blob: 1ffbd0323fb0d0a653d5d5a3e9ea72d881a276b1 [file] [log] [blame]
"""SCons.Util
Various utility functions go here.
"""
#
# Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 The SCons Foundation
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
# KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
# WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
__revision__ = "src/engine/SCons/Util.py 5134 2010/08/16 23:02:40 bdeegan"
import os
import sys
import copy
import re
import types
from collections import UserDict, UserList, UserString
# Don't "from types import ..." these because we need to get at the
# types module later to look for UnicodeType.
InstanceType = types.InstanceType
MethodType = types.MethodType
FunctionType = types.FunctionType
try: unicode
except NameError: UnicodeType = None
else: UnicodeType = unicode
def dictify(keys, values, result={}):
for k, v in zip(keys, values):
result[k] = v
return result
_altsep = os.altsep
if _altsep is None and sys.platform == 'win32':
# My ActivePython 2.0.1 doesn't set os.altsep! What gives?
_altsep = '/'
if _altsep:
def rightmost_separator(path, sep):
return max(path.rfind(sep), path.rfind(_altsep))
else:
def rightmost_separator(path, sep):
return path.rfind(sep)
# First two from the Python Cookbook, just for completeness.
# (Yeah, yeah, YAGNI...)
def containsAny(str, set):
"""Check whether sequence str contains ANY of the items in set."""
for c in set:
if c in str: return 1
return 0
def containsAll(str, set):
"""Check whether sequence str contains ALL of the items in set."""
for c in set:
if c not in str: return 0
return 1
def containsOnly(str, set):
"""Check whether sequence str contains ONLY items in set."""
for c in str:
if c not in set: return 0
return 1
def splitext(path):
"Same as os.path.splitext() but faster."
sep = rightmost_separator(path, os.sep)
dot = path.rfind('.')
# An ext is only real if it has at least one non-digit char
if dot > sep and not containsOnly(path[dot:], "0123456789."):
return path[:dot],path[dot:]
else:
return path,""
def updrive(path):
"""
Make the drive letter (if any) upper case.
This is useful because Windows is inconsitent on the case
of the drive letter, which can cause inconsistencies when
calculating command signatures.
"""
drive, rest = os.path.splitdrive(path)
if drive:
path = drive.upper() + rest
return path
class NodeList(UserList):
"""This class is almost exactly like a regular list of Nodes
(actually it can hold any object), with one important difference.
If you try to get an attribute from this list, it will return that
attribute from every item in the list. For example:
>>> someList = NodeList([ ' foo ', ' bar ' ])
>>> someList.strip()
[ 'foo', 'bar' ]
"""
def __nonzero__(self):
return len(self.data) != 0
def __str__(self):
return ' '.join(map(str, self.data))
def __iter__(self):
return iter(self.data)
def __call__(self, *args, **kwargs):
result = [x(*args, **kwargs) for x in self.data]
return self.__class__(result)
def __getattr__(self, name):
result = [getattr(x, name) for x in self.data]
return self.__class__(result)
_get_env_var = re.compile(r'^\$([_a-zA-Z]\w*|{[_a-zA-Z]\w*})$')
def get_environment_var(varstr):
"""Given a string, first determine if it looks like a reference
to a single environment variable, like "$FOO" or "${FOO}".
If so, return that variable with no decorations ("FOO").
If not, return None."""
mo=_get_env_var.match(to_String(varstr))
if mo:
var = mo.group(1)
if var[0] == '{':
return var[1:-1]
else:
return var
else:
return None
class DisplayEngine(object):
print_it = True
def __call__(self, text, append_newline=1):
if not self.print_it:
return
if append_newline: text = text + '\n'
try:
sys.stdout.write(unicode(text))
except IOError:
# Stdout might be connected to a pipe that has been closed
# by now. The most likely reason for the pipe being closed
# is that the user has press ctrl-c. It this is the case,
# then SCons is currently shutdown. We therefore ignore
# IOError's here so that SCons can continue and shutdown
# properly so that the .sconsign is correctly written
# before SCons exits.
pass
def set_mode(self, mode):
self.print_it = mode
def render_tree(root, child_func, prune=0, margin=[0], visited={}):
"""
Render a tree of nodes into an ASCII tree view.
root - the root node of the tree
child_func - the function called to get the children of a node
prune - don't visit the same node twice
margin - the format of the left margin to use for children of root.
1 results in a pipe, and 0 results in no pipe.
visited - a dictionary of visited nodes in the current branch if not prune,
or in the whole tree if prune.
"""
rname = str(root)
children = child_func(root)
retval = ""
for pipe in margin[:-1]:
if pipe:
retval = retval + "| "
else:
retval = retval + " "
if rname in visited:
return retval + "+-[" + rname + "]\n"
retval = retval + "+-" + rname + "\n"
if not prune:
visited = copy.copy(visited)
visited[rname] = 1
for i in range(len(children)):
margin.append(i<len(children)-1)
retval = retval + render_tree(children[i], child_func, prune, margin, visited
)
margin.pop()
return retval
IDX = lambda N: N and 1 or 0
def print_tree(root, child_func, prune=0, showtags=0, margin=[0], visited={}):
"""
Print a tree of nodes. This is like render_tree, except it prints
lines directly instead of creating a string representation in memory,
so that huge trees can be printed.
root - the root node of the tree
child_func - the function called to get the children of a node
prune - don't visit the same node twice
showtags - print status information to the left of each node line
margin - the format of the left margin to use for children of root.
1 results in a pipe, and 0 results in no pipe.
visited - a dictionary of visited nodes in the current branch if not prune,
or in the whole tree if prune.
"""
rname = str(root)
if showtags:
if showtags == 2:
legend = (' E = exists\n' +
' R = exists in repository only\n' +
' b = implicit builder\n' +
' B = explicit builder\n' +
' S = side effect\n' +
' P = precious\n' +
' A = always build\n' +
' C = current\n' +
' N = no clean\n' +
' H = no cache\n' +
'\n')
sys.stdout.write(unicode(legend))
tags = ['[']
tags.append(' E'[IDX(root.exists())])
tags.append(' R'[IDX(root.rexists() and not root.exists())])
tags.append(' BbB'[[0,1][IDX(root.has_explicit_builder())] +
[0,2][IDX(root.has_builder())]])
tags.append(' S'[IDX(root.side_effect)])
tags.append(' P'[IDX(root.precious)])
tags.append(' A'[IDX(root.always_build)])
tags.append(' C'[IDX(root.is_up_to_date())])
tags.append(' N'[IDX(root.noclean)])
tags.append(' H'[IDX(root.nocache)])
tags.append(']')
else:
tags = []
def MMM(m):
return [" ","| "][m]
margins = list(map(MMM, margin[:-1]))
children = child_func(root)
if prune and rname in visited and children:
sys.stdout.write(''.join(tags + margins + ['+-[', rname, ']']) + u'\n')
return
sys.stdout.write(''.join(tags + margins + ['+-', rname]) + u'\n')
visited[rname] = 1
if children:
margin.append(1)
idx = IDX(showtags)
for C in children[:-1]:
print_tree(C, child_func, prune, idx, margin, visited)
margin[-1] = 0
print_tree(children[-1], child_func, prune, idx, margin, visited)
margin.pop()
# Functions for deciding if things are like various types, mainly to
# handle UserDict, UserList and UserString like their underlying types.
#
# Yes, all of this manual testing breaks polymorphism, and the real
# Pythonic way to do all of this would be to just try it and handle the
# exception, but handling the exception when it's not the right type is
# often too slow.
# We are using the following trick to speed up these
# functions. Default arguments are used to take a snapshot of the
# the global functions and constants used by these functions. This
# transforms accesses to global variable into local variables
# accesses (i.e. LOAD_FAST instead of LOAD_GLOBAL).
DictTypes = (dict, UserDict)
ListTypes = (list, UserList)
SequenceTypes = (list, tuple, UserList)
# Note that profiling data shows a speed-up when comparing
# explicitely with str and unicode instead of simply comparing
# with basestring. (at least on Python 2.5.1)
StringTypes = (str, unicode, UserString)
# Empirically, it is faster to check explicitely for str and
# unicode than for basestring.
BaseStringTypes = (str, unicode)
def is_Dict(obj, isinstance=isinstance, DictTypes=DictTypes):
return isinstance(obj, DictTypes)
def is_List(obj, isinstance=isinstance, ListTypes=ListTypes):
return isinstance(obj, ListTypes)
def is_Sequence(obj, isinstance=isinstance, SequenceTypes=SequenceTypes):
return isinstance(obj, SequenceTypes)
def is_Tuple(obj, isinstance=isinstance, tuple=tuple):
return isinstance(obj, tuple)
def is_String(obj, isinstance=isinstance, StringTypes=StringTypes):
return isinstance(obj, StringTypes)
def is_Scalar(obj, isinstance=isinstance, StringTypes=StringTypes, SequenceTypes=SequenceTypes):
# Profiling shows that there is an impressive speed-up of 2x
# when explicitely checking for strings instead of just not
# sequence when the argument (i.e. obj) is already a string.
# But, if obj is a not string then it is twice as fast to
# check only for 'not sequence'. The following code therefore
# assumes that the obj argument is a string must of the time.
return isinstance(obj, StringTypes) or not isinstance(obj, SequenceTypes)
def do_flatten(sequence, result, isinstance=isinstance,
StringTypes=StringTypes, SequenceTypes=SequenceTypes):
for item in sequence:
if isinstance(item, StringTypes) or not isinstance(item, SequenceTypes):
result.append(item)
else:
do_flatten(item, result)
def flatten(obj, isinstance=isinstance, StringTypes=StringTypes,
SequenceTypes=SequenceTypes, do_flatten=do_flatten):
"""Flatten a sequence to a non-nested list.
Flatten() converts either a single scalar or a nested sequence
to a non-nested list. Note that flatten() considers strings
to be scalars instead of sequences like Python would.
"""
if isinstance(obj, StringTypes) or not isinstance(obj, SequenceTypes):
return [obj]
result = []
for item in obj:
if isinstance(item, StringTypes) or not isinstance(item, SequenceTypes):
result.append(item)
else:
do_flatten(item, result)
return result
def flatten_sequence(sequence, isinstance=isinstance, StringTypes=StringTypes,
SequenceTypes=SequenceTypes, do_flatten=do_flatten):
"""Flatten a sequence to a non-nested list.
Same as flatten(), but it does not handle the single scalar
case. This is slightly more efficient when one knows that
the sequence to flatten can not be a scalar.
"""
result = []
for item in sequence:
if isinstance(item, StringTypes) or not isinstance(item, SequenceTypes):
result.append(item)
else:
do_flatten(item, result)
return result
# Generic convert-to-string functions that abstract away whether or
# not the Python we're executing has Unicode support. The wrapper
# to_String_for_signature() will use a for_signature() method if the
# specified object has one.
#
def to_String(s,
isinstance=isinstance, str=str,
UserString=UserString, BaseStringTypes=BaseStringTypes):
if isinstance(s,BaseStringTypes):
# Early out when already a string!
return s
elif isinstance(s, UserString):
# s.data can only be either a unicode or a regular
# string. Please see the UserString initializer.
return s.data
else:
return str(s)
def to_String_for_subst(s,
isinstance=isinstance, str=str, to_String=to_String,
BaseStringTypes=BaseStringTypes, SequenceTypes=SequenceTypes,
UserString=UserString):
# Note that the test cases are sorted by order of probability.
if isinstance(s, BaseStringTypes):
return s
elif isinstance(s, SequenceTypes):
l = []
for e in s:
l.append(to_String_for_subst(e))
return ' '.join( s )
elif isinstance(s, UserString):
# s.data can only be either a unicode or a regular
# string. Please see the UserString initializer.
return s.data
else:
return str(s)
def to_String_for_signature(obj, to_String_for_subst=to_String_for_subst,
AttributeError=AttributeError):
try:
f = obj.for_signature
except AttributeError:
return to_String_for_subst(obj)
else:
return f()
# The SCons "semi-deep" copy.
#
# This makes separate copies of lists (including UserList objects)
# dictionaries (including UserDict objects) and tuples, but just copies
# references to anything else it finds.
#
# A special case is any object that has a __semi_deepcopy__() method,
# which we invoke to create the copy, which is used by the BuilderDict
# class because of its extra initialization argument.
#
# The dispatch table approach used here is a direct rip-off from the
# normal Python copy module.
_semi_deepcopy_dispatch = d = {}
def _semi_deepcopy_dict(x):
copy = {}
for key, val in x.items():
# The regular Python copy.deepcopy() also deepcopies the key,
# as follows:
#
# copy[semi_deepcopy(key)] = semi_deepcopy(val)
#
# Doesn't seem like we need to, but we'll comment it just in case.
copy[key] = semi_deepcopy(val)
return copy
d[dict] = _semi_deepcopy_dict
def _semi_deepcopy_list(x):
return list(map(semi_deepcopy, x))
d[list] = _semi_deepcopy_list
def _semi_deepcopy_tuple(x):
return tuple(map(semi_deepcopy, x))
d[tuple] = _semi_deepcopy_tuple
def semi_deepcopy(x):
copier = _semi_deepcopy_dispatch.get(type(x))
if copier:
return copier(x)
else:
if hasattr(x, '__semi_deepcopy__'):
return x.__semi_deepcopy__()
elif isinstance(x, UserDict):
return x.__class__(_semi_deepcopy_dict(x))
elif isinstance(x, UserList):
return x.__class__(_semi_deepcopy_list(x))
return x
class Proxy(object):
"""A simple generic Proxy class, forwarding all calls to
subject. So, for the benefit of the python newbie, what does
this really mean? Well, it means that you can take an object, let's
call it 'objA', and wrap it in this Proxy class, with a statement
like this
proxyObj = Proxy(objA),
Then, if in the future, you do something like this
x = proxyObj.var1,
since Proxy does not have a 'var1' attribute (but presumably objA does),
the request actually is equivalent to saying
x = objA.var1
Inherit from this class to create a Proxy.
Note that, with new-style classes, this does *not* work transparently
for Proxy subclasses that use special .__*__() method names, because
those names are now bound to the class, not the individual instances.
You now need to know in advance which .__*__() method names you want
to pass on to the underlying Proxy object, and specifically delegate
their calls like this:
class Foo(Proxy):
__str__ = Delegate('__str__')
"""
def __init__(self, subject):
"""Wrap an object as a Proxy object"""
self._subject = subject
def __getattr__(self, name):
"""Retrieve an attribute from the wrapped object. If the named
attribute doesn't exist, AttributeError is raised"""
return getattr(self._subject, name)
def get(self):
"""Retrieve the entire wrapped object"""
return self._subject
def __cmp__(self, other):
if issubclass(other.__class__, self._subject.__class__):
return cmp(self._subject, other)
return cmp(self.__dict__, other.__dict__)
class Delegate(object):
"""A Python Descriptor class that delegates attribute fetches
to an underlying wrapped subject of a Proxy. Typical use:
class Foo(Proxy):
__str__ = Delegate('__str__')
"""
def __init__(self, attribute):
self.attribute = attribute
def __get__(self, obj, cls):
if isinstance(obj, cls):
return getattr(obj._subject, self.attribute)
else:
return self
# attempt to load the windows registry module:
can_read_reg = 0
try:
import winreg
can_read_reg = 1
hkey_mod = winreg
RegOpenKeyEx = winreg.OpenKeyEx
RegEnumKey = winreg.EnumKey
RegEnumValue = winreg.EnumValue
RegQueryValueEx = winreg.QueryValueEx
RegError = winreg.error
except ImportError:
try:
import win32api
import win32con
can_read_reg = 1
hkey_mod = win32con
RegOpenKeyEx = win32api.RegOpenKeyEx
RegEnumKey = win32api.RegEnumKey
RegEnumValue = win32api.RegEnumValue
RegQueryValueEx = win32api.RegQueryValueEx
RegError = win32api.error
except ImportError:
class _NoError(Exception):
pass
RegError = _NoError
if can_read_reg:
HKEY_CLASSES_ROOT = hkey_mod.HKEY_CLASSES_ROOT
HKEY_LOCAL_MACHINE = hkey_mod.HKEY_LOCAL_MACHINE
HKEY_CURRENT_USER = hkey_mod.HKEY_CURRENT_USER
HKEY_USERS = hkey_mod.HKEY_USERS
def RegGetValue(root, key):
"""This utility function returns a value in the registry
without having to open the key first. Only available on
Windows platforms with a version of Python that can read the
registry. Returns the same thing as
SCons.Util.RegQueryValueEx, except you just specify the entire
path to the value, and don't have to bother opening the key
first. So:
Instead of:
k = SCons.Util.RegOpenKeyEx(SCons.Util.HKEY_LOCAL_MACHINE,
r'SOFTWARE\Microsoft\Windows\CurrentVersion')
out = SCons.Util.RegQueryValueEx(k,
'ProgramFilesDir')
You can write:
out = SCons.Util.RegGetValue(SCons.Util.HKEY_LOCAL_MACHINE,
r'SOFTWARE\Microsoft\Windows\CurrentVersion\ProgramFilesDir')
"""
# I would use os.path.split here, but it's not a filesystem
# path...
p = key.rfind('\\') + 1
keyp = key[:p-1] # -1 to omit trailing slash
val = key[p:]
k = RegOpenKeyEx(root, keyp)
return RegQueryValueEx(k,val)
else:
try:
e = WindowsError
except NameError:
# Make sure we have a definition of WindowsError so we can
# run platform-independent tests of Windows functionality on
# platforms other than Windows. (WindowsError is, in fact, an
# OSError subclass on Windows.)
class WindowsError(OSError):
pass
import builtins
builtins.WindowsError = WindowsError
else:
del e
HKEY_CLASSES_ROOT = None
HKEY_LOCAL_MACHINE = None
HKEY_CURRENT_USER = None
HKEY_USERS = None
def RegGetValue(root, key):
raise WindowsError
def RegOpenKeyEx(root, key):
raise WindowsError
if sys.platform == 'win32':
def WhereIs(file, path=None, pathext=None, reject=[]):
if path is None:
try:
path = os.environ['PATH']
except KeyError:
return None
if is_String(path):
path = path.split(os.pathsep)
if pathext is None:
try:
pathext = os.environ['PATHEXT']
except KeyError:
pathext = '.COM;.EXE;.BAT;.CMD'
if is_String(pathext):
pathext = pathext.split(os.pathsep)
for ext in pathext:
if ext.lower() == file[-len(ext):].lower():
pathext = ['']
break
if not is_List(reject) and not is_Tuple(reject):
reject = [reject]
for dir in path:
f = os.path.join(dir, file)
for ext in pathext:
fext = f + ext
if os.path.isfile(fext):
try:
reject.index(fext)
except ValueError:
return os.path.normpath(fext)
continue
return None
elif os.name == 'os2':
def WhereIs(file, path=None, pathext=None, reject=[]):
if path is None:
try:
path = os.environ['PATH']
except KeyError:
return None
if is_String(path):
path = path.split(os.pathsep)
if pathext is None:
pathext = ['.exe', '.cmd']
for ext in pathext:
if ext.lower() == file[-len(ext):].lower():
pathext = ['']
break
if not is_List(reject) and not is_Tuple(reject):
reject = [reject]
for dir in path:
f = os.path.join(dir, file)
for ext in pathext:
fext = f + ext
if os.path.isfile(fext):
try:
reject.index(fext)
except ValueError:
return os.path.normpath(fext)
continue
return None
else:
def WhereIs(file, path=None, pathext=None, reject=[]):
import stat
if path is None:
try:
path = os.environ['PATH']
except KeyError:
return None
if is_String(path):
path = path.split(os.pathsep)
if not is_List(reject) and not is_Tuple(reject):
reject = [reject]
for d in path:
f = os.path.join(d, file)
if os.path.isfile(f):
try:
st = os.stat(f)
except OSError:
# os.stat() raises OSError, not IOError if the file
# doesn't exist, so in this case we let IOError get
# raised so as to not mask possibly serious disk or
# network issues.
continue
if stat.S_IMODE(st[stat.ST_MODE]) & 0111:
try:
reject.index(f)
except ValueError:
return os.path.normpath(f)
continue
return None
def PrependPath(oldpath, newpath, sep = os.pathsep,
delete_existing=1, canonicalize=None):
"""This prepends newpath elements to the given oldpath. Will only
add any particular path once (leaving the first one it encounters
and ignoring the rest, to preserve path order), and will
os.path.normpath and os.path.normcase all paths to help assure
this. This can also handle the case where the given old path
variable is a list instead of a string, in which case a list will
be returned instead of a string.
Example:
Old Path: "/foo/bar:/foo"
New Path: "/biz/boom:/foo"
Result: "/biz/boom:/foo:/foo/bar"
If delete_existing is 0, then adding a path that exists will
not move it to the beginning; it will stay where it is in the
list.
If canonicalize is not None, it is applied to each element of
newpath before use.
"""
orig = oldpath
is_list = 1
paths = orig
if not is_List(orig) and not is_Tuple(orig):
paths = paths.split(sep)
is_list = 0
if is_String(newpath):
newpaths = newpath.split(sep)
elif not is_List(newpath) and not is_Tuple(newpath):
newpaths = [ newpath ] # might be a Dir
else:
newpaths = newpath
if canonicalize:
newpaths=list(map(canonicalize, newpaths))
if not delete_existing:
# First uniquify the old paths, making sure to
# preserve the first instance (in Unix/Linux,
# the first one wins), and remembering them in normpaths.
# Then insert the new paths at the head of the list
# if they're not already in the normpaths list.
result = []
normpaths = []
for path in paths:
if not path:
continue
normpath = os.path.normpath(os.path.normcase(path))
if normpath not in normpaths:
result.append(path)
normpaths.append(normpath)
newpaths.reverse() # since we're inserting at the head
for path in newpaths:
if not path:
continue
normpath = os.path.normpath(os.path.normcase(path))
if normpath not in normpaths:
result.insert(0, path)
normpaths.append(normpath)
paths = result
else:
newpaths = newpaths + paths # prepend new paths
normpaths = []
paths = []
# now we add them only if they are unique
for path in newpaths:
normpath = os.path.normpath(os.path.normcase(path))
if path and not normpath in normpaths:
paths.append(path)
normpaths.append(normpath)
if is_list:
return paths
else:
return sep.join(paths)
def AppendPath(oldpath, newpath, sep = os.pathsep,
delete_existing=1, canonicalize=None):
"""This appends new path elements to the given old path. Will
only add any particular path once (leaving the last one it
encounters and ignoring the rest, to preserve path order), and
will os.path.normpath and os.path.normcase all paths to help
assure this. This can also handle the case where the given old
path variable is a list instead of a string, in which case a list
will be returned instead of a string.
Example:
Old Path: "/foo/bar:/foo"
New Path: "/biz/boom:/foo"
Result: "/foo/bar:/biz/boom:/foo"
If delete_existing is 0, then adding a path that exists
will not move it to the end; it will stay where it is in the list.
If canonicalize is not None, it is applied to each element of
newpath before use.
"""
orig = oldpath
is_list = 1
paths = orig
if not is_List(orig) and not is_Tuple(orig):
paths = paths.split(sep)
is_list = 0
if is_String(newpath):
newpaths = newpath.split(sep)
elif not is_List(newpath) and not is_Tuple(newpath):
newpaths = [ newpath ] # might be a Dir
else:
newpaths = newpath
if canonicalize:
newpaths=list(map(canonicalize, newpaths))
if not delete_existing:
# add old paths to result, then
# add new paths if not already present
# (I thought about using a dict for normpaths for speed,
# but it's not clear hashing the strings would be faster
# than linear searching these typically short lists.)
result = []
normpaths = []
for path in paths:
if not path:
continue
result.append(path)
normpaths.append(os.path.normpath(os.path.normcase(path)))
for path in newpaths:
if not path:
continue
normpath = os.path.normpath(os.path.normcase(path))
if normpath not in normpaths:
result.append(path)
normpaths.append(normpath)
paths = result
else:
# start w/ new paths, add old ones if not present,
# then reverse.
newpaths = paths + newpaths # append new paths
newpaths.reverse()
normpaths = []
paths = []
# now we add them only if they are unique
for path in newpaths:
normpath = os.path.normpath(os.path.normcase(path))
if path and not normpath in normpaths:
paths.append(path)
normpaths.append(normpath)
paths.reverse()
if is_list:
return paths
else:
return sep.join(paths)
if sys.platform == 'cygwin':
def get_native_path(path):
"""Transforms an absolute path into a native path for the system. In
Cygwin, this converts from a Cygwin path to a Windows one."""
return os.popen('cygpath -w ' + path).read().replace('\n', '')
else:
def get_native_path(path):
"""Transforms an absolute path into a native path for the system.
Non-Cygwin version, just leave the path alone."""
return path
display = DisplayEngine()
def Split(arg):
if is_List(arg) or is_Tuple(arg):
return arg
elif is_String(arg):
return arg.split()
else:
return [arg]
class CLVar(UserList):
"""A class for command-line construction variables.
This is a list that uses Split() to split an initial string along
white-space arguments, and similarly to split any strings that get
added. This allows us to Do the Right Thing with Append() and
Prepend() (as well as straight Python foo = env['VAR'] + 'arg1
arg2') regardless of whether a user adds a list or a string to a
command-line construction variable.
"""
def __init__(self, seq = []):
UserList.__init__(self, Split(seq))
def __add__(self, other):
return UserList.__add__(self, CLVar(other))
def __radd__(self, other):
return UserList.__radd__(self, CLVar(other))
def __coerce__(self, other):
return (self, CLVar(other))
def __str__(self):
return ' '.join(self.data)
# A dictionary that preserves the order in which items are added.
# Submitted by David Benjamin to ActiveState's Python Cookbook web site:
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/107747
# Including fixes/enhancements from the follow-on discussions.
class OrderedDict(UserDict):
def __init__(self, dict = None):
self._keys = []
UserDict.__init__(self, dict)
def __delitem__(self, key):
UserDict.__delitem__(self, key)
self._keys.remove(key)
def __setitem__(self, key, item):
UserDict.__setitem__(self, key, item)
if key not in self._keys: self._keys.append(key)
def clear(self):
UserDict.clear(self)
self._keys = []
def copy(self):
dict = OrderedDict()
dict.update(self)
return dict
def items(self):
return list(zip(self._keys, list(self.values())))
def keys(self):
return self._keys[:]
def popitem(self):
try:
key = self._keys[-1]
except IndexError:
raise KeyError('dictionary is empty')
val = self[key]
del self[key]
return (key, val)
def setdefault(self, key, failobj = None):
UserDict.setdefault(self, key, failobj)
if key not in self._keys: self._keys.append(key)
def update(self, dict):
for (key, val) in dict.items():
self.__setitem__(key, val)
def values(self):
return list(map(self.get, self._keys))
class Selector(OrderedDict):
"""A callable ordered dictionary that maps file suffixes to
dictionary values. We preserve the order in which items are added
so that get_suffix() calls always return the first suffix added."""
def __call__(self, env, source, ext=None):
if ext is None:
try:
ext = source[0].suffix
except IndexError:
ext = ""
try:
return self[ext]
except KeyError:
# Try to perform Environment substitution on the keys of
# the dictionary before giving up.
s_dict = {}
for (k,v) in self.items():
if k is not None:
s_k = env.subst(k)
if s_k in s_dict:
# We only raise an error when variables point
# to the same suffix. If one suffix is literal
# and a variable suffix contains this literal,
# the literal wins and we don't raise an error.
raise KeyError(s_dict[s_k][0], k, s_k)
s_dict[s_k] = (k,v)
try:
return s_dict[ext][1]
except KeyError:
try:
return self[None]
except KeyError:
return None
if sys.platform == 'cygwin':
# On Cygwin, os.path.normcase() lies, so just report back the
# fact that the underlying Windows OS is case-insensitive.
def case_sensitive_suffixes(s1, s2):
return 0
else:
def case_sensitive_suffixes(s1, s2):
return (os.path.normcase(s1) != os.path.normcase(s2))
def adjustixes(fname, pre, suf, ensure_suffix=False):
if pre:
path, fn = os.path.split(os.path.normpath(fname))
if fn[:len(pre)] != pre:
fname = os.path.join(path, pre + fn)
# Only append a suffix if the suffix we're going to add isn't already
# there, and if either we've been asked to ensure the specific suffix
# is present or there's no suffix on it at all.
if suf and fname[-len(suf):] != suf and \
(ensure_suffix or not splitext(fname)[1]):
fname = fname + suf
return fname
# From Tim Peters,
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52560
# ASPN: Python Cookbook: Remove duplicates from a sequence
# (Also in the printed Python Cookbook.)
def unique(s):
"""Return a list of the elements in s, but without duplicates.
For example, unique([1,2,3,1,2,3]) is some permutation of [1,2,3],
unique("abcabc") some permutation of ["a", "b", "c"], and
unique(([1, 2], [2, 3], [1, 2])) some permutation of
[[2, 3], [1, 2]].
For best speed, all sequence elements should be hashable. Then
unique() will usually work in linear time.
If not possible, the sequence elements should enjoy a total
ordering, and if list(s).sort() doesn't raise TypeError it's
assumed that they do enjoy a total ordering. Then unique() will
usually work in O(N*log2(N)) time.
If that's not possible either, the sequence elements must support
equality-testing. Then unique() will usually work in quadratic
time.
"""
n = len(s)
if n == 0:
return []
# Try using a dict first, as that's the fastest and will usually
# work. If it doesn't work, it will usually fail quickly, so it
# usually doesn't cost much to *try* it. It requires that all the
# sequence elements be hashable, and support equality comparison.
u = {}
try:
for x in s:
u[x] = 1
except TypeError:
pass # move on to the next method
else:
return list(u.keys())
del u
# We can't hash all the elements. Second fastest is to sort,
# which brings the equal elements together; then duplicates are
# easy to weed out in a single pass.
# NOTE: Python's list.sort() was designed to be efficient in the
# presence of many duplicate elements. This isn't true of all
# sort functions in all languages or libraries, so this approach
# is more effective in Python than it may be elsewhere.
try:
t = sorted(s)
except TypeError:
pass # move on to the next method
else:
assert n > 0
last = t[0]
lasti = i = 1
while i < n:
if t[i] != last:
t[lasti] = last = t[i]
lasti = lasti + 1
i = i + 1
return t[:lasti]
del t
# Brute force is all that's left.
u = []
for x in s:
if x not in u:
u.append(x)
return u
# From Alex Martelli,
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52560
# ASPN: Python Cookbook: Remove duplicates from a sequence
# First comment, dated 2001/10/13.
# (Also in the printed Python Cookbook.)
def uniquer(seq, idfun=None):
if idfun is None:
def idfun(x): return x
seen = {}
result = []
for item in seq:
marker = idfun(item)
# in old Python versions:
# if seen.has_key(marker)
# but in new ones:
if marker in seen: continue
seen[marker] = 1
result.append(item)
return result
# A more efficient implementation of Alex's uniquer(), this avoids the
# idfun() argument and function-call overhead by assuming that all
# items in the sequence are hashable.
def uniquer_hashables(seq):
seen = {}
result = []
for item in seq:
#if not item in seen:
if item not in seen:
seen[item] = 1
result.append(item)
return result
# Much of the logic here was originally based on recipe 4.9 from the
# Python CookBook, but we had to dumb it way down for Python 1.5.2.
class LogicalLines(object):
def __init__(self, fileobj):
self.fileobj = fileobj
def readline(self):
result = []
while True:
line = self.fileobj.readline()
if not line:
break
if line[-2:] == '\\\n':
result.append(line[:-2])
else:
result.append(line)
break
return ''.join(result)
def readlines(self):
result = []
while True:
line = self.readline()
if not line:
break
result.append(line)
return result
class UniqueList(UserList):
def __init__(self, seq = []):
UserList.__init__(self, seq)
self.unique = True
def __make_unique(self):
if not self.unique:
self.data = uniquer_hashables(self.data)
self.unique = True
def __lt__(self, other):
self.__make_unique()
return UserList.__lt__(self, other)
def __le__(self, other):
self.__make_unique()
return UserList.__le__(self, other)
def __eq__(self, other):
self.__make_unique()
return UserList.__eq__(self, other)
def __ne__(self, other):
self.__make_unique()
return UserList.__ne__(self, other)
def __gt__(self, other):
self.__make_unique()
return UserList.__gt__(self, other)
def __ge__(self, other):
self.__make_unique()
return UserList.__ge__(self, other)
def __cmp__(self, other):
self.__make_unique()
return UserList.__cmp__(self, other)
def __len__(self):
self.__make_unique()
return UserList.__len__(self)
def __getitem__(self, i):
self.__make_unique()
return UserList.__getitem__(self, i)
def __setitem__(self, i, item):
UserList.__setitem__(self, i, item)
self.unique = False
def __getslice__(self, i, j):
self.__make_unique()
return UserList.__getslice__(self, i, j)
def __setslice__(self, i, j, other):
UserList.__setslice__(self, i, j, other)
self.unique = False
def __add__(self, other):
result = UserList.__add__(self, other)
result.unique = False
return result
def __radd__(self, other):
result = UserList.__radd__(self, other)
result.unique = False
return result
def __iadd__(self, other):
result = UserList.__iadd__(self, other)
result.unique = False
return result
def __mul__(self, other):
result = UserList.__mul__(self, other)
result.unique = False
return result
def __rmul__(self, other):
result = UserList.__rmul__(self, other)
result.unique = False
return result
def __imul__(self, other):
result = UserList.__imul__(self, other)
result.unique = False
return result
def append(self, item):
UserList.append(self, item)
self.unique = False
def insert(self, i):
UserList.insert(self, i)
self.unique = False
def count(self, item):
self.__make_unique()
return UserList.count(self, item)
def index(self, item):
self.__make_unique()
return UserList.index(self, item)
def reverse(self):
self.__make_unique()
UserList.reverse(self)
def sort(self, *args, **kwds):
self.__make_unique()
return UserList.sort(self, *args, **kwds)
def extend(self, other):
UserList.extend(self, other)
self.unique = False
class Unbuffered(object):
"""
A proxy class that wraps a file object, flushing after every write,
and delegating everything else to the wrapped object.
"""
def __init__(self, file):
self.file = file
self.softspace = 0 ## backward compatibility; not supported in Py3k
def write(self, arg):
try:
self.file.write(arg)
self.file.flush()
except IOError:
# Stdout might be connected to a pipe that has been closed
# by now. The most likely reason for the pipe being closed
# is that the user has press ctrl-c. It this is the case,
# then SCons is currently shutdown. We therefore ignore
# IOError's here so that SCons can continue and shutdown
# properly so that the .sconsign is correctly written
# before SCons exits.
pass
def __getattr__(self, attr):
return getattr(self.file, attr)
def make_path_relative(path):
""" makes an absolute path name to a relative pathname.
"""
if os.path.isabs(path):
drive_s,path = os.path.splitdrive(path)
import re
if not drive_s:
path=re.compile("/*(.*)").findall(path)[0]
else:
path=path[1:]
assert( not os.path.isabs( path ) ), path
return path
# The original idea for AddMethod() and RenameFunction() come from the
# following post to the ActiveState Python Cookbook:
#
# ASPN: Python Cookbook : Install bound methods in an instance
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/223613
#
# That code was a little fragile, though, so the following changes
# have been wrung on it:
#
# * Switched the installmethod() "object" and "function" arguments,
# so the order reflects that the left-hand side is the thing being
# "assigned to" and the right-hand side is the value being assigned.
#
# * Changed explicit type-checking to the "try: klass = object.__class__"
# block in installmethod() below so that it still works with the
# old-style classes that SCons uses.
#
# * Replaced the by-hand creation of methods and functions with use of
# the "new" module, as alluded to in Alex Martelli's response to the
# following Cookbook post:
#
# ASPN: Python Cookbook : Dynamically added methods to a class
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/81732
def AddMethod(obj, function, name=None):
"""
Adds either a bound method to an instance or an unbound method to
a class. If name is ommited the name of the specified function
is used by default.
Example:
a = A()
def f(self, x, y):
self.z = x + y
AddMethod(f, A, "add")
a.add(2, 4)
print a.z
AddMethod(lambda self, i: self.l[i], a, "listIndex")
print a.listIndex(5)
"""
if name is None:
name = function.func_name
else:
function = RenameFunction(function, name)
if hasattr(obj, '__class__') and obj.__class__ is not type:
# "obj" is an instance, so it gets a bound method.
setattr(obj, name, MethodType(function, obj, obj.__class__))
else:
# "obj" is a class, so it gets an unbound method.
setattr(obj, name, MethodType(function, None, obj))
def RenameFunction(function, name):
"""
Returns a function identical to the specified function, but with
the specified name.
"""
return FunctionType(function.func_code,
function.func_globals,
name,
function.func_defaults)
md5 = False
def MD5signature(s):
return str(s)
def MD5filesignature(fname, chunksize=65536):
f = open(fname, "rb")
result = f.read()
f.close()
return result
try:
import hashlib
except ImportError:
pass
else:
if hasattr(hashlib, 'md5'):
md5 = True
def MD5signature(s):
m = hashlib.md5()
m.update(str(s))
return m.hexdigest()
def MD5filesignature(fname, chunksize=65536):
m = hashlib.md5()
f = open(fname, "rb")
while True:
blck = f.read(chunksize)
if not blck:
break
m.update(str(blck))
f.close()
return m.hexdigest()
def MD5collect(signatures):
"""
Collects a list of signatures into an aggregate signature.
signatures - a list of signatures
returns - the aggregate signature
"""
if len(signatures) == 1:
return signatures[0]
else:
return MD5signature(', '.join(signatures))
def silent_intern(x):
"""
Perform sys.intern() on the passed argument and return the result.
If the input is ineligible (e.g. a unicode string) the original argument is
returned and no exception is thrown.
"""
try:
return sys.intern(x)
except TypeError:
return x
# From Dinu C. Gherman,
# Python Cookbook, second edition, recipe 6.17, p. 277.
# Also:
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/68205
# ASPN: Python Cookbook: Null Object Design Pattern
#TODO??? class Null(object):
class Null(object):
""" Null objects always and reliably "do nothing." """
def __new__(cls, *args, **kwargs):
if not '_instance' in vars(cls):
cls._instance = super(Null, cls).__new__(cls, *args, **kwargs)
return cls._instance
def __init__(self, *args, **kwargs):
pass
def __call__(self, *args, **kwargs):
return self
def __repr__(self):
return "Null(0x%08X)" % id(self)
def __nonzero__(self):
return False
def __getattr__(self, name):
return self
def __setattr__(self, name, value):
return self
def __delattr__(self, name):
return self
class NullSeq(Null):
def __len__(self):
return 0
def __iter__(self):
return iter(())
def __getitem__(self, i):
return self
def __delitem__(self, i):
return self
def __setitem__(self, i, v):
return self
del __revision__
# Local Variables:
# tab-width:4
# indent-tabs-mode:nil
# End:
# vim: set expandtab tabstop=4 shiftwidth=4: