blob: 9c6a34ad70b22ab65f9147f1a19da59654bd633f [file] [log] [blame]
/* A type-safe hash table template.
Copyright (C) 2012-2014 Free Software Foundation, Inc.
Contributed by Lawrence Crowl <crowl@google.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file implements a typed hash table.
The implementation borrows from libiberty's htab_t in hashtab.h.
INTRODUCTION TO TYPES
Users of the hash table generally need to be aware of three types.
1. The type being placed into the hash table. This type is called
the value type.
2. The type used to describe how to handle the value type within
the hash table. This descriptor type provides the hash table with
several things.
- A typedef named 'value_type' to the value type (from above).
- A static member function named 'hash' that takes a value_type
pointer and returns a hashval_t value.
- A typedef named 'compare_type' that is used to test when an value
is found. This type is the comparison type. Usually, it will be the
same as value_type. If it is not the same type, you must generally
explicitly compute hash values and pass them to the hash table.
- A static member function named 'equal' that takes a value_type
pointer and a compare_type pointer, and returns a bool.
- A static function named 'remove' that takes an value_type pointer
and frees the memory allocated by it. This function is used when
individual elements of the table need to be disposed of (e.g.,
when deleting a hash table, removing elements from the table, etc).
3. The type of the hash table itself. (More later.)
In very special circumstances, users may need to know about a fourth type.
4. The template type used to describe how hash table memory
is allocated. This type is called the allocator type. It is
parameterized on the value type. It provides four functions.
- A static member function named 'data_alloc'. This function
allocates the data elements in the table.
- A static member function named 'data_free'. This function
deallocates the data elements in the table.
Hash table are instantiated with two type arguments.
* The descriptor type, (2) above.
* The allocator type, (4) above. In general, you will not need to
provide your own allocator type. By default, hash tables will use
the class template xcallocator, which uses malloc/free for allocation.
DEFINING A DESCRIPTOR TYPE
The first task in using the hash table is to describe the element type.
We compose this into a few steps.
1. Decide on a removal policy for values stored in the table.
This header provides class templates for the two most common
policies.
* typed_free_remove implements the static 'remove' member function
by calling free().
* typed_noop_remove implements the static 'remove' member function
by doing nothing.
You can use these policies by simply deriving the descriptor type
from one of those class template, with the appropriate argument.
Otherwise, you need to write the static 'remove' member function
in the descriptor class.
2. Choose a hash function. Write the static 'hash' member function.
3. Choose an equality testing function. In most cases, its two
arguments will be value_type pointers. If not, the first argument must
be a value_type pointer, and the second argument a compare_type pointer.
AN EXAMPLE DESCRIPTOR TYPE
Suppose you want to put some_type into the hash table. You could define
the descriptor type as follows.
struct some_type_hasher : typed_noop_remove <some_type>
// Deriving from typed_noop_remove means that we get a 'remove' that does
// nothing. This choice is good for raw values.
{
typedef some_type value_type;
typedef some_type compare_type;
static inline hashval_t hash (const value_type *);
static inline bool equal (const value_type *, const compare_type *);
};
inline hashval_t
some_type_hasher::hash (const value_type *e)
{ ... compute and return a hash value for E ... }
inline bool
some_type_hasher::equal (const value_type *p1, const compare_type *p2)
{ ... compare P1 vs P2. Return true if they are the 'same' ... }
AN EXAMPLE HASH_TABLE DECLARATION
To instantiate a hash table for some_type:
hash_table <some_type_hasher> some_type_hash_table;
There is no need to mention some_type directly, as the hash table will
obtain it using some_type_hasher::value_type.
You can then used any of the functions in hash_table's public interface.
See hash_table for details. The interface is very similar to libiberty's
htab_t.
EASY DESCRIPTORS FOR POINTERS
The class template pointer_hash provides everything you need to hash
pointers (as opposed to what they point to). So, to instantiate a hash
table over pointers to whatever_type,
hash_table <pointer_hash <whatever_type>> whatever_type_hash_table;
HASH TABLE ITERATORS
The hash table provides standard C++ iterators. For example, consider a
hash table of some_info. We wish to consume each element of the table:
extern void consume (some_info *);
We define a convenience typedef and the hash table:
typedef hash_table <some_info_hasher> info_table_type;
info_table_type info_table;
Then we write the loop in typical C++ style:
for (info_table_type::iterator iter = info_table.begin ();
iter != info_table.end ();
++iter)
if ((*iter).status == INFO_READY)
consume (&*iter);
Or with common sub-expression elimination:
for (info_table_type::iterator iter = info_table.begin ();
iter != info_table.end ();
++iter)
{
some_info &elem = *iter;
if (elem.status == INFO_READY)
consume (&elem);
}
One can also use a more typical GCC style:
typedef some_info *some_info_p;
some_info *elem_ptr;
info_table_type::iterator iter;
FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
if (elem_ptr->status == INFO_READY)
consume (elem_ptr);
*/
#ifndef TYPED_HASHTAB_H
#define TYPED_HASHTAB_H
#include "hashtab.h"
/* The ordinary memory allocator. */
/* FIXME (crowl): This allocator may be extracted for wider sharing later. */
template <typename Type>
struct xcallocator
{
static Type *data_alloc (size_t count);
static void data_free (Type *memory);
};
/* Allocate memory for COUNT data blocks. */
template <typename Type>
inline Type *
xcallocator <Type>::data_alloc (size_t count)
{
return static_cast <Type *> (xcalloc (count, sizeof (Type)));
}
/* Free memory for data blocks. */
template <typename Type>
inline void
xcallocator <Type>::data_free (Type *memory)
{
return ::free (memory);
}
/* Helpful type for removing with free. */
template <typename Type>
struct typed_free_remove
{
static inline void remove (Type *p);
};
/* Remove with free. */
template <typename Type>
inline void
typed_free_remove <Type>::remove (Type *p)
{
free (p);
}
/* Helpful type for a no-op remove. */
template <typename Type>
struct typed_noop_remove
{
static inline void remove (Type *p);
};
/* Remove doing nothing. */
template <typename Type>
inline void
typed_noop_remove <Type>::remove (Type *p ATTRIBUTE_UNUSED)
{
}
/* Pointer hash with a no-op remove method. */
template <typename Type>
struct pointer_hash : typed_noop_remove <Type>
{
typedef Type *value_type;
typedef Type *compare_type;
typedef int store_values_directly;
static inline hashval_t hash (const value_type &);
static inline bool equal (const value_type &existing, const compare_type &candidate);
};
template <typename Type>
inline hashval_t
pointer_hash <Type>::hash (const value_type &candidate)
{
/* This is a really poor hash function, but it is what the current code uses,
so I am reusing it to avoid an additional axis in testing. */
return (hashval_t) ((intptr_t)candidate >> 3);
}
template <typename Type>
inline bool
pointer_hash <Type>::equal (const value_type &existing,
const compare_type &candidate)
{
return existing == candidate;
}
/* Table of primes and their inversion information. */
struct prime_ent
{
hashval_t prime;
hashval_t inv;
hashval_t inv_m2; /* inverse of prime-2 */
hashval_t shift;
};
extern struct prime_ent const prime_tab[];
/* Functions for computing hash table indexes. */
extern unsigned int hash_table_higher_prime_index (unsigned long n);
extern hashval_t hash_table_mod1 (hashval_t hash, unsigned int index);
extern hashval_t hash_table_mod2 (hashval_t hash, unsigned int index);
/* The below is some template meta programming to decide if we should use the
hash table partial specialization that directly stores value_type instead of
pointers to value_type. If the Descriptor type defines the type
Descriptor::store_values_directly then values are stored directly otherwise
pointers to them are stored. */
template<typename T> struct notype { typedef void type; };
template<typename T, typename = void>
struct storage_tester
{
static const bool value = false;
};
template<typename T>
struct storage_tester<T, typename notype<typename
T::store_values_directly>::type>
{
static const bool value = true;
};
template<typename Traits>
struct has_is_deleted
{
template<typename U, bool (*)(U &)> struct helper {};
template<typename U> static char test (helper<U, U::is_deleted> *);
template<typename U> static int test (...);
static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
};
template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
struct is_deleted_helper
{
static inline bool
call (Type &v)
{
return Traits::is_deleted (v);
}
};
template<typename Type, typename Traits>
struct is_deleted_helper<Type *, Traits, false>
{
static inline bool
call (Type *v)
{
return v == HTAB_DELETED_ENTRY;
}
};
template<typename Traits>
struct has_is_empty
{
template<typename U, bool (*)(U &)> struct helper {};
template<typename U> static char test (helper<U, U::is_empty> *);
template<typename U> static int test (...);
static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
};
template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
struct is_empty_helper
{
static inline bool
call (Type &v)
{
return Traits::is_empty (v);
}
};
template<typename Type, typename Traits>
struct is_empty_helper<Type *, Traits, false>
{
static inline bool
call (Type *v)
{
return v == HTAB_EMPTY_ENTRY;
}
};
template<typename Traits>
struct has_mark_deleted
{
template<typename U, void (*)(U &)> struct helper {};
template<typename U> static char test (helper<U, U::mark_deleted> *);
template<typename U> static int test (...);
static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
};
template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
struct mark_deleted_helper
{
static inline void
call (Type &v)
{
Traits::mark_deleted (v);
}
};
template<typename Type, typename Traits>
struct mark_deleted_helper<Type *, Traits, false>
{
static inline void
call (Type *&v)
{
v = static_cast<Type *> (HTAB_DELETED_ENTRY);
}
};
template<typename Traits>
struct has_mark_empty
{
template<typename U, void (*)(U &)> struct helper {};
template<typename U> static char test (helper<U, U::mark_empty> *);
template<typename U> static int test (...);
static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
};
template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
struct mark_empty_helper
{
static inline void
call (Type &v)
{
Traits::mark_empty (v);
}
};
template<typename Type, typename Traits>
struct mark_empty_helper<Type *, Traits, false>
{
static inline void
call (Type *&v)
{
v = static_cast<Type *> (HTAB_EMPTY_ENTRY);
}
};
/* User-facing hash table type.
The table stores elements of type Descriptor::value_type, or pointers to
objects of type value_type if the descriptor does not define the type
store_values_directly.
It hashes values with the hash member function.
The table currently works with relatively weak hash functions.
Use typed_pointer_hash <Value> when hashing pointers instead of objects.
It compares elements with the equal member function.
Two elements with the same hash may not be equal.
Use typed_pointer_equal <Value> when hashing pointers instead of objects.
It removes elements with the remove member function.
This feature is useful for freeing memory.
Derive from typed_null_remove <Value> when not freeing objects.
Derive from typed_free_remove <Value> when doing a simple object free.
Specify the template Allocator to allocate and free memory.
The default is xcallocator.
Storage is an implementation detail and should not be used outside the
hash table code.
*/
template <typename Descriptor,
template<typename Type> class Allocator= xcallocator,
bool Storage = storage_tester<Descriptor>::value>
class hash_table
{
};
template <typename Descriptor,
template<typename Type> class Allocator>
class hash_table<Descriptor, Allocator, false>
{
typedef typename Descriptor::value_type value_type;
typedef typename Descriptor::compare_type compare_type;
public:
hash_table (size_t);
~hash_table ();
/* Current size (in entries) of the hash table. */
size_t size () const { return m_size; }
/* Return the current number of elements in this hash table. */
size_t elements () const { return m_n_elements - m_n_deleted; }
/* Return the current number of elements in this hash table. */
size_t elements_with_deleted () const { return m_n_elements; }
/* This function clears all entries in the given hash table. */
void empty ();
/* This function clears a specified SLOT in a hash table. It is
useful when you've already done the lookup and don't want to do it
again. */
void clear_slot (value_type **);
/* This function searches for a hash table entry equal to the given
COMPARABLE element starting with the given HASH value. It cannot
be used to insert or delete an element. */
value_type *find_with_hash (const compare_type *, hashval_t);
/* Like find_slot_with_hash, but compute the hash value from the element. */
value_type *find (const value_type *value)
{
return find_with_hash (value, Descriptor::hash (value));
}
value_type **find_slot (const value_type *value, insert_option insert)
{
return find_slot_with_hash (value, Descriptor::hash (value), insert);
}
/* This function searches for a hash table slot containing an entry
equal to the given COMPARABLE element and starting with the given
HASH. To delete an entry, call this with insert=NO_INSERT, then
call clear_slot on the slot returned (possibly after doing some
checks). To insert an entry, call this with insert=INSERT, then
write the value you want into the returned slot. When inserting an
entry, NULL may be returned if memory allocation fails. */
value_type **find_slot_with_hash (const compare_type *comparable,
hashval_t hash, enum insert_option insert);
/* This function deletes an element with the given COMPARABLE value
from hash table starting with the given HASH. If there is no
matching element in the hash table, this function does nothing. */
void remove_elt_with_hash (const compare_type *, hashval_t);
/* Like remove_elt_with_hash, but compute the hash value from the element. */
void remove_elt (const value_type *value)
{
remove_elt_with_hash (value, Descriptor::hash (value));
}
/* This function scans over the entire hash table calling CALLBACK for
each live entry. If CALLBACK returns false, the iteration stops.
ARGUMENT is passed as CALLBACK's second argument. */
template <typename Argument,
int (*Callback) (value_type **slot, Argument argument)>
void traverse_noresize (Argument argument);
/* Like traverse_noresize, but does resize the table when it is too empty
to improve effectivity of subsequent calls. */
template <typename Argument,
int (*Callback) (value_type **slot, Argument argument)>
void traverse (Argument argument);
class iterator
{
public:
iterator () : m_slot (NULL), m_limit (NULL) {}
iterator (value_type **slot, value_type **limit) :
m_slot (slot), m_limit (limit) {}
inline value_type *operator * () { return *m_slot; }
void slide ();
inline iterator &operator ++ ();
bool operator != (const iterator &other) const
{
return m_slot != other.m_slot || m_limit != other.m_limit;
}
private:
value_type **m_slot;
value_type **m_limit;
};
iterator begin () const
{
iterator iter (m_entries, m_entries + m_size);
iter.slide ();
return iter;
}
iterator end () const { return iterator (); }
double collisions () const
{
return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
}
private:
value_type **find_empty_slot_for_expand (hashval_t);
void expand ();
/* Table itself. */
typename Descriptor::value_type **m_entries;
size_t m_size;
/* Current number of elements including also deleted elements. */
size_t m_n_elements;
/* Current number of deleted elements in the table. */
size_t m_n_deleted;
/* The following member is used for debugging. Its value is number
of all calls of `htab_find_slot' for the hash table. */
unsigned int m_searches;
/* The following member is used for debugging. Its value is number
of collisions fixed for time of work with the hash table. */
unsigned int m_collisions;
/* Current size (in entries) of the hash table, as an index into the
table of primes. */
unsigned int m_size_prime_index;
};
template<typename Descriptor, template<typename Type> class Allocator>
hash_table<Descriptor, Allocator, false>::hash_table (size_t size) :
m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0)
{
unsigned int size_prime_index;
size_prime_index = hash_table_higher_prime_index (size);
size = prime_tab[size_prime_index].prime;
m_entries = Allocator <value_type*> ::data_alloc (size);
gcc_assert (m_entries != NULL);
m_size = size;
m_size_prime_index = size_prime_index;
}
template<typename Descriptor, template<typename Type> class Allocator>
hash_table<Descriptor, Allocator, false>::~hash_table ()
{
for (size_t i = m_size - 1; i < m_size; i--)
if (m_entries[i] != HTAB_EMPTY_ENTRY && m_entries[i] != HTAB_DELETED_ENTRY)
Descriptor::remove (m_entries[i]);
Allocator <value_type *> ::data_free (m_entries);
}
/* Similar to find_slot, but without several unwanted side effects:
- Does not call equal when it finds an existing entry.
- Does not change the count of elements/searches/collisions in the
hash table.
This function also assumes there are no deleted entries in the table.
HASH is the hash value for the element to be inserted. */
template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, false>::value_type **
hash_table<Descriptor, Allocator, false>
::find_empty_slot_for_expand (hashval_t hash)
{
hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
size_t size = m_size;
value_type **slot = m_entries + index;
hashval_t hash2;
if (*slot == HTAB_EMPTY_ENTRY)
return slot;
else if (*slot == HTAB_DELETED_ENTRY)
abort ();
hash2 = hash_table_mod2 (hash, m_size_prime_index);
for (;;)
{
index += hash2;
if (index >= size)
index -= size;
slot = m_entries + index;
if (*slot == HTAB_EMPTY_ENTRY)
return slot;
else if (*slot == HTAB_DELETED_ENTRY)
abort ();
}
}
/* The following function changes size of memory allocated for the
entries and repeatedly inserts the table elements. The occupancy
of the table after the call will be about 50%. Naturally the hash
table must already exist. Remember also that the place of the
table entries is changed. If memory allocation fails, this function
will abort. */
template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, false>::expand ()
{
value_type **oentries = m_entries;
unsigned int oindex = m_size_prime_index;
size_t osize = size ();
value_type **olimit = oentries + osize;
size_t elts = elements ();
/* Resize only when table after removal of unused elements is either
too full or too empty. */
unsigned int nindex;
size_t nsize;
if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
{
nindex = hash_table_higher_prime_index (elts * 2);
nsize = prime_tab[nindex].prime;
}
else
{
nindex = oindex;
nsize = osize;
}
value_type **nentries = Allocator <value_type *> ::data_alloc (nsize);
gcc_assert (nentries != NULL);
m_entries = nentries;
m_size = nsize;
m_size_prime_index = nindex;
m_n_elements -= m_n_deleted;
m_n_deleted = 0;
value_type **p = oentries;
do
{
value_type *x = *p;
if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
{
value_type **q = find_empty_slot_for_expand (Descriptor::hash (x));
*q = x;
}
p++;
}
while (p < olimit);
Allocator <value_type *> ::data_free (oentries);
}
template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, false>::empty ()
{
size_t size = m_size;
value_type **entries = m_entries;
int i;
for (i = size - 1; i >= 0; i--)
if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
Descriptor::remove (entries[i]);
/* Instead of clearing megabyte, downsize the table. */
if (size > 1024*1024 / sizeof (PTR))
{
int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
int nsize = prime_tab[nindex].prime;
Allocator <value_type *> ::data_free (m_entries);
m_entries = Allocator <value_type *> ::data_alloc (nsize);
m_size = nsize;
m_size_prime_index = nindex;
}
else
memset (entries, 0, size * sizeof (value_type *));
m_n_deleted = 0;
m_n_elements = 0;
}
/* This function clears a specified SLOT in a hash table. It is
useful when you've already done the lookup and don't want to do it
again. */
template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, false>::clear_slot (value_type **slot)
{
if (slot < m_entries || slot >= m_entries + size ()
|| *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY)
abort ();
Descriptor::remove (*slot);
*slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
m_n_deleted++;
}
/* This function searches for a hash table entry equal to the given
COMPARABLE element starting with the given HASH value. It cannot
be used to insert or delete an element. */
template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, false>::value_type *
hash_table<Descriptor, Allocator, false>
::find_with_hash (const compare_type *comparable, hashval_t hash)
{
m_searches++;
size_t size = m_size;
hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
value_type *entry = m_entries[index];
if (entry == HTAB_EMPTY_ENTRY
|| (entry != HTAB_DELETED_ENTRY && Descriptor::equal (entry, comparable)))
return entry;
hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
for (;;)
{
m_collisions++;
index += hash2;
if (index >= size)
index -= size;
entry = m_entries[index];
if (entry == HTAB_EMPTY_ENTRY
|| (entry != HTAB_DELETED_ENTRY
&& Descriptor::equal (entry, comparable)))
return entry;
}
}
/* This function searches for a hash table slot containing an entry
equal to the given COMPARABLE element and starting with the given
HASH. To delete an entry, call this with insert=NO_INSERT, then
call clear_slot on the slot returned (possibly after doing some
checks). To insert an entry, call this with insert=INSERT, then
write the value you want into the returned slot. When inserting an
entry, NULL may be returned if memory allocation fails. */
template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, false>::value_type **
hash_table<Descriptor, Allocator, false>
::find_slot_with_hash (const compare_type *comparable, hashval_t hash,
enum insert_option insert)
{
if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
expand ();
m_searches++;
value_type **first_deleted_slot = NULL;
hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
value_type *entry = m_entries[index];
size_t size = m_size;
if (entry == HTAB_EMPTY_ENTRY)
goto empty_entry;
else if (entry == HTAB_DELETED_ENTRY)
first_deleted_slot = &m_entries[index];
else if (Descriptor::equal (entry, comparable))
return &m_entries[index];
for (;;)
{
m_collisions++;
index += hash2;
if (index >= size)
index -= size;
entry = m_entries[index];
if (entry == HTAB_EMPTY_ENTRY)
goto empty_entry;
else if (entry == HTAB_DELETED_ENTRY)
{
if (!first_deleted_slot)
first_deleted_slot = &m_entries[index];
}
else if (Descriptor::equal (entry, comparable))
return &m_entries[index];
}
empty_entry:
if (insert == NO_INSERT)
return NULL;
if (first_deleted_slot)
{
m_n_deleted--;
*first_deleted_slot = static_cast <value_type *> (HTAB_EMPTY_ENTRY);
return first_deleted_slot;
}
m_n_elements++;
return &m_entries[index];
}
/* This function deletes an element with the given COMPARABLE value
from hash table starting with the given HASH. If there is no
matching element in the hash table, this function does nothing. */
template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, false>
::remove_elt_with_hash (const compare_type *comparable, hashval_t hash)
{
value_type **slot = find_slot_with_hash (comparable, hash, NO_INSERT);
if (*slot == HTAB_EMPTY_ENTRY)
return;
Descriptor::remove (*slot);
*slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
m_n_deleted++;
}
/* This function scans over the entire hash table calling CALLBACK for
each live entry. If CALLBACK returns false, the iteration stops.
ARGUMENT is passed as CALLBACK's second argument. */
template<typename Descriptor, template<typename Type> class Allocator>
template<typename Argument,
int (*Callback) (typename hash_table<Descriptor, Allocator,
false>::value_type **slot,
Argument argument)>
void
hash_table<Descriptor, Allocator, false>::traverse_noresize (Argument argument)
{
value_type **slot = m_entries;
value_type **limit = slot + size ();
do
{
value_type *x = *slot;
if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
if (! Callback (slot, argument))
break;
}
while (++slot < limit);
}
/* Like traverse_noresize, but does resize the table when it is too empty
to improve effectivity of subsequent calls. */
template <typename Descriptor,
template <typename Type> class Allocator>
template <typename Argument,
int (*Callback) (typename hash_table<Descriptor, Allocator,
false>::value_type **slot,
Argument argument)>
void
hash_table<Descriptor, Allocator, false>::traverse (Argument argument)
{
size_t size = m_size;
if (elements () * 8 < size && size > 32)
expand ();
traverse_noresize <Argument, Callback> (argument);
}
/* Slide down the iterator slots until an active entry is found. */
template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, false>::iterator::slide ()
{
for ( ; m_slot < m_limit; ++m_slot )
{
value_type *x = *m_slot;
if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
return;
}
m_slot = NULL;
m_limit = NULL;
}
/* Bump the iterator. */
template<typename Descriptor, template<typename Type> class Allocator>
inline typename hash_table<Descriptor, Allocator, false>::iterator &
hash_table<Descriptor, Allocator, false>::iterator::operator ++ ()
{
++m_slot;
slide ();
return *this;
}
/* A partial specialization used when values should be stored directly. */
template <typename Descriptor,
template<typename Type> class Allocator>
class hash_table<Descriptor, Allocator, true>
{
typedef typename Descriptor::value_type value_type;
typedef typename Descriptor::compare_type compare_type;
public:
hash_table (size_t);
~hash_table ();
/* Current size (in entries) of the hash table. */
size_t size () const { return m_size; }
/* Return the current number of elements in this hash table. */
size_t elements () const { return m_n_elements - m_n_deleted; }
/* Return the current number of elements in this hash table. */
size_t elements_with_deleted () const { return m_n_elements; }
/* This function clears all entries in the given hash table. */
void empty ();
/* This function clears a specified SLOT in a hash table. It is
useful when you've already done the lookup and don't want to do it
again. */
void clear_slot (value_type *);
/* This function searches for a hash table entry equal to the given
COMPARABLE element starting with the given HASH value. It cannot
be used to insert or delete an element. */
value_type &find_with_hash (const compare_type &, hashval_t);
/* Like find_slot_with_hash, but compute the hash value from the element. */
value_type &find (const value_type &value)
{
return find_with_hash (value, Descriptor::hash (value));
}
value_type *find_slot (const value_type &value, insert_option insert)
{
return find_slot_with_hash (value, Descriptor::hash (value), insert);
}
/* This function searches for a hash table slot containing an entry
equal to the given COMPARABLE element and starting with the given
HASH. To delete an entry, call this with insert=NO_INSERT, then
call clear_slot on the slot returned (possibly after doing some
checks). To insert an entry, call this with insert=INSERT, then
write the value you want into the returned slot. When inserting an
entry, NULL may be returned if memory allocation fails. */
value_type *find_slot_with_hash (const compare_type &comparable,
hashval_t hash, enum insert_option insert);
/* This function deletes an element with the given COMPARABLE value
from hash table starting with the given HASH. If there is no
matching element in the hash table, this function does nothing. */
void remove_elt_with_hash (const compare_type &, hashval_t);
/* Like remove_elt_with_hash, but compute the hash value from the element. */
void remove_elt (const value_type &value)
{
remove_elt_with_hash (value, Descriptor::hash (value));
}
/* This function scans over the entire hash table calling CALLBACK for
each live entry. If CALLBACK returns false, the iteration stops.
ARGUMENT is passed as CALLBACK's second argument. */
template <typename Argument,
int (*Callback) (value_type *slot, Argument argument)>
void traverse_noresize (Argument argument);
/* Like traverse_noresize, but does resize the table when it is too empty
to improve effectivity of subsequent calls. */
template <typename Argument,
int (*Callback) (value_type *slot, Argument argument)>
void traverse (Argument argument);
class iterator
{
public:
iterator () : m_slot (NULL), m_limit (NULL) {}
iterator (value_type *slot, value_type *limit) :
m_slot (slot), m_limit (limit) {}
inline value_type &operator * () { return *m_slot; }
void slide ();
inline iterator &operator ++ ();
bool operator != (const iterator &other) const
{
return m_slot != other.m_slot || m_limit != other.m_limit;
}
private:
value_type *m_slot;
value_type *m_limit;
};
iterator begin () const
{
iterator iter (m_entries, m_entries + m_size);
iter.slide ();
return iter;
}
iterator end () const { return iterator (); }
double collisions () const
{
return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
}
private:
value_type *find_empty_slot_for_expand (hashval_t);
void expand ();
static bool is_deleted (value_type &v)
{
return is_deleted_helper<value_type, Descriptor>::call (v);
}
static bool is_empty (value_type &v)
{
return is_empty_helper<value_type, Descriptor>::call (v);
}
static void mark_deleted (value_type &v)
{
return mark_deleted_helper<value_type, Descriptor>::call (v);
}
static void mark_empty (value_type &v)
{
return mark_empty_helper<value_type, Descriptor>::call (v);
}
/* Table itself. */
typename Descriptor::value_type *m_entries;
size_t m_size;
/* Current number of elements including also deleted elements. */
size_t m_n_elements;
/* Current number of deleted elements in the table. */
size_t m_n_deleted;
/* The following member is used for debugging. Its value is number
of all calls of `htab_find_slot' for the hash table. */
unsigned int m_searches;
/* The following member is used for debugging. Its value is number
of collisions fixed for time of work with the hash table. */
unsigned int m_collisions;
/* Current size (in entries) of the hash table, as an index into the
table of primes. */
unsigned int m_size_prime_index;
};
template<typename Descriptor, template<typename Type> class Allocator>
hash_table<Descriptor, Allocator, true>::hash_table (size_t size) :
m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0)
{
unsigned int size_prime_index;
size_prime_index = hash_table_higher_prime_index (size);
size = prime_tab[size_prime_index].prime;
m_entries = Allocator <value_type> ::data_alloc (size);
gcc_assert (m_entries != NULL);
m_size = size;
m_size_prime_index = size_prime_index;
}
template<typename Descriptor, template<typename Type> class Allocator>
hash_table<Descriptor, Allocator, true>::~hash_table ()
{
for (size_t i = m_size - 1; i < m_size; i--)
if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
Descriptor::remove (m_entries[i]);
Allocator <value_type> ::data_free (m_entries);
}
/* Similar to find_slot, but without several unwanted side effects:
- Does not call equal when it finds an existing entry.
- Does not change the count of elements/searches/collisions in the
hash table.
This function also assumes there are no deleted entries in the table.
HASH is the hash value for the element to be inserted. */
template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, true>::value_type *
hash_table<Descriptor, Allocator, true>
::find_empty_slot_for_expand (hashval_t hash)
{
hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
size_t size = m_size;
value_type *slot = m_entries + index;
hashval_t hash2;
if (is_empty (*slot))
return slot;
else if (is_deleted (*slot))
abort ();
hash2 = hash_table_mod2 (hash, m_size_prime_index);
for (;;)
{
index += hash2;
if (index >= size)
index -= size;
slot = m_entries + index;
if (is_empty (*slot))
return slot;
else if (is_deleted (*slot))
abort ();
}
}
/* The following function changes size of memory allocated for the
entries and repeatedly inserts the table elements. The occupancy
of the table after the call will be about 50%. Naturally the hash
table must already exist. Remember also that the place of the
table entries is changed. If memory allocation fails, this function
will abort. */
template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, true>::expand ()
{
value_type *oentries = m_entries;
unsigned int oindex = m_size_prime_index;
size_t osize = size ();
value_type *olimit = oentries + osize;
size_t elts = elements ();
/* Resize only when table after removal of unused elements is either
too full or too empty. */
unsigned int nindex;
size_t nsize;
if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
{
nindex = hash_table_higher_prime_index (elts * 2);
nsize = prime_tab[nindex].prime;
}
else
{
nindex = oindex;
nsize = osize;
}
value_type *nentries = Allocator <value_type> ::data_alloc (nsize);
gcc_assert (nentries != NULL);
m_entries = nentries;
m_size = nsize;
m_size_prime_index = nindex;
m_n_elements -= m_n_deleted;
m_n_deleted = 0;
value_type *p = oentries;
do
{
value_type &x = *p;
if (!is_empty (x) && !is_deleted (x))
{
value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
*q = x;
}
p++;
}
while (p < olimit);
Allocator <value_type> ::data_free (oentries);
}
template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, true>::empty ()
{
size_t size = m_size;
value_type *entries = m_entries;
int i;
for (i = size - 1; i >= 0; i--)
if (!is_empty (entries[i]) && !is_deleted (entries[i]))
Descriptor::remove (entries[i]);
/* Instead of clearing megabyte, downsize the table. */
if (size > 1024*1024 / sizeof (PTR))
{
int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
int nsize = prime_tab[nindex].prime;
Allocator <value_type> ::data_free (m_entries);
m_entries = Allocator <value_type> ::data_alloc (nsize);
m_size = nsize;
m_size_prime_index = nindex;
}
else
memset (entries, 0, size * sizeof (value_type));
m_n_deleted = 0;
m_n_elements = 0;
}
/* This function clears a specified SLOT in a hash table. It is
useful when you've already done the lookup and don't want to do it
again. */
template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, true>::clear_slot (value_type *slot)
{
if (slot < m_entries || slot >= m_entries + size ()
|| is_empty (*slot) || is_deleted (*slot))
abort ();
Descriptor::remove (*slot);
mark_deleted (*slot);
m_n_deleted++;
}
/* This function searches for a hash table entry equal to the given
COMPARABLE element starting with the given HASH value. It cannot
be used to insert or delete an element. */
template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, true>::value_type &
hash_table<Descriptor, Allocator, true>
::find_with_hash (const compare_type &comparable, hashval_t hash)
{
m_searches++;
size_t size = m_size;
hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
value_type *entry = &m_entries[index];
if (is_empty (*entry)
|| (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
return *entry;
hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
for (;;)
{
m_collisions++;
index += hash2;
if (index >= size)
index -= size;
entry = &m_entries[index];
if (is_empty (*entry)
|| (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
return *entry;
}
}
/* This function searches for a hash table slot containing an entry
equal to the given COMPARABLE element and starting with the given
HASH. To delete an entry, call this with insert=NO_INSERT, then
call clear_slot on the slot returned (possibly after doing some
checks). To insert an entry, call this with insert=INSERT, then
write the value you want into the returned slot. When inserting an
entry, NULL may be returned if memory allocation fails. */
template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator, true>::value_type *
hash_table<Descriptor, Allocator, true>
::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
enum insert_option insert)
{
if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
expand ();
m_searches++;
value_type *first_deleted_slot = NULL;
hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
value_type *entry = &m_entries[index];
size_t size = m_size;
if (is_empty (*entry))
goto empty_entry;
else if (is_deleted (*entry))
first_deleted_slot = &m_entries[index];
else if (Descriptor::equal (*entry, comparable))
return &m_entries[index];
for (;;)
{
m_collisions++;
index += hash2;
if (index >= size)
index -= size;
entry = &m_entries[index];
if (is_empty (*entry))
goto empty_entry;
else if (is_deleted (*entry))
{
if (!first_deleted_slot)
first_deleted_slot = &m_entries[index];
}
else if (Descriptor::equal (*entry, comparable))
return &m_entries[index];
}
empty_entry:
if (insert == NO_INSERT)
return NULL;
if (first_deleted_slot)
{
m_n_deleted--;
mark_empty (*first_deleted_slot);
return first_deleted_slot;
}
m_n_elements++;
return &m_entries[index];
}
/* This function deletes an element with the given COMPARABLE value
from hash table starting with the given HASH. If there is no
matching element in the hash table, this function does nothing. */
template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, true>
::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
{
value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
if (is_empty (*slot))
return;
Descriptor::remove (*slot);
mark_deleted (*slot);
m_n_deleted++;
}
/* This function scans over the entire hash table calling CALLBACK for
each live entry. If CALLBACK returns false, the iteration stops.
ARGUMENT is passed as CALLBACK's second argument. */
template<typename Descriptor,
template<typename Type> class Allocator>
template<typename Argument,
int (*Callback) (typename hash_table<Descriptor, Allocator,
true>::value_type *slot,
Argument argument)>
void
hash_table<Descriptor, Allocator, true>::traverse_noresize (Argument argument)
{
value_type *slot = m_entries;
value_type *limit = slot + size ();
do
{
value_type &x = *slot;
if (!is_empty (x) && !is_deleted (x))
if (! Callback (slot, argument))
break;
}
while (++slot < limit);
}
/* Like traverse_noresize, but does resize the table when it is too empty
to improve effectivity of subsequent calls. */
template <typename Descriptor,
template <typename Type> class Allocator>
template <typename Argument,
int (*Callback) (typename hash_table<Descriptor, Allocator,
true>::value_type *slot,
Argument argument)>
void
hash_table<Descriptor, Allocator, true>::traverse (Argument argument)
{
size_t size = m_size;
if (elements () * 8 < size && size > 32)
expand ();
traverse_noresize <Argument, Callback> (argument);
}
/* Slide down the iterator slots until an active entry is found. */
template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator, true>::iterator::slide ()
{
for ( ; m_slot < m_limit; ++m_slot )
{
value_type &x = *m_slot;
if (!is_empty (x) && !is_deleted (x))
return;
}
m_slot = NULL;
m_limit = NULL;
}
/* Bump the iterator. */
template<typename Descriptor, template<typename Type> class Allocator>
inline typename hash_table<Descriptor, Allocator, true>::iterator &
hash_table<Descriptor, Allocator, true>::iterator::operator ++ ()
{
++m_slot;
slide ();
return *this;
}
/* Iterate through the elements of hash_table HTAB,
using hash_table <....>::iterator ITER,
storing each element in RESULT, which is of type TYPE. */
#define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
for ((ITER) = (HTAB).begin (); \
(ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
++(ITER))
#endif /* TYPED_HASHTAB_H */