blob: 97ccf196580b25c15e2e7ab6587652f25065effc [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_ARM64
#include "src/codegen.h"
#include "src/debug.h"
#include "src/deoptimizer.h"
#include "src/full-codegen.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the native context.
__ Ldr(result, GlobalObjectMemOperand());
__ Ldr(result,
FieldMemOperand(result, GlobalObject::kNativeContextOffset));
// Load the InternalArray function from the native context.
__ Ldr(result,
MemOperand(result,
Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the native context.
__ Ldr(result, GlobalObjectMemOperand());
__ Ldr(result,
FieldMemOperand(result, GlobalObject::kNativeContextOffset));
// Load the InternalArray function from the native context.
__ Ldr(result, ContextMemOperand(result,
Context::INTERNAL_ARRAY_FUNCTION_INDEX));
}
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- x0 : number of arguments excluding receiver
// -- x1 : called function (only guaranteed when
// extra_args requires it)
// -- cp : context
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument (argc == x0)
// -- sp[4 * argc] : receiver
// -----------------------------------
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
__ Push(x1);
} else {
DCHECK(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects x0 to contain the number of arguments
// including the receiver and the extra arguments.
__ Add(x0, x0, num_extra_args + 1);
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_InternalArrayCode");
Label generic_array_code;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, x1);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset));
__ Tst(x10, kSmiTagMask);
__ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction);
__ CompareObjectType(x10, x11, x12, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_ArrayCode");
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the Array function.
GenerateLoadArrayFunction(masm, x1);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset));
__ Tst(x10, kSmiTagMask);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction);
__ CompareObjectType(x10, x11, x12, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
}
// Run the native code for the Array function called as a normal function.
__ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
__ Mov(x3, x1);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- lr : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_StringConstructCode");
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_ctor_calls(), 1, x10, x11);
Register argc = x0;
Register function = x1;
if (FLAG_debug_code) {
__ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, x10);
__ Cmp(function, x10);
__ Assert(eq, kUnexpectedStringFunction);
}
// Load the first arguments in x0 and get rid of the rest.
Label no_arguments;
__ Cbz(argc, &no_arguments);
// First args = sp[(argc - 1) * 8].
__ Sub(argc, argc, 1);
__ Drop(argc, kXRegSize);
// jssp now point to args[0], load and drop args[0] + receiver.
Register arg = argc;
__ Ldr(arg, MemOperand(jssp, 2 * kPointerSize, PostIndex));
argc = NoReg;
Register argument = x2;
Label not_cached, argument_is_string;
__ LookupNumberStringCache(arg, // Input.
argument, // Result.
x10, // Scratch.
x11, // Scratch.
x12, // Scratch.
&not_cached);
__ IncrementCounter(counters->string_ctor_cached_number(), 1, x10, x11);
__ Bind(&argument_is_string);
// ----------- S t a t e -------------
// -- x2 : argument converted to string
// -- x1 : constructor function
// -- lr : return address
// -----------------------------------
Label gc_required;
Register new_obj = x0;
__ Allocate(JSValue::kSize, new_obj, x10, x11, &gc_required, TAG_OBJECT);
// Initialize the String object.
Register map = x3;
__ LoadGlobalFunctionInitialMap(function, map, x10);
if (FLAG_debug_code) {
__ Ldrb(x4, FieldMemOperand(map, Map::kInstanceSizeOffset));
__ Cmp(x4, JSValue::kSize >> kPointerSizeLog2);
__ Assert(eq, kUnexpectedStringWrapperInstanceSize);
__ Ldrb(x4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
__ Cmp(x4, 0);
__ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper);
}
__ Str(map, FieldMemOperand(new_obj, HeapObject::kMapOffset));
Register empty = x3;
__ LoadRoot(empty, Heap::kEmptyFixedArrayRootIndex);
__ Str(empty, FieldMemOperand(new_obj, JSObject::kPropertiesOffset));
__ Str(empty, FieldMemOperand(new_obj, JSObject::kElementsOffset));
__ Str(argument, FieldMemOperand(new_obj, JSValue::kValueOffset));
// Ensure the object is fully initialized.
STATIC_ASSERT(JSValue::kSize == (4 * kPointerSize));
__ Ret();
// The argument was not found in the number to string cache. Check
// if it's a string already before calling the conversion builtin.
Label convert_argument;
__ Bind(&not_cached);
__ JumpIfSmi(arg, &convert_argument);
// Is it a String?
__ Ldr(x10, FieldMemOperand(x0, HeapObject::kMapOffset));
__ Ldrb(x11, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ Tbnz(x11, MaskToBit(kIsNotStringMask), &convert_argument);
__ Mov(argument, arg);
__ IncrementCounter(counters->string_ctor_string_value(), 1, x10, x11);
__ B(&argument_is_string);
// Invoke the conversion builtin and put the result into x2.
__ Bind(&convert_argument);
__ Push(function); // Preserve the function.
__ IncrementCounter(counters->string_ctor_conversions(), 1, x10, x11);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(arg);
__ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
}
__ Pop(function);
__ Mov(argument, x0);
__ B(&argument_is_string);
// Load the empty string into x2, remove the receiver from the
// stack, and jump back to the case where the argument is a string.
__ Bind(&no_arguments);
__ LoadRoot(argument, Heap::kempty_stringRootIndex);
__ Drop(1);
__ B(&argument_is_string);
// At this point the argument is already a string. Call runtime to create a
// string wrapper.
__ Bind(&gc_required);
__ IncrementCounter(counters->string_ctor_gc_required(), 1, x10, x11);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(argument);
__ CallRuntime(Runtime::kNewStringWrapper, 1);
}
__ Ret();
}
static void CallRuntimePassFunction(MacroAssembler* masm,
Runtime::FunctionId function_id) {
FrameScope scope(masm, StackFrame::INTERNAL);
// - Push a copy of the function onto the stack.
// - Push another copy as a parameter to the runtime call.
__ Push(x1, x1);
__ CallRuntime(function_id, 1);
// - Restore receiver.
__ Pop(x1);
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x2, FieldMemOperand(x2, SharedFunctionInfo::kCodeOffset));
__ Add(x2, x2, Code::kHeaderSize - kHeapObjectTag);
__ Br(x2);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
__ Add(x0, x0, Code::kHeaderSize - kHeapObjectTag);
__ Br(x0);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However, not
// checking may delay installing ready functions, and always checking would be
// quite expensive. A good compromise is to first check against stack limit as
// a cue for an interrupt signal.
Label ok;
__ CompareRoot(masm->StackPointer(), Heap::kStackLimitRootIndex);
__ B(hs, &ok);
CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
GenerateTailCallToReturnedCode(masm);
__ Bind(&ok);
GenerateTailCallToSharedCode(masm);
}
static void Generate_Runtime_NewObject(MacroAssembler* masm,
bool create_memento,
Register original_constructor,
Label* count_incremented,
Label* allocated) {
if (create_memento) {
// Get the cell or allocation site.
__ Peek(x4, 2 * kXRegSize);
__ Push(x4);
__ Push(x1); // Argument for Runtime_NewObject.
__ Push(original_constructor);
__ CallRuntime(Runtime::kNewObjectWithAllocationSite, 3);
__ Mov(x4, x0);
// If we ended up using the runtime, and we want a memento, then the
// runtime call made it for us, and we shouldn't do create count
// increment.
__ jmp(count_incremented);
} else {
__ Push(x1); // Argument for Runtime_NewObject.
__ Push(original_constructor);
__ CallRuntime(Runtime::kNewObject, 2);
__ Mov(x4, x0);
__ jmp(allocated);
}
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool create_memento) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- x2 : allocation site or undefined
// -- x3 : original constructor
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_JSConstructStubHelper");
// Should never create mementos for api functions.
DCHECK(!is_api_function || !create_memento);
Isolate* isolate = masm->isolate();
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the three incoming parameters on the stack.
if (create_memento) {
__ AssertUndefinedOrAllocationSite(x2, x10);
__ Push(x2);
}
Register argc = x0;
Register constructor = x1;
Register original_constructor = x3;
// x1: constructor function
__ SmiTag(argc);
__ Push(argc, constructor);
// sp[0] : Constructor function.
// sp[1]: number of arguments (smi-tagged)
Label rt_call, count_incremented, allocated, normal_new;
__ Cmp(constructor, original_constructor);
__ B(eq, &normal_new);
Generate_Runtime_NewObject(masm, create_memento, original_constructor,
&count_incremented, &allocated);
__ Bind(&normal_new);
// Try to allocate the object without transitioning into C code. If any of
// the preconditions is not met, the code bails out to the runtime call.
if (FLAG_inline_new) {
Label undo_allocation;
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(isolate);
__ Mov(x2, Operand(debug_step_in_fp));
__ Ldr(x2, MemOperand(x2));
__ Cbnz(x2, &rt_call);
// Load the initial map and verify that it is in fact a map.
Register init_map = x2;
__ Ldr(init_map,
FieldMemOperand(constructor,
JSFunction::kPrototypeOrInitialMapOffset));
__ JumpIfSmi(init_map, &rt_call);
__ JumpIfNotObjectType(init_map, x10, x11, MAP_TYPE, &rt_call);
// Check that the constructor is not constructing a JSFunction (see
// comments in Runtime_NewObject in runtime.cc). In which case the initial
// map's instance type would be JS_FUNCTION_TYPE.
__ CompareInstanceType(init_map, x10, JS_FUNCTION_TYPE);
__ B(eq, &rt_call);
Register constructon_count = x14;
if (!is_api_function) {
Label allocate;
MemOperand bit_field3 =
FieldMemOperand(init_map, Map::kBitField3Offset);
// Check if slack tracking is enabled.
__ Ldr(x4, bit_field3);
__ DecodeField<Map::Counter>(constructon_count, x4);
__ Cmp(constructon_count, Operand(Map::kSlackTrackingCounterEnd));
__ B(lt, &allocate);
// Decrease generous allocation count.
__ Subs(x4, x4, Operand(1 << Map::Counter::kShift));
__ Str(x4, bit_field3);
__ Cmp(constructon_count, Operand(Map::kSlackTrackingCounterEnd));
__ B(ne, &allocate);
// Push the constructor and map to the stack, and the constructor again
// as argument to the runtime call.
__ Push(constructor, init_map, constructor);
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ Pop(init_map, constructor);
__ Mov(constructon_count, Operand(Map::kSlackTrackingCounterEnd - 1));
__ Bind(&allocate);
}
// Now allocate the JSObject on the heap.
Register obj_size = x3;
Register new_obj = x4;
__ Ldrb(obj_size, FieldMemOperand(init_map, Map::kInstanceSizeOffset));
if (create_memento) {
__ Add(x7, obj_size,
Operand(AllocationMemento::kSize / kPointerSize));
__ Allocate(x7, new_obj, x10, x11, &rt_call, SIZE_IN_WORDS);
} else {
__ Allocate(obj_size, new_obj, x10, x11, &rt_call, SIZE_IN_WORDS);
}
// Allocated the JSObject, now initialize the fields. Map is set to
// initial map and properties and elements are set to empty fixed array.
// NB. the object pointer is not tagged, so MemOperand is used.
Register empty = x5;
__ LoadRoot(empty, Heap::kEmptyFixedArrayRootIndex);
__ Str(init_map, MemOperand(new_obj, JSObject::kMapOffset));
STATIC_ASSERT(JSObject::kElementsOffset ==
(JSObject::kPropertiesOffset + kPointerSize));
__ Stp(empty, empty, MemOperand(new_obj, JSObject::kPropertiesOffset));
Register first_prop = x5;
__ Add(first_prop, new_obj, JSObject::kHeaderSize);
// Fill all of the in-object properties with the appropriate filler.
Register filler = x7;
__ LoadRoot(filler, Heap::kUndefinedValueRootIndex);
// Obtain number of pre-allocated property fields and in-object
// properties.
Register prealloc_fields = x10;
Register inobject_props = x11;
Register inst_sizes = x11;
__ Ldr(inst_sizes, FieldMemOperand(init_map, Map::kInstanceSizesOffset));
__ Ubfx(prealloc_fields, inst_sizes,
Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
kBitsPerByte);
__ Ubfx(inobject_props, inst_sizes,
Map::kInObjectPropertiesByte * kBitsPerByte, kBitsPerByte);
// Calculate number of property fields in the object.
Register prop_fields = x6;
__ Sub(prop_fields, obj_size, JSObject::kHeaderSize / kPointerSize);
if (!is_api_function) {
Label no_inobject_slack_tracking;
// Check if slack tracking is enabled.
__ Cmp(constructon_count, Operand(Map::kSlackTrackingCounterEnd));
__ B(lt, &no_inobject_slack_tracking);
constructon_count = NoReg;
// Fill the pre-allocated fields with undef.
__ FillFields(first_prop, prealloc_fields, filler);
// Update first_prop register to be the offset of the first field after
// pre-allocated fields.
__ Add(first_prop, first_prop,
Operand(prealloc_fields, LSL, kPointerSizeLog2));
if (FLAG_debug_code) {
Register obj_end = x14;
__ Add(obj_end, new_obj, Operand(obj_size, LSL, kPointerSizeLog2));
__ Cmp(first_prop, obj_end);
__ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields);
}
// Fill the remaining fields with one pointer filler map.
__ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex);
__ Sub(prop_fields, prop_fields, prealloc_fields);
__ bind(&no_inobject_slack_tracking);
}
if (create_memento) {
// Fill the pre-allocated fields with undef.
__ FillFields(first_prop, prop_fields, filler);
__ Add(first_prop, new_obj, Operand(obj_size, LSL, kPointerSizeLog2));
__ LoadRoot(x14, Heap::kAllocationMementoMapRootIndex);
DCHECK_EQ(0 * kPointerSize, AllocationMemento::kMapOffset);
__ Str(x14, MemOperand(first_prop, kPointerSize, PostIndex));
// Load the AllocationSite
__ Peek(x14, 2 * kXRegSize);
DCHECK_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset);
__ Str(x14, MemOperand(first_prop, kPointerSize, PostIndex));
first_prop = NoReg;
} else {
// Fill all of the property fields with undef.
__ FillFields(first_prop, prop_fields, filler);
first_prop = NoReg;
prop_fields = NoReg;
}
// Add the object tag to make the JSObject real, so that we can continue
// and jump into the continuation code at any time from now on. Any
// failures need to undo the allocation, so that the heap is in a
// consistent state and verifiable.
__ Add(new_obj, new_obj, kHeapObjectTag);
// Check if a non-empty properties array is needed. Continue with
// allocated object if not, or fall through to runtime call if it is.
Register element_count = x3;
__ Ldrb(element_count,
FieldMemOperand(init_map, Map::kUnusedPropertyFieldsOffset));
// The field instance sizes contains both pre-allocated property fields
// and in-object properties.
__ Add(element_count, element_count, prealloc_fields);
__ Subs(element_count, element_count, inobject_props);
// Done if no extra properties are to be allocated.
__ B(eq, &allocated);
__ Assert(pl, kPropertyAllocationCountFailed);
// Scale the number of elements by pointer size and add the header for
// FixedArrays to the start of the next object calculation from above.
Register new_array = x5;
Register array_size = x6;
__ Add(array_size, element_count, FixedArray::kHeaderSize / kPointerSize);
__ Allocate(array_size, new_array, x11, x12, &undo_allocation,
static_cast<AllocationFlags>(RESULT_CONTAINS_TOP |
SIZE_IN_WORDS));
Register array_map = x10;
__ LoadRoot(array_map, Heap::kFixedArrayMapRootIndex);
__ Str(array_map, MemOperand(new_array, FixedArray::kMapOffset));
__ SmiTag(x0, element_count);
__ Str(x0, MemOperand(new_array, FixedArray::kLengthOffset));
// Initialize the fields to undefined.
Register elements = x10;
__ Add(elements, new_array, FixedArray::kHeaderSize);
__ FillFields(elements, element_count, filler);
// Store the initialized FixedArray into the properties field of the
// JSObject.
__ Add(new_array, new_array, kHeapObjectTag);
__ Str(new_array, FieldMemOperand(new_obj, JSObject::kPropertiesOffset));
// Continue with JSObject being successfully allocated.
__ B(&allocated);
// Undo the setting of the new top so that the heap is verifiable. For
// example, the map's unused properties potentially do not match the
// allocated objects unused properties.
__ Bind(&undo_allocation);
__ UndoAllocationInNewSpace(new_obj, x14);
}
// Allocate the new receiver object using the runtime call.
__ Bind(&rt_call);
Generate_Runtime_NewObject(masm, create_memento, constructor,
&count_incremented, &allocated);
// Receiver for constructor call allocated.
// x4: JSObject
__ Bind(&allocated);
if (create_memento) {
__ Peek(x10, 2 * kXRegSize);
__ JumpIfRoot(x10, Heap::kUndefinedValueRootIndex, &count_incremented);
// r2 is an AllocationSite. We are creating a memento from it, so we
// need to increment the memento create count.
__ Ldr(x5, FieldMemOperand(x10,
AllocationSite::kPretenureCreateCountOffset));
__ Add(x5, x5, Operand(Smi::FromInt(1)));
__ Str(x5, FieldMemOperand(x10,
AllocationSite::kPretenureCreateCountOffset));
__ bind(&count_incremented);
}
__ Push(x4, x4);
// Reload the number of arguments from the stack.
// Set it up in x0 for the function call below.
// jssp[0]: receiver
// jssp[1]: receiver
// jssp[2]: constructor function
// jssp[3]: number of arguments (smi-tagged)
__ Peek(constructor, 2 * kXRegSize); // Load constructor.
__ Peek(argc, 3 * kXRegSize); // Load number of arguments.
__ SmiUntag(argc);
// Set up pointer to last argument.
__ Add(x2, fp, StandardFrameConstants::kCallerSPOffset);
// Copy arguments and receiver to the expression stack.
// Copy 2 values every loop to use ldp/stp.
// x0: number of arguments
// x1: constructor function
// x2: address of last argument (caller sp)
// jssp[0]: receiver
// jssp[1]: receiver
// jssp[2]: constructor function
// jssp[3]: number of arguments (smi-tagged)
// Compute the start address of the copy in x3.
__ Add(x3, x2, Operand(argc, LSL, kPointerSizeLog2));
Label loop, entry, done_copying_arguments;
__ B(&entry);
__ Bind(&loop);
__ Ldp(x10, x11, MemOperand(x3, -2 * kPointerSize, PreIndex));
__ Push(x11, x10);
__ Bind(&entry);
__ Cmp(x3, x2);
__ B(gt, &loop);
// Because we copied values 2 by 2 we may have copied one extra value.
// Drop it if that is the case.
__ B(eq, &done_copying_arguments);
__ Drop(1);
__ Bind(&done_copying_arguments);
// Call the function.
// x0: number of arguments
// x1: constructor function
if (is_api_function) {
__ Ldr(cp, FieldMemOperand(constructor, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
__ Call(code, RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(argc);
__ InvokeFunction(constructor, actual, CALL_FUNCTION, NullCallWrapper());
}
// Store offset of return address for deoptimizer.
if (!is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore the context from the frame.
// x0: result
// jssp[0]: receiver
// jssp[1]: constructor function
// jssp[2]: number of arguments (smi-tagged)
__ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// x0: result
// jssp[0]: receiver (newly allocated object)
// jssp[1]: constructor function
// jssp[2]: number of arguments (smi-tagged)
__ JumpIfSmi(x0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
__ JumpIfObjectType(x0, x1, x3, FIRST_SPEC_OBJECT_TYPE, &exit, ge);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ Bind(&use_receiver);
__ Peek(x0, 0);
// Remove the receiver from the stack, remove caller arguments, and
// return.
__ Bind(&exit);
// x0: result
// jssp[0]: receiver (newly allocated object)
// jssp[1]: constructor function
// jssp[2]: number of arguments (smi-tagged)
__ Peek(x1, 2 * kXRegSize);
// Leave construct frame.
}
__ DropBySMI(x1);
__ Drop(1);
__ IncrementCounter(isolate->counters()->constructed_objects(), 1, x1, x2);
__ Ret();
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false);
}
void Builtins::Generate_JSConstructStubForDerived(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- x2 : allocation site or undefined
// -- x3 : original constructor
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_JSConstructStubForDerived");
// TODO(dslomov): support pretenuring
CHECK(!FLAG_pretenuring_call_new);
{
FrameScope frame_scope(masm, StackFrame::CONSTRUCT);
__ Mov(x4, x0);
__ SmiTag(x4);
__ LoadRoot(x10, Heap::kTheHoleValueRootIndex);
__ Push(x4, x3, x10);
// sp[0]: number of arguments
// sp[1]: new.target
// sp[2]: receiver (the hole)
// Set up pointer to last argument.
__ Add(x2, fp, StandardFrameConstants::kCallerSPOffset);
// Copy arguments and receiver to the expression stack.
// Copy 2 values every loop to use ldp/stp.
// x0: number of arguments
// x1: constructor function
// x2: address of last argument (caller sp)
// jssp[0]: receiver
// jssp[1]: new.target
// jssp[2]: number of arguments (smi-tagged)
// Compute the start address of the copy in x4.
__ Add(x4, x2, Operand(x0, LSL, kPointerSizeLog2));
Label loop, entry, done_copying_arguments;
__ B(&entry);
__ Bind(&loop);
__ Ldp(x10, x11, MemOperand(x4, -2 * kPointerSize, PreIndex));
__ Push(x11, x10);
__ Bind(&entry);
__ Cmp(x4, x2);
__ B(gt, &loop);
// Because we copied values 2 by 2 we may have copied one extra value.
// Drop it if that is the case.
__ B(eq, &done_copying_arguments);
__ Drop(1);
__ Bind(&done_copying_arguments);
__ Add(x0, x0, Operand(1)); // new.target
// Handle step in.
Label skip_step_in;
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(masm->isolate());
__ Mov(x2, Operand(debug_step_in_fp));
__ Ldr(x2, MemOperand(x2));
__ Cbz(x2, &skip_step_in);
__ Push(x0, x1, x1);
__ CallRuntime(Runtime::kHandleStepInForDerivedConstructors, 1);
__ Pop(x1, x0);
__ bind(&skip_step_in);
// Call the function.
// x0: number of arguments
// x1: constructor function
ParameterCount actual(x0);
__ InvokeFunction(x1, actual, CALL_FUNCTION, NullCallWrapper());
// Restore the context from the frame.
// x0: result
// jssp[0]: number of arguments (smi-tagged)
__ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Load number of arguments (smi).
__ Peek(x1, 0);
// Leave construct frame
}
__ DropBySMI(x1);
__ Drop(1);
__ Ret();
}
enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
// Clobbers x10, x15; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm,
const int calleeOffset, Register argc,
IsTagged argc_is_tagged) {
Register function = x15;
// Check the stack for overflow.
// We are not trying to catch interruptions (e.g. debug break and
// preemption) here, so the "real stack limit" is checked.
Label enough_stack_space;
__ LoadRoot(x10, Heap::kRealStackLimitRootIndex);
__ Ldr(function, MemOperand(fp, calleeOffset));
// Make x10 the space we have left. The stack might already be overflowed
// here which will cause x10 to become negative.
// TODO(jbramley): Check that the stack usage here is safe.
__ Sub(x10, jssp, x10);
// Check if the arguments will overflow the stack.
if (argc_is_tagged == kArgcIsSmiTagged) {
__ Cmp(x10, Operand::UntagSmiAndScale(argc, kPointerSizeLog2));
} else {
DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
__ Cmp(x10, Operand(argc, LSL, kPointerSizeLog2));
}
__ B(gt, &enough_stack_space);
// There is not enough stack space, so use a builtin to throw an appropriate
// error.
__ Push(function, argc);
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
// We should never return from the APPLY_OVERFLOW builtin.
if (__ emit_debug_code()) {
__ Unreachable();
}
__ Bind(&enough_stack_space);
}
// Input:
// x0: code entry.
// x1: function.
// x2: receiver.
// x3: argc.
// x4: argv.
// Output:
// x0: result.
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from JSEntryStub::GenerateBody().
Register function = x1;
Register receiver = x2;
Register argc = x3;
Register argv = x4;
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Clear the context before we push it when entering the internal frame.
__ Mov(cp, 0);
{
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Set up the context from the function argument.
__ Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
__ InitializeRootRegister();
// Push the function and the receiver onto the stack.
__ Push(function, receiver);
// Check if we have enough stack space to push all arguments.
// The function is the first thing that was pushed above after entering
// the internal frame.
const int kFunctionOffset =
InternalFrameConstants::kCodeOffset - kPointerSize;
// Expects argument count in eax. Clobbers ecx, edx, edi.
Generate_CheckStackOverflow(masm, kFunctionOffset, argc,
kArgcIsUntaggedInt);
// Copy arguments to the stack in a loop, in reverse order.
// x3: argc.
// x4: argv.
Label loop, entry;
// Compute the copy end address.
__ Add(x10, argv, Operand(argc, LSL, kPointerSizeLog2));
__ B(&entry);
__ Bind(&loop);
__ Ldr(x11, MemOperand(argv, kPointerSize, PostIndex));
__ Ldr(x12, MemOperand(x11)); // Dereference the handle.
__ Push(x12); // Push the argument.
__ Bind(&entry);
__ Cmp(x10, argv);
__ B(ne, &loop);
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
// The original values have been saved in JSEntryStub::GenerateBody().
__ LoadRoot(x19, Heap::kUndefinedValueRootIndex);
__ Mov(x20, x19);
__ Mov(x21, x19);
__ Mov(x22, x19);
__ Mov(x23, x19);
__ Mov(x24, x19);
__ Mov(x25, x19);
// Don't initialize the reserved registers.
// x26 : root register (root).
// x27 : context pointer (cp).
// x28 : JS stack pointer (jssp).
// x29 : frame pointer (fp).
__ Mov(x0, argc);
if (is_construct) {
// No type feedback cell is available.
__ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
__ CallStub(&stub);
} else {
ParameterCount actual(x0);
__ InvokeFunction(function, actual, CALL_FUNCTION, NullCallWrapper());
}
// Exit the JS internal frame and remove the parameters (except function),
// and return.
}
// Result is in x0. Return.
__ Ret();
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kCompileLazy);
GenerateTailCallToReturnedCode(masm);
}
static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
FrameScope scope(masm, StackFrame::INTERNAL);
Register function = x1;
// Preserve function. At the same time, push arguments for
// kCompileOptimized.
__ LoadObject(x10, masm->isolate()->factory()->ToBoolean(concurrent));
__ Push(function, function, x10);
__ CallRuntime(Runtime::kCompileOptimized, 2);
// Restore receiver.
__ Pop(function);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
CallCompileOptimized(masm, false);
GenerateTailCallToReturnedCode(masm);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
CallCompileOptimized(masm, true);
GenerateTailCallToReturnedCode(masm);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code fast, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// The following caller-saved registers must be saved and restored when
// calling through to the runtime:
// x0 - The address from which to resume execution.
// x1 - isolate
// lr - The return address for the JSFunction itself. It has not yet been
// preserved on the stack because the frame setup code was replaced
// with a call to this stub, to handle code ageing.
{
FrameScope scope(masm, StackFrame::MANUAL);
__ Push(x0, x1, fp, lr);
__ Mov(x1, ExternalReference::isolate_address(masm->isolate()));
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
__ Pop(lr, fp, x1, x0);
}
// The calling function has been made young again, so return to execute the
// real frame set-up code.
__ Br(x0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
} \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
// The following caller-saved registers must be saved and restored when
// calling through to the runtime:
// x0 - The address from which to resume execution.
// x1 - isolate
// lr - The return address for the JSFunction itself. It has not yet been
// preserved on the stack because the frame setup code was replaced
// with a call to this stub, to handle code ageing.
{
FrameScope scope(masm, StackFrame::MANUAL);
__ Push(x0, x1, fp, lr);
__ Mov(x1, ExternalReference::isolate_address(masm->isolate()));
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(
masm->isolate()), 2);
__ Pop(lr, fp, x1, x0);
// Perform prologue operations usually performed by the young code stub.
__ EmitFrameSetupForCodeAgePatching(masm);
}
// Jump to point after the code-age stub.
__ Add(x0, x0, kNoCodeAgeSequenceLength);
__ Br(x0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
// TODO(jbramley): Is it correct (and appropriate) to use safepoint
// registers here? According to the comment above, we should only need to
// preserve the registers with parameters.
__ PushXRegList(kSafepointSavedRegisters);
// Pass the function and deoptimization type to the runtime system.
__ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
__ PopXRegList(kSafepointSavedRegisters);
}
// Ignore state (pushed by Deoptimizer::EntryGenerator::Generate).
__ Drop(1);
// Jump to the miss handler. Deoptimizer::EntryGenerator::Generate loads this
// into lr before it jumps here.
__ Br(lr);
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the deoptimization type to the runtime system.
__ Mov(x0, Smi::FromInt(static_cast<int>(type)));
__ Push(x0);
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
}
// Get the full codegen state from the stack and untag it.
Register state = x6;
__ Peek(state, 0);
__ SmiUntag(state);
// Switch on the state.
Label with_tos_register, unknown_state;
__ CompareAndBranch(
state, FullCodeGenerator::NO_REGISTERS, ne, &with_tos_register);
__ Drop(1); // Remove state.
__ Ret();
__ Bind(&with_tos_register);
// Reload TOS register.
__ Peek(x0, kPointerSize);
__ CompareAndBranch(state, FullCodeGenerator::TOS_REG, ne, &unknown_state);
__ Drop(2); // Remove state and TOS.
__ Ret();
__ Bind(&unknown_state);
__ Abort(kInvalidFullCodegenState);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ Push(x0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
}
// If the code object is null, just return to the unoptimized code.
Label skip;
__ CompareAndBranch(x0, Smi::FromInt(0), ne, &skip);
__ Ret();
__ Bind(&skip);
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ Ldr(x1, MemOperand(x0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ Ldrsw(w1, UntagSmiFieldMemOperand(x1, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex)));
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ Add(x0, x0, x1);
__ Add(lr, x0, Code::kHeaderSize - kHeapObjectTag);
// And "return" to the OSR entry point of the function.
__ Ret();
}
void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
// We check the stack limit as indicator that recompilation might be done.
Label ok;
__ CompareRoot(jssp, Heap::kStackLimitRootIndex);
__ B(hs, &ok);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kStackGuard, 0);
}
__ Jump(masm->isolate()->builtins()->OnStackReplacement(),
RelocInfo::CODE_TARGET);
__ Bind(&ok);
__ Ret();
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
enum {
call_type_JS_func = 0,
call_type_func_proxy = 1,
call_type_non_func = 2
};
Register argc = x0;
Register function = x1;
Register call_type = x4;
Register scratch1 = x10;
Register scratch2 = x11;
Register receiver_type = x13;
ASM_LOCATION("Builtins::Generate_FunctionCall");
// 1. Make sure we have at least one argument.
{ Label done;
__ Cbnz(argc, &done);
__ LoadRoot(scratch1, Heap::kUndefinedValueRootIndex);
__ Push(scratch1);
__ Mov(argc, 1);
__ Bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack, check
// if it is a function.
Label slow, non_function;
__ Peek(function, Operand(argc, LSL, kXRegSizeLog2));
__ JumpIfSmi(function, &non_function);
__ JumpIfNotObjectType(function, scratch1, receiver_type,
JS_FUNCTION_TYPE, &slow);
// 3a. Patch the first argument if necessary when calling a function.
Label shift_arguments;
__ Mov(call_type, static_cast<int>(call_type_JS_func));
{ Label convert_to_object, use_global_proxy, patch_receiver;
// Change context eagerly in case we need the global receiver.
__ Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
// Do not transform the receiver for strict mode functions.
// Also do not transform the receiver for native (Compilerhints already in
// x3).
__ Ldr(scratch1,
FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(scratch2.W(),
FieldMemOperand(scratch1, SharedFunctionInfo::kCompilerHintsOffset));
__ TestAndBranchIfAnySet(
scratch2.W(),
(1 << SharedFunctionInfo::kStrictModeFunction) |
(1 << SharedFunctionInfo::kNative),
&shift_arguments);
// Compute the receiver in sloppy mode.
Register receiver = x2;
__ Sub(scratch1, argc, 1);
__ Peek(receiver, Operand(scratch1, LSL, kXRegSizeLog2));
__ JumpIfSmi(receiver, &convert_to_object);
__ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex,
&use_global_proxy);
__ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &use_global_proxy);
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ JumpIfObjectType(receiver, scratch1, scratch2,
FIRST_SPEC_OBJECT_TYPE, &shift_arguments, ge);
__ Bind(&convert_to_object);
{
// Enter an internal frame in order to preserve argument count.
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(argc);
__ Push(argc, receiver);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ Mov(receiver, x0);
__ Pop(argc);
__ SmiUntag(argc);
// Exit the internal frame.
}
// Restore the function and flag in the registers.
__ Peek(function, Operand(argc, LSL, kXRegSizeLog2));
__ Mov(call_type, static_cast<int>(call_type_JS_func));
__ B(&patch_receiver);
__ Bind(&use_global_proxy);
__ Ldr(receiver, GlobalObjectMemOperand());
__ Ldr(receiver,
FieldMemOperand(receiver, GlobalObject::kGlobalProxyOffset));
__ Bind(&patch_receiver);
__ Sub(scratch1, argc, 1);
__ Poke(receiver, Operand(scratch1, LSL, kXRegSizeLog2));
__ B(&shift_arguments);
}
// 3b. Check for function proxy.
__ Bind(&slow);
__ Mov(call_type, static_cast<int>(call_type_func_proxy));
__ Cmp(receiver_type, JS_FUNCTION_PROXY_TYPE);
__ B(eq, &shift_arguments);
__ Bind(&non_function);
__ Mov(call_type, static_cast<int>(call_type_non_func));
// 3c. Patch the first argument when calling a non-function. The
// CALL_NON_FUNCTION builtin expects the non-function callee as
// receiver, so overwrite the first argument which will ultimately
// become the receiver.
// call type (0: JS function, 1: function proxy, 2: non-function)
__ Sub(scratch1, argc, 1);
__ Poke(function, Operand(scratch1, LSL, kXRegSizeLog2));
// 4. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// call type (0: JS function, 1: function proxy, 2: non-function)
__ Bind(&shift_arguments);
{ Label loop;
// Calculate the copy start address (destination). Copy end address is jssp.
__ Add(scratch2, jssp, Operand(argc, LSL, kPointerSizeLog2));
__ Sub(scratch1, scratch2, kPointerSize);
__ Bind(&loop);
__ Ldr(x12, MemOperand(scratch1, -kPointerSize, PostIndex));
__ Str(x12, MemOperand(scratch2, -kPointerSize, PostIndex));
__ Cmp(scratch1, jssp);
__ B(ge, &loop);
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ Sub(argc, argc, 1);
__ Drop(1);
}
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
// or a function proxy via CALL_FUNCTION_PROXY.
// call type (0: JS function, 1: function proxy, 2: non-function)
{ Label js_function, non_proxy;
__ Cbz(call_type, &js_function);
// Expected number of arguments is 0 for CALL_NON_FUNCTION.
__ Mov(x2, 0);
__ Cmp(call_type, static_cast<int>(call_type_func_proxy));
__ B(ne, &non_proxy);
__ Push(function); // Re-add proxy object as additional argument.
__ Add(argc, argc, 1);
__ GetBuiltinFunction(function, Builtins::CALL_FUNCTION_PROXY);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ Bind(&non_proxy);
__ GetBuiltinFunction(function, Builtins::CALL_NON_FUNCTION);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ Bind(&js_function);
}
// 5b. Get the code to call from the function and check that the number of
// expected arguments matches what we're providing. If so, jump
// (tail-call) to the code in register edx without checking arguments.
__ Ldr(x3, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
__ Ldrsw(x2,
FieldMemOperand(x3,
SharedFunctionInfo::kFormalParameterCountOffset));
Label dont_adapt_args;
__ Cmp(x2, argc); // Check formal and actual parameter counts.
__ B(eq, &dont_adapt_args);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ Bind(&dont_adapt_args);
__ Ldr(x3, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
ParameterCount expected(0);
__ InvokeCode(x3, expected, expected, JUMP_FUNCTION, NullCallWrapper());
}
static void Generate_PushAppliedArguments(MacroAssembler* masm,
const int argumentsOffset,
const int indexOffset,
const int limitOffset) {
Label entry, loop;
Register current = x0;
__ Ldr(current, MemOperand(fp, indexOffset));
__ B(&entry);
__ Bind(&loop);
// Load the current argument from the arguments array and push it.
// TODO(all): Couldn't we optimize this for JS arrays?
__ Ldr(x1, MemOperand(fp, argumentsOffset));
__ Push(x1, current);
// Call the runtime to access the property in the arguments array.
__ CallRuntime(Runtime::kGetProperty, 2);
__ Push(x0);
// Use inline caching to access the arguments.
__ Ldr(current, MemOperand(fp, indexOffset));
__ Add(current, current, Smi::FromInt(1));
__ Str(current, MemOperand(fp, indexOffset));
// Test if the copy loop has finished copying all the elements from the
// arguments object.
__ Bind(&entry);
__ Ldr(x1, MemOperand(fp, limitOffset));
__ Cmp(current, x1);
__ B(ne, &loop);
// On exit, the pushed arguments count is in x0, untagged
__ SmiUntag(current);
}
static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) {
const int kFormalParameters = targetIsArgument ? 3 : 2;
const int kStackSize = kFormalParameters + 1;
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize;
const int kReceiverOffset = kArgumentsOffset + kPointerSize;
const int kFunctionOffset = kReceiverOffset + kPointerSize;
const int kIndexOffset =
StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
Register args = x12;
Register receiver = x14;
Register function = x15;
// Get the length of the arguments via a builtin call.
__ Ldr(function, MemOperand(fp, kFunctionOffset));
__ Ldr(args, MemOperand(fp, kArgumentsOffset));
__ Push(function, args);
if (targetIsArgument) {
__ InvokeBuiltin(Builtins::REFLECT_APPLY_PREPARE, CALL_FUNCTION);
} else {
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
}
Register argc = x0;
Generate_CheckStackOverflow(masm, kFunctionOffset, argc, kArgcIsSmiTagged);
// Push current limit and index.
__ Mov(x1, 0); // Initial index.
__ Push(argc, x1);
Label push_receiver;
__ Ldr(receiver, MemOperand(fp, kReceiverOffset));
// Check that the function is a JS function. Otherwise it must be a proxy.
// When it is not the function proxy will be invoked later.
__ JumpIfNotObjectType(function, x10, x11, JS_FUNCTION_TYPE,
&push_receiver);
// Change context eagerly to get the right global object if necessary.
__ Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
// Load the shared function info.
__ Ldr(x2, FieldMemOperand(function,
JSFunction::kSharedFunctionInfoOffset));
// Compute and push the receiver.
// Do not transform the receiver for strict mode functions.
Label convert_receiver_to_object, use_global_proxy;
__ Ldr(w10, FieldMemOperand(x2, SharedFunctionInfo::kCompilerHintsOffset));
__ Tbnz(x10, SharedFunctionInfo::kStrictModeFunction, &push_receiver);
// Do not transform the receiver for native functions.
__ Tbnz(x10, SharedFunctionInfo::kNative, &push_receiver);
// Compute the receiver in sloppy mode.
__ JumpIfSmi(receiver, &convert_receiver_to_object);
__ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &use_global_proxy);
__ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex,
&use_global_proxy);
// Check if the receiver is already a JavaScript object.
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ JumpIfObjectType(receiver, x10, x11, FIRST_SPEC_OBJECT_TYPE,
&push_receiver, ge);
// Call a builtin to convert the receiver to a regular object.
__ Bind(&convert_receiver_to_object);
__ Push(receiver);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ Mov(receiver, x0);
__ B(&push_receiver);
__ Bind(&use_global_proxy);
__ Ldr(x10, GlobalObjectMemOperand());
__ Ldr(receiver, FieldMemOperand(x10, GlobalObject::kGlobalProxyOffset));
// Push the receiver
__ Bind(&push_receiver);
__ Push(receiver);
// Copy all arguments from the array to the stack.
Generate_PushAppliedArguments(
masm, kArgumentsOffset, kIndexOffset, kLimitOffset);
// At the end of the loop, the number of arguments is stored in 'current',
// represented as a smi.
function = x1; // From now on we want the function to be kept in x1;
__ Ldr(function, MemOperand(fp, kFunctionOffset));
// Call the function.
Label call_proxy;
ParameterCount actual(x0);
__ JumpIfNotObjectType(function, x10, x11, JS_FUNCTION_TYPE, &call_proxy);
__ InvokeFunction(function, actual, CALL_FUNCTION, NullCallWrapper());
frame_scope.GenerateLeaveFrame();
__ Drop(kStackSize);
__ Ret();
// Call the function proxy.
__ Bind(&call_proxy);
// x0 : argc
// x1 : function
__ Push(function); // Add function proxy as last argument.
__ Add(x0, x0, 1);
__ Mov(x2, 0);
__ GetBuiltinFunction(x1, Builtins::CALL_FUNCTION_PROXY);
__ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
__ Drop(kStackSize);
__ Ret();
}
static void Generate_ConstructHelper(MacroAssembler* masm) {
const int kFormalParameters = 3;
const int kStackSize = kFormalParameters + 1;
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize;
const int kArgumentsOffset = kNewTargetOffset + kPointerSize;
const int kFunctionOffset = kArgumentsOffset + kPointerSize;
const int kIndexOffset =
StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
// Is x11 safe to use?
Register newTarget = x11;
Register args = x12;
Register function = x15;
// If newTarget is not supplied, set it to constructor
Label validate_arguments;
__ Ldr(x0, MemOperand(fp, kNewTargetOffset));
__ CompareRoot(x0, Heap::kUndefinedValueRootIndex);
__ B(ne, &validate_arguments);
__ Ldr(x0, MemOperand(fp, kFunctionOffset));
__ Str(x0, MemOperand(fp, kNewTargetOffset));
// Validate arguments
__ Bind(&validate_arguments);
__ Ldr(function, MemOperand(fp, kFunctionOffset));
__ Ldr(args, MemOperand(fp, kArgumentsOffset));
__ Ldr(newTarget, MemOperand(fp, kNewTargetOffset));
__ Push(function, args, newTarget);
__ InvokeBuiltin(Builtins::REFLECT_CONSTRUCT_PREPARE, CALL_FUNCTION);
Register argc = x0;
Generate_CheckStackOverflow(masm, kFunctionOffset, argc, kArgcIsSmiTagged);
// Push current limit and index, constructor & newTarget
__ Mov(x1, 0); // Initial index.
__ Ldr(newTarget, MemOperand(fp, kNewTargetOffset));
__ Push(argc, x1, newTarget, function);
// Copy all arguments from the array to the stack.
Generate_PushAppliedArguments(
masm, kArgumentsOffset, kIndexOffset, kLimitOffset);
__ Ldr(x1, MemOperand(fp, kFunctionOffset));
// Use undefined feedback vector
__ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
// Call the function.
CallConstructStub stub(masm->isolate(), SUPER_CONSTRUCTOR_CALL);
__ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
__ Drop(1);
}
__ Drop(kStackSize);
__ Ret();
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_FunctionApply");
Generate_ApplyHelper(masm, false);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_ReflectApply");
Generate_ApplyHelper(masm, true);
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_ReflectConstruct");
Generate_ConstructHelper(masm);
}
static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
Label* stack_overflow) {
// ----------- S t a t e -------------
// -- x0 : actual number of arguments
// -- x1 : function (passed through to callee)
// -- x2 : expected number of arguments
// -----------------------------------
// Check the stack for overflow.
// We are not trying to catch interruptions (e.g. debug break and
// preemption) here, so the "real stack limit" is checked.
Label enough_stack_space;
__ LoadRoot(x10, Heap::kRealStackLimitRootIndex);
// Make x10 the space we have left. The stack might already be overflowed
// here which will cause x10 to become negative.
__ Sub(x10, jssp, x10);
// Check if the arguments will overflow the stack.
__ Cmp(x10, Operand(x2, LSL, kPointerSizeLog2));
__ B(le, stack_overflow);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(x10, x0);
__ Mov(x11, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ Push(lr, fp);
__ Push(x11, x1, x10);
__ Add(fp, jssp,
StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then drop the parameters and the receiver.
__ Ldr(x10, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize)));
__ Mov(jssp, fp);
__ Pop(fp, lr);
__ DropBySMI(x10, kXRegSize);
__ Drop(1);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_ArgumentsAdaptorTrampoline");
// ----------- S t a t e -------------
// -- x0 : actual number of arguments
// -- x1 : function (passed through to callee)
// -- x2 : expected number of arguments
// -----------------------------------
Label stack_overflow;
ArgumentAdaptorStackCheck(masm, &stack_overflow);
Register argc_actual = x0; // Excluding the receiver.
Register argc_expected = x2; // Excluding the receiver.
Register function = x1;
Register code_entry = x3;
Label invoke, dont_adapt_arguments;
Label enough, too_few;
__ Ldr(code_entry, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
__ Cmp(argc_actual, argc_expected);
__ B(lt, &too_few);
__ Cmp(argc_expected, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
__ B(eq, &dont_adapt_arguments);
{ // Enough parameters: actual >= expected
EnterArgumentsAdaptorFrame(masm);
Register copy_start = x10;
Register copy_end = x11;
Register copy_to = x12;
Register scratch1 = x13, scratch2 = x14;
__ Lsl(argc_expected, argc_expected, kPointerSizeLog2);
// Adjust for fp, lr, and the receiver.
__ Add(copy_start, fp, 3 * kPointerSize);
__ Add(copy_start, copy_start, Operand(argc_actual, LSL, kPointerSizeLog2));
__ Sub(copy_end, copy_start, argc_expected);
__ Sub(copy_end, copy_end, kPointerSize);
__ Mov(copy_to, jssp);
// Claim space for the arguments, the receiver, and one extra slot.
// The extra slot ensures we do not write under jssp. It will be popped
// later.
__ Add(scratch1, argc_expected, 2 * kPointerSize);
__ Claim(scratch1, 1);
// Copy the arguments (including the receiver) to the new stack frame.
Label copy_2_by_2;
__ Bind(&copy_2_by_2);
__ Ldp(scratch1, scratch2,
MemOperand(copy_start, - 2 * kPointerSize, PreIndex));
__ Stp(scratch1, scratch2,
MemOperand(copy_to, - 2 * kPointerSize, PreIndex));
__ Cmp(copy_start, copy_end);
__ B(hi, &copy_2_by_2);
// Correct the space allocated for the extra slot.
__ Drop(1);
__ B(&invoke);
}
{ // Too few parameters: Actual < expected
__ Bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
Register copy_from = x10;
Register copy_end = x11;
Register copy_to = x12;
Register scratch1 = x13, scratch2 = x14;
__ Lsl(argc_expected, argc_expected, kPointerSizeLog2);
__ Lsl(argc_actual, argc_actual, kPointerSizeLog2);
// Adjust for fp, lr, and the receiver.
__ Add(copy_from, fp, 3 * kPointerSize);
__ Add(copy_from, copy_from, argc_actual);
__ Mov(copy_to, jssp);
__ Sub(copy_end, copy_to, 1 * kPointerSize); // Adjust for the receiver.
__ Sub(copy_end, copy_end, argc_actual);
// Claim space for the arguments, the receiver, and one extra slot.
// The extra slot ensures we do not write under jssp. It will be popped
// later.
__ Add(scratch1, argc_expected, 2 * kPointerSize);
__ Claim(scratch1, 1);
// Copy the arguments (including the receiver) to the new stack frame.
Label copy_2_by_2;
__ Bind(&copy_2_by_2);
__ Ldp(scratch1, scratch2,
MemOperand(copy_from, - 2 * kPointerSize, PreIndex));
__ Stp(scratch1, scratch2,
MemOperand(copy_to, - 2 * kPointerSize, PreIndex));
__ Cmp(copy_to, copy_end);
__ B(hi, &copy_2_by_2);
__ Mov(copy_to, copy_end);
// Fill the remaining expected arguments with undefined.
__ LoadRoot(scratch1, Heap::kUndefinedValueRootIndex);
__ Add(copy_end, jssp, kPointerSize);
Label fill;
__ Bind(&fill);
__ Stp(scratch1, scratch1,
MemOperand(copy_to, - 2 * kPointerSize, PreIndex));
__ Cmp(copy_to, copy_end);
__ B(hi, &fill);
// Correct the space allocated for the extra slot.
__ Drop(1);
}
// Arguments have been adapted. Now call the entry point.
__ Bind(&invoke);
__ Call(code_entry);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
// Call the entry point without adapting the arguments.
__ Bind(&dont_adapt_arguments);
__ Jump(code_entry);
__ Bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
EnterArgumentsAdaptorFrame(masm);
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
__ Unreachable();
}
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM