| //####BSDCOPYRIGHTBEGIN#### |
| // |
| // ------------------------------------------- |
| // |
| // Portions of this software may have been derived from OpenBSD, |
| // FreeBSD or other sources, and are covered by the appropriate |
| // copyright disclaimers included herein. |
| // |
| // Portions created by Red Hat are |
| // Copyright (C) 2002 Red Hat, Inc. All Rights Reserved. |
| // |
| // ------------------------------------------- |
| // |
| //####BSDCOPYRIGHTEND#### |
| //========================================================================== |
| |
| /* |
| * Copyright (c) 1991, 1993 |
| * The Regents of the University of California. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * This product includes software developed by the University of |
| * California, Berkeley and its contributors. |
| * 4. Neither the name of the University nor the names of its contributors |
| * may be used to endorse or promote products derived from this software |
| * without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * @(#)queue.h 8.5 (Berkeley) 8/20/94 |
| * $FreeBSD: src/sys/sys/queue.h,v 1.32.2.4 2001/03/31 03:33:39 hsu Exp $ |
| */ |
| |
| #ifndef _SYS_QUEUE_H_ |
| #define _SYS_QUEUE_H_ |
| |
| #ifndef __ASSEMBLER__ |
| |
| /* |
| * This file defines five types of data structures: singly-linked lists, |
| * singly-linked tail queues, lists, tail queues, and circular queues. |
| * |
| * A singly-linked list is headed by a single forward pointer. The elements |
| * are singly linked for minimum space and pointer manipulation overhead at |
| * the expense of O(n) removal for arbitrary elements. New elements can be |
| * added to the list after an existing element or at the head of the list. |
| * Elements being removed from the head of the list should use the explicit |
| * macro for this purpose for optimum efficiency. A singly-linked list may |
| * only be traversed in the forward direction. Singly-linked lists are ideal |
| * for applications with large datasets and few or no removals or for |
| * implementing a LIFO queue. |
| * |
| * A singly-linked tail queue is headed by a pair of pointers, one to the |
| * head of the list and the other to the tail of the list. The elements are |
| * singly linked for minimum space and pointer manipulation overhead at the |
| * expense of O(n) removal for arbitrary elements. New elements can be added |
| * to the list after an existing element, at the head of the list, or at the |
| * end of the list. Elements being removed from the head of the tail queue |
| * should use the explicit macro for this purpose for optimum efficiency. |
| * A singly-linked tail queue may only be traversed in the forward direction. |
| * Singly-linked tail queues are ideal for applications with large datasets |
| * and few or no removals or for implementing a FIFO queue. |
| * |
| * A list is headed by a single forward pointer (or an array of forward |
| * pointers for a hash table header). The elements are doubly linked |
| * so that an arbitrary element can be removed without a need to |
| * traverse the list. New elements can be added to the list before |
| * or after an existing element or at the head of the list. A list |
| * may only be traversed in the forward direction. |
| * |
| * A tail queue is headed by a pair of pointers, one to the head of the |
| * list and the other to the tail of the list. The elements are doubly |
| * linked so that an arbitrary element can be removed without a need to |
| * traverse the list. New elements can be added to the list before or |
| * after an existing element, at the head of the list, or at the end of |
| * the list. A tail queue may be traversed in either direction. |
| * |
| * A circle queue is headed by a pair of pointers, one to the head of the |
| * list and the other to the tail of the list. The elements are doubly |
| * linked so that an arbitrary element can be removed without a need to |
| * traverse the list. New elements can be added to the list before or after |
| * an existing element, at the head of the list, or at the end of the list. |
| * A circle queue may be traversed in either direction, but has a more |
| * complex end of list detection. |
| * |
| * For details on the use of these macros, see the queue(3) manual page. |
| * |
| * |
| * SLIST LIST STAILQ TAILQ CIRCLEQ |
| * _HEAD + + + + + |
| * _ENTRY + + + + + |
| * _INIT + + + + + |
| * _EMPTY + + + + + |
| * _FIRST + + + + + |
| * _NEXT + + + + + |
| * _PREV - - - + + |
| * _LAST - - + + + |
| * _FOREACH + + + + + |
| * _FOREACH_REVERSE - - - + + |
| * _INSERT_HEAD + + + + + |
| * _INSERT_BEFORE - + - + + |
| * _INSERT_AFTER + + + + + |
| * _INSERT_TAIL - - + + + |
| * _REMOVE_HEAD + - + - - |
| * _REMOVE + + + + + |
| * |
| */ |
| |
| /* |
| * Singly-linked List definitions. |
| */ |
| #define SLIST_HEAD(name, type) \ |
| struct name { \ |
| struct type *slh_first; /* first element */ \ |
| } |
| |
| #define SLIST_HEAD_INITIALIZER(head) \ |
| { NULL } |
| |
| #define SLIST_ENTRY(type) \ |
| struct { \ |
| struct type *sle_next; /* next element */ \ |
| } |
| |
| /* |
| * Singly-linked List functions. |
| */ |
| #define SLIST_EMPTY(head) ((head)->slh_first == NULL) |
| |
| #define SLIST_FIRST(head) ((head)->slh_first) |
| |
| #define SLIST_FOREACH(var, head, field) \ |
| for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next) |
| |
| #define SLIST_INIT(head) { \ |
| (head)->slh_first = NULL; \ |
| } |
| |
| #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ |
| (elm)->field.sle_next = (slistelm)->field.sle_next; \ |
| (slistelm)->field.sle_next = (elm); \ |
| } while (0) |
| |
| #define SLIST_INSERT_HEAD(head, elm, field) do { \ |
| (elm)->field.sle_next = (head)->slh_first; \ |
| (head)->slh_first = (elm); \ |
| } while (0) |
| |
| #define SLIST_NEXT(elm, field) ((elm)->field.sle_next) |
| |
| #define SLIST_REMOVE_HEAD(head, field) do { \ |
| (head)->slh_first = (head)->slh_first->field.sle_next; \ |
| } while (0) |
| |
| #define SLIST_REMOVE(head, elm, type, field) do { \ |
| if ((head)->slh_first == (elm)) { \ |
| SLIST_REMOVE_HEAD((head), field); \ |
| } \ |
| else { \ |
| struct type *curelm = (head)->slh_first; \ |
| while( curelm->field.sle_next != (elm) ) \ |
| curelm = curelm->field.sle_next; \ |
| curelm->field.sle_next = \ |
| curelm->field.sle_next->field.sle_next; \ |
| } \ |
| } while (0) |
| |
| /* |
| * Singly-linked Tail queue definitions. |
| */ |
| #define STAILQ_HEAD(name, type) \ |
| struct name { \ |
| struct type *stqh_first;/* first element */ \ |
| struct type **stqh_last;/* addr of last next element */ \ |
| } |
| |
| #define STAILQ_HEAD_INITIALIZER(head) \ |
| { NULL, &(head).stqh_first } |
| |
| #define STAILQ_ENTRY(type) \ |
| struct { \ |
| struct type *stqe_next; /* next element */ \ |
| } |
| |
| /* |
| * Singly-linked Tail queue functions. |
| */ |
| #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL) |
| |
| #define STAILQ_INIT(head) do { \ |
| (head)->stqh_first = NULL; \ |
| (head)->stqh_last = &(head)->stqh_first; \ |
| } while (0) |
| |
| #define STAILQ_FIRST(head) ((head)->stqh_first) |
| |
| #define STAILQ_LAST(head, type, field) \ |
| (STAILQ_EMPTY(head) ? \ |
| NULL : \ |
| ((struct type *) \ |
| ((char *)((head)->stqh_last) - __offsetof(struct type, field)))) |
| |
| #define STAILQ_FOREACH(var, head, field) \ |
| for((var) = (head)->stqh_first; (var); (var) = (var)->field.stqe_next) |
| |
| #define STAILQ_INSERT_HEAD(head, elm, field) do { \ |
| if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \ |
| (head)->stqh_last = &(elm)->field.stqe_next; \ |
| (head)->stqh_first = (elm); \ |
| } while (0) |
| |
| #define STAILQ_INSERT_TAIL(head, elm, field) do { \ |
| (elm)->field.stqe_next = NULL; \ |
| *(head)->stqh_last = (elm); \ |
| (head)->stqh_last = &(elm)->field.stqe_next; \ |
| } while (0) |
| |
| #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \ |
| if (((elm)->field.stqe_next = (tqelm)->field.stqe_next) == NULL)\ |
| (head)->stqh_last = &(elm)->field.stqe_next; \ |
| (tqelm)->field.stqe_next = (elm); \ |
| } while (0) |
| |
| #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next) |
| |
| #define STAILQ_REMOVE_HEAD(head, field) do { \ |
| if (((head)->stqh_first = \ |
| (head)->stqh_first->field.stqe_next) == NULL) \ |
| (head)->stqh_last = &(head)->stqh_first; \ |
| } while (0) |
| |
| #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \ |
| if (((head)->stqh_first = (elm)->field.stqe_next) == NULL) \ |
| (head)->stqh_last = &(head)->stqh_first; \ |
| } while (0) |
| |
| #define STAILQ_REMOVE(head, elm, type, field) do { \ |
| if ((head)->stqh_first == (elm)) { \ |
| STAILQ_REMOVE_HEAD(head, field); \ |
| } \ |
| else { \ |
| struct type *curelm = (head)->stqh_first; \ |
| while( curelm->field.stqe_next != (elm) ) \ |
| curelm = curelm->field.stqe_next; \ |
| if((curelm->field.stqe_next = \ |
| curelm->field.stqe_next->field.stqe_next) == NULL) \ |
| (head)->stqh_last = &(curelm)->field.stqe_next; \ |
| } \ |
| } while (0) |
| |
| /* |
| * List definitions. |
| */ |
| #define LIST_HEAD(name, type) \ |
| struct name { \ |
| struct type *lh_first; /* first element */ \ |
| } |
| |
| #define LIST_HEAD_INITIALIZER(head) \ |
| { NULL } |
| |
| #define LIST_ENTRY(type) \ |
| struct { \ |
| struct type *le_next; /* next element */ \ |
| struct type **le_prev; /* address of previous next element */ \ |
| } |
| |
| /* |
| * List functions. |
| */ |
| |
| #define LIST_EMPTY(head) ((head)->lh_first == NULL) |
| |
| #define LIST_FIRST(head) ((head)->lh_first) |
| |
| #define LIST_FOREACH(var, head, field) \ |
| for((var) = (head)->lh_first; (var); (var) = (var)->field.le_next) |
| |
| #define LIST_INIT(head) do { \ |
| (head)->lh_first = NULL; \ |
| } while (0) |
| |
| #define LIST_INSERT_AFTER(listelm, elm, field) do { \ |
| if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \ |
| (listelm)->field.le_next->field.le_prev = \ |
| &(elm)->field.le_next; \ |
| (listelm)->field.le_next = (elm); \ |
| (elm)->field.le_prev = &(listelm)->field.le_next; \ |
| } while (0) |
| |
| #define LIST_INSERT_BEFORE(listelm, elm, field) do { \ |
| (elm)->field.le_prev = (listelm)->field.le_prev; \ |
| (elm)->field.le_next = (listelm); \ |
| *(listelm)->field.le_prev = (elm); \ |
| (listelm)->field.le_prev = &(elm)->field.le_next; \ |
| } while (0) |
| |
| #define LIST_INSERT_HEAD(head, elm, field) do { \ |
| if (((elm)->field.le_next = (head)->lh_first) != NULL) \ |
| (head)->lh_first->field.le_prev = &(elm)->field.le_next;\ |
| (head)->lh_first = (elm); \ |
| (elm)->field.le_prev = &(head)->lh_first; \ |
| } while (0) |
| |
| #define LIST_NEXT(elm, field) ((elm)->field.le_next) |
| |
| #define LIST_REMOVE(elm, field) do { \ |
| if ((elm)->field.le_next != NULL) \ |
| (elm)->field.le_next->field.le_prev = \ |
| (elm)->field.le_prev; \ |
| *(elm)->field.le_prev = (elm)->field.le_next; \ |
| } while (0) |
| |
| /* |
| * Tail queue definitions. |
| */ |
| #define TAILQ_HEAD(name, type) \ |
| struct name { \ |
| struct type *tqh_first; /* first element */ \ |
| struct type **tqh_last; /* addr of last next element */ \ |
| char *tqh_name; \ |
| } |
| |
| #define TAILQ_HEAD_INITIALIZER(head) \ |
| { NULL, &(head).tqh_first, 0 } |
| |
| #define TAILQ_ENTRY(type) \ |
| struct { \ |
| struct type *tqe_next; /* next element */ \ |
| struct type **tqe_prev; /* address of previous next element */ \ |
| } |
| |
| /* |
| * Tail queue functions. |
| */ |
| #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL) |
| |
| #define TAILQ_HASTWO(head, field) ((!TAILQ_EMPTY(head)) && TAILQ_NEXT(TAILQ_FIRST(head),field)) |
| |
| #define TAILQ_FOREACH(var, head, field) \ |
| for (var = TAILQ_FIRST(head); var; var = TAILQ_NEXT(var, field)) |
| |
| #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \ |
| for ((var) = TAILQ_LAST((head), headname); \ |
| (var); \ |
| (var) = TAILQ_PREV((var), headname, field)) |
| |
| #define TAILQ_FIRST(head) ((head)->tqh_first) |
| |
| #define TAILQ_LAST(head, headname) \ |
| (*(((struct headname *)((head)->tqh_last))->tqh_last)) |
| |
| #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next) |
| |
| #define TAILQ_PREV(elm, headname, field) \ |
| (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) |
| |
| #define TAILQ_INIT(head) do { \ |
| (head)->tqh_first = NULL; \ |
| (head)->tqh_last = &(head)->tqh_first; \ |
| (head)->tqh_name = 0; \ |
| } while (0) |
| |
| #define TAILQ_INSERT_HEAD(head, elm, field) do { \ |
| if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \ |
| (head)->tqh_first->field.tqe_prev = \ |
| &(elm)->field.tqe_next; \ |
| else \ |
| (head)->tqh_last = &(elm)->field.tqe_next; \ |
| (head)->tqh_first = (elm); \ |
| (elm)->field.tqe_prev = &(head)->tqh_first; \ |
| } while (0) |
| |
| #define TAILQ_INSERT_TAIL(head, elm, field) do { \ |
| (elm)->field.tqe_next = NULL; \ |
| (elm)->field.tqe_prev = (head)->tqh_last; \ |
| *(head)->tqh_last = (elm); \ |
| (head)->tqh_last = &(elm)->field.tqe_next; \ |
| } while (0) |
| |
| #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
| if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\ |
| (elm)->field.tqe_next->field.tqe_prev = \ |
| &(elm)->field.tqe_next; \ |
| else \ |
| (head)->tqh_last = &(elm)->field.tqe_next; \ |
| (listelm)->field.tqe_next = (elm); \ |
| (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \ |
| } while (0) |
| |
| #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \ |
| (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \ |
| (elm)->field.tqe_next = (listelm); \ |
| *(listelm)->field.tqe_prev = (elm); \ |
| (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \ |
| } while (0) |
| |
| #define TAILQ_REMOVE(head, elm, field) do { \ |
| if (((elm)->field.tqe_next) != NULL) \ |
| (elm)->field.tqe_next->field.tqe_prev = \ |
| (elm)->field.tqe_prev; \ |
| else \ |
| (head)->tqh_last = (elm)->field.tqe_prev; \ |
| *(elm)->field.tqe_prev = (elm)->field.tqe_next; \ |
| (elm)->field.tqe_next = 0; \ |
| (elm)->field.tqe_prev = 0; /* mark removed */ \ |
| } while (0) |
| |
| #define TAILQ_REMOVED(elm, field) ((elm)->field.tqe_next == NULL && (elm)->field.tqe_prev == NULL) |
| |
| /* |
| * Circular queue definitions. |
| */ |
| #define CIRCLEQ_HEAD(name, type) \ |
| struct name { \ |
| struct type *cqh_first; /* first element */ \ |
| struct type *cqh_last; /* last element */ \ |
| } |
| |
| #define CIRCLEQ_ENTRY(type) \ |
| struct { \ |
| struct type *cqe_next; /* next element */ \ |
| struct type *cqe_prev; /* previous element */ \ |
| } |
| |
| /* |
| * Circular queue functions. |
| */ |
| #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head)) |
| |
| #define CIRCLEQ_FIRST(head) ((head)->cqh_first) |
| |
| #define CIRCLEQ_FOREACH(var, head, field) \ |
| for((var) = (head)->cqh_first; \ |
| (var) != (void *)(head); \ |
| (var) = (var)->field.cqe_next) |
| |
| #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \ |
| for((var) = (head)->cqh_last; \ |
| (var) != (void *)(head); \ |
| (var) = (var)->field.cqe_prev) |
| |
| #define CIRCLEQ_INIT(head) do { \ |
| (head)->cqh_first = (void *)(head); \ |
| (head)->cqh_last = (void *)(head); \ |
| } while (0) |
| |
| #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ |
| (elm)->field.cqe_next = (listelm)->field.cqe_next; \ |
| (elm)->field.cqe_prev = (listelm); \ |
| if ((listelm)->field.cqe_next == (void *)(head)) \ |
| (head)->cqh_last = (elm); \ |
| else \ |
| (listelm)->field.cqe_next->field.cqe_prev = (elm); \ |
| (listelm)->field.cqe_next = (elm); \ |
| } while (0) |
| |
| #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \ |
| (elm)->field.cqe_next = (listelm); \ |
| (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \ |
| if ((listelm)->field.cqe_prev == (void *)(head)) \ |
| (head)->cqh_first = (elm); \ |
| else \ |
| (listelm)->field.cqe_prev->field.cqe_next = (elm); \ |
| (listelm)->field.cqe_prev = (elm); \ |
| } while (0) |
| |
| #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \ |
| (elm)->field.cqe_next = (head)->cqh_first; \ |
| (elm)->field.cqe_prev = (void *)(head); \ |
| if ((head)->cqh_last == (void *)(head)) \ |
| (head)->cqh_last = (elm); \ |
| else \ |
| (head)->cqh_first->field.cqe_prev = (elm); \ |
| (head)->cqh_first = (elm); \ |
| } while (0) |
| |
| #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \ |
| (elm)->field.cqe_next = (void *)(head); \ |
| (elm)->field.cqe_prev = (head)->cqh_last; \ |
| if ((head)->cqh_first == (void *)(head)) \ |
| (head)->cqh_first = (elm); \ |
| else \ |
| (head)->cqh_last->field.cqe_next = (elm); \ |
| (head)->cqh_last = (elm); \ |
| } while (0) |
| |
| #define CIRCLEQ_LAST(head) ((head)->cqh_last) |
| |
| #define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next) |
| |
| #define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev) |
| |
| #define CIRCLEQ_REMOVE(head, elm, field) do { \ |
| if ((elm)->field.cqe_next == (void *)(head)) \ |
| (head)->cqh_last = (elm)->field.cqe_prev; \ |
| else \ |
| (elm)->field.cqe_next->field.cqe_prev = \ |
| (elm)->field.cqe_prev; \ |
| if ((elm)->field.cqe_prev == (void *)(head)) \ |
| (head)->cqh_first = (elm)->field.cqe_next; \ |
| else \ |
| (elm)->field.cqe_prev->field.cqe_next = \ |
| (elm)->field.cqe_next; \ |
| } while (0) |
| |
| /* |
| * XXX insque() and remque() are an old way of handling certain queues. |
| * They bogusly assumes that all queue heads look alike. |
| */ |
| |
| struct quehead |
| { |
| struct quehead *qh_link; |
| struct quehead *qh_rlink; |
| }; |
| |
| #ifdef __GNUC__ |
| |
| static __inline void |
| insque (void *a, void *b) |
| { |
| struct quehead *element = a, *head = b; |
| |
| element->qh_link = head->qh_link; |
| element->qh_rlink = head; |
| head->qh_link = element; |
| element->qh_link->qh_rlink = element; |
| } |
| |
| static __inline void |
| remque (void *a) |
| { |
| struct quehead *element = a; |
| |
| element->qh_link->qh_rlink = element->qh_rlink; |
| element->qh_rlink->qh_link = element->qh_link; |
| element->qh_rlink = 0; |
| } |
| |
| #else /* !__GNUC__ */ |
| |
| void insque __P ((void *a, void *b)); |
| void remque __P ((void *a)); |
| |
| #endif /* __GNUC__ */ |
| |
| #endif /* __ASSEMBLER__ */ |
| |
| |
| #endif /* !_SYS_QUEUE_H_ */ |