| |
| /* @(#)e_acosh.c 5.1 93/09/24 */ |
| |
| /* |
| FUNCTION |
| <<acosh>>, <<acoshf>>---inverse hyperbolic cosine |
| |
| INDEX |
| acosh |
| INDEX |
| acoshf |
| |
| ANSI_SYNOPSIS |
| #include <math.h> |
| double acosh(double <[x]>); |
| float acoshf(float <[x]>); |
| |
| TRAD_SYNOPSIS |
| #include <math.h> |
| double acosh(<[x]>) |
| double <[x]>; |
| |
| float acoshf(<[x]>) |
| float <[x]>; |
| |
| DESCRIPTION |
| <<acosh>> calculates the inverse hyperbolic cosine of <[x]>. |
| <<acosh>> is defined as |
| @ifnottex |
| . log(<[x]> + sqrt(<[x]>*<[x]>-1)) |
| @end ifnottex |
| @tex |
| $$ln\Bigl(x + \sqrt{x^2-1}\Bigr)$$ |
| @end tex |
| |
| <[x]> must be a number greater than or equal to 1. |
| |
| <<acoshf>> is identical, other than taking and returning floats. |
| |
| RETURNS |
| <<acosh>> and <<acoshf>> return the calculated value. If <[x]> |
| less than 1, the return value is NaN and <<errno>> is set to <<EDOM>>. |
| |
| You can change the error-handling behavior with the non-ANSI |
| <<matherr>> function. |
| |
| PORTABILITY |
| Neither <<acosh>> nor <<acoshf>> are ANSI C. They are not recommended |
| for portable programs. |
| |
| |
| QUICKREF ANSI SVID POSIX RENTRANT |
| acos n,n,n,m |
| acosf n,n,n,m |
| |
| MATHREF |
| acosh, NAN, arg,DOMAIN,EDOM |
| acosh, < 1.0, NAN,DOMAIN,EDOM |
| acosh, >=1.0, acosh(arg),,, |
| |
| MATHREF |
| acoshf, NAN, arg,DOMAIN,EDOM |
| acoshf, < 1.0, NAN,DOMAIN,EDOM |
| acoshf, >=1.0, acosh(arg),,, |
| |
| */ |
| |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| * |
| */ |
| |
| /* acosh(x) |
| * Method : |
| * Based on |
| * acosh(x) = log [ x + sqrt(x*x-1) ] |
| * we have |
| * acosh(x) := log(x)+ln2, if x is large; else |
| * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else |
| * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. |
| * |
| * Special cases: |
| * acosh(x) is NaN with signal if x<1. |
| * acosh(NaN) is NaN without signal. |
| */ |
| |
| #include "fdlibm.h" |
| |
| #ifndef _DOUBLE_IS_32BITS |
| |
| #ifdef __STDC__ |
| static const double |
| #else |
| static double |
| #endif |
| one = 1.0, |
| ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */ |
| |
| #ifdef __STDC__ |
| double acosh(double x) |
| #else |
| double acosh(x) |
| double x; |
| #endif |
| { |
| double t; |
| __int32_t hx; |
| __uint32_t lx; |
| EXTRACT_WORDS(hx,lx,x); |
| if(hx<0x3ff00000) { /* x < 1 */ |
| return (x-x)/(x-x); |
| } else if(hx >=0x41b00000) { /* x > 2**28 */ |
| if(hx >=0x7ff00000) { /* x is inf of NaN */ |
| return x+x; |
| } else |
| return log(x)+ln2; /* acosh(huge)=log(2x) */ |
| } else if(((hx-0x3ff00000)|lx)==0) { |
| return 0.0; /* acosh(1) = 0 */ |
| } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ |
| t=x*x; |
| return log(2.0*x-one/(x+sqrt(t-one))); |
| } else { /* 1<x<2 */ |
| t = x-one; |
| return log1p(t+sqrt(2.0*t+t*t)); |
| } |
| } |
| |
| #endif /* defined(_DOUBLE_IS_32BITS) */ |