blob: 4c368abb064fe12b6ca6cb61601b5929ea93ed40 [file] [log] [blame]
// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
#include "node_file.h" // NOLINT(build/include_inline)
#include "node_file-inl.h"
#include "aliased_buffer.h"
#include "memory_tracker-inl.h"
#include "node_buffer.h"
#include "node_process.h"
#include "node_stat_watcher.h"
#include "util-inl.h"
#include "tracing/trace_event.h"
#include "req_wrap-inl.h"
#include "stream_base-inl.h"
#include "string_bytes.h"
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <cstring>
#include <cerrno>
#include <climits>
#if defined(__MINGW32__) || defined(_MSC_VER)
# include <io.h>
#endif
#include <memory>
namespace node {
namespace fs {
using v8::Array;
using v8::Boolean;
using v8::Context;
using v8::EscapableHandleScope;
using v8::Function;
using v8::FunctionCallbackInfo;
using v8::FunctionTemplate;
using v8::HandleScope;
using v8::Int32;
using v8::Integer;
using v8::Isolate;
using v8::Local;
using v8::MaybeLocal;
using v8::Number;
using v8::Object;
using v8::ObjectTemplate;
using v8::Promise;
using v8::String;
using v8::Symbol;
using v8::Uint32;
using v8::Undefined;
using v8::Value;
#ifndef S_ISDIR
# define S_ISDIR(mode) (((mode) & S_IFMT) == S_IFDIR)
#endif
#ifdef __POSIX__
constexpr char kPathSeparator = '/';
#else
const char* const kPathSeparator = "\\/";
#endif
std::string Basename(const std::string& str, const std::string& extension) {
std::string ret = str;
// Remove everything leading up to and including the final path separator.
std::string::size_type pos = ret.find_last_of(kPathSeparator);
if (pos != std::string::npos) ret = ret.substr(pos + 1);
// Strip away the extension, if any.
if (ret.size() >= extension.size() &&
ret.substr(ret.size() - extension.size()) == extension) {
ret = ret.substr(0, ret.size() - extension.size());
}
return ret;
}
inline int64_t GetOffset(Local<Value> value) {
return IsSafeJsInt(value) ? value.As<Integer>()->Value() : -1;
}
#define TRACE_NAME(name) "fs.sync." #name
#define GET_TRACE_ENABLED \
(*TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED \
(TRACING_CATEGORY_NODE2(fs, sync)) != 0)
#define FS_SYNC_TRACE_BEGIN(syscall, ...) \
if (GET_TRACE_ENABLED) \
TRACE_EVENT_BEGIN(TRACING_CATEGORY_NODE2(fs, sync), TRACE_NAME(syscall), \
##__VA_ARGS__);
#define FS_SYNC_TRACE_END(syscall, ...) \
if (GET_TRACE_ENABLED) \
TRACE_EVENT_END(TRACING_CATEGORY_NODE2(fs, sync), TRACE_NAME(syscall), \
##__VA_ARGS__);
// We sometimes need to convert a C++ lambda function to a raw C-style function.
// This is helpful, because ReqWrap::Dispatch() does not recognize lambda
// functions, and thus does not wrap them properly.
typedef void(*uv_fs_callback_t)(uv_fs_t*);
void FSContinuationData::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("paths", paths_);
}
FileHandleReadWrap::~FileHandleReadWrap() {}
FSReqBase::~FSReqBase() {}
void FSReqBase::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("continuation_data", continuation_data_);
}
// The FileHandle object wraps a file descriptor and will close it on garbage
// collection if necessary. If that happens, a process warning will be
// emitted (or a fatal exception will occur if the fd cannot be closed.)
FileHandle::FileHandle(BindingData* binding_data,
Local<Object> obj, int fd)
: AsyncWrap(binding_data->env(), obj, AsyncWrap::PROVIDER_FILEHANDLE),
StreamBase(env()),
fd_(fd),
binding_data_(binding_data) {
MakeWeak();
StreamBase::AttachToObject(GetObject());
}
FileHandle* FileHandle::New(BindingData* binding_data,
int fd, Local<Object> obj) {
Environment* env = binding_data->env();
if (obj.IsEmpty() && !env->fd_constructor_template()
->NewInstance(env->context())
.ToLocal(&obj)) {
return nullptr;
}
return new FileHandle(binding_data, obj, fd);
}
void FileHandle::New(const FunctionCallbackInfo<Value>& args) {
BindingData* binding_data = Environment::GetBindingData<BindingData>(args);
Environment* env = binding_data->env();
CHECK(args.IsConstructCall());
CHECK(args[0]->IsInt32());
FileHandle* handle =
FileHandle::New(binding_data, args[0].As<Int32>()->Value(), args.This());
if (handle == nullptr) return;
if (args[1]->IsNumber())
handle->read_offset_ = args[1]->IntegerValue(env->context()).FromJust();
if (args[2]->IsNumber())
handle->read_length_ = args[2]->IntegerValue(env->context()).FromJust();
}
FileHandle::~FileHandle() {
CHECK(!closing_); // We should not be deleting while explicitly closing!
Close(); // Close synchronously and emit warning
CHECK(closed_); // We have to be closed at the point
}
int FileHandle::DoWrite(WriteWrap* w,
uv_buf_t* bufs,
size_t count,
uv_stream_t* send_handle) {
return UV_ENOSYS; // Not implemented (yet).
}
void FileHandle::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("current_read", current_read_);
}
FileHandle::TransferMode FileHandle::GetTransferMode() const {
return reading_ || closing_ || closed_ ?
TransferMode::kUntransferable : TransferMode::kTransferable;
}
std::unique_ptr<worker::TransferData> FileHandle::TransferForMessaging() {
CHECK_NE(GetTransferMode(), TransferMode::kUntransferable);
auto ret = std::make_unique<TransferData>(fd_);
closed_ = true;
return ret;
}
FileHandle::TransferData::TransferData(int fd) : fd_(fd) {}
FileHandle::TransferData::~TransferData() {
if (fd_ > 0) {
uv_fs_t close_req;
CHECK_EQ(0, uv_fs_close(nullptr, &close_req, fd_, nullptr));
uv_fs_req_cleanup(&close_req);
}
}
BaseObjectPtr<BaseObject> FileHandle::TransferData::Deserialize(
Environment* env,
v8::Local<v8::Context> context,
std::unique_ptr<worker::TransferData> self) {
BindingData* bd = Environment::GetBindingData<BindingData>(context);
if (bd == nullptr) return {};
int fd = fd_;
fd_ = -1;
return BaseObjectPtr<BaseObject> { FileHandle::New(bd, fd) };
}
// Close the file descriptor if it hasn't already been closed. A process
// warning will be emitted using a SetImmediate to avoid calling back to
// JS during GC. If closing the fd fails at this point, a fatal exception
// will crash the process immediately.
inline void FileHandle::Close() {
if (closed_) return;
uv_fs_t req;
int ret = uv_fs_close(env()->event_loop(), &req, fd_, nullptr);
uv_fs_req_cleanup(&req);
struct err_detail { int ret; int fd; };
err_detail detail { ret, fd_ };
AfterClose();
if (ret < 0) {
// Do not unref this
env()->SetImmediate([detail](Environment* env) {
char msg[70];
snprintf(msg, arraysize(msg),
"Closing file descriptor %d on garbage collection failed",
detail.fd);
// This exception will end up being fatal for the process because
// it is being thrown from within the SetImmediate handler and
// there is no JS stack to bubble it to. In other words, tearing
// down the process is the only reasonable thing we can do here.
HandleScope handle_scope(env->isolate());
env->ThrowUVException(detail.ret, "close", msg);
});
return;
}
// If the close was successful, we still want to emit a process warning
// to notify that the file descriptor was gc'd. We want to be noisy about
// this because not explicitly closing the FileHandle is a bug.
env()->SetImmediate([detail](Environment* env) {
ProcessEmitWarning(env,
"Closing file descriptor %d on garbage collection",
detail.fd);
if (env->filehandle_close_warning()) {
env->set_filehandle_close_warning(false);
ProcessEmitDeprecationWarning(
env,
"Closing a FileHandle object on garbage collection is deprecated. "
"Please close FileHandle objects explicitly using "
"FileHandle.prototype.close(). In the future, an error will be "
"thrown if a file descriptor is closed during garbage collection.",
"DEP0137").IsNothing();
}
}, CallbackFlags::kUnrefed);
}
void FileHandle::CloseReq::Resolve() {
Isolate* isolate = env()->isolate();
HandleScope scope(isolate);
InternalCallbackScope callback_scope(this);
Local<Promise> promise = promise_.Get(isolate);
Local<Promise::Resolver> resolver = promise.As<Promise::Resolver>();
resolver->Resolve(env()->context(), Undefined(isolate)).Check();
}
void FileHandle::CloseReq::Reject(Local<Value> reason) {
Isolate* isolate = env()->isolate();
HandleScope scope(isolate);
InternalCallbackScope callback_scope(this);
Local<Promise> promise = promise_.Get(isolate);
Local<Promise::Resolver> resolver = promise.As<Promise::Resolver>();
resolver->Reject(env()->context(), reason).Check();
}
FileHandle* FileHandle::CloseReq::file_handle() {
Isolate* isolate = env()->isolate();
HandleScope scope(isolate);
Local<Value> val = ref_.Get(isolate);
Local<Object> obj = val.As<Object>();
return Unwrap<FileHandle>(obj);
}
FileHandle::CloseReq::CloseReq(Environment* env,
Local<Object> obj,
Local<Promise> promise,
Local<Value> ref)
: ReqWrap(env, obj, AsyncWrap::PROVIDER_FILEHANDLECLOSEREQ) {
promise_.Reset(env->isolate(), promise);
ref_.Reset(env->isolate(), ref);
}
FileHandle::CloseReq::~CloseReq() {
uv_fs_req_cleanup(req());
promise_.Reset();
ref_.Reset();
}
void FileHandle::CloseReq::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("promise", promise_);
tracker->TrackField("ref", ref_);
}
// Closes this FileHandle asynchronously and returns a Promise that will be
// resolved when the callback is invoked, or rejects with a UVException if
// there was a problem closing the fd. This is the preferred mechanism for
// closing the FD object even tho the object will attempt to close
// automatically on gc.
MaybeLocal<Promise> FileHandle::ClosePromise() {
Isolate* isolate = env()->isolate();
EscapableHandleScope scope(isolate);
Local<Context> context = env()->context();
auto maybe_resolver = Promise::Resolver::New(context);
CHECK(!maybe_resolver.IsEmpty());
Local<Promise::Resolver> resolver = maybe_resolver.ToLocalChecked();
Local<Promise> promise = resolver.As<Promise>();
CHECK(!reading_);
if (!closed_ && !closing_) {
closing_ = true;
Local<Object> close_req_obj;
if (!env()
->fdclose_constructor_template()
->NewInstance(env()->context())
.ToLocal(&close_req_obj)) {
return MaybeLocal<Promise>();
}
CloseReq* req = new CloseReq(env(), close_req_obj, promise, object());
auto AfterClose = uv_fs_callback_t{[](uv_fs_t* req) {
std::unique_ptr<CloseReq> close(CloseReq::from_req(req));
CHECK_NOT_NULL(close);
close->file_handle()->AfterClose();
Isolate* isolate = close->env()->isolate();
if (req->result < 0) {
HandleScope handle_scope(isolate);
close->Reject(UVException(isolate, req->result, "close"));
} else {
close->Resolve();
}
}};
int ret = req->Dispatch(uv_fs_close, fd_, AfterClose);
if (ret < 0) {
req->Reject(UVException(isolate, ret, "close"));
delete req;
}
} else {
// Already closed. Just reject the promise immediately
resolver->Reject(context, UVException(isolate, UV_EBADF, "close"))
.Check();
}
return scope.Escape(promise);
}
void FileHandle::Close(const FunctionCallbackInfo<Value>& args) {
FileHandle* fd;
ASSIGN_OR_RETURN_UNWRAP(&fd, args.Holder());
Local<Promise> ret;
if (!fd->ClosePromise().ToLocal(&ret)) return;
args.GetReturnValue().Set(ret);
}
void FileHandle::ReleaseFD(const FunctionCallbackInfo<Value>& args) {
FileHandle* fd;
ASSIGN_OR_RETURN_UNWRAP(&fd, args.Holder());
// Just act as if this FileHandle has been closed.
fd->AfterClose();
}
void FileHandle::AfterClose() {
closing_ = false;
closed_ = true;
fd_ = -1;
if (reading_ && !persistent().IsEmpty())
EmitRead(UV_EOF);
}
void FileHandleReadWrap::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("buffer", buffer_);
tracker->TrackField("file_handle", this->file_handle_);
}
FileHandleReadWrap::FileHandleReadWrap(FileHandle* handle, Local<Object> obj)
: ReqWrap(handle->env(), obj, AsyncWrap::PROVIDER_FSREQCALLBACK),
file_handle_(handle) {}
int FileHandle::ReadStart() {
if (!IsAlive() || IsClosing())
return UV_EOF;
reading_ = true;
if (current_read_)
return 0;
BaseObjectPtr<FileHandleReadWrap> read_wrap;
if (read_length_ == 0) {
EmitRead(UV_EOF);
return 0;
}
{
// Create a new FileHandleReadWrap or re-use one.
// Either way, we need these two scopes for AsyncReset() or otherwise
// for creating the new instance.
HandleScope handle_scope(env()->isolate());
AsyncHooks::DefaultTriggerAsyncIdScope trigger_scope(this);
auto& freelist = binding_data_->file_handle_read_wrap_freelist;
if (freelist.size() > 0) {
read_wrap = std::move(freelist.back());
freelist.pop_back();
// Use a fresh async resource.
// Lifetime is ensured via AsyncWrap::resource_.
Local<Object> resource = Object::New(env()->isolate());
USE(resource->Set(
env()->context(), env()->handle_string(), read_wrap->object()));
read_wrap->AsyncReset(resource);
read_wrap->file_handle_ = this;
} else {
Local<Object> wrap_obj;
if (!env()
->filehandlereadwrap_template()
->NewInstance(env()->context())
.ToLocal(&wrap_obj)) {
return UV_EBUSY;
}
read_wrap = MakeDetachedBaseObject<FileHandleReadWrap>(this, wrap_obj);
}
}
int64_t recommended_read = 65536;
if (read_length_ >= 0 && read_length_ <= recommended_read)
recommended_read = read_length_;
read_wrap->buffer_ = EmitAlloc(recommended_read);
current_read_ = std::move(read_wrap);
current_read_->Dispatch(uv_fs_read,
fd_,
&current_read_->buffer_,
1,
read_offset_,
uv_fs_callback_t{[](uv_fs_t* req) {
FileHandle* handle;
{
FileHandleReadWrap* req_wrap = FileHandleReadWrap::from_req(req);
handle = req_wrap->file_handle_;
CHECK_EQ(handle->current_read_.get(), req_wrap);
}
// ReadStart() checks whether current_read_ is set to determine whether
// a read is in progress. Moving it into a local variable makes sure that
// the ReadStart() call below doesn't think we're still actively reading.
BaseObjectPtr<FileHandleReadWrap> read_wrap =
std::move(handle->current_read_);
int result = req->result;
uv_buf_t buffer = read_wrap->buffer_;
uv_fs_req_cleanup(req);
// Push the read wrap back to the freelist, or let it be destroyed
// once we’re exiting the current scope.
constexpr size_t kWantedFreelistFill = 100;
auto& freelist = handle->binding_data_->file_handle_read_wrap_freelist;
if (freelist.size() < kWantedFreelistFill) {
read_wrap->Reset();
freelist.emplace_back(std::move(read_wrap));
}
if (result >= 0) {
// Read at most as many bytes as we originally planned to.
if (handle->read_length_ >= 0 && handle->read_length_ < result)
result = handle->read_length_;
// If we read data and we have an expected length, decrease it by
// how much we have read.
if (handle->read_length_ >= 0)
handle->read_length_ -= result;
// If we have an offset, increase it by how much we have read.
if (handle->read_offset_ >= 0)
handle->read_offset_ += result;
}
// Reading 0 bytes from a file always means EOF, or that we reached
// the end of the requested range.
if (result == 0)
result = UV_EOF;
handle->EmitRead(result, buffer);
// Start over, if EmitRead() didn’t tell us to stop.
if (handle->reading_)
handle->ReadStart();
}});
return 0;
}
int FileHandle::ReadStop() {
reading_ = false;
return 0;
}
typedef SimpleShutdownWrap<ReqWrap<uv_fs_t>> FileHandleCloseWrap;
ShutdownWrap* FileHandle::CreateShutdownWrap(Local<Object> object) {
return new FileHandleCloseWrap(this, object);
}
int FileHandle::DoShutdown(ShutdownWrap* req_wrap) {
FileHandleCloseWrap* wrap = static_cast<FileHandleCloseWrap*>(req_wrap);
closing_ = true;
wrap->Dispatch(uv_fs_close, fd_, uv_fs_callback_t{[](uv_fs_t* req) {
FileHandleCloseWrap* wrap = static_cast<FileHandleCloseWrap*>(
FileHandleCloseWrap::from_req(req));
FileHandle* handle = static_cast<FileHandle*>(wrap->stream());
handle->AfterClose();
int result = req->result;
uv_fs_req_cleanup(req);
wrap->Done(result);
}});
return 0;
}
void FSReqCallback::Reject(Local<Value> reject) {
MakeCallback(env()->oncomplete_string(), 1, &reject);
}
void FSReqCallback::ResolveStat(const uv_stat_t* stat) {
Resolve(FillGlobalStatsArray(binding_data(), use_bigint(), stat));
}
void FSReqCallback::Resolve(Local<Value> value) {
Local<Value> argv[2] {
Null(env()->isolate()),
value
};
MakeCallback(env()->oncomplete_string(),
value->IsUndefined() ? 1 : arraysize(argv),
argv);
}
void FSReqCallback::SetReturnValue(const FunctionCallbackInfo<Value>& args) {
args.GetReturnValue().SetUndefined();
}
void NewFSReqCallback(const FunctionCallbackInfo<Value>& args) {
CHECK(args.IsConstructCall());
BindingData* binding_data = Environment::GetBindingData<BindingData>(args);
new FSReqCallback(binding_data, args.This(), args[0]->IsTrue());
}
FSReqAfterScope::FSReqAfterScope(FSReqBase* wrap, uv_fs_t* req)
: wrap_(wrap),
req_(req),
handle_scope_(wrap->env()->isolate()),
context_scope_(wrap->env()->context()) {
CHECK_EQ(wrap_->req(), req);
}
FSReqAfterScope::~FSReqAfterScope() {
Clear();
}
void FSReqAfterScope::Clear() {
if (!wrap_) return;
uv_fs_req_cleanup(wrap_->req());
wrap_->Detach();
wrap_.reset();
}
// TODO(joyeecheung): create a normal context object, and
// construct the actual errors in the JS land using the context.
// The context should include fds for some fs APIs, currently they are
// missing in the error messages. The path, dest, syscall, fd, .etc
// can be put into the context before the binding is even invoked,
// the only information that has to come from the C++ layer is the
// error number (and possibly the syscall for abstraction),
// which is also why the errors should have been constructed
// in JS for more flexibility.
void FSReqAfterScope::Reject(uv_fs_t* req) {
BaseObjectPtr<FSReqBase> wrap { wrap_ };
Local<Value> exception =
UVException(wrap_->env()->isolate(),
req->result,
wrap_->syscall(),
nullptr,
req->path,
wrap_->data());
Clear();
wrap->Reject(exception);
}
bool FSReqAfterScope::Proceed() {
if (req_->result < 0) {
Reject(req_);
return false;
}
return true;
}
void AfterNoArgs(uv_fs_t* req) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
FSReqAfterScope after(req_wrap, req);
if (after.Proceed())
req_wrap->Resolve(Undefined(req_wrap->env()->isolate()));
}
void AfterStat(uv_fs_t* req) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
FSReqAfterScope after(req_wrap, req);
if (after.Proceed()) {
req_wrap->ResolveStat(&req->statbuf);
}
}
void AfterInteger(uv_fs_t* req) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
FSReqAfterScope after(req_wrap, req);
if (req->result >= 0 && req_wrap->is_plain_open())
req_wrap->env()->AddUnmanagedFd(req->result);
if (after.Proceed())
req_wrap->Resolve(Integer::New(req_wrap->env()->isolate(), req->result));
}
void AfterOpenFileHandle(uv_fs_t* req) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
FSReqAfterScope after(req_wrap, req);
if (after.Proceed()) {
FileHandle* fd = FileHandle::New(req_wrap->binding_data(), req->result);
if (fd == nullptr) return;
req_wrap->Resolve(fd->object());
}
}
// Reverse the logic applied by path.toNamespacedPath() to create a
// namespace-prefixed path.
void FromNamespacedPath(std::string* path) {
#ifdef _WIN32
if (path->compare(0, 8, "\\\\?\\UNC\\", 8) == 0) {
*path = path->substr(8);
path->insert(0, "\\\\");
} else if (path->compare(0, 4, "\\\\?\\", 4) == 0) {
*path = path->substr(4);
}
#endif
}
void AfterMkdirp(uv_fs_t* req) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
FSReqAfterScope after(req_wrap, req);
MaybeLocal<Value> path;
Local<Value> error;
if (after.Proceed()) {
if (!req_wrap->continuation_data()->first_path().empty()) {
std::string first_path(req_wrap->continuation_data()->first_path());
FromNamespacedPath(&first_path);
path = StringBytes::Encode(req_wrap->env()->isolate(), first_path.c_str(),
req_wrap->encoding(),
&error);
if (path.IsEmpty())
req_wrap->Reject(error);
else
req_wrap->Resolve(path.ToLocalChecked());
} else {
req_wrap->Resolve(Undefined(req_wrap->env()->isolate()));
}
}
}
void AfterStringPath(uv_fs_t* req) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
FSReqAfterScope after(req_wrap, req);
MaybeLocal<Value> link;
Local<Value> error;
if (after.Proceed()) {
link = StringBytes::Encode(req_wrap->env()->isolate(),
req->path,
req_wrap->encoding(),
&error);
if (link.IsEmpty())
req_wrap->Reject(error);
else
req_wrap->Resolve(link.ToLocalChecked());
}
}
void AfterStringPtr(uv_fs_t* req) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
FSReqAfterScope after(req_wrap, req);
MaybeLocal<Value> link;
Local<Value> error;
if (after.Proceed()) {
link = StringBytes::Encode(req_wrap->env()->isolate(),
static_cast<const char*>(req->ptr),
req_wrap->encoding(),
&error);
if (link.IsEmpty())
req_wrap->Reject(error);
else
req_wrap->Resolve(link.ToLocalChecked());
}
}
void AfterScanDir(uv_fs_t* req) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
FSReqAfterScope after(req_wrap, req);
if (!after.Proceed()) {
return;
}
Environment* env = req_wrap->env();
Local<Value> error;
int r;
std::vector<Local<Value>> name_v;
for (;;) {
uv_dirent_t ent;
r = uv_fs_scandir_next(req, &ent);
if (r == UV_EOF)
break;
if (r != 0) {
return req_wrap->Reject(UVException(
env->isolate(), r, nullptr, req_wrap->syscall(), req->path));
}
MaybeLocal<Value> filename =
StringBytes::Encode(env->isolate(),
ent.name,
req_wrap->encoding(),
&error);
if (filename.IsEmpty())
return req_wrap->Reject(error);
name_v.push_back(filename.ToLocalChecked());
}
req_wrap->Resolve(Array::New(env->isolate(), name_v.data(), name_v.size()));
}
void AfterScanDirWithTypes(uv_fs_t* req) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
FSReqAfterScope after(req_wrap, req);
if (!after.Proceed()) {
return;
}
Environment* env = req_wrap->env();
Isolate* isolate = env->isolate();
Local<Value> error;
int r;
std::vector<Local<Value>> name_v;
std::vector<Local<Value>> type_v;
for (;;) {
uv_dirent_t ent;
r = uv_fs_scandir_next(req, &ent);
if (r == UV_EOF)
break;
if (r != 0) {
return req_wrap->Reject(
UVException(isolate, r, nullptr, req_wrap->syscall(), req->path));
}
MaybeLocal<Value> filename =
StringBytes::Encode(isolate,
ent.name,
req_wrap->encoding(),
&error);
if (filename.IsEmpty())
return req_wrap->Reject(error);
name_v.push_back(filename.ToLocalChecked());
type_v.emplace_back(Integer::New(isolate, ent.type));
}
Local<Value> result[] = {
Array::New(isolate, name_v.data(), name_v.size()),
Array::New(isolate, type_v.data(), type_v.size())
};
req_wrap->Resolve(Array::New(isolate, result, arraysize(result)));
}
void Access(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
HandleScope scope(isolate);
const int argc = args.Length();
CHECK_GE(argc, 2);
CHECK(args[1]->IsInt32());
int mode = args[1].As<Int32>()->Value();
BufferValue path(isolate, args[0]);
CHECK_NOT_NULL(*path);
FSReqBase* req_wrap_async = GetReqWrap(args, 2);
if (req_wrap_async != nullptr) { // access(path, mode, req)
AsyncCall(env, req_wrap_async, args, "access", UTF8, AfterNoArgs,
uv_fs_access, *path, mode);
} else { // access(path, mode, undefined, ctx)
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(access);
SyncCall(env, args[3], &req_wrap_sync, "access", uv_fs_access, *path, mode);
FS_SYNC_TRACE_END(access);
}
}
void Close(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 2);
CHECK(args[0]->IsInt32());
int fd = args[0].As<Int32>()->Value();
env->RemoveUnmanagedFd(fd);
FSReqBase* req_wrap_async = GetReqWrap(args, 1);
if (req_wrap_async != nullptr) { // close(fd, req)
AsyncCall(env, req_wrap_async, args, "close", UTF8, AfterNoArgs,
uv_fs_close, fd);
} else { // close(fd, undefined, ctx)
CHECK_EQ(argc, 3);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(close);
SyncCall(env, args[2], &req_wrap_sync, "close", uv_fs_close, fd);
FS_SYNC_TRACE_END(close);
}
}
// Used to speed up module loading. Returns an array [string, boolean]
static void InternalModuleReadJSON(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
uv_loop_t* loop = env->event_loop();
CHECK(args[0]->IsString());
node::Utf8Value path(isolate, args[0]);
if (strlen(*path) != path.length()) {
args.GetReturnValue().Set(Array::New(isolate));
return; // Contains a nul byte.
}
uv_fs_t open_req;
const int fd = uv_fs_open(loop, &open_req, *path, O_RDONLY, 0, nullptr);
uv_fs_req_cleanup(&open_req);
if (fd < 0) {
args.GetReturnValue().Set(Array::New(isolate));
return;
}
auto defer_close = OnScopeLeave([fd, loop]() {
uv_fs_t close_req;
CHECK_EQ(0, uv_fs_close(loop, &close_req, fd, nullptr));
uv_fs_req_cleanup(&close_req);
});
const size_t kBlockSize = 32 << 10;
std::vector<char> chars;
int64_t offset = 0;
ssize_t numchars;
do {
const size_t start = chars.size();
chars.resize(start + kBlockSize);
uv_buf_t buf;
buf.base = &chars[start];
buf.len = kBlockSize;
uv_fs_t read_req;
numchars = uv_fs_read(loop, &read_req, fd, &buf, 1, offset, nullptr);
uv_fs_req_cleanup(&read_req);
if (numchars < 0) {
args.GetReturnValue().Set(Array::New(isolate));
return;
}
offset += numchars;
} while (static_cast<size_t>(numchars) == kBlockSize);
size_t start = 0;
if (offset >= 3 && 0 == memcmp(&chars[0], "\xEF\xBB\xBF", 3)) {
start = 3; // Skip UTF-8 BOM.
}
const size_t size = offset - start;
char* p = &chars[start];
char* pe = &chars[size];
char* pos[2];
char** ppos = &pos[0];
while (p < pe) {
char c = *p++;
if (c == '\\' && p < pe && *p == '"') p++;
if (c != '"') continue;
*ppos++ = p;
if (ppos < &pos[2]) continue;
ppos = &pos[0];
char* s = &pos[0][0];
char* se = &pos[1][-1]; // Exclude quote.
size_t n = se - s;
if (n == 4) {
if (0 == memcmp(s, "main", 4)) break;
if (0 == memcmp(s, "name", 4)) break;
if (0 == memcmp(s, "type", 4)) break;
} else if (n == 7) {
if (0 == memcmp(s, "exports", 7)) break;
if (0 == memcmp(s, "imports", 7)) break;
}
}
Local<Value> return_value[] = {
String::NewFromUtf8(isolate,
&chars[start],
v8::NewStringType::kNormal,
size).ToLocalChecked(),
Boolean::New(isolate, p < pe ? true : false)
};
args.GetReturnValue().Set(
Array::New(isolate, return_value, arraysize(return_value)));
}
// Used to speed up module loading. Returns 0 if the path refers to
// a file, 1 when it's a directory or < 0 on error (usually -ENOENT.)
// The speedup comes from not creating thousands of Stat and Error objects.
static void InternalModuleStat(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
CHECK(args[0]->IsString());
node::Utf8Value path(env->isolate(), args[0]);
uv_fs_t req;
int rc = uv_fs_stat(env->event_loop(), &req, *path, nullptr);
if (rc == 0) {
const uv_stat_t* const s = static_cast<const uv_stat_t*>(req.ptr);
rc = !!(s->st_mode & S_IFDIR);
}
uv_fs_req_cleanup(&req);
args.GetReturnValue().Set(rc);
}
static void Stat(const FunctionCallbackInfo<Value>& args) {
BindingData* binding_data = Environment::GetBindingData<BindingData>(args);
Environment* env = binding_data->env();
const int argc = args.Length();
CHECK_GE(argc, 2);
BufferValue path(env->isolate(), args[0]);
CHECK_NOT_NULL(*path);
bool use_bigint = args[1]->IsTrue();
FSReqBase* req_wrap_async = GetReqWrap(args, 2, use_bigint);
if (req_wrap_async != nullptr) { // stat(path, use_bigint, req)
AsyncCall(env, req_wrap_async, args, "stat", UTF8, AfterStat,
uv_fs_stat, *path);
} else { // stat(path, use_bigint, undefined, ctx)
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(stat);
int err = SyncCall(env, args[3], &req_wrap_sync, "stat", uv_fs_stat, *path);
FS_SYNC_TRACE_END(stat);
if (err != 0) {
return; // error info is in ctx
}
Local<Value> arr = FillGlobalStatsArray(binding_data, use_bigint,
static_cast<const uv_stat_t*>(req_wrap_sync.req.ptr));
args.GetReturnValue().Set(arr);
}
}
static void LStat(const FunctionCallbackInfo<Value>& args) {
BindingData* binding_data = Environment::GetBindingData<BindingData>(args);
Environment* env = binding_data->env();
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue path(env->isolate(), args[0]);
CHECK_NOT_NULL(*path);
bool use_bigint = args[1]->IsTrue();
FSReqBase* req_wrap_async = GetReqWrap(args, 2, use_bigint);
if (req_wrap_async != nullptr) { // lstat(path, use_bigint, req)
AsyncCall(env, req_wrap_async, args, "lstat", UTF8, AfterStat,
uv_fs_lstat, *path);
} else { // lstat(path, use_bigint, undefined, ctx)
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(lstat);
int err = SyncCall(env, args[3], &req_wrap_sync, "lstat", uv_fs_lstat,
*path);
FS_SYNC_TRACE_END(lstat);
if (err != 0) {
return; // error info is in ctx
}
Local<Value> arr = FillGlobalStatsArray(binding_data, use_bigint,
static_cast<const uv_stat_t*>(req_wrap_sync.req.ptr));
args.GetReturnValue().Set(arr);
}
}
static void FStat(const FunctionCallbackInfo<Value>& args) {
BindingData* binding_data = Environment::GetBindingData<BindingData>(args);
Environment* env = binding_data->env();
const int argc = args.Length();
CHECK_GE(argc, 2);
CHECK(args[0]->IsInt32());
int fd = args[0].As<Int32>()->Value();
bool use_bigint = args[1]->IsTrue();
FSReqBase* req_wrap_async = GetReqWrap(args, 2, use_bigint);
if (req_wrap_async != nullptr) { // fstat(fd, use_bigint, req)
AsyncCall(env, req_wrap_async, args, "fstat", UTF8, AfterStat,
uv_fs_fstat, fd);
} else { // fstat(fd, use_bigint, undefined, ctx)
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(fstat);
int err = SyncCall(env, args[3], &req_wrap_sync, "fstat", uv_fs_fstat, fd);
FS_SYNC_TRACE_END(fstat);
if (err != 0) {
return; // error info is in ctx
}
Local<Value> arr = FillGlobalStatsArray(binding_data, use_bigint,
static_cast<const uv_stat_t*>(req_wrap_sync.req.ptr));
args.GetReturnValue().Set(arr);
}
}
static void Symlink(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
const int argc = args.Length();
CHECK_GE(argc, 4);
BufferValue target(isolate, args[0]);
CHECK_NOT_NULL(*target);
BufferValue path(isolate, args[1]);
CHECK_NOT_NULL(*path);
CHECK(args[2]->IsInt32());
int flags = args[2].As<Int32>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // symlink(target, path, flags, req)
AsyncDestCall(env, req_wrap_async, args, "symlink", *path, path.length(),
UTF8, AfterNoArgs, uv_fs_symlink, *target, *path, flags);
} else { // symlink(target, path, flags, undefinec, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(symlink);
SyncCall(env, args[4], &req_wrap_sync, "symlink",
uv_fs_symlink, *target, *path, flags);
FS_SYNC_TRACE_END(symlink);
}
}
static void Link(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue src(isolate, args[0]);
CHECK_NOT_NULL(*src);
BufferValue dest(isolate, args[1]);
CHECK_NOT_NULL(*dest);
FSReqBase* req_wrap_async = GetReqWrap(args, 2);
if (req_wrap_async != nullptr) { // link(src, dest, req)
AsyncDestCall(env, req_wrap_async, args, "link", *dest, dest.length(), UTF8,
AfterNoArgs, uv_fs_link, *src, *dest);
} else { // link(src, dest)
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(link);
SyncCall(env, args[3], &req_wrap_sync, "link",
uv_fs_link, *src, *dest);
FS_SYNC_TRACE_END(link);
}
}
static void ReadLink(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue path(isolate, args[0]);
CHECK_NOT_NULL(*path);
const enum encoding encoding = ParseEncoding(isolate, args[1], UTF8);
FSReqBase* req_wrap_async = GetReqWrap(args, 2);
if (req_wrap_async != nullptr) { // readlink(path, encoding, req)
AsyncCall(env, req_wrap_async, args, "readlink", encoding, AfterStringPtr,
uv_fs_readlink, *path);
} else {
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(readlink);
int err = SyncCall(env, args[3], &req_wrap_sync, "readlink",
uv_fs_readlink, *path);
FS_SYNC_TRACE_END(readlink);
if (err < 0) {
return; // syscall failed, no need to continue, error info is in ctx
}
const char* link_path = static_cast<const char*>(req_wrap_sync.req.ptr);
Local<Value> error;
MaybeLocal<Value> rc = StringBytes::Encode(isolate,
link_path,
encoding,
&error);
if (rc.IsEmpty()) {
Local<Object> ctx = args[3].As<Object>();
ctx->Set(env->context(), env->error_string(), error).Check();
return;
}
args.GetReturnValue().Set(rc.ToLocalChecked());
}
}
static void Rename(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue old_path(isolate, args[0]);
CHECK_NOT_NULL(*old_path);
BufferValue new_path(isolate, args[1]);
CHECK_NOT_NULL(*new_path);
FSReqBase* req_wrap_async = GetReqWrap(args, 2);
if (req_wrap_async != nullptr) {
AsyncDestCall(env, req_wrap_async, args, "rename", *new_path,
new_path.length(), UTF8, AfterNoArgs, uv_fs_rename,
*old_path, *new_path);
} else {
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(rename);
SyncCall(env, args[3], &req_wrap_sync, "rename", uv_fs_rename,
*old_path, *new_path);
FS_SYNC_TRACE_END(rename);
}
}
static void FTruncate(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 3);
CHECK(args[0]->IsInt32());
const int fd = args[0].As<Int32>()->Value();
CHECK(IsSafeJsInt(args[1]));
const int64_t len = args[1].As<Integer>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 2);
if (req_wrap_async != nullptr) {
AsyncCall(env, req_wrap_async, args, "ftruncate", UTF8, AfterNoArgs,
uv_fs_ftruncate, fd, len);
} else {
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(ftruncate);
SyncCall(env, args[3], &req_wrap_sync, "ftruncate", uv_fs_ftruncate, fd,
len);
FS_SYNC_TRACE_END(ftruncate);
}
}
static void Fdatasync(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 2);
CHECK(args[0]->IsInt32());
const int fd = args[0].As<Int32>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 1);
if (req_wrap_async != nullptr) {
AsyncCall(env, req_wrap_async, args, "fdatasync", UTF8, AfterNoArgs,
uv_fs_fdatasync, fd);
} else {
CHECK_EQ(argc, 3);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(fdatasync);
SyncCall(env, args[2], &req_wrap_sync, "fdatasync", uv_fs_fdatasync, fd);
FS_SYNC_TRACE_END(fdatasync);
}
}
static void Fsync(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 2);
CHECK(args[0]->IsInt32());
const int fd = args[0].As<Int32>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 1);
if (req_wrap_async != nullptr) {
AsyncCall(env, req_wrap_async, args, "fsync", UTF8, AfterNoArgs,
uv_fs_fsync, fd);
} else {
CHECK_EQ(argc, 3);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(fsync);
SyncCall(env, args[2], &req_wrap_sync, "fsync", uv_fs_fsync, fd);
FS_SYNC_TRACE_END(fsync);
}
}
static void Unlink(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 2);
BufferValue path(env->isolate(), args[0]);
CHECK_NOT_NULL(*path);
FSReqBase* req_wrap_async = GetReqWrap(args, 1);
if (req_wrap_async != nullptr) {
AsyncCall(env, req_wrap_async, args, "unlink", UTF8, AfterNoArgs,
uv_fs_unlink, *path);
} else {
CHECK_EQ(argc, 3);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(unlink);
SyncCall(env, args[2], &req_wrap_sync, "unlink", uv_fs_unlink, *path);
FS_SYNC_TRACE_END(unlink);
}
}
static void RMDir(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 2);
BufferValue path(env->isolate(), args[0]);
CHECK_NOT_NULL(*path);
FSReqBase* req_wrap_async = GetReqWrap(args, 1); // rmdir(path, req)
if (req_wrap_async != nullptr) {
AsyncCall(env, req_wrap_async, args, "rmdir", UTF8, AfterNoArgs,
uv_fs_rmdir, *path);
} else { // rmdir(path, undefined, ctx)
CHECK_EQ(argc, 3);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(rmdir);
SyncCall(env, args[2], &req_wrap_sync, "rmdir",
uv_fs_rmdir, *path);
FS_SYNC_TRACE_END(rmdir);
}
}
int MKDirpSync(uv_loop_t* loop,
uv_fs_t* req,
const std::string& path,
int mode,
uv_fs_cb cb) {
FSReqWrapSync* req_wrap = ContainerOf(&FSReqWrapSync::req, req);
// on the first iteration of algorithm, stash state information.
if (req_wrap->continuation_data() == nullptr) {
req_wrap->set_continuation_data(
std::make_unique<FSContinuationData>(req, mode, cb));
req_wrap->continuation_data()->PushPath(std::move(path));
}
while (req_wrap->continuation_data()->paths().size() > 0) {
std::string next_path = req_wrap->continuation_data()->PopPath();
int err = uv_fs_mkdir(loop, req, next_path.c_str(), mode, nullptr);
while (true) {
switch (err) {
// Note: uv_fs_req_cleanup in terminal paths will be called by
// ~FSReqWrapSync():
case 0:
req_wrap->continuation_data()->MaybeSetFirstPath(next_path);
if (req_wrap->continuation_data()->paths().size() == 0) {
return 0;
}
break;
case UV_EACCES:
case UV_ENOTDIR:
case UV_EPERM: {
return err;
}
case UV_ENOENT: {
std::string dirname = next_path.substr(0,
next_path.find_last_of(kPathSeparator));
if (dirname != next_path) {
req_wrap->continuation_data()->PushPath(std::move(next_path));
req_wrap->continuation_data()->PushPath(std::move(dirname));
} else if (req_wrap->continuation_data()->paths().size() == 0) {
err = UV_EEXIST;
continue;
}
break;
}
default:
uv_fs_req_cleanup(req);
int orig_err = err;
err = uv_fs_stat(loop, req, next_path.c_str(), nullptr);
if (err == 0 && !S_ISDIR(req->statbuf.st_mode)) {
uv_fs_req_cleanup(req);
if (orig_err == UV_EEXIST &&
req_wrap->continuation_data()->paths().size() > 0) {
return UV_ENOTDIR;
}
return UV_EEXIST;
}
if (err < 0) return err;
break;
}
break;
}
uv_fs_req_cleanup(req);
}
return 0;
}
int MKDirpAsync(uv_loop_t* loop,
uv_fs_t* req,
const char* path,
int mode,
uv_fs_cb cb) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
// on the first iteration of algorithm, stash state information.
if (req_wrap->continuation_data() == nullptr) {
req_wrap->set_continuation_data(
std::make_unique<FSContinuationData>(req, mode, cb));
req_wrap->continuation_data()->PushPath(std::move(path));
}
// on each iteration of algorithm, mkdir directory on top of stack.
std::string next_path = req_wrap->continuation_data()->PopPath();
int err = uv_fs_mkdir(loop, req, next_path.c_str(), mode,
uv_fs_callback_t{[](uv_fs_t* req) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
Environment* env = req_wrap->env();
uv_loop_t* loop = env->event_loop();
std::string path = req->path;
int err = req->result;
while (true) {
switch (err) {
// Note: uv_fs_req_cleanup in terminal paths will be called by
// FSReqAfterScope::~FSReqAfterScope()
case 0: {
if (req_wrap->continuation_data()->paths().size() == 0) {
req_wrap->continuation_data()->MaybeSetFirstPath(path);
req_wrap->continuation_data()->Done(0);
} else {
req_wrap->continuation_data()->MaybeSetFirstPath(path);
uv_fs_req_cleanup(req);
MKDirpAsync(loop, req, path.c_str(),
req_wrap->continuation_data()->mode(), nullptr);
}
break;
}
case UV_EACCES:
case UV_ENOTDIR:
case UV_EPERM: {
req_wrap->continuation_data()->Done(err);
break;
}
case UV_ENOENT: {
std::string dirname = path.substr(0,
path.find_last_of(kPathSeparator));
if (dirname != path) {
req_wrap->continuation_data()->PushPath(std::move(path));
req_wrap->continuation_data()->PushPath(std::move(dirname));
} else if (req_wrap->continuation_data()->paths().size() == 0) {
err = UV_EEXIST;
continue;
}
uv_fs_req_cleanup(req);
MKDirpAsync(loop, req, path.c_str(),
req_wrap->continuation_data()->mode(), nullptr);
break;
}
default:
uv_fs_req_cleanup(req);
// Stash err for use in the callback.
req->data = reinterpret_cast<void*>(static_cast<intptr_t>(err));
int err = uv_fs_stat(loop, req, path.c_str(),
uv_fs_callback_t{[](uv_fs_t* req) {
FSReqBase* req_wrap = FSReqBase::from_req(req);
int err = req->result;
if (reinterpret_cast<intptr_t>(req->data) == UV_EEXIST &&
req_wrap->continuation_data()->paths().size() > 0) {
if (err == 0 && S_ISDIR(req->statbuf.st_mode)) {
Environment* env = req_wrap->env();
uv_loop_t* loop = env->event_loop();
std::string path = req->path;
uv_fs_req_cleanup(req);
MKDirpAsync(loop, req, path.c_str(),
req_wrap->continuation_data()->mode(), nullptr);
return;
}
err = UV_ENOTDIR;
}
// verify that the path pointed to is actually a directory.
if (err == 0 && !S_ISDIR(req->statbuf.st_mode)) err = UV_EEXIST;
req_wrap->continuation_data()->Done(err);
}});
if (err < 0) req_wrap->continuation_data()->Done(err);
break;
}
break;
}
}});
return err;
}
int CallMKDirpSync(Environment* env, const FunctionCallbackInfo<Value>& args,
FSReqWrapSync* req_wrap, const char* path, int mode) {
env->PrintSyncTrace();
int err = MKDirpSync(env->event_loop(), &req_wrap->req, path, mode,
nullptr);
if (err < 0) {
v8::Local<v8::Context> context = env->context();
v8::Local<v8::Object> ctx_obj = args[4].As<v8::Object>();
v8::Isolate* isolate = env->isolate();
ctx_obj->Set(context,
env->errno_string(),
v8::Integer::New(isolate, err)).Check();
ctx_obj->Set(context,
env->syscall_string(),
OneByteString(isolate, "mkdir")).Check();
}
return err;
}
static void MKDir(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 4);
BufferValue path(env->isolate(), args[0]);
CHECK_NOT_NULL(*path);
CHECK(args[1]->IsInt32());
const int mode = args[1].As<Int32>()->Value();
CHECK(args[2]->IsBoolean());
bool mkdirp = args[2]->IsTrue();
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // mkdir(path, mode, req)
AsyncCall(env, req_wrap_async, args, "mkdir", UTF8,
mkdirp ? AfterMkdirp : AfterNoArgs,
mkdirp ? MKDirpAsync : uv_fs_mkdir, *path, mode);
} else { // mkdir(path, mode, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(mkdir);
if (mkdirp) {
int err = CallMKDirpSync(env, args, &req_wrap_sync, *path, mode);
if (err == 0 &&
!req_wrap_sync.continuation_data()->first_path().empty()) {
Local<Value> error;
std::string first_path(req_wrap_sync.continuation_data()->first_path());
FromNamespacedPath(&first_path);
MaybeLocal<Value> path = StringBytes::Encode(env->isolate(),
first_path.c_str(),
UTF8, &error);
if (path.IsEmpty()) {
Local<Object> ctx = args[4].As<Object>();
ctx->Set(env->context(), env->error_string(), error).Check();
return;
}
args.GetReturnValue().Set(path.ToLocalChecked());
}
} else {
SyncCall(env, args[4], &req_wrap_sync, "mkdir",
uv_fs_mkdir, *path, mode);
}
FS_SYNC_TRACE_END(mkdir);
}
}
static void RealPath(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue path(isolate, args[0]);
CHECK_NOT_NULL(*path);
const enum encoding encoding = ParseEncoding(isolate, args[1], UTF8);
FSReqBase* req_wrap_async = GetReqWrap(args, 2);
if (req_wrap_async != nullptr) { // realpath(path, encoding, req)
AsyncCall(env, req_wrap_async, args, "realpath", encoding, AfterStringPtr,
uv_fs_realpath, *path);
} else { // realpath(path, encoding, undefined, ctx)
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(realpath);
int err = SyncCall(env, args[3], &req_wrap_sync, "realpath",
uv_fs_realpath, *path);
FS_SYNC_TRACE_END(realpath);
if (err < 0) {
return; // syscall failed, no need to continue, error info is in ctx
}
const char* link_path = static_cast<const char*>(req_wrap_sync.req.ptr);
Local<Value> error;
MaybeLocal<Value> rc = StringBytes::Encode(isolate,
link_path,
encoding,
&error);
if (rc.IsEmpty()) {
Local<Object> ctx = args[3].As<Object>();
ctx->Set(env->context(), env->error_string(), error).Check();
return;
}
args.GetReturnValue().Set(rc.ToLocalChecked());
}
}
static void ReadDir(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue path(isolate, args[0]);
CHECK_NOT_NULL(*path);
const enum encoding encoding = ParseEncoding(isolate, args[1], UTF8);
bool with_types = args[2]->IsTrue();
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // readdir(path, encoding, withTypes, req)
if (with_types) {
AsyncCall(env, req_wrap_async, args, "scandir", encoding,
AfterScanDirWithTypes, uv_fs_scandir, *path, 0 /*flags*/);
} else {
AsyncCall(env, req_wrap_async, args, "scandir", encoding,
AfterScanDir, uv_fs_scandir, *path, 0 /*flags*/);
}
} else { // readdir(path, encoding, withTypes, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(readdir);
int err = SyncCall(env, args[4], &req_wrap_sync, "scandir",
uv_fs_scandir, *path, 0 /*flags*/);
FS_SYNC_TRACE_END(readdir);
if (err < 0) {
return; // syscall failed, no need to continue, error info is in ctx
}
CHECK_GE(req_wrap_sync.req.result, 0);
int r;
std::vector<Local<Value>> name_v;
std::vector<Local<Value>> type_v;
for (;;) {
uv_dirent_t ent;
r = uv_fs_scandir_next(&(req_wrap_sync.req), &ent);
if (r == UV_EOF)
break;
if (r != 0) {
Local<Object> ctx = args[4].As<Object>();
ctx->Set(env->context(), env->errno_string(),
Integer::New(isolate, r)).Check();
ctx->Set(env->context(), env->syscall_string(),
OneByteString(isolate, "readdir")).Check();
return;
}
Local<Value> error;
MaybeLocal<Value> filename = StringBytes::Encode(isolate,
ent.name,
encoding,
&error);
if (filename.IsEmpty()) {
Local<Object> ctx = args[4].As<Object>();
ctx->Set(env->context(), env->error_string(), error).Check();
return;
}
name_v.push_back(filename.ToLocalChecked());
if (with_types) {
type_v.emplace_back(Integer::New(isolate, ent.type));
}
}
Local<Array> names = Array::New(isolate, name_v.data(), name_v.size());
if (with_types) {
Local<Value> result[] = {
names,
Array::New(isolate, type_v.data(), type_v.size())
};
args.GetReturnValue().Set(Array::New(isolate, result, arraysize(result)));
} else {
args.GetReturnValue().Set(names);
}
}
}
static void Open(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue path(env->isolate(), args[0]);
CHECK_NOT_NULL(*path);
CHECK(args[1]->IsInt32());
const int flags = args[1].As<Int32>()->Value();
CHECK(args[2]->IsInt32());
const int mode = args[2].As<Int32>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // open(path, flags, mode, req)
req_wrap_async->set_is_plain_open(true);
AsyncCall(env, req_wrap_async, args, "open", UTF8, AfterInteger,
uv_fs_open, *path, flags, mode);
} else { // open(path, flags, mode, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(open);
int result = SyncCall(env, args[4], &req_wrap_sync, "open",
uv_fs_open, *path, flags, mode);
FS_SYNC_TRACE_END(open);
if (result >= 0) env->AddUnmanagedFd(result);
args.GetReturnValue().Set(result);
}
}
static void OpenFileHandle(const FunctionCallbackInfo<Value>& args) {
BindingData* binding_data = Environment::GetBindingData<BindingData>(args);
Environment* env = binding_data->env();
Isolate* isolate = env->isolate();
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue path(isolate, args[0]);
CHECK_NOT_NULL(*path);
CHECK(args[1]->IsInt32());
const int flags = args[1].As<Int32>()->Value();
CHECK(args[2]->IsInt32());
const int mode = args[2].As<Int32>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // openFileHandle(path, flags, mode, req)
AsyncCall(env, req_wrap_async, args, "open", UTF8, AfterOpenFileHandle,
uv_fs_open, *path, flags, mode);
} else { // openFileHandle(path, flags, mode, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(open);
int result = SyncCall(env, args[4], &req_wrap_sync, "open",
uv_fs_open, *path, flags, mode);
FS_SYNC_TRACE_END(open);
if (result < 0) {
return; // syscall failed, no need to continue, error info is in ctx
}
FileHandle* fd = FileHandle::New(binding_data, result);
if (fd == nullptr) return;
args.GetReturnValue().Set(fd->object());
}
}
static void CopyFile(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue src(isolate, args[0]);
CHECK_NOT_NULL(*src);
BufferValue dest(isolate, args[1]);
CHECK_NOT_NULL(*dest);
CHECK(args[2]->IsInt32());
const int flags = args[2].As<Int32>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // copyFile(src, dest, flags, req)
AsyncDestCall(env, req_wrap_async, args, "copyfile",
*dest, dest.length(), UTF8, AfterNoArgs,
uv_fs_copyfile, *src, *dest, flags);
} else { // copyFile(src, dest, flags, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(copyfile);
SyncCall(env, args[4], &req_wrap_sync, "copyfile",
uv_fs_copyfile, *src, *dest, flags);
FS_SYNC_TRACE_END(copyfile);
}
}
// Wrapper for write(2).
//
// bytesWritten = write(fd, buffer, offset, length, position, callback)
// 0 fd integer. file descriptor
// 1 buffer the data to write
// 2 offset where in the buffer to start from
// 3 length how much to write
// 4 position if integer, position to write at in the file.
// if null, write from the current position
static void WriteBuffer(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 4);
CHECK(args[0]->IsInt32());
const int fd = args[0].As<Int32>()->Value();
CHECK(Buffer::HasInstance(args[1]));
Local<Object> buffer_obj = args[1].As<Object>();
char* buffer_data = Buffer::Data(buffer_obj);
size_t buffer_length = Buffer::Length(buffer_obj);
CHECK(IsSafeJsInt(args[2]));
const int64_t off_64 = args[2].As<Integer>()->Value();
CHECK_GE(off_64, 0);
CHECK_LE(static_cast<uint64_t>(off_64), buffer_length);
const size_t off = static_cast<size_t>(off_64);
CHECK(args[3]->IsInt32());
const size_t len = static_cast<size_t>(args[3].As<Int32>()->Value());
CHECK(Buffer::IsWithinBounds(off, len, buffer_length));
CHECK_LE(len, buffer_length);
CHECK_GE(off + len, off);
const int64_t pos = GetOffset(args[4]);
char* buf = buffer_data + off;
uv_buf_t uvbuf = uv_buf_init(buf, len);
FSReqBase* req_wrap_async = GetReqWrap(args, 5);
if (req_wrap_async != nullptr) { // write(fd, buffer, off, len, pos, req)
AsyncCall(env, req_wrap_async, args, "write", UTF8, AfterInteger,
uv_fs_write, fd, &uvbuf, 1, pos);
} else { // write(fd, buffer, off, len, pos, undefined, ctx)
CHECK_EQ(argc, 7);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(write);
int bytesWritten = SyncCall(env, args[6], &req_wrap_sync, "write",
uv_fs_write, fd, &uvbuf, 1, pos);
FS_SYNC_TRACE_END(write, "bytesWritten", bytesWritten);
args.GetReturnValue().Set(bytesWritten);
}
}
// Wrapper for writev(2).
//
// bytesWritten = writev(fd, chunks, position, callback)
// 0 fd integer. file descriptor
// 1 chunks array of buffers to write
// 2 position if integer, position to write at in the file.
// if null, write from the current position
static void WriteBuffers(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 3);
CHECK(args[0]->IsInt32());
const int fd = args[0].As<Int32>()->Value();
CHECK(args[1]->IsArray());
Local<Array> chunks = args[1].As<Array>();
int64_t pos = GetOffset(args[2]);
MaybeStackBuffer<uv_buf_t> iovs(chunks->Length());
for (uint32_t i = 0; i < iovs.length(); i++) {
Local<Value> chunk = chunks->Get(env->context(), i).ToLocalChecked();
CHECK(Buffer::HasInstance(chunk));
iovs[i] = uv_buf_init(Buffer::Data(chunk), Buffer::Length(chunk));
}
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // writeBuffers(fd, chunks, pos, req)
AsyncCall(env, req_wrap_async, args, "write", UTF8, AfterInteger,
uv_fs_write, fd, *iovs, iovs.length(), pos);
} else { // writeBuffers(fd, chunks, pos, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(write);
int bytesWritten = SyncCall(env, args[4], &req_wrap_sync, "write",
uv_fs_write, fd, *iovs, iovs.length(), pos);
FS_SYNC_TRACE_END(write, "bytesWritten", bytesWritten);
args.GetReturnValue().Set(bytesWritten);
}
}
// Wrapper for write(2).
//
// bytesWritten = write(fd, string, position, enc, callback)
// 0 fd integer. file descriptor
// 1 string non-buffer values are converted to strings
// 2 position if integer, position to write at in the file.
// if null, write from the current position
// 3 enc encoding of string
static void WriteString(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
const int argc = args.Length();
CHECK_GE(argc, 4);
CHECK(args[0]->IsInt32());
const int fd = args[0].As<Int32>()->Value();
const int64_t pos = GetOffset(args[2]);
const auto enc = ParseEncoding(isolate, args[3], UTF8);
Local<Value> value = args[1];
char* buf = nullptr;
size_t len;
FSReqBase* req_wrap_async = GetReqWrap(args, 4);
const bool is_async = req_wrap_async != nullptr;
// Avoid copying the string when it is externalized but only when:
// 1. The target encoding is compatible with the string's encoding, and
// 2. The write is synchronous, otherwise the string might get neutered
// while the request is in flight, and
// 3. For UCS2, when the host system is little-endian. Big-endian systems
// need to call StringBytes::Write() to ensure proper byte swapping.
// The const_casts are conceptually sound: memory is read but not written.
if (!is_async && value->IsString()) {
auto string = value.As<String>();
if ((enc == ASCII || enc == LATIN1) && string->IsExternalOneByte()) {
auto ext = string->GetExternalOneByteStringResource();
buf = const_cast<char*>(ext->data());
len = ext->length();
} else if (enc == UCS2 && IsLittleEndian() && string->IsExternal()) {
auto ext = string->GetExternalStringResource();
buf = reinterpret_cast<char*>(const_cast<uint16_t*>(ext->data()));
len = ext->length() * sizeof(*ext->data());
}
}
if (is_async) { // write(fd, string, pos, enc, req)
CHECK_NOT_NULL(req_wrap_async);
if (!StringBytes::StorageSize(isolate, value, enc).To(&len)) return;
FSReqBase::FSReqBuffer& stack_buffer =
req_wrap_async->Init("write", len, enc);
// StorageSize may return too large a char, so correct the actual length
// by the write size
len = StringBytes::Write(isolate, *stack_buffer, len, args[1], enc);
stack_buffer.SetLengthAndZeroTerminate(len);
uv_buf_t uvbuf = uv_buf_init(*stack_buffer, len);
int err = req_wrap_async->Dispatch(uv_fs_write,
fd,
&uvbuf,
1,
pos,
AfterInteger);
if (err < 0) {
uv_fs_t* uv_req = req_wrap_async->req();
uv_req->result = err;
uv_req->path = nullptr;
AfterInteger(uv_req); // after may delete req_wrap_async if there is
// an error
} else {
req_wrap_async->SetReturnValue(args);
}
} else { // write(fd, string, pos, enc, undefined, ctx)
CHECK_EQ(argc, 6);
FSReqWrapSync req_wrap_sync;
FSReqBase::FSReqBuffer stack_buffer;
if (buf == nullptr) {
if (!StringBytes::StorageSize(isolate, value, enc).To(&len))
return;
stack_buffer.AllocateSufficientStorage(len + 1);
// StorageSize may return too large a char, so correct the actual length
// by the write size
len = StringBytes::Write(isolate, *stack_buffer,
len, args[1], enc);
stack_buffer.SetLengthAndZeroTerminate(len);
buf = *stack_buffer;
}
uv_buf_t uvbuf = uv_buf_init(buf, len);
FS_SYNC_TRACE_BEGIN(write);
int bytesWritten = SyncCall(env, args[5], &req_wrap_sync, "write",
uv_fs_write, fd, &uvbuf, 1, pos);
FS_SYNC_TRACE_END(write, "bytesWritten", bytesWritten);
args.GetReturnValue().Set(bytesWritten);
}
}
/*
* Wrapper for read(2).
*
* bytesRead = fs.read(fd, buffer, offset, length, position)
*
* 0 fd int32. file descriptor
* 1 buffer instance of Buffer
* 2 offset int64. offset to start reading into inside buffer
* 3 length int32. length to read
* 4 position int64. file position - -1 for current position
*/
static void Read(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 5);
CHECK(args[0]->IsInt32());
const int fd = args[0].As<Int32>()->Value();
CHECK(Buffer::HasInstance(args[1]));
Local<Object> buffer_obj = args[1].As<Object>();
char* buffer_data = Buffer::Data(buffer_obj);
size_t buffer_length = Buffer::Length(buffer_obj);
CHECK(IsSafeJsInt(args[2]));
const int64_t off_64 = args[2].As<Integer>()->Value();
CHECK_GE(off_64, 0);
CHECK_LT(static_cast<uint64_t>(off_64), buffer_length);
const size_t off = static_cast<size_t>(off_64);
CHECK(args[3]->IsInt32());
const size_t len = static_cast<size_t>(args[3].As<Int32>()->Value());
CHECK(Buffer::IsWithinBounds(off, len, buffer_length));
CHECK(IsSafeJsInt(args[4]));
const int64_t pos = args[4].As<Integer>()->Value();
char* buf = buffer_data + off;
uv_buf_t uvbuf = uv_buf_init(buf, len);
FSReqBase* req_wrap_async = GetReqWrap(args, 5);
if (req_wrap_async != nullptr) { // read(fd, buffer, offset, len, pos, req)
AsyncCall(env, req_wrap_async, args, "read", UTF8, AfterInteger,
uv_fs_read, fd, &uvbuf, 1, pos);
} else { // read(fd, buffer, offset, len, pos, undefined, ctx)
CHECK_EQ(argc, 7);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(read);
const int bytesRead = SyncCall(env, args[6], &req_wrap_sync, "read",
uv_fs_read, fd, &uvbuf, 1, pos);
FS_SYNC_TRACE_END(read, "bytesRead", bytesRead);
args.GetReturnValue().Set(bytesRead);
}
}
// Wrapper for readv(2).
//
// bytesRead = fs.readv(fd, buffers[, position], callback)
// 0 fd integer. file descriptor
// 1 buffers array of buffers to read
// 2 position if integer, position to read at in the file.
// if null, read from the current position
static void ReadBuffers(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 3);
CHECK(args[0]->IsInt32());
const int fd = args[0].As<Int32>()->Value();
CHECK(args[1]->IsArray());
Local<Array> buffers = args[1].As<Array>();
int64_t pos = GetOffset(args[2]); // -1 if not a valid JS int
MaybeStackBuffer<uv_buf_t> iovs(buffers->Length());
// Init uv buffers from ArrayBufferViews
for (uint32_t i = 0; i < iovs.length(); i++) {
Local<Value> buffer = buffers->Get(env->context(), i).ToLocalChecked();
CHECK(Buffer::HasInstance(buffer));
iovs[i] = uv_buf_init(Buffer::Data(buffer), Buffer::Length(buffer));
}
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // readBuffers(fd, buffers, pos, req)
AsyncCall(env, req_wrap_async, args, "read", UTF8, AfterInteger,
uv_fs_read, fd, *iovs, iovs.length(), pos);
} else { // readBuffers(fd, buffers, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(read);
int bytesRead = SyncCall(env, /* ctx */ args[4], &req_wrap_sync, "read",
uv_fs_read, fd, *iovs, iovs.length(), pos);
FS_SYNC_TRACE_END(read, "bytesRead", bytesRead);
args.GetReturnValue().Set(bytesRead);
}
}
/* fs.chmod(path, mode);
* Wrapper for chmod(1) / EIO_CHMOD
*/
static void Chmod(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 2);
BufferValue path(env->isolate(), args[0]);
CHECK_NOT_NULL(*path);
CHECK(args[1]->IsInt32());
int mode = args[1].As<Int32>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 2);
if (req_wrap_async != nullptr) { // chmod(path, mode, req)
AsyncCall(env, req_wrap_async, args, "chmod", UTF8, AfterNoArgs,
uv_fs_chmod, *path, mode);
} else { // chmod(path, mode, undefined, ctx)
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(chmod);
SyncCall(env, args[3], &req_wrap_sync, "chmod",
uv_fs_chmod, *path, mode);
FS_SYNC_TRACE_END(chmod);
}
}
/* fs.fchmod(fd, mode);
* Wrapper for fchmod(1) / EIO_FCHMOD
*/
static void FChmod(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 2);
CHECK(args[0]->IsInt32());
const int fd = args[0].As<Int32>()->Value();
CHECK(args[1]->IsInt32());
const int mode = args[1].As<Int32>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 2);
if (req_wrap_async != nullptr) { // fchmod(fd, mode, req)
AsyncCall(env, req_wrap_async, args, "fchmod", UTF8, AfterNoArgs,
uv_fs_fchmod, fd, mode);
} else { // fchmod(fd, mode, undefined, ctx)
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(fchmod);
SyncCall(env, args[3], &req_wrap_sync, "fchmod",
uv_fs_fchmod, fd, mode);
FS_SYNC_TRACE_END(fchmod);
}
}
/* fs.chown(path, uid, gid);
* Wrapper for chown(1) / EIO_CHOWN
*/
static void Chown(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue path(env->isolate(), args[0]);
CHECK_NOT_NULL(*path);
CHECK(args[1]->IsUint32());
const uv_uid_t uid = static_cast<uv_uid_t>(args[1].As<Uint32>()->Value());
CHECK(args[2]->IsUint32());
const uv_gid_t gid = static_cast<uv_gid_t>(args[2].As<Uint32>()->Value());
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // chown(path, uid, gid, req)
AsyncCall(env, req_wrap_async, args, "chown", UTF8, AfterNoArgs,
uv_fs_chown, *path, uid, gid);
} else { // chown(path, uid, gid, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(chown);
SyncCall(env, args[4], &req_wrap_sync, "chown",
uv_fs_chown, *path, uid, gid);
FS_SYNC_TRACE_END(chown);
}
}
/* fs.fchown(fd, uid, gid);
* Wrapper for fchown(1) / EIO_FCHOWN
*/
static void FChown(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 3);
CHECK(args[0]->IsInt32());
const int fd = args[0].As<Int32>()->Value();
CHECK(args[1]->IsUint32());
const uv_uid_t uid = static_cast<uv_uid_t>(args[1].As<Uint32>()->Value());
CHECK(args[2]->IsUint32());
const uv_gid_t gid = static_cast<uv_gid_t>(args[2].As<Uint32>()->Value());
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // fchown(fd, uid, gid, req)
AsyncCall(env, req_wrap_async, args, "fchown", UTF8, AfterNoArgs,
uv_fs_fchown, fd, uid, gid);
} else { // fchown(fd, uid, gid, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(fchown);
SyncCall(env, args[4], &req_wrap_sync, "fchown",
uv_fs_fchown, fd, uid, gid);
FS_SYNC_TRACE_END(fchown);
}
}
static void LChown(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue path(env->isolate(), args[0]);
CHECK_NOT_NULL(*path);
CHECK(args[1]->IsUint32());
const uv_uid_t uid = static_cast<uv_uid_t>(args[1].As<Uint32>()->Value());
CHECK(args[2]->IsUint32());
const uv_gid_t gid = static_cast<uv_gid_t>(args[2].As<Uint32>()->Value());
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // lchown(path, uid, gid, req)
AsyncCall(env, req_wrap_async, args, "lchown", UTF8, AfterNoArgs,
uv_fs_lchown, *path, uid, gid);
} else { // lchown(path, uid, gid, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(lchown);
SyncCall(env, args[4], &req_wrap_sync, "lchown",
uv_fs_lchown, *path, uid, gid);
FS_SYNC_TRACE_END(lchown);
}
}
static void UTimes(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue path(env->isolate(), args[0]);
CHECK_NOT_NULL(*path);
CHECK(args[1]->IsNumber());
const double atime = args[1].As<Number>()->Value();
CHECK(args[2]->IsNumber());
const double mtime = args[2].As<Number>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // utimes(path, atime, mtime, req)
AsyncCall(env, req_wrap_async, args, "utime", UTF8, AfterNoArgs,
uv_fs_utime, *path, atime, mtime);
} else { // utimes(path, atime, mtime, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(utimes);
SyncCall(env, args[4], &req_wrap_sync, "utime",
uv_fs_utime, *path, atime, mtime);
FS_SYNC_TRACE_END(utimes);
}
}
static void FUTimes(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 3);
CHECK(args[0]->IsInt32());
const int fd = args[0].As<Int32>()->Value();
CHECK(args[1]->IsNumber());
const double atime = args[1].As<Number>()->Value();
CHECK(args[2]->IsNumber());
const double mtime = args[2].As<Number>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // futimes(fd, atime, mtime, req)
AsyncCall(env, req_wrap_async, args, "futime", UTF8, AfterNoArgs,
uv_fs_futime, fd, atime, mtime);
} else { // futimes(fd, atime, mtime, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(futimes);
SyncCall(env, args[4], &req_wrap_sync, "futime",
uv_fs_futime, fd, atime, mtime);
FS_SYNC_TRACE_END(futimes);
}
}
static void LUTimes(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
const int argc = args.Length();
CHECK_GE(argc, 3);
BufferValue path(env->isolate(), args[0]);
CHECK_NOT_NULL(*path);
CHECK(args[1]->IsNumber());
const double atime = args[1].As<Number>()->Value();
CHECK(args[2]->IsNumber());
const double mtime = args[2].As<Number>()->Value();
FSReqBase* req_wrap_async = GetReqWrap(args, 3);
if (req_wrap_async != nullptr) { // lutimes(path, atime, mtime, req)
AsyncCall(env, req_wrap_async, args, "lutime", UTF8, AfterNoArgs,
uv_fs_lutime, *path, atime, mtime);
} else { // lutimes(path, atime, mtime, undefined, ctx)
CHECK_EQ(argc, 5);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(lutimes);
SyncCall(env, args[4], &req_wrap_sync, "lutime",
uv_fs_lutime, *path, atime, mtime);
FS_SYNC_TRACE_END(lutimes);
}
}
static void Mkdtemp(const FunctionCallbackInfo<Value>& args) {
Environment* env = Environment::GetCurrent(args);
Isolate* isolate = env->isolate();
const int argc = args.Length();
CHECK_GE(argc, 2);
BufferValue tmpl(isolate, args[0]);
CHECK_NOT_NULL(*tmpl);
const enum encoding encoding = ParseEncoding(isolate, args[1], UTF8);
FSReqBase* req_wrap_async = GetReqWrap(args, 2);
if (req_wrap_async != nullptr) { // mkdtemp(tmpl, encoding, req)
AsyncCall(env, req_wrap_async, args, "mkdtemp", encoding, AfterStringPath,
uv_fs_mkdtemp, *tmpl);
} else { // mkdtemp(tmpl, encoding, undefined, ctx)
CHECK_EQ(argc, 4);
FSReqWrapSync req_wrap_sync;
FS_SYNC_TRACE_BEGIN(mkdtemp);
SyncCall(env, args[3], &req_wrap_sync, "mkdtemp",
uv_fs_mkdtemp, *tmpl);
FS_SYNC_TRACE_END(mkdtemp);
const char* path = req_wrap_sync.req.path;
Local<Value> error;
MaybeLocal<Value> rc =
StringBytes::Encode(isolate, path, encoding, &error);
if (rc.IsEmpty()) {
Local<Object> ctx = args[3].As<Object>();
ctx->Set(env->context(), env->error_string(), error).Check();
return;
}
args.GetReturnValue().Set(rc.ToLocalChecked());
}
}
void BindingData::MemoryInfo(MemoryTracker* tracker) const {
tracker->TrackField("stats_field_array", stats_field_array);
tracker->TrackField("stats_field_bigint_array", stats_field_bigint_array);
tracker->TrackField("file_handle_read_wrap_freelist",
file_handle_read_wrap_freelist);
}
// TODO(addaleax): Remove once we're on C++17.
constexpr FastStringKey BindingData::binding_data_name;
void Initialize(Local<Object> target,
Local<Value> unused,
Local<Context> context,
void* priv) {
Environment* env = Environment::GetCurrent(context);
Isolate* isolate = env->isolate();
BindingData* const binding_data =
env->AddBindingData<BindingData>(context, target);
if (binding_data == nullptr) return;
env->SetMethod(target, "access", Access);
env->SetMethod(target, "close", Close);
env->SetMethod(target, "open", Open);
env->SetMethod(target, "openFileHandle", OpenFileHandle);
env->SetMethod(target, "read", Read);
env->SetMethod(target, "readBuffers", ReadBuffers);
env->SetMethod(target, "fdatasync", Fdatasync);
env->SetMethod(target, "fsync", Fsync);
env->SetMethod(target, "rename", Rename);
env->SetMethod(target, "ftruncate", FTruncate);
env->SetMethod(target, "rmdir", RMDir);
env->SetMethod(target, "mkdir", MKDir);
env->SetMethod(target, "readdir", ReadDir);
env->SetMethod(target, "internalModuleReadJSON", InternalModuleReadJSON);
env->SetMethod(target, "internalModuleStat", InternalModuleStat);
env->SetMethod(target, "stat", Stat);
env->SetMethod(target, "lstat", LStat);
env->SetMethod(target, "fstat", FStat);
env->SetMethod(target, "link", Link);
env->SetMethod(target, "symlink", Symlink);
env->SetMethod(target, "readlink", ReadLink);
env->SetMethod(target, "unlink", Unlink);
env->SetMethod(target, "writeBuffer", WriteBuffer);
env->SetMethod(target, "writeBuffers", WriteBuffers);
env->SetMethod(target, "writeString", WriteString);
env->SetMethod(target, "realpath", RealPath);
env->SetMethod(target, "copyFile", CopyFile);
env->SetMethod(target, "chmod", Chmod);
env->SetMethod(target, "fchmod", FChmod);
// env->SetMethod(target, "lchmod", LChmod);
env->SetMethod(target, "chown", Chown);
env->SetMethod(target, "fchown", FChown);
env->SetMethod(target, "lchown", LChown);
env->SetMethod(target, "utimes", UTimes);
env->SetMethod(target, "futimes", FUTimes);
env->SetMethod(target, "lutimes", LUTimes);
env->SetMethod(target, "mkdtemp", Mkdtemp);
target
->Set(context,
FIXED_ONE_BYTE_STRING(isolate, "kFsStatsFieldsNumber"),
Integer::New(
isolate,
static_cast<int32_t>(FsStatsOffset::kFsStatsFieldsNumber)))
.Check();
target->Set(context,
FIXED_ONE_BYTE_STRING(isolate, "statValues"),
binding_data->stats_field_array.GetJSArray()).Check();
target->Set(context,
FIXED_ONE_BYTE_STRING(isolate, "bigintStatValues"),
binding_data->stats_field_bigint_array.GetJSArray()).Check();
StatWatcher::Initialize(env, target);
// Create FunctionTemplate for FSReqCallback
Local<FunctionTemplate> fst = env->NewFunctionTemplate(NewFSReqCallback);
fst->InstanceTemplate()->SetInternalFieldCount(
FSReqBase::kInternalFieldCount);
fst->Inherit(AsyncWrap::GetConstructorTemplate(env));
Local<String> wrapString =
FIXED_ONE_BYTE_STRING(isolate, "FSReqCallback");
fst->SetClassName(wrapString);
target
->Set(context, wrapString,
fst->GetFunction(env->context()).ToLocalChecked())
.Check();
// Create FunctionTemplate for FileHandleReadWrap. There’s no need
// to do anything in the constructor, so we only store the instance template.
Local<FunctionTemplate> fh_rw = FunctionTemplate::New(isolate);
fh_rw->InstanceTemplate()->SetInternalFieldCount(
FSReqBase::kInternalFieldCount);
fh_rw->Inherit(AsyncWrap::GetConstructorTemplate(env));
Local<String> fhWrapString =
FIXED_ONE_BYTE_STRING(isolate, "FileHandleReqWrap");
fh_rw->SetClassName(fhWrapString);
env->set_filehandlereadwrap_template(
fst->InstanceTemplate());
// Create Function Template for FSReqPromise
Local<FunctionTemplate> fpt = FunctionTemplate::New(isolate);
fpt->Inherit(AsyncWrap::GetConstructorTemplate(env));
Local<String> promiseString =
FIXED_ONE_BYTE_STRING(isolate, "FSReqPromise");
fpt->SetClassName(promiseString);
Local<ObjectTemplate> fpo = fpt->InstanceTemplate();
fpo->SetInternalFieldCount(FSReqBase::kInternalFieldCount);
env->set_fsreqpromise_constructor_template(fpo);
// Create FunctionTemplate for FileHandle
Local<FunctionTemplate> fd = env->NewFunctionTemplate(FileHandle::New);
fd->Inherit(AsyncWrap::GetConstructorTemplate(env));
env->SetProtoMethod(fd, "close", FileHandle::Close);
env->SetProtoMethod(fd, "releaseFD", FileHandle::ReleaseFD);
Local<ObjectTemplate> fdt = fd->InstanceTemplate();
fdt->SetInternalFieldCount(StreamBase::kInternalFieldCount);
Local<String> handleString =
FIXED_ONE_BYTE_STRING(isolate, "FileHandle");
fd->SetClassName(handleString);
StreamBase::AddMethods(env, fd);
target
->Set(context, handleString,
fd->GetFunction(env->context()).ToLocalChecked())
.Check();
env->set_fd_constructor_template(fdt);
// Create FunctionTemplate for FileHandle::CloseReq
Local<FunctionTemplate> fdclose = FunctionTemplate::New(isolate);
fdclose->SetClassName(FIXED_ONE_BYTE_STRING(isolate,
"FileHandleCloseReq"));
fdclose->Inherit(AsyncWrap::GetConstructorTemplate(env));
Local<ObjectTemplate> fdcloset = fdclose->InstanceTemplate();
fdcloset->SetInternalFieldCount(FSReqBase::kInternalFieldCount);
env->set_fdclose_constructor_template(fdcloset);
Local<Symbol> use_promises_symbol =
Symbol::New(isolate,
FIXED_ONE_BYTE_STRING(isolate, "use promises"));
env->set_fs_use_promises_symbol(use_promises_symbol);
target->Set(context,
FIXED_ONE_BYTE_STRING(isolate, "kUsePromises"),
use_promises_symbol).Check();
}
} // namespace fs
} // end namespace node
NODE_MODULE_CONTEXT_AWARE_INTERNAL(fs, node::fs::Initialize)