| |
| /* @(#)z_asinef.c 1.0 98/08/13 */ |
| /****************************************************************** |
| * The following routines are coded directly from the algorithms |
| * and coefficients given in "Software Manual for the Elementary |
| * Functions" by William J. Cody, Jr. and William Waite, Prentice |
| * Hall, 1980. |
| ******************************************************************/ |
| /****************************************************************** |
| * Arcsine |
| * |
| * Input: |
| * x - floating point value |
| * acosine - indicates acos calculation |
| * |
| * Output: |
| * Arcsine of x. |
| * |
| * Description: |
| * This routine calculates arcsine / arccosine. |
| * |
| *****************************************************************/ |
| |
| #include "fdlibm.h" |
| #include "zmath.h" |
| |
| static const float p[] = { 0.933935835, -0.504400557 }; |
| static const float q[] = { 0.560363004e+1, -0.554846723e+1 }; |
| static const float a[] = { 0.0, 0.785398163 }; |
| static const float b[] = { 1.570796326, 0.785398163 }; |
| |
| float |
| _DEFUN (asinef, (float, int), |
| float x _AND |
| int acosine) |
| { |
| int flag, i; |
| int branch = 0; |
| float g, res, R, P, Q, y; |
| |
| /* Check for special values. */ |
| i = numtestf (x); |
| if (i == NAN || i == INF) |
| { |
| errno = EDOM; |
| if (i == NAN) |
| return (x); |
| else |
| return (z_infinity_f.f); |
| } |
| |
| y = fabsf (x); |
| flag = acosine; |
| |
| if (y > 0.5) |
| { |
| i = 1 - flag; |
| |
| /* Check for range error. */ |
| if (y > 1.0) |
| { |
| errno = ERANGE; |
| return (z_notanum_f.f); |
| } |
| |
| g = (1 - y) / 2.0; |
| y = -2 * sqrt (g); |
| branch = 1; |
| } |
| else |
| { |
| i = flag; |
| if (y < z_rooteps_f) |
| res = y; |
| else |
| g = y * y; |
| } |
| |
| if (y >= z_rooteps_f || branch == 1) |
| { |
| /* Calculate the Taylor series. */ |
| P = (p[1] * g + p[0]) * g; |
| Q = (g + q[1]) * g + q[0]; |
| R = P / Q; |
| |
| res = y + y * R; |
| } |
| |
| /* Calculate asine or acose. */ |
| if (flag == 0) |
| { |
| res = (a[i] + res) + a[i]; |
| if (x < 0.0) |
| res = -res; |
| } |
| else |
| { |
| if (x < 0.0) |
| res = (b[i] + res) + b[i]; |
| else |
| res = (a[i] - res) + a[i]; |
| } |
| |
| return (res); |
| } |