Creates a %deque with default constructed elements. |
| * @param __n The number of elements to initially create. |
| * |
| * This constructor fills the %deque with @a n default |
| * constructed elements. |
| */ |
| explicit |
| deque(size_type __n) |
| : _Base(__n) |
| { _M_default_initialize(); } |
| |
| /** |
| * @brief Creates a %deque with copies of an exemplar element. |
| * @param __n The number of elements to initially create. |
| * @param __value An element to copy. |
| * @param __a An allocator. |
| * |
| * This constructor fills the %deque with @a __n copies of @a __value. |
| */ |
| deque(size_type __n, const value_type& __value, |
| const allocator_type& __a = allocator_type()) |
| : _Base(__a, __n) |
| { _M_fill_initialize(__value); } |
| #else |
| /** |
| * @brief Creates a %deque with copies of an exemplar element. |
| * @param __n The number of elements to initially create. |
| * @param __value An element to copy. |
| * @param __a An allocator. |
| * |
| * This constructor fills the %deque with @a __n copies of @a __value. |
| */ |
| explicit |
| deque(size_type __n, const value_type& __value = value_type(), |
| const allocator_type& __a = allocator_type()) |
| : _Base(__a, __n) |
| { _M_fill_initialize(__value); } |
| #endif |
| |
| /** |
| * @brief %Deque copy constructor. |
| * @param __x A %deque of identical element and allocator types. |
| * |
| * The newly-created %deque uses a copy of the allocation object used |
| * by @a __x. |
| */ |
| deque(const deque& __x) |
| : _Base(__x._M_get_Tp_allocator(), __x.size()) |
| { std::__uninitialized_copy_a(__x.begin(), __x.end(), |
| this->_M_impl._M_start, |
| _M_get_Tp_allocator()); } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| /** |
| * @brief %Deque move constructor. |
| * @param __x A %deque of identical element and allocator types. |
| * |
| * The newly-created %deque contains the exact contents of @a __x. |
| * The contents of @a __x are a valid, but unspecified %deque. |
| */ |
| deque(deque&& __x) |
| : _Base(std::move(__x)) { } |
| |
| /** |
| * @brief Builds a %deque from an initializer list. |
| * @param __l An initializer_list. |
| * @param __a An allocator object. |
| * |
| * Create a %deque consisting of copies of the elements in the |
| * initializer_list @a __l. |
| * |
| * This will call the element type's copy constructor N times |
| * (where N is __l.size()) and do no memory reallocation. |
| */ |
| deque(initializer_list<value_type> __l, |
| const allocator_type& __a = allocator_type()) |
| : _Base(__a) |
| { |
| _M_range_initialize(__l.begin(), __l.end(), |
| random_access_iterator_tag()); |
| } |
| #endif |
| |
| /** |
| * @brief Builds a %deque from a range. |
| * @param __first An input iterator. |
| * @param __last An input iterator. |
| * @param __a An allocator object. |
| * |
| * Create a %deque consisting of copies of the elements from [__first, |
| * __last). |
| * |
| * If the iterators are forward, bidirectional, or random-access, then |
| * this will call the elements' copy constructor N times (where N is |
| * distance(__first,__last)) and do no memory reallocation. But if only |
| * input iterators are used, then this will do at most 2N calls to the |
| * copy constructor, and logN memory reallocations. |
| */ |
| template<typename _InputIterator> |
| deque(_InputIterator __first, _InputIterator __last, |
| const allocator_type& __a = allocator_type()) |
| : _Base(__a) |
| { |
| // Check whether it's an integral type. If so, it's not an iterator. |
| typedef typename std::__is_integer<_InputIterator>::__type _Integral; |
| _M_initialize_dispatch(__first, __last, _Integral()); |
| } |
| |
| /** |
| * The dtor only erases the elements, and note that if the elements |
| * themselves are pointers, the pointed-to memory is not touched in any |
| * way. Managing the pointer is the user's responsibility. |
| */ |
| ~deque() _GLIBCXX_NOEXCEPT |
| { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); } |
| |
| /** |
| * @brief %Deque assignment operator. |
| * @param __x A %deque of identical element and allocator types. |
| * |
| * All the elements of @a x are copied, but unlike the copy constructor, |
| * the allocator object is not copied. |
| */ |
| deque& |
| operator=(const deque& __x); |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| /** |
| * @brief %Deque move assignment operator. |
| * @param __x A %deque of identical element and allocator types. |
| * |
| * The contents of @a __x are moved into this deque (without copying). |
| * @a __x is a valid, but unspecified %deque. |
| */ |
| deque& |
| operator=(deque&& __x) |
| { |
| // NB: DR 1204. |
| // NB: DR 675. |
| this->clear(); |
| this->swap(__x); |
| return *this; |
| } |
| |
| /** |
| * @brief Assigns an initializer list to a %deque. |
| * @param __l An initializer_list. |
| * |
| * This function fills a %deque with copies of the elements in the |
| * initializer_list @a __l. |
| * |
| * Note that the assignment completely changes the %deque and that the |
| * resulting %deque's size is the same as the number of elements |
| * assigned. Old data may be lost. |
| */ |
| deque& |
| operator=(initializer_list<value_type> __l) |
| { |
| this->assign(__l.begin(), __l.end()); |
| return *this; |
| } |
| #endif |
| |
| /** |
| * @brief Assigns a given value to a %deque. |
| * @param __n Number of elements to be assigned. |
| * @param __val Value to be assigned. |
| * |
| * This function fills a %deque with @a n copies of the given |
| * value. Note that the assignment completely changes the |
| * %deque and that the resulting %deque's size is the same as |
| * the number of elements assigned. Old data may be lost. |
| */ |
| void |
| assign(size_type __n, const value_type& __val) |
| { _M_fill_assign(__n, __val); } |
| |
| /** |
| * @brief Assigns a range to a %deque. |
| * @param __first An input iterator. |
| * @param __last An input iterator. |
| * |
| * This function fills a %deque with copies of the elements in the |
| * range [__first,__last). |
| * |
| * Note that the assignment completely changes the %deque and that the |
| * resulting %deque's size is the same as the number of elements |
| * assigned. Old data may be lost. |
| */ |
| template<typename _InputIterator> |
| void |
| assign(_InputIterator __first, _InputIterator __last) |
| { |
| typedef typename std::__is_integer<_InputIterator>::__type _Integral; |
| _M_assign_dispatch(__first, __last, _Integral()); |
| } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| /** |
| * @brief Assigns an initializer list to a %deque. |
| * @param __l An initializer_list. |
| * |
| * This function fills a %deque with copies of the elements in the |
| * initializer_list @a __l. |
| * |
| * Note that the assignment completely changes the %deque and that the |
| * resulting %deque's size is the same as the number of elements |
| * assigned. Old data may be lost. |
| */ |
| void |
| assign(initializer_list<value_type> __l) |
| { this->assign(__l.begin(), __l.end()); } |
| #endif |
| |
| /// Get a copy of the memory allocation object. |
| allocator_type |
| get_allocator() const _GLIBCXX_NOEXCEPT |
| { return _Base::get_allocator(); } |
| |
| // iterators |
| /** |
| * Returns a read/write iterator that points to the first element in the |
| * %deque. Iteration is done in ordinary element order. |
| */ |
| iterator |
| begin() _GLIBCXX_NOEXCEPT |
| { return this->_M_impl._M_start; } |
| |
| /** |
| * Returns a read-only (constant) iterator that points to the first |
| * element in the %deque. Iteration is done in ordinary element order. |
| */ |
| const_iterator |
| begin() const _GLIBCXX_NOEXCEPT |
| { return this->_M_impl._M_start; } |
| |
| /** |
| * Returns a read/write iterator that points one past the last |
| * element in the %deque. Iteration is done in ordinary |
| * element order. |
| */ |
| iterator |
| end() _GLIBCXX_NOEXCEPT |
| { return this->_M_impl._M_finish; } |
| |
| /** |
| * Returns a read-only (constant) iterator that points one past |
| * the last element in the %deque. Iteration is done in |
| * ordinary element order. |
| */ |
| const_iterator |
| end() const _GLIBCXX_NOEXCEPT |
| { return this->_M_impl._M_finish; } |
| |
| /** |
| * Returns a read/write reverse iterator that points to the |
| * last element in the %deque. Iteration is done in reverse |
| * element order. |
| */ |
| reverse_iterator |
| rbegin() _GLIBCXX_NOEXCEPT |
| { return reverse_iterator(this->_M_impl._M_finish); } |
| |
| /** |
| * Returns a read-only (constant) reverse iterator that points |
| * to the last element in the %deque. Iteration is done in |
| * reverse element order. |
| */ |
| const_reverse_iterator |
| rbegin() const _GLIBCXX_NOEXCEPT |
| { return const_reverse_iterator(this->_M_impl._M_finish); } |
| |
| /** |
| * Returns a read/write reverse iterator that points to one |
| * before the first element in the %deque. Iteration is done |
| * in reverse element order. |
| */ |
| reverse_iterator |
| rend() _GLIBCXX_NOEXCEPT |
| { return reverse_iterator(this->_M_impl._M_start); } |
| |
| /** |
| * Returns a read-only (constant) reverse iterator that points |
| * to one before the first element in the %deque. Iteration is |
| * done in reverse element order. |
| */ |
| const_reverse_iterator |
| rend() const _GLIBCXX_NOEXCEPT |
| { return const_reverse_iterator(this->_M_impl._M_start); } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| /** |
| * Returns a read-only (constant) iterator that points to the first |
| * element in the %deque. Iteration is done in ordinary element order. |
| */ |
| const_iterator |
| cbegin() const noexcept |
| { return this->_M_impl._M_start; } |
| |
| /** |
| * Returns a read-only (constant) iterator that points one past |
| * the last element in the %deque. Iteration is done in |
| * ordinary element order. |
| */ |
| const_iterator |
| cend() const noexcept |
| { return this->_M_impl._M_finish; } |
| |
| /** |
| * Returns a read-only (constant) reverse iterator that points |
| * to the last element in the %deque. Iteration is done in |
| * reverse element order. |
| */ |
| const_reverse_iterator |
| crbegin() const noexcept |
| { return const_reverse_iterator(this->_M_impl._M_finish); } |
| |
| /** |
| * Returns a read-only (constant) reverse iterator that points |
| * to one before the first element in the %deque. Iteration is |
| * done in reverse element order. |
| */ |
| const_reverse_iterator |
| crend() const noexcept |
| { return const_reverse_iterator(this->_M_impl._M_start); } |
| #endif |
| |
| // [23.2.1.2] capacity |
| /** Returns the number of elements in the %deque. */ |
| size_type |
| size() const _GLIBCXX_NOEXCEPT |
| { return this->_M_impl._M_finish - this->_M_impl._M_start; } |
| |
| /** Returns the size() of the largest possible %deque. */ |
| size_type |
| max_size() const _GLIBCXX_NOEXCEPT |
| { return _M_get_Tp_allocator().max_size(); } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| /** |
| * @brief Resizes the %deque to the specified number of elements. |
| * @param __new_size Number of elements the %deque should contain. |
| * |
| * This function will %resize the %deque to the specified |
| * number of elements. If the number is smaller than the |
| * %deque's current size the %deque is truncated, otherwise |
| * default constructed elements are appended. |
| */ |
| void |
| resize(size_type __new_size) |
| { |
| const size_type __len = size(); |
| if (__new_size > __len) |
| _M_default_append(__new_size - __len); |
| else if (__new_size < __len) |
| _M_erase_at_end(this->_M_impl._M_start |
| + difference_type(__new_size)); |
| } |
| |
| /** |
| * @brief Resizes the %deque to the specified number of elements. |
| * @param __new_size Number of elements the %deque should contain. |
| * @param __x Data with which new elements should be populated. |
| * |
| * This function will %resize the %deque to the specified |
| * number of elements. If the number is smaller than the |
| * %deque's current size the %deque is truncated, otherwise the |
| * %deque is extended and new elements are populated with given |
| * data. |
| */ |
| void |
| resize(size_type __new_size, const value_type& __x) |
| { |
| const size_type __len = size(); |
| if (__new_size > __len) |
| insert(this->_M_impl._M_finish, __new_size - __len, __x); |
| else if (__new_size < __len) |
| _M_erase_at_end(this->_M_impl._M_start |
| + difference_type(__new_size)); |
| } |
| #else |
| /** |
| * @brief Resizes the %deque to the specified number of elements. |
| * @param __new_size Number of elements the %deque should contain. |
| * @param __x Data with which new elements should be populated. |
| * |
| * This function will %resize the %deque to the specified |
| * number of elements. If the number is smaller than the |
| * %deque's current size the %deque is truncated, otherwise the |
| * %deque is extended and new elements are populated with given |
| * data. |
| */ |
| void |
| resize(size_type __new_size, value_type __x = value_type()) |
| { |
| const size_type __len = size(); |
| if (__new_size > __len) |
| insert(this->_M_impl._M_finish, __new_size - __len, __x); |
| else if (__new_size < __len) |
| _M_erase_at_end(this->_M_impl._M_start |
| + difference_type(__new_size)); |
| } |
| #endif |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| /** A non-binding request to reduce memory use. */ |
| void |
| shrink_to_fit() |
| { _M_shrink_to_fit(); } |
| #endif |
| |
| /** |
| * Returns true if the %deque is empty. (Thus begin() would |
| * equal end().) |
| */ |
| bool |
| empty() const _GLIBCXX_NOEXCEPT |
| { return this->_M_impl._M_finish == this->_M_impl._M_start; } |
| |
| // element access |
| /** |
| * @brief Subscript access to the data contained in the %deque. |
| * @param __n The index of the element for which data should be |
| * accessed. |
| * @return Read/write reference to data. |
| * |
| * This operator allows for easy, array-style, data access. |
| * Note that data access with this operator is unchecked and |
| * out_of_range lookups are not defined. (For checked lookups |
| * see at().) |
| */ |
| reference |
| operator[](size_type __n) |
| { return this->_M_impl._M_start[difference_type(__n)]; } |
| |
| /** |
| * @brief Subscript access to the data contained in the %deque. |
| * @param __n The index of the element for which data should be |
| * accessed. |
| * @return Read-only (constant) reference to data. |
| * |
| * This operator allows for easy, array-style, data access. |
| * Note that data access with this operator is unchecked and |
| * out_of_range lookups are not defined. (For checked lookups |
| * see at().) |
| */ |
| const_reference |
| operator[](size_type __n) const |
| { return this->_M_impl._M_start[difference_type(__n)]; } |
| |
| protected: |
| /// Safety check used only from at(). |
| void |
| _M_range_check(size_type __n) const |
| { |
| if (__n >= this->size()) |
| __throw_out_of_range(__N("deque::_M_range_check")); |
| } |
| |
| public: |
| /** |
| * @brief Provides access to the data contained in the %deque. |
| * @param __n The index of the element for which data should be |
| * accessed. |
| * @return Read/write reference to data. |
| * @throw std::out_of_range If @a __n is an invalid index. |
| * |
| * This function provides for safer data access. The parameter |
| * is first checked that it is in the range of the deque. The |
| * function throws out_of_range if the check fails. |
| */ |
| reference |
| at(size_type __n) |
| { |
| _M_range_check(__n); |
| return (*this)[__n]; |
| } |
| |
| /** |
| * @brief Provides access to the data contained in the %deque. |
| * @param __n The index of the element for which data should be |
| * accessed. |
| * @return Read-only (constant) reference to data. |
| * @throw std::out_of_range If @a __n is an invalid index. |
| * |
| * This function provides for safer data access. The parameter is first |
| * checked that it is in the range of the deque. The function throws |
| * out_of_range if the check fails. |
| */ |
| const_reference |
| at(size_type __n) const |
| { |
| _M_range_check(__n); |
| return (*this)[__n]; |
| } |
| |
| /** |
| * Returns a read/write reference to the data at the first |
| * element of the %deque. |
| */ |
| reference |
| front() |
| { return *begin(); } |
| |
| /** |
| * Returns a read-only (constant) reference to the data at the first |
| * element of the %deque. |
| */ |
| const_reference |
| front() const |
| { return *begin(); } |
| |
| /** |
| * Returns a read/write reference to the data at the last element of the |
| * %deque. |
| */ |
| reference |
| back() |
| { |
| iterator __tmp = end(); |
| --__tmp; |
| return *__tmp; |
| } |
| |
| /** |
| * Returns a read-only (constant) reference to the data at the last |
| * element of the %deque. |
| */ |
| const_reference |
| back() const |
| { |
| const_iterator __tmp = end(); |
| --__tmp; |
| return *__tmp; |
| } |
| |
| // [23.2.1.2] modifiers |
| /** |
| * @brief Add data to the front of the %deque. |
| * @param __x Data to be added. |
| * |
| * This is a typical stack operation. The function creates an |
| * element at the front of the %deque and assigns the given |
| * data to it. Due to the nature of a %deque this operation |
| * can be done in constant time. |
| */ |
| void |
| push_front(const value_type& __x) |
| { |
| if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first) |
| { |
| this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x); |
| --this->_M_impl._M_start._M_cur; |
| } |
| else |
| _M_push_front_aux(__x); |
| } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| void |
| push_front(value_type&& __x) |
| { emplace_front(std::move(__x)); } |
| |
| template<typename... _Args> |
| void |
| emplace_front(_Args&&... __args); |
| #endif |
| |
| /** |
| * @brief Add data to the end of the %deque. |
| * @param __x Data to be added. |
| * |
| * This is a typical stack operation. The function creates an |
| * element at the end of the %deque and assigns the given data |
| * to it. Due to the nature of a %deque this operation can be |
| * done in constant time. |
| */ |
| void |
| push_back(const value_type& __x) |
| { |
| if (this->_M_impl._M_finish._M_cur |
| != this->_M_impl._M_finish._M_last - 1) |
| { |
| this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x); |
| ++this->_M_impl._M_finish._M_cur; |
| } |
| else |
| _M_push_back_aux(__x); |
| } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| void |
| push_back(value_type&& __x) |
| { emplace_back(std::move(__x)); } |
| |
| template<typename... _Args> |
| void |
| emplace_back(_Args&&... __args); |
| #endif |
| |
| /** |
| * @brief Removes first element. |
| * |
| * This is a typical stack operation. It shrinks the %deque by one. |
| * |
| * Note that no data is returned, and if the first element's data is |
| * needed, it should be retrieved before pop_front() is called. |
| */ |
| void |
| pop_front() |
| { |
| if (this->_M_impl._M_start._M_cur |
| != this->_M_impl._M_start._M_last - 1) |
| { |
| this->_M_impl.destroy(this->_M_impl._M_start._M_cur); |
| ++this->_M_impl._M_start._M_cur; |
| } |
| else |
| _M_pop_front_aux(); |
| } |
| |
| /** |
| * @brief Removes last element. |
| * |
| * This is a typical stack operation. It shrinks the %deque by one. |
| * |
| * Note that no data is returned, and if the last element's data is |
| * needed, it should be retrieved before pop_back() is called. |
| */ |
| void |
| pop_back() |
| { |
| if (this->_M_impl._M_finish._M_cur |
| != this->_M_impl._M_finish._M_first) |
| { |
| --this->_M_impl._M_finish._M_cur; |
| this->_M_impl.destroy(this->_M_impl._M_finish._M_cur); |
| } |
| else |
| _M_pop_back_aux(); |
| } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| /** |
| * @brief Inserts an object in %deque before specified iterator. |
| * @param __position An iterator into the %deque. |
| * @param __args Arguments. |
| * @return An iterator that points to the inserted data. |
| * |
| * This function will insert an object of type T constructed |
| * with T(std::forward<Args>(args)...) before the specified location. |
| */ |
| template<typename... _Args> |
| iterator |
| emplace(iterator __position, _Args&&... __args); |
| #endif |
| |
| /** |
| * @brief Inserts given value into %deque before specified iterator. |
| * @param __position An iterator into the %deque. |
| * @param __x Data to be inserted. |
| * @return An iterator that points to the inserted data. |
| * |
| * This function will insert a copy of the given value before the |
| * specified location. |
| */ |
| iterator |
| insert(iterator __position, const value_type& __x); |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| /** |
| * @brief Inserts given rvalue into %deque before specified iterator. |
| * @param __position An iterator into the %deque. |
| * @param __x Data to be inserted. |
| * @return An iterator that points to the inserted data. |
| * |
| * This function will insert a copy of the given rvalue before the |
| * specified location. |
| */ |
| iterator |
| insert(iterator __position, value_type&& __x) |
| { return emplace(__position, std::move(__x)); } |
| |
| /** |
| * @brief Inserts an initializer list into the %deque. |
| * @param __p An iterator into the %deque. |
| * @param __l An initializer_list. |
| * |
| * This function will insert copies of the data in the |
| * initializer_list @a __l into the %deque before the location |
| * specified by @a __p. This is known as <em>list insert</em>. |
| */ |
| void |
| insert(iterator __p, initializer_list<value_type> __l) |
| { this->insert(__p, __l.begin(), __l.end()); } |
| #endif |
| |
| /** |
| * @brief Inserts a number of copies of given data into the %deque. |
| * @param __position An iterator into the %deque. |
| * @param __n Number of elements to be inserted. |
| * @param __x Data to be inserted. |
| * |
| * This function will insert a specified number of copies of the given |
| * data before the location specified by @a __position. |
| */ |
| void |
| insert(iterator __position, size_type __n, const value_type& __x) |
| { _M_fill_insert(__position, __n, __x); } |
| |
| /** |
| * @brief Inserts a range into the %deque. |
| * @param __position An iterator into the %deque. |
| * @param __first An input iterator. |
| * @param __last An input iterator. |
| * |
| * This function will insert copies of the data in the range |
| * [__first,__last) into the %deque before the location specified |
| * by @a __position. This is known as <em>range insert</em>. |
| */ |
| template<typename _InputIterator> |
| void |
| insert(iterator __position, _InputIterator __first, |
| _InputIterator __last) |
| { |
| // Check whether it's an integral type. If so, it's not an iterator. |
| typedef typename std::__is_integer<_InputIterator>::__type _Integral; |
| _M_insert_dispatch(__position, __first, __last, _Integral()); |
| } |
| |
| /** |
| * @brief Remove element at given position. |
| * @param __position Iterator pointing to element to be erased. |
| * @return An iterator pointing to the next element (or end()). |
| * |
| * This function will erase the element at the given position and thus |
| * shorten the %deque by one. |
| * |
| * The user is cautioned that |
| * this function only erases the element, and that if the element is |
| * itself a pointer, the pointed-to memory is not touched in any way. |
| * Managing the pointer is the user's responsibility. |
| */ |
| iterator |
| erase(iterator __position); |
| |
| /** |
| * @brief Remove a range of elements. |
| * @param __first Iterator pointing to the first element to be erased. |
| * @param __last Iterator pointing to one past the last element to be |
| * erased. |
| * @return An iterator pointing to the element pointed to by @a last |
| * prior to erasing (or end()). |
| * |
| * This function will erase the elements in the range |
| * [__first,__last) and shorten the %deque accordingly. |
| * |
| * The user is cautioned that |
| * this function only erases the elements, and that if the elements |
| * themselves are pointers, the pointed-to memory is not touched in any |
| * way. Managing the pointer is the user's responsibility. |
| */ |
| iterator |
| erase(iterator __first, iterator __last); |
| |
| /** |
| * @brief Swaps data with another %deque. |
| * @param __x A %deque of the same element and allocator types. |
| * |
| * This exchanges the elements between two deques in constant time. |
| * (Four pointers, so it should be quite fast.) |
| * Note that the global std::swap() function is specialized such that |
| * std::swap(d1,d2) will feed to this function. |
| */ |
| void |
| swap(deque& __x) |
| { |
| std::swap(this->_M_impl._M_start, __x._M_impl._M_start); |
| std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); |
| std::swap(this->_M_impl._M_map, __x._M_impl._M_map); |
| std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size); |
| |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // 431. Swapping containers with unequal allocators. |
| std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(), |
| __x._M_get_Tp_allocator()); |
| } |
| |
| /** |
| * Erases all the elements. Note that this function only erases the |
| * elements, and that if the elements themselves are pointers, the |
| * pointed-to memory is not touched in any way. Managing the pointer is |
| * the user's responsibility. |
| */ |
| void |
| clear() _GLIBCXX_NOEXCEPT |
| { _M_erase_at_end(begin()); } |
| |
| protected: |
| // Internal constructor functions follow. |
| |
| // called by the range constructor to implement [23.1.1]/9 |
| |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // 438. Ambiguity in the "do the right thing" clause |
| template<typename _Integer> |
| void |
| _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) |
| { |
| _M_initialize_map(static_cast<size_type>(__n)); |
| _M_fill_initialize(__x); |
| } |
| |
| // called by the range constructor to implement [23.1.1]/9 |
| template<typename _InputIterator> |
| void |
| _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, |
| __false_type) |
| { |
| typedef typename std::iterator_traits<_InputIterator>:: |
| iterator_category _IterCategory; |
| _M_range_initialize(__first, __last, _IterCategory()); |
| } |
| |
| // called by the second initialize_dispatch above |
| //@{ |
| /** |
| * @brief Fills the deque with whatever is in [first,last). |
| * @param __first An input iterator. |
| * @param __last An input iterator. |
| * @return Nothing. |
| * |
| * If the iterators are actually forward iterators (or better), then the |
| * memory layout can be done all at once. Else we move forward using |
| * push_back on each value from the iterator. |
| */ |
| template<typename _InputIterator> |
| void |
| _M_range_initialize(_InputIterator __first, _InputIterator __last, |
| std::input_iterator_tag); |
| |
| // called by the second initialize_dispatch above |
| template<typename _ForwardIterator> |
| void |
| _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, |
| std::forward_iterator_tag); |
| //@} |
| |
| /** |
| * @brief Fills the %deque with copies of value. |
| * @param __value Initial value. |
| * @return Nothing. |
| * @pre _M_start and _M_finish have already been initialized, |
| * but none of the %deque's elements have yet been constructed. |
| * |
| * This function is called only when the user provides an explicit size |
| * (with or without an explicit exemplar value). |
| */ |
| void |
| _M_fill_initialize(const value_type& __value); |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| // called by deque(n). |
| void |
| _M_default_initialize(); |
| #endif |
| |
| // Internal assign functions follow. The *_aux functions do the actual |
| // assignment work for the range versions. |
| |
| // called by the range assign to implement [23.1.1]/9 |
| |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // 438. Ambiguity in the "do the right thing" clause |
| template<typename _Integer> |
| void |
| _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) |
| { _M_fill_assign(__n, __val); } |
| |
| // called by the range assign to implement [23.1.1]/9 |
| template<typename _InputIterator> |
| void |
| _M_assign_dispatch(_InputIterator __first, _InputIterator __last, |
| __false_type) |
| { |
| typedef typename std::iterator_traits<_InputIterator>:: |
| iterator_category _IterCategory; |
| _M_assign_aux(__first, __last, _IterCategory()); |
| } |
| |
| // called by the second assign_dispatch above |
| template<typename _InputIterator> |
| void |
| _M_assign_aux(_InputIterator __first, _InputIterator __last, |
| std::input_iterator_tag); |
| |
| // called by the second assign_dispatch above |
| template<typename _ForwardIterator> |
| void |
| _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, |
| std::forward_iterator_tag) |
| { |
| const size_type __len = std::distance(__first, __last); |
| if (__len > size()) |
| { |
| _ForwardIterator __mid = __first; |
| std::advance(__mid, size()); |
| std::copy(__first, __mid, begin()); |
| insert(end(), __mid, __last); |
| } |
| else |
| _M_erase_at_end(std::copy(__first, __last, begin())); |
| } |
| |
| // Called by assign(n,t), and the range assign when it turns out |
| // to be the same thing. |
| void |
| _M_fill_assign(size_type __n, const value_type& __val) |
| { |
| if (__n > size()) |
| { |
| std::fill(begin(), end(), __val); |
| insert(end(), __n - size(), __val); |
| } |
| else |
| { |
| _M_erase_at_end(begin() + difference_type(__n)); |
| std::fill(begin(), end(), __val); |
| } |
| } |
| |
| //@{ |
| /// Helper functions for push_* and pop_*. |
| #ifndef __GXX_EXPERIMENTAL_CXX0X__ |
| void _M_push_back_aux(const value_type&); |
| |
| void _M_push_front_aux(const value_type&); |
| #else |
| template<typename... _Args> |
| void _M_push_back_aux(_Args&&... __args); |
| |
| template<typename... _Args> |
| void _M_push_front_aux(_Args&&... __args); |
| #endif |
| |
| void _M_pop_back_aux(); |
| |
| void _M_pop_front_aux(); |
| //@} |
| |
| // Internal insert functions follow. The *_aux functions do the actual |
| // insertion work when all shortcuts fail. |
| |
| // called by the range insert to implement [23.1.1]/9 |
| |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // 438. Ambiguity in the "do the right thing" clause |
| template<typename _Integer> |
| void |
| _M_insert_dispatch(iterator __pos, |
| _Integer __n, _Integer __x, __true_type) |
| { _M_fill_insert(__pos, __n, __x); } |
| |
| // called by the range insert to implement [23.1.1]/9 |
| template<typename _InputIterator> |
| void |
| _M_insert_dispatch(iterator __pos, |
| _InputIterator __first, _InputIterator __last, |
| __false_type) |
| { |
| typedef typename std::iterator_traits<_InputIterator>:: |
| iterator_category _IterCategory; |
| _M_range_insert_aux(__pos, __first, __last, _IterCategory()); |
| } |
| |
| // called by the second insert_dispatch above |
| template<typename _InputIterator> |
| void |
| _M_range_insert_aux(iterator __pos, _InputIterator __first, |
| _InputIterator __last, std::input_iterator_tag); |
| |
| // called by the second insert_dispatch above |
| template<typename _ForwardIterator> |
| void |
| _M_range_insert_aux(iterator __pos, _ForwardIterator __first, |
| _ForwardIterator __last, std::forward_iterator_tag); |
| |
| // Called by insert(p,n,x), and the range insert when it turns out to be |
| // the same thing. Can use fill functions in optimal situations, |
| // otherwise passes off to insert_aux(p,n,x). |
| void |
| _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); |
| |
| // called by insert(p,x) |
| #ifndef __GXX_EXPERIMENTAL_CXX0X__ |
| iterator |
| _M_insert_aux(iterator __pos, const value_type& __x); |
| #else |
| template<typename... _Args> |
| iterator |
| _M_insert_aux(iterator __pos, _Args&&... __args); |
| #endif |
| |
| // called by insert(p,n,x) via fill_insert |
| void |
| _M_insert_aux(iterator __pos, size_type __n, const value_type& __x); |
| |
| // called by range_insert_aux for forward iterators |
| template<typename _ForwardIterator> |
| void |
| _M_insert_aux(iterator __pos, |
| _ForwardIterator __first, _ForwardIterator __last, |
| size_type __n); |
| |
| |
| // Internal erase functions follow. |
| |
| void |
| _M_destroy_data_aux(iterator __first, iterator __last); |
| |
| // Called by ~deque(). |
| // NB: Doesn't deallocate the nodes. |
| template<typename _Alloc1> |
| void |
| _M_destroy_data(iterator __first, iterator __last, const _Alloc1&) |
| { _M_destroy_data_aux(__first, __last); } |
| |
| void |
| _M_destroy_data(iterator __first, iterator __last, |
| const std::allocator<_Tp>&) |
| { |
| if (!__has_trivial_destructor(value_type)) |
| _M_destroy_data_aux(__first, __last); |
| } |
| |
| // Called by erase(q1, q2). |
| void |
| _M_erase_at_begin(iterator __pos) |
| { |
| _M_destroy_data(begin(), __pos, _M_get_Tp_allocator()); |
| _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node); |
| this->_M_impl._M_start = __pos; |
| } |
| |
| // Called by erase(q1, q2), resize(), clear(), _M_assign_aux, |
| // _M_fill_assign, operator=. |
| void |
| _M_erase_at_end(iterator __pos) |
| { |
| _M_destroy_data(__pos, end(), _M_get_Tp_allocator()); |
| _M_destroy_nodes(__pos._M_node + 1, |
| this->_M_impl._M_finish._M_node + 1); |
| this->_M_impl._M_finish = __pos; |
| } |
| |
| #ifdef __GXX_EXPERIMENTAL_CXX0X__ |
| // Called by resize(sz). |
| void |
| _M_default_append(size_type __n); |
| |
| bool |
| _M_shrink_to_fit(); |
| #endif |
| |
| //@{ |
| /// Memory-handling helpers for the previous internal insert functions. |
| iterator |
| _M_reserve_elements_at_front(size_type __n) |
| { |
| const size_type __vacancies = this->_M_impl._M_start._M_cur |
| - this->_M_impl._M_start._M_first; |
| if (__n > __vacancies) |
| _M_new_elements_at_front(__n - __vacancies); |
| return this->_M_impl._M_start - difference_type(__n); |
| } |
| |
| iterator |
| _M_reserve_elements_at_back(size_type __n) |
| { |
| const size_type __vacancies = (this->_M_impl._M_finish._M_last |
| - this->_M_impl._M_finish._M_cur) - 1; |
| if (__n > __vacancies) |
| _M_new_elements_at_back(__n - __vacancies); |
| return this->_M_impl._M_finish + difference_type(__n); |
| } |
| |
| void |
| _M_new_elements_at_front(size_type __new_elements); |
| |
| void |
| _M_new_elements_at_back(size_type __new_elements); |
| //@} |
| |
| |
| //@{ |
| /** |
| * @brief Memory-handling helpers for the major %map. |
| * |
| * Makes sure the _M_map has space for new nodes. Does not |
| * actually add the nodes. Can invalidate _M_map pointers. |
| * (And consequently, %deque iterators.) |
| */ |
| void |
| _M_reserve_map_at_back(size_type __nodes_to_add = 1) |
| { |
| if (__nodes_to_add + 1 > this->_M_impl._M_map_size |
| - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map)) |
| _M_reallocate_map(__nodes_to_add, false); |
| } |
| |
| void |
| _M_reserve_map_at_front(size_type __nodes_to_add = 1) |
| { |
| if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node |
| - this->_M_impl._M_map)) |
| _M_reallocate_map(__nodes_to_add, true); |
| } |
| |
| void |
| _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front); |
| //@} |
| }; |
| |
| |
| /** |
| * @brief Deque equality comparison. |
| * @param __x A %deque. |
| * @param __y A %deque of the same type as @a __x. |
| * @return True iff the size and elements of the deques are equal. |
| * |
| * This is an equivalence relation. It is linear in the size of the |
| * deques. Deques are considered equivalent if their sizes are equal, |
| * and if corresponding elements compare equal. |
| */ |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator==(const deque<_Tp, _Alloc>& __x, |
| const deque<_Tp, _Alloc>& __y) |
| { return __x.size() == __y.size() |
| && std::equal(__x.begin(), __x.end(), __y.begin()); } |
| |
| /** |
| * @brief Deque ordering relation. |
| * @param __x A %deque. |
| * @param __y A %deque of the same type as @a __x. |
| * @return True iff @a x is lexicographically less than @a __y. |
| * |
| * This is a total ordering relation. It is linear in the size of the |
| * deques. The elements must be comparable with @c <. |
| * |
| * See std::lexicographical_compare() for how the determination is made. |
| */ |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator<(const deque<_Tp, _Alloc>& __x, |
| const deque<_Tp, _Alloc>& __y) |
| { return std::lexicographical_compare(__x.begin(), __x.end(), |
| __y.begin(), __y.end()); } |
| |
| /// Based on operator== |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator!=(const deque<_Tp, _Alloc>& __x, |
| const deque<_Tp, _Alloc>& __y) |
| { return !(__x == __y); } |
| |
| /// Based on operator< |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator>(const deque<_Tp, _Alloc>& __x, |
| const deque<_Tp, _Alloc>& __y) |
| { return __y < __x; } |
| |
| /// Based on operator< |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator<=(const deque<_Tp, _Alloc>& __x, |
| const deque<_Tp, _Alloc>& __y) |
| { return !(__y < __x); } |
| |
| /// Based on operator< |
| template<typename _Tp, typename _Alloc> |
| inline bool |
| operator>=(const deque<_Tp, _Alloc>& __x, |
| const deque<_Tp, _Alloc>& __y) |
| { return !(__x < __y); } |
| |
| /// See std::deque::swap(). |
| template<typename _Tp, typename _Alloc> |
| inline void |
| swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) |
| { __x.swap(__y); } |
| |
| #undef _GLIBCXX_DEQUE_BUF_SIZE |
| |
| _GLIBCXX_END_NAMESPACE_CONTAINER |
| } // namespace std |
| |
| #endif /* _STL_DEQUE_H */ |