| |
| /* @(#)z_sineh.c 1.0 98/08/13 */ |
| /****************************************************************** |
| * The following routines are coded directly from the algorithms |
| * and coefficients given in "Software Manual for the Elementary |
| * Functions" by William J. Cody, Jr. and William Waite, Prentice |
| * Hall, 1980. |
| ******************************************************************/ |
| |
| /* |
| FUNCTION |
| <<sinh>>, <<sinhf>>, <<cosh>>, <<coshf>>, <<sineh>>---hyperbolic sine or cosine |
| |
| INDEX |
| sinh |
| INDEX |
| sinhf |
| INDEX |
| cosh |
| INDEX |
| coshf |
| |
| ANSI_SYNOPSIS |
| #include <math.h> |
| double sinh(double <[x]>); |
| float sinhf(float <[x]>); |
| double cosh(double <[x]>); |
| float coshf(float <[x]>); |
| TRAD_SYNOPSIS |
| #include <math.h> |
| double sinh(<[x]>) |
| double <[x]>; |
| |
| float sinhf(<[x]>) |
| float <[x]>; |
| |
| double cosh(<[x]>) |
| double <[x]>; |
| |
| float coshf(<[x]>) |
| float <[x]>; |
| |
| DESCRIPTION |
| <<sinh>> and <<cosh>> compute the hyperbolic sine or cosine |
| of the argument <[x]>. |
| Angles are specified in radians. <<sinh>>(<[x]>) is defined as |
| @ifnottex |
| . (exp(<[x]>) - exp(-<[x]>))/2 |
| @end ifnottex |
| @tex |
| $${e^x - e^{-x}}\over 2$$ |
| @end tex |
| <<cosh>> is defined as |
| @ifnottex |
| . (exp(<[x]>) - exp(-<[x]>))/2 |
| @end ifnottex |
| @tex |
| $${e^x + e^{-x}}\over 2$$ |
| @end tex |
| |
| <<sinhf>> and <<coshf>> are identical, save that they take |
| and returns <<float>> values. |
| |
| RETURNS |
| The hyperbolic sine or cosine of <[x]> is returned. |
| |
| When the correct result is too large to be representable (an |
| overflow), the functions return <<HUGE_VAL>> with the |
| appropriate sign, and sets the global value <<errno>> to |
| <<ERANGE>>. |
| |
| PORTABILITY |
| <<sinh>> is ANSI C. |
| <<sinhf>> is an extension. |
| <<cosh>> is ANSI C. |
| <<coshf>> is an extension. |
| |
| */ |
| |
| /****************************************************************** |
| * Hyperbolic Sine |
| * |
| * Input: |
| * x - floating point value |
| * |
| * Output: |
| * hyperbolic sine of x |
| * |
| * Description: |
| * This routine calculates hyperbolic sines. |
| * |
| *****************************************************************/ |
| |
| #include <float.h> |
| #include "fdlibm.h" |
| #include "zmath.h" |
| |
| static const double q[] = { -0.21108770058106271242e+7, |
| 0.36162723109421836460e+5, |
| -0.27773523119650701667e+3 }; |
| static const double p[] = { -0.35181283430177117881e+6, |
| -0.11563521196851768270e+5, |
| -0.16375798202630751372e+3, |
| -0.78966127417357099479 }; |
| static const double LNV = 0.6931610107421875000; |
| static const double INV_V2 = 0.24999308500451499336; |
| static const double V_OVER2_MINUS1 = 0.13830277879601902638e-4; |
| |
| double |
| _DEFUN (sineh, (double, int), |
| double x _AND |
| int cosineh) |
| { |
| double y, f, P, Q, R, res, z, w; |
| int sgn = 1; |
| double WBAR = 18.55; |
| |
| /* Check for special values. */ |
| switch (numtest (x)) |
| { |
| case NAN: |
| errno = EDOM; |
| return (x); |
| case INF: |
| errno = ERANGE; |
| return (ispos (x) ? z_infinity.d : -z_infinity.d); |
| } |
| |
| y = fabs (x); |
| |
| if (!cosineh && x < 0.0) |
| sgn = -1; |
| |
| if ((y > 1.0 && !cosineh) || cosineh) |
| { |
| if (y > BIGX) |
| { |
| w = y - LNV; |
| |
| /* Check for w > maximum here. */ |
| if (w > BIGX) |
| { |
| errno = ERANGE; |
| return (x); |
| } |
| |
| z = exp (w); |
| |
| if (w > WBAR) |
| res = z * (V_OVER2_MINUS1 + 1.0); |
| } |
| |
| else |
| { |
| z = exp (y); |
| if (cosineh) |
| res = (z + 1 / z) / 2.0; |
| else |
| res = (z - 1 / z) / 2.0; |
| } |
| |
| if (sgn < 0) |
| res = -res; |
| } |
| else |
| { |
| /* Check for y being too small. */ |
| if (y < z_rooteps) |
| { |
| res = x; |
| } |
| /* Calculate the Taylor series. */ |
| else |
| { |
| f = x * x; |
| Q = ((f + q[2]) * f + q[1]) * f + q[0]; |
| P = ((p[3] * f + p[2]) * f + p[1]) * f + p[0]; |
| R = f * (P / Q); |
| |
| res = x + x * R; |
| } |
| } |
| |
| return (res); |
| } |