blob: 1bcc89503d283a272eaf87b5e66746b85ed8175c [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CODE_STUB_ASSEMBLER_H_
#define V8_CODE_STUB_ASSEMBLER_H_
#include <functional>
#include "src/compiler/code-assembler.h"
#include "src/globals.h"
#include "src/objects.h"
namespace v8 {
namespace internal {
class CallInterfaceDescriptor;
class CodeStubArguments;
class CodeStubAssembler;
class StatsCounter;
class StubCache;
enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol };
#define HEAP_CONSTANT_LIST(V) \
V(AccessorInfoMap, accessor_info_map, AccessorInfoMap) \
V(AccessorPairMap, accessor_pair_map, AccessorPairMap) \
V(AllocationSiteMap, allocation_site_map, AllocationSiteMap) \
V(BooleanMap, boolean_map, BooleanMap) \
V(CodeMap, code_map, CodeMap) \
V(EmptyPropertyDictionary, empty_property_dictionary, \
EmptyPropertyDictionary) \
V(EmptyFixedArray, empty_fixed_array, EmptyFixedArray) \
V(EmptySlowElementDictionary, empty_slow_element_dictionary, \
EmptySlowElementDictionary) \
V(empty_string, empty_string, EmptyString) \
V(EmptyWeakCell, empty_weak_cell, EmptyWeakCell) \
V(FalseValue, false_value, False) \
V(FeedbackVectorMap, feedback_vector_map, FeedbackVectorMap) \
V(FixedArrayMap, fixed_array_map, FixedArrayMap) \
V(FixedCOWArrayMap, fixed_cow_array_map, FixedCOWArrayMap) \
V(FixedDoubleArrayMap, fixed_double_array_map, FixedDoubleArrayMap) \
V(FunctionTemplateInfoMap, function_template_info_map, \
FunctionTemplateInfoMap) \
V(GlobalPropertyCellMap, global_property_cell_map, PropertyCellMap) \
V(has_instance_symbol, has_instance_symbol, HasInstanceSymbol) \
V(HeapNumberMap, heap_number_map, HeapNumberMap) \
V(iterator_symbol, iterator_symbol, IteratorSymbol) \
V(length_string, length_string, LengthString) \
V(ManyClosuresCellMap, many_closures_cell_map, ManyClosuresCellMap) \
V(MetaMap, meta_map, MetaMap) \
V(MinusZeroValue, minus_zero_value, MinusZero) \
V(MutableHeapNumberMap, mutable_heap_number_map, MutableHeapNumberMap) \
V(NanValue, nan_value, Nan) \
V(NoClosuresCellMap, no_closures_cell_map, NoClosuresCellMap) \
V(NullValue, null_value, Null) \
V(OneClosureCellMap, one_closure_cell_map, OneClosureCellMap) \
V(prototype_string, prototype_string, PrototypeString) \
V(SpeciesProtector, species_protector, SpeciesProtector) \
V(StoreHandler0Map, store_handler0_map, StoreHandler0Map) \
V(SymbolMap, symbol_map, SymbolMap) \
V(TheHoleValue, the_hole_value, TheHole) \
V(TrueValue, true_value, True) \
V(Tuple2Map, tuple2_map, Tuple2Map) \
V(Tuple3Map, tuple3_map, Tuple3Map) \
V(UndefinedValue, undefined_value, Undefined) \
V(WeakCellMap, weak_cell_map, WeakCellMap) \
V(SharedFunctionInfoMap, shared_function_info_map, SharedFunctionInfoMap)
// Returned from IteratorBuiltinsAssembler::GetIterator(). Struct is declared
// here to simplify use in other generated builtins.
struct IteratorRecord {
public:
// iteratorRecord.[[Iterator]]
compiler::TNode<JSReceiver> object;
// iteratorRecord.[[NextMethod]]
compiler::TNode<Object> next;
};
// Provides JavaScript-specific "macro-assembler" functionality on top of the
// CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler,
// it's possible to add JavaScript-specific useful CodeAssembler "macros"
// without modifying files in the compiler directory (and requiring a review
// from a compiler directory OWNER).
class V8_EXPORT_PRIVATE CodeStubAssembler : public compiler::CodeAssembler {
public:
using Node = compiler::Node;
template <class T>
using TNode = compiler::TNode<T>;
template <class T>
using SloppyTNode = compiler::SloppyTNode<T>;
template <typename T>
using LazyNode = std::function<TNode<T>()>;
CodeStubAssembler(compiler::CodeAssemblerState* state);
enum AllocationFlag : uint8_t {
kNone = 0,
kDoubleAlignment = 1,
kPretenured = 1 << 1,
kAllowLargeObjectAllocation = 1 << 2,
};
enum SlackTrackingMode { kWithSlackTracking, kNoSlackTracking };
typedef base::Flags<AllocationFlag> AllocationFlags;
enum ParameterMode { SMI_PARAMETERS, INTPTR_PARAMETERS };
// On 32-bit platforms, there is a slight performance advantage to doing all
// of the array offset/index arithmetic with SMIs, since it's possible
// to save a few tag/untag operations without paying an extra expense when
// calculating array offset (the smi math can be folded away) and there are
// fewer live ranges. Thus only convert indices to untagged value on 64-bit
// platforms.
ParameterMode OptimalParameterMode() const {
return Is64() ? INTPTR_PARAMETERS : SMI_PARAMETERS;
}
MachineRepresentation ParameterRepresentation(ParameterMode mode) const {
return mode == INTPTR_PARAMETERS ? MachineType::PointerRepresentation()
: MachineRepresentation::kTaggedSigned;
}
MachineRepresentation OptimalParameterRepresentation() const {
return ParameterRepresentation(OptimalParameterMode());
}
Node* ParameterToIntPtr(Node* value, ParameterMode mode) {
if (mode == SMI_PARAMETERS) value = SmiUntag(value);
return value;
}
Node* IntPtrToParameter(SloppyTNode<IntPtrT> value, ParameterMode mode) {
if (mode == SMI_PARAMETERS) return SmiTag(value);
return value;
}
Node* Int32ToParameter(SloppyTNode<Int32T> value, ParameterMode mode) {
return IntPtrToParameter(ChangeInt32ToIntPtr(value), mode);
}
TNode<Smi> ParameterToTagged(Node* value, ParameterMode mode) {
if (mode != SMI_PARAMETERS) return SmiTag(value);
return UncheckedCast<Smi>(value);
}
Node* TaggedToParameter(SloppyTNode<Smi> value, ParameterMode mode) {
if (mode != SMI_PARAMETERS) return SmiUntag(value);
return value;
}
Node* MatchesParameterMode(Node* value, ParameterMode mode);
#define PARAMETER_BINOP(OpName, IntPtrOpName, SmiOpName) \
Node* OpName(Node* a, Node* b, ParameterMode mode) { \
if (mode == SMI_PARAMETERS) { \
return SmiOpName(a, b); \
} else { \
DCHECK_EQ(INTPTR_PARAMETERS, mode); \
return IntPtrOpName(a, b); \
} \
}
PARAMETER_BINOP(IntPtrOrSmiMin, IntPtrMin, SmiMin)
PARAMETER_BINOP(IntPtrOrSmiAdd, IntPtrAdd, SmiAdd)
PARAMETER_BINOP(IntPtrOrSmiSub, IntPtrSub, SmiSub)
PARAMETER_BINOP(IntPtrOrSmiLessThan, IntPtrLessThan, SmiLessThan)
PARAMETER_BINOP(IntPtrOrSmiLessThanOrEqual, IntPtrLessThanOrEqual,
SmiLessThanOrEqual)
PARAMETER_BINOP(IntPtrOrSmiGreaterThan, IntPtrGreaterThan, SmiGreaterThan)
PARAMETER_BINOP(IntPtrOrSmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual,
SmiGreaterThanOrEqual)
PARAMETER_BINOP(UintPtrOrSmiLessThan, UintPtrLessThan, SmiBelow)
PARAMETER_BINOP(UintPtrOrSmiGreaterThanOrEqual, UintPtrGreaterThanOrEqual,
SmiAboveOrEqual)
#undef PARAMETER_BINOP
Node* NoContextConstant();
#define HEAP_CONSTANT_ACCESSOR(rootIndexName, rootAccessorName, name) \
compiler::TNode<std::remove_reference<decltype( \
*std::declval<Heap>().rootAccessorName())>::type> \
name##Constant();
HEAP_CONSTANT_LIST(HEAP_CONSTANT_ACCESSOR)
#undef HEAP_CONSTANT_ACCESSOR
#define HEAP_CONSTANT_TEST(rootIndexName, rootAccessorName, name) \
TNode<BoolT> Is##name(SloppyTNode<Object> value); \
TNode<BoolT> IsNot##name(SloppyTNode<Object> value);
HEAP_CONSTANT_LIST(HEAP_CONSTANT_TEST)
#undef HEAP_CONSTANT_TEST
Node* HashSeed();
Node* StaleRegisterConstant();
Node* IntPtrOrSmiConstant(int value, ParameterMode mode);
bool IsIntPtrOrSmiConstantZero(Node* test, ParameterMode mode);
bool TryGetIntPtrOrSmiConstantValue(Node* maybe_constant, int* value,
ParameterMode mode);
// Round the 32bits payload of the provided word up to the next power of two.
Node* IntPtrRoundUpToPowerOfTwo32(Node* value);
// Select the maximum of the two provided IntPtr values.
TNode<IntPtrT> IntPtrMax(SloppyTNode<IntPtrT> left,
SloppyTNode<IntPtrT> right);
// Select the minimum of the two provided IntPtr values.
TNode<IntPtrT> IntPtrMin(SloppyTNode<IntPtrT> left,
SloppyTNode<IntPtrT> right);
// Float64 operations.
TNode<Float64T> Float64Ceil(SloppyTNode<Float64T> x);
TNode<Float64T> Float64Floor(SloppyTNode<Float64T> x);
TNode<Float64T> Float64Round(SloppyTNode<Float64T> x);
TNode<Float64T> Float64RoundToEven(SloppyTNode<Float64T> x);
TNode<Float64T> Float64Trunc(SloppyTNode<Float64T> x);
// Select the minimum of the two provided Number values.
TNode<Object> NumberMax(SloppyTNode<Object> left, SloppyTNode<Object> right);
// Select the minimum of the two provided Number values.
TNode<Object> NumberMin(SloppyTNode<Object> left, SloppyTNode<Object> right);
// After converting an index to an integer, calculate a relative index: if
// index < 0, max(length + index, 0); else min(index, length)
TNode<IntPtrT> ConvertToRelativeIndex(TNode<Context> context,
TNode<Object> index,
TNode<IntPtrT> length);
// Tag an IntPtr as a Smi value.
TNode<Smi> SmiTag(SloppyTNode<IntPtrT> value);
// Untag a Smi value as an IntPtr.
TNode<IntPtrT> SmiUntag(SloppyTNode<Smi> value);
// Smi conversions.
TNode<Float64T> SmiToFloat64(SloppyTNode<Smi> value);
TNode<Smi> SmiFromIntPtr(SloppyTNode<IntPtrT> value) { return SmiTag(value); }
TNode<Smi> SmiFromInt32(SloppyTNode<Int32T> value);
TNode<IntPtrT> SmiToIntPtr(SloppyTNode<Smi> value) { return SmiUntag(value); }
TNode<Int32T> SmiToInt32(SloppyTNode<Smi> value);
// Smi operations.
#define SMI_ARITHMETIC_BINOP(SmiOpName, IntPtrOpName) \
TNode<Smi> SmiOpName(SloppyTNode<Smi> a, SloppyTNode<Smi> b) { \
return BitcastWordToTaggedSigned( \
IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b))); \
}
SMI_ARITHMETIC_BINOP(SmiAdd, IntPtrAdd)
SMI_ARITHMETIC_BINOP(SmiSub, IntPtrSub)
SMI_ARITHMETIC_BINOP(SmiAnd, WordAnd)
SMI_ARITHMETIC_BINOP(SmiOr, WordOr)
#undef SMI_ARITHMETIC_BINOP
Node* SmiShl(Node* a, int shift) {
return BitcastWordToTaggedSigned(WordShl(BitcastTaggedToWord(a), shift));
}
Node* SmiShr(Node* a, int shift) {
return BitcastWordToTaggedSigned(
WordAnd(WordShr(BitcastTaggedToWord(a), shift),
BitcastTaggedToWord(SmiConstant(-1))));
}
Node* WordOrSmiShl(Node* a, int shift, ParameterMode mode) {
if (mode == SMI_PARAMETERS) {
return SmiShl(a, shift);
} else {
DCHECK_EQ(INTPTR_PARAMETERS, mode);
return WordShl(a, shift);
}
}
Node* WordOrSmiShr(Node* a, int shift, ParameterMode mode) {
if (mode == SMI_PARAMETERS) {
return SmiShr(a, shift);
} else {
DCHECK_EQ(INTPTR_PARAMETERS, mode);
return WordShr(a, shift);
}
}
#define SMI_COMPARISON_OP(SmiOpName, IntPtrOpName) \
Node* SmiOpName(Node* a, Node* b) { \
return IntPtrOpName(BitcastTaggedToWord(a), BitcastTaggedToWord(b)); \
}
SMI_COMPARISON_OP(SmiEqual, WordEqual)
SMI_COMPARISON_OP(SmiNotEqual, WordNotEqual)
SMI_COMPARISON_OP(SmiAbove, UintPtrGreaterThan)
SMI_COMPARISON_OP(SmiAboveOrEqual, UintPtrGreaterThanOrEqual)
SMI_COMPARISON_OP(SmiBelow, UintPtrLessThan)
SMI_COMPARISON_OP(SmiLessThan, IntPtrLessThan)
SMI_COMPARISON_OP(SmiLessThanOrEqual, IntPtrLessThanOrEqual)
SMI_COMPARISON_OP(SmiGreaterThan, IntPtrGreaterThan)
SMI_COMPARISON_OP(SmiGreaterThanOrEqual, IntPtrGreaterThanOrEqual)
#undef SMI_COMPARISON_OP
TNode<Smi> SmiMax(SloppyTNode<Smi> a, SloppyTNode<Smi> b);
TNode<Smi> SmiMin(SloppyTNode<Smi> a, SloppyTNode<Smi> b);
// Computes a % b for Smi inputs a and b; result is not necessarily a Smi.
Node* SmiMod(Node* a, Node* b);
// Computes a * b for Smi inputs a and b; result is not necessarily a Smi.
TNode<Number> SmiMul(SloppyTNode<Smi> a, SloppyTNode<Smi> b);
// Tries to computes dividend / divisor for Smi inputs; branching to bailout
// if the division needs to be performed as a floating point operation.
Node* TrySmiDiv(Node* dividend, Node* divisor, Label* bailout);
// Smi | HeapNumber operations.
TNode<Number> NumberInc(SloppyTNode<Number> value);
TNode<Number> NumberDec(SloppyTNode<Number> value);
TNode<Number> NumberAdd(SloppyTNode<Number> a, SloppyTNode<Number> b);
TNode<Number> NumberSub(SloppyTNode<Number> a, SloppyTNode<Number> b);
void GotoIfNotNumber(Node* value, Label* is_not_number);
void GotoIfNumber(Node* value, Label* is_number);
Node* BitwiseOp(Node* left32, Node* right32, Operation bitwise_op);
// Allocate an object of the given size.
Node* AllocateInNewSpace(Node* size, AllocationFlags flags = kNone);
Node* AllocateInNewSpace(int size, AllocationFlags flags = kNone);
Node* Allocate(Node* size, AllocationFlags flags = kNone);
Node* Allocate(int size, AllocationFlags flags = kNone);
Node* InnerAllocate(Node* previous, int offset);
Node* InnerAllocate(Node* previous, Node* offset);
Node* IsRegularHeapObjectSize(Node* size);
typedef std::function<void(Label*, Label*)> BranchGenerator;
typedef std::function<Node*()> NodeGenerator;
void Assert(const BranchGenerator& branch, const char* message = nullptr,
const char* file = nullptr, int line = 0,
Node* extra_node1 = nullptr, const char* extra_node1_name = "",
Node* extra_node2 = nullptr, const char* extra_node2_name = "",
Node* extra_node3 = nullptr, const char* extra_node3_name = "",
Node* extra_node4 = nullptr, const char* extra_node4_name = "",
Node* extra_node5 = nullptr, const char* extra_node5_name = "");
void Assert(const NodeGenerator& condition_body,
const char* message = nullptr, const char* file = nullptr,
int line = 0, Node* extra_node1 = nullptr,
const char* extra_node1_name = "", Node* extra_node2 = nullptr,
const char* extra_node2_name = "", Node* extra_node3 = nullptr,
const char* extra_node3_name = "", Node* extra_node4 = nullptr,
const char* extra_node4_name = "", Node* extra_node5 = nullptr,
const char* extra_node5_name = "");
void Check(const BranchGenerator& branch, const char* message = nullptr,
const char* file = nullptr, int line = 0,
Node* extra_node1 = nullptr, const char* extra_node1_name = "",
Node* extra_node2 = nullptr, const char* extra_node2_name = "",
Node* extra_node3 = nullptr, const char* extra_node3_name = "",
Node* extra_node4 = nullptr, const char* extra_node4_name = "",
Node* extra_node5 = nullptr, const char* extra_node5_name = "");
void Check(const NodeGenerator& condition_body, const char* message = nullptr,
const char* file = nullptr, int line = 0,
Node* extra_node1 = nullptr, const char* extra_node1_name = "",
Node* extra_node2 = nullptr, const char* extra_node2_name = "",
Node* extra_node3 = nullptr, const char* extra_node3_name = "",
Node* extra_node4 = nullptr, const char* extra_node4_name = "",
Node* extra_node5 = nullptr, const char* extra_node5_name = "");
Node* Select(SloppyTNode<BoolT> condition, const NodeGenerator& true_body,
const NodeGenerator& false_body, MachineRepresentation rep);
template <class A, class F, class G>
TNode<A> Select(SloppyTNode<BoolT> condition, const F& true_body,
const G& false_body, MachineRepresentation rep) {
return UncheckedCast<A>(Select(
condition,
[&]() -> Node* { return base::implicit_cast<TNode<A>>(true_body()); },
[&]() -> Node* { return base::implicit_cast<TNode<A>>(false_body()); },
rep));
}
Node* SelectConstant(Node* condition, Node* true_value, Node* false_value,
MachineRepresentation rep);
template <class A>
TNode<A> SelectConstant(TNode<BoolT> condition, TNode<A> true_value,
TNode<A> false_value, MachineRepresentation rep) {
return UncheckedCast<A>(
SelectConstant(condition, static_cast<Node*>(true_value),
static_cast<Node*>(false_value), rep));
}
Node* SelectInt32Constant(Node* condition, int true_value, int false_value);
Node* SelectIntPtrConstant(Node* condition, int true_value, int false_value);
Node* SelectBooleanConstant(Node* condition);
template <class A>
TNode<A> SelectTaggedConstant(SloppyTNode<BoolT> condition,
TNode<A> true_value,
SloppyTNode<A> false_value) {
static_assert(std::is_base_of<Object, A>::value, "not a tagged type");
return SelectConstant(condition, true_value, false_value,
MachineRepresentation::kTagged);
}
Node* SelectSmiConstant(Node* condition, Smi* true_value, Smi* false_value);
Node* SelectSmiConstant(Node* condition, int true_value, Smi* false_value) {
return SelectSmiConstant(condition, Smi::FromInt(true_value), false_value);
}
Node* SelectSmiConstant(Node* condition, Smi* true_value, int false_value) {
return SelectSmiConstant(condition, true_value, Smi::FromInt(false_value));
}
Node* SelectSmiConstant(Node* condition, int true_value, int false_value) {
return SelectSmiConstant(condition, Smi::FromInt(true_value),
Smi::FromInt(false_value));
}
TNode<Int32T> TruncateIntPtrToInt32(SloppyTNode<IntPtrT> value);
// Check a value for smi-ness
TNode<BoolT> TaggedIsSmi(SloppyTNode<Object> a);
TNode<BoolT> TaggedIsNotSmi(SloppyTNode<Object> a);
// Check that the value is a non-negative smi.
TNode<BoolT> TaggedIsPositiveSmi(SloppyTNode<Object> a);
// Check that a word has a word-aligned address.
TNode<BoolT> WordIsWordAligned(SloppyTNode<WordT> word);
TNode<BoolT> WordIsPowerOfTwo(SloppyTNode<IntPtrT> value);
Node* IsNotTheHole(Node* value) { return Word32BinaryNot(IsTheHole(value)); }
#if DEBUG
void Bind(Label* label, AssemblerDebugInfo debug_info);
#else
void Bind(Label* label);
#endif // DEBUG
void BranchIfSmiEqual(Node* a, Node* b, Label* if_true, Label* if_false) {
Branch(SmiEqual(a, b), if_true, if_false);
}
void BranchIfSmiLessThan(Node* a, Node* b, Label* if_true, Label* if_false) {
Branch(SmiLessThan(a, b), if_true, if_false);
}
void BranchIfSmiLessThanOrEqual(Node* a, Node* b, Label* if_true,
Label* if_false) {
Branch(SmiLessThanOrEqual(a, b), if_true, if_false);
}
void BranchIfFloat64IsNaN(Node* value, Label* if_true, Label* if_false) {
Branch(Float64Equal(value, value), if_false, if_true);
}
// Branches to {if_true} if ToBoolean applied to {value} yields true,
// otherwise goes to {if_false}.
void BranchIfToBooleanIsTrue(Node* value, Label* if_true, Label* if_false);
void BranchIfJSReceiver(Node* object, Label* if_true, Label* if_false);
void BranchIfJSObject(Node* object, Label* if_true, Label* if_false);
void BranchIfFastJSArray(Node* object, Node* context, Label* if_true,
Label* if_false);
void BranchIfFastJSArrayForCopy(Node* object, Node* context, Label* if_true,
Label* if_false);
// Branches to {if_true} when --force-slow-path flag has been passed.
// It's used for testing to ensure that slow path implementation behave
// equivalent to corresponding fast paths (where applicable).
//
// Works only with V8_ENABLE_FORCE_SLOW_PATH compile time flag. Nop otherwise.
void GotoIfForceSlowPath(Label* if_true);
// Load value from current frame by given offset in bytes.
Node* LoadFromFrame(int offset, MachineType rep = MachineType::AnyTagged());
// Load value from current parent frame by given offset in bytes.
Node* LoadFromParentFrame(int offset,
MachineType rep = MachineType::AnyTagged());
// Load an object pointer from a buffer that isn't in the heap.
Node* LoadBufferObject(Node* buffer, int offset,
MachineType rep = MachineType::AnyTagged());
// Load a field from an object on the heap.
Node* LoadObjectField(SloppyTNode<HeapObject> object, int offset,
MachineType rep);
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<Object>>::value,
int>::type = 0>
TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
return CAST(LoadObjectField(object, offset, MachineTypeOf<T>::value));
}
template <class T, typename std::enable_if<
std::is_convertible<TNode<T>, TNode<UntaggedT>>::value,
int>::type = 0>
TNode<T> LoadObjectField(TNode<HeapObject> object, int offset) {
return UncheckedCast<T>(
LoadObjectField(object, offset, MachineTypeOf<T>::value));
}
TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object, int offset) {
return UncheckedCast<Object>(
LoadObjectField(object, offset, MachineType::AnyTagged()));
}
Node* LoadObjectField(SloppyTNode<HeapObject> object,
SloppyTNode<IntPtrT> offset, MachineType rep);
TNode<Object> LoadObjectField(SloppyTNode<HeapObject> object,
SloppyTNode<IntPtrT> offset) {
return UncheckedCast<Object>(
LoadObjectField(object, offset, MachineType::AnyTagged()));
}
// Load a SMI field and untag it.
TNode<IntPtrT> LoadAndUntagObjectField(SloppyTNode<HeapObject> object,
int offset);
// Load a SMI field, untag it, and convert to Word32.
TNode<Int32T> LoadAndUntagToWord32ObjectField(Node* object, int offset);
// Load a SMI and untag it.
TNode<IntPtrT> LoadAndUntagSmi(Node* base, int index);
// Load a SMI root, untag it, and convert to Word32.
Node* LoadAndUntagToWord32Root(Heap::RootListIndex root_index);
// Tag a smi and store it.
Node* StoreAndTagSmi(Node* base, int offset, Node* value);
// Load the floating point value of a HeapNumber.
TNode<Float64T> LoadHeapNumberValue(SloppyTNode<HeapNumber> object);
// Load the Map of an HeapObject.
TNode<Map> LoadMap(SloppyTNode<HeapObject> object);
// Load the instance type of an HeapObject.
TNode<Int32T> LoadInstanceType(SloppyTNode<HeapObject> object);
// Compare the instance the type of the object against the provided one.
TNode<BoolT> HasInstanceType(SloppyTNode<HeapObject> object,
InstanceType type);
// Determines whether Array's prototype has changed.
TNode<BoolT> InitialArrayPrototypeHasInitialArrayPrototypeMap(
TNode<Context> native_context);
// Determines whether an array's elements map has changed.
TNode<BoolT> HasInitialFastElementsKindMap(TNode<Context> native_context,
TNode<JSArray> jsarray);
TNode<BoolT> DoesntHaveInstanceType(SloppyTNode<HeapObject> object,
InstanceType type);
TNode<BoolT> TaggedDoesntHaveInstanceType(SloppyTNode<HeapObject> any_tagged,
InstanceType type);
// Load the properties backing store of a JSObject.
TNode<HeapObject> LoadSlowProperties(SloppyTNode<JSObject> object);
TNode<HeapObject> LoadFastProperties(SloppyTNode<JSObject> object);
// Load the elements backing store of a JSObject.
TNode<FixedArrayBase> LoadElements(SloppyTNode<JSObject> object);
// Load the length of a JSArray instance.
TNode<Number> LoadJSArrayLength(SloppyTNode<JSArray> array);
// Load the length of a fast JSArray instance. Returns a positive Smi.
TNode<Smi> LoadFastJSArrayLength(SloppyTNode<JSArray> array);
// Load the length of a fixed array base instance.
TNode<Smi> LoadFixedArrayBaseLength(SloppyTNode<FixedArrayBase> array);
// Load the length of a fixed array base instance.
TNode<IntPtrT> LoadAndUntagFixedArrayBaseLength(
SloppyTNode<FixedArrayBase> array);
// Load the bit field of a Map.
TNode<Int32T> LoadMapBitField(SloppyTNode<Map> map);
// Load bit field 2 of a map.
TNode<Int32T> LoadMapBitField2(SloppyTNode<Map> map);
// Load bit field 3 of a map.
TNode<Uint32T> LoadMapBitField3(SloppyTNode<Map> map);
// Load the instance type of a map.
TNode<Int32T> LoadMapInstanceType(SloppyTNode<Map> map);
// Load the ElementsKind of a map.
TNode<Int32T> LoadMapElementsKind(SloppyTNode<Map> map);
// Load the instance descriptors of a map.
TNode<DescriptorArray> LoadMapDescriptors(SloppyTNode<Map> map);
// Load the prototype of a map.
TNode<Object> LoadMapPrototype(SloppyTNode<Map> map);
// Load the prototype info of a map. The result has to be checked if it is a
// prototype info object or not.
TNode<PrototypeInfo> LoadMapPrototypeInfo(SloppyTNode<Map> map,
Label* if_has_no_proto_info);
// Load the instance size of a Map.
TNode<IntPtrT> LoadMapInstanceSizeInWords(SloppyTNode<Map> map);
// Load the inobject properties start of a Map (valid only for JSObjects).
TNode<IntPtrT> LoadMapInobjectPropertiesStartInWords(SloppyTNode<Map> map);
// Load the constructor function index of a Map (only for primitive maps).
TNode<IntPtrT> LoadMapConstructorFunctionIndex(SloppyTNode<Map> map);
// Load the constructor of a Map (equivalent to Map::GetConstructor()).
TNode<Object> LoadMapConstructor(SloppyTNode<Map> map);
// Load the EnumLength of a Map.
Node* LoadMapEnumLength(SloppyTNode<Map> map);
// Load the back-pointer of a Map.
Node* LoadMapBackPointer(SloppyTNode<Map> map);
// Load the identity hash of a JSRececiver.
TNode<IntPtrT> LoadJSReceiverIdentityHash(SloppyTNode<Object> receiver,
Label* if_no_hash = nullptr);
// This is only used on a newly allocated PropertyArray which
// doesn't have an existing hash.
void InitializePropertyArrayLength(Node* property_array, Node* length,
ParameterMode mode);
// Check if the map is set for slow properties.
TNode<BoolT> IsDictionaryMap(SloppyTNode<Map> map);
// Load the hash field of a name as an uint32 value.
TNode<Uint32T> LoadNameHashField(SloppyTNode<Name> name);
// Load the hash value of a name as an uint32 value.
// If {if_hash_not_computed} label is specified then it also checks if
// hash is actually computed.
TNode<Uint32T> LoadNameHash(SloppyTNode<Name> name,
Label* if_hash_not_computed = nullptr);
// Load length field of a String object as intptr_t value.
TNode<IntPtrT> LoadStringLengthAsWord(SloppyTNode<String> object);
// Load length field of a String object as Smi value.
TNode<Smi> LoadStringLengthAsSmi(SloppyTNode<String> object);
// Loads a pointer to the sequential String char array.
Node* PointerToSeqStringData(Node* seq_string);
// Load value field of a JSValue object.
Node* LoadJSValueValue(Node* object);
// Load value field of a WeakCell object.
TNode<Object> LoadWeakCellValueUnchecked(Node* weak_cell);
TNode<Object> LoadWeakCellValue(SloppyTNode<WeakCell> weak_cell,
Label* if_cleared = nullptr);
// Load an array element from a FixedArray.
Node* LoadFixedArrayElement(Node* object, Node* index,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
Node* LoadFixedArrayElement(Node* object, int index,
int additional_offset = 0) {
return LoadFixedArrayElement(object, IntPtrConstant(index),
additional_offset);
}
// Load an array element from a FixedArray, untag it and return it as Word32.
Node* LoadAndUntagToWord32FixedArrayElement(
Node* object, Node* index, int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
// Load an array element from a FixedDoubleArray.
Node* LoadFixedDoubleArrayElement(
Node* object, Node* index, MachineType machine_type,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS,
Label* if_hole = nullptr);
// Load a feedback slot from a FeedbackVector.
TNode<Object> LoadFeedbackVectorSlot(
Node* object, Node* index, int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
// Load Float64 value by |base| + |offset| address. If the value is a double
// hole then jump to |if_hole|. If |machine_type| is None then only the hole
// check is generated.
Node* LoadDoubleWithHoleCheck(
Node* base, Node* offset, Label* if_hole,
MachineType machine_type = MachineType::Float64());
TNode<RawPtrT> LoadFixedTypedArrayBackingStore(
TNode<FixedTypedArrayBase> typed_array);
Node* LoadFixedTypedArrayElementAsTagged(
Node* data_pointer, Node* index_node, ElementsKind elements_kind,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
// Parts of the above, factored out for readability:
Node* LoadFixedBigInt64ArrayElementAsTagged(Node* data_pointer, Node* offset);
Node* LoadFixedBigUint64ArrayElementAsTagged(Node* data_pointer,
Node* offset);
// Context manipulation
TNode<Object> LoadContextElement(SloppyTNode<Context> context,
int slot_index);
TNode<Object> LoadContextElement(SloppyTNode<Context> context,
SloppyTNode<IntPtrT> slot_index);
void StoreContextElement(SloppyTNode<Context> context, int slot_index,
SloppyTNode<Object> value);
void StoreContextElement(SloppyTNode<Context> context,
SloppyTNode<IntPtrT> slot_index,
SloppyTNode<Object> value);
void StoreContextElementNoWriteBarrier(SloppyTNode<Context> context,
int slot_index,
SloppyTNode<Object> value);
TNode<Context> LoadNativeContext(SloppyTNode<Context> context);
// Calling this is only valid if there's a module context in the chain.
TNode<Context> LoadModuleContext(SloppyTNode<Context> context);
void GotoIfContextElementEqual(Node* value, Node* native_context,
int slot_index, Label* if_equal) {
GotoIf(WordEqual(value, LoadContextElement(native_context, slot_index)),
if_equal);
}
TNode<Map> LoadJSArrayElementsMap(ElementsKind kind,
SloppyTNode<Context> native_context);
TNode<Map> LoadJSArrayElementsMap(SloppyTNode<Int32T> kind,
SloppyTNode<Context> native_context);
// Load the "prototype" property of a JSFunction.
Node* LoadJSFunctionPrototype(Node* function, Label* if_bailout);
// Store the floating point value of a HeapNumber.
void StoreHeapNumberValue(SloppyTNode<HeapNumber> object,
SloppyTNode<Float64T> value);
// Store a field to an object on the heap.
Node* StoreObjectField(Node* object, int offset, Node* value);
Node* StoreObjectField(Node* object, Node* offset, Node* value);
Node* StoreObjectFieldNoWriteBarrier(
Node* object, int offset, Node* value,
MachineRepresentation rep = MachineRepresentation::kTagged);
Node* StoreObjectFieldNoWriteBarrier(
Node* object, Node* offset, Node* value,
MachineRepresentation rep = MachineRepresentation::kTagged);
// Store the Map of an HeapObject.
Node* StoreMap(Node* object, Node* map);
Node* StoreMapNoWriteBarrier(Node* object,
Heap::RootListIndex map_root_index);
Node* StoreMapNoWriteBarrier(Node* object, Node* map);
Node* StoreObjectFieldRoot(Node* object, int offset,
Heap::RootListIndex root);
// Store an array element to a FixedArray.
Node* StoreFixedArrayElement(
Node* object, int index, Node* value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER) {
return StoreFixedArrayElement(object, IntPtrConstant(index), value,
barrier_mode);
}
Node* StoreFixedArrayElement(
Node* object, Node* index, Node* value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
Node* StoreFixedDoubleArrayElement(
Node* object, Node* index, Node* value,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
Node* StoreFeedbackVectorSlot(
Node* object, Node* index, Node* value,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
int additional_offset = 0,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
void EnsureArrayLengthWritable(Node* map, Label* bailout);
// EnsureArrayPushable verifies that receiver is:
// 1. Is not a prototype.
// 2. Is not a dictionary.
// 3. Has a writeable length property.
// It returns ElementsKind as a node for further division into cases.
Node* EnsureArrayPushable(Node* receiver, Label* bailout);
void TryStoreArrayElement(ElementsKind kind, ParameterMode mode,
Label* bailout, Node* elements, Node* index,
Node* value);
// Consumes args into the array, and returns tagged new length.
TNode<Smi> BuildAppendJSArray(ElementsKind kind, SloppyTNode<JSArray> array,
CodeStubArguments* args,
TVariable<IntPtrT>* arg_index, Label* bailout);
// Pushes value onto the end of array.
void BuildAppendJSArray(ElementsKind kind, Node* array, Node* value,
Label* bailout);
void StoreFieldsNoWriteBarrier(Node* start_address, Node* end_address,
Node* value);
Node* AllocateCellWithValue(Node* value,
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
Node* AllocateSmiCell(int value = 0) {
return AllocateCellWithValue(SmiConstant(value), SKIP_WRITE_BARRIER);
}
Node* LoadCellValue(Node* cell);
Node* StoreCellValue(Node* cell, Node* value,
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
// Allocate a HeapNumber without initializing its value.
TNode<HeapNumber> AllocateHeapNumber(MutableMode mode = IMMUTABLE);
// Allocate a HeapNumber with a specific value.
TNode<HeapNumber> AllocateHeapNumberWithValue(SloppyTNode<Float64T> value,
MutableMode mode = IMMUTABLE);
// Allocate a BigInt with {length} digits. Sets the sign bit to {false}.
// Does not initialize the digits.
TNode<BigInt> AllocateBigInt(TNode<IntPtrT> length);
// Like above, but allowing custom bitfield initialization.
TNode<BigInt> AllocateRawBigInt(TNode<IntPtrT> length);
void StoreBigIntBitfield(TNode<BigInt> bigint, TNode<WordT> bitfield);
void StoreBigIntDigit(TNode<BigInt> bigint, int digit_index,
TNode<UintPtrT> digit);
TNode<WordT> LoadBigIntBitfield(TNode<BigInt> bigint);
TNode<UintPtrT> LoadBigIntDigit(TNode<BigInt> bigint, int digit_index);
// Allocate a SeqOneByteString with the given length.
TNode<String> AllocateSeqOneByteString(int length,
AllocationFlags flags = kNone);
TNode<String> AllocateSeqOneByteString(Node* context, TNode<Smi> length,
AllocationFlags flags = kNone);
// Allocate a SeqTwoByteString with the given length.
TNode<String> AllocateSeqTwoByteString(int length,
AllocationFlags flags = kNone);
TNode<String> AllocateSeqTwoByteString(Node* context, TNode<Smi> length,
AllocationFlags flags = kNone);
// Allocate a SlicedOneByteString with the given length, parent and offset.
// |length| and |offset| are expected to be tagged.
TNode<String> AllocateSlicedOneByteString(TNode<Smi> length,
TNode<String> parent,
TNode<Smi> offset);
// Allocate a SlicedTwoByteString with the given length, parent and offset.
// |length| and |offset| are expected to be tagged.
TNode<String> AllocateSlicedTwoByteString(TNode<Smi> length,
TNode<String> parent,
TNode<Smi> offset);
// Allocate a one-byte ConsString with the given length, first and second
// parts. |length| is expected to be tagged, and |first| and |second| are
// expected to be one-byte strings.
TNode<String> AllocateOneByteConsString(TNode<Smi> length,
TNode<String> first,
TNode<String> second,
AllocationFlags flags = kNone);
// Allocate a two-byte ConsString with the given length, first and second
// parts. |length| is expected to be tagged, and |first| and |second| are
// expected to be two-byte strings.
TNode<String> AllocateTwoByteConsString(TNode<Smi> length,
TNode<String> first,
TNode<String> second,
AllocationFlags flags = kNone);
// Allocate an appropriate one- or two-byte ConsString with the first and
// second parts specified by |left| and |right|.
TNode<String> NewConsString(Node* context, TNode<Smi> length,
TNode<String> left, TNode<String> right,
AllocationFlags flags = kNone);
Node* AllocateNameDictionary(int at_least_space_for);
Node* AllocateNameDictionary(Node* at_least_space_for);
Node* AllocateNameDictionaryWithCapacity(Node* capacity);
Node* CopyNameDictionary(Node* dictionary, Label* large_object_fallback);
Node* AllocateStruct(Node* map, AllocationFlags flags = kNone);
void InitializeStructBody(Node* object, Node* map, Node* size,
int start_offset = Struct::kHeaderSize);
Node* AllocateJSObjectFromMap(
Node* map, Node* properties = nullptr, Node* elements = nullptr,
AllocationFlags flags = kNone,
SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
void InitializeJSObjectFromMap(
Node* object, Node* map, Node* instance_size, Node* properties = nullptr,
Node* elements = nullptr,
SlackTrackingMode slack_tracking_mode = kNoSlackTracking);
void InitializeJSObjectBodyWithSlackTracking(Node* object, Node* map,
Node* instance_size);
void InitializeJSObjectBodyNoSlackTracking(
Node* object, Node* map, Node* instance_size,
int start_offset = JSObject::kHeaderSize);
// Allocate a JSArray without elements and initialize the header fields.
Node* AllocateUninitializedJSArrayWithoutElements(
Node* array_map, Node* length, Node* allocation_site = nullptr);
// Allocate and return a JSArray with initialized header fields and its
// uninitialized elements.
// The ParameterMode argument is only used for the capacity parameter.
std::pair<Node*, Node*> AllocateUninitializedJSArrayWithElements(
ElementsKind kind, Node* array_map, Node* length, Node* allocation_site,
Node* capacity, ParameterMode capacity_mode = INTPTR_PARAMETERS);
// Allocate a JSArray and fill elements with the hole.
// The ParameterMode argument is only used for the capacity parameter.
Node* AllocateJSArray(ElementsKind kind, Node* array_map, Node* capacity,
Node* length, Node* allocation_site = nullptr,
ParameterMode capacity_mode = INTPTR_PARAMETERS);
Node* CloneFastJSArray(Node* context, Node* array,
ParameterMode mode = INTPTR_PARAMETERS,
Node* allocation_site = nullptr);
Node* ExtractFastJSArray(Node* context, Node* array, Node* begin, Node* count,
ParameterMode mode = INTPTR_PARAMETERS,
Node* capacity = nullptr,
Node* allocation_site = nullptr);
Node* AllocateFixedArray(ElementsKind kind, Node* capacity,
ParameterMode mode = INTPTR_PARAMETERS,
AllocationFlags flags = kNone,
Node* fixed_array_map = nullptr);
Node* AllocatePropertyArray(Node* capacity,
ParameterMode mode = INTPTR_PARAMETERS,
AllocationFlags flags = kNone);
// Perform CreateArrayIterator (ES #sec-createarrayiterator).
Node* CreateArrayIterator(Node* context, Node* object, IterationKind mode);
Node* AllocateJSIteratorResult(Node* context, Node* value, Node* done);
Node* AllocateJSIteratorResultForEntry(Node* context, Node* key, Node* value);
void FillFixedArrayWithValue(ElementsKind kind, Node* array, Node* from_index,
Node* to_index,
Heap::RootListIndex value_root_index,
ParameterMode mode = INTPTR_PARAMETERS);
void FillPropertyArrayWithUndefined(Node* array, Node* from_index,
Node* to_index,
ParameterMode mode = INTPTR_PARAMETERS);
void CopyPropertyArrayValues(
Node* from_array, Node* to_array, Node* length,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode mode = INTPTR_PARAMETERS);
// Copies all elements from |from_array| of |length| size to
// |to_array| of the same size respecting the elements kind.
void CopyFixedArrayElements(
ElementsKind kind, Node* from_array, Node* to_array, Node* length,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode mode = INTPTR_PARAMETERS) {
CopyFixedArrayElements(kind, from_array, kind, to_array,
IntPtrOrSmiConstant(0, mode), length, length,
barrier_mode, mode);
}
// Copies |element_count| elements from |from_array| starting from element
// zero to |to_array| of |capacity| size respecting both array's elements
// kinds.
void CopyFixedArrayElements(
ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
Node* to_array, Node* element_count, Node* capacity,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode mode = INTPTR_PARAMETERS) {
CopyFixedArrayElements(from_kind, from_array, to_kind, to_array,
IntPtrOrSmiConstant(0, mode), element_count,
capacity, barrier_mode, mode);
}
// Copies |element_count| elements from |from_array| starting from element
// |first_element| to |to_array| of |capacity| size respecting both array's
// elements kinds.
void CopyFixedArrayElements(
ElementsKind from_kind, Node* from_array, ElementsKind to_kind,
Node* to_array, Node* first_element, Node* element_count, Node* capacity,
WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER,
ParameterMode mode = INTPTR_PARAMETERS);
enum class ExtractFixedArrayFlag {
kFixedArrays = 1,
kFixedDoubleArrays = 2,
kDontCopyCOW = 4,
kNewSpaceAllocationOnly = 8,
kAllFixedArrays = kFixedArrays | kFixedDoubleArrays,
kAllFixedArraysDontCopyCOW = kAllFixedArrays | kDontCopyCOW
};
typedef base::Flags<ExtractFixedArrayFlag> ExtractFixedArrayFlags;
// Copy a portion of an existing FixedArray or FixedDoubleArray into a new
// FixedArray, including special appropriate handling for empty arrays and COW
// arrays.
//
// * |source| is either a FixedArray or FixedDoubleArray from which to copy
// elements.
// * |first| is the starting element index to copy from, if nullptr is passed
// then index zero is used by default.
// * |count| is the number of elements to copy out of the source array
// starting from and including the element indexed by |start|. If |count| is
// nullptr, then all of the elements from |start| to the end of |source| are
// copied.
// * |capacity| determines the size of the allocated result array, with
// |capacity| >= |count|. If |capacity| is nullptr, then |count| is used as
// the destination array's capacity.
// * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
// are detected and copied. Although it's always correct to pass
// kAllFixedArrays, the generated code is more compact and efficient if the
// caller can specify whether only FixedArrays or FixedDoubleArrays will be
// passed as the |source| parameter.
// * |parameter_mode| determines the parameter mode of |first|, |count| and
// |capacity|.
Node* ExtractFixedArray(Node* source, Node* first, Node* count = nullptr,
Node* capacity = nullptr,
ExtractFixedArrayFlags extract_flags =
ExtractFixedArrayFlag::kAllFixedArrays,
ParameterMode parameter_mode = INTPTR_PARAMETERS);
// Copy the entire contents of a FixedArray or FixedDoubleArray to a new
// array, including special appropriate handling for empty arrays and COW
// arrays.
//
// * |source| is either a FixedArray or FixedDoubleArray from which to copy
// elements.
// * |extract_flags| determines whether FixedArrays, FixedDoubleArrays or both
// are detected and copied. Although it's always correct to pass
// kAllFixedArrays, the generated code is more compact and efficient if the
// caller can specify whether only FixedArrays or FixedDoubleArrays will be
// passed as the |source| parameter.
Node* CloneFixedArray(Node* source,
ExtractFixedArrayFlags flags =
ExtractFixedArrayFlag::kAllFixedArraysDontCopyCOW) {
ParameterMode mode = OptimalParameterMode();
return ExtractFixedArray(source, IntPtrOrSmiConstant(0, mode), nullptr,
nullptr, flags, mode);
}
// Copies |character_count| elements from |from_string| to |to_string|
// starting at the |from_index|'th character. |from_string| and |to_string|
// can either be one-byte strings or two-byte strings, although if
// |from_string| is two-byte, then |to_string| must be two-byte.
// |from_index|, |to_index| and |character_count| must be intptr_ts s.t. 0 <=
// |from_index| <= |from_index| + |character_count| <= from_string.length and
// 0 <= |to_index| <= |to_index| + |character_count| <= to_string.length.
void CopyStringCharacters(Node* from_string, Node* to_string,
TNode<IntPtrT> from_index, TNode<IntPtrT> to_index,
TNode<IntPtrT> character_count,
String::Encoding from_encoding,
String::Encoding to_encoding);
// Loads an element from |array| of |from_kind| elements by given |offset|
// (NOTE: not index!), does a hole check if |if_hole| is provided and
// converts the value so that it becomes ready for storing to array of
// |to_kind| elements.
Node* LoadElementAndPrepareForStore(Node* array, Node* offset,
ElementsKind from_kind,
ElementsKind to_kind, Label* if_hole);
Node* CalculateNewElementsCapacity(Node* old_capacity,
ParameterMode mode = INTPTR_PARAMETERS);
// Tries to grow the |elements| array of given |object| to store the |key|
// or bails out if the growing gap is too big. Returns new elements.
Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
Node* key, Label* bailout);
// Tries to grow the |capacity|-length |elements| array of given |object|
// to store the |key| or bails out if the growing gap is too big. Returns
// new elements.
Node* TryGrowElementsCapacity(Node* object, Node* elements, ElementsKind kind,
Node* key, Node* capacity, ParameterMode mode,
Label* bailout);
// Grows elements capacity of given object. Returns new elements.
Node* GrowElementsCapacity(Node* object, Node* elements,
ElementsKind from_kind, ElementsKind to_kind,
Node* capacity, Node* new_capacity,
ParameterMode mode, Label* bailout);
// Given a need to grow by |growth|, allocate an appropriate new capacity
// if necessary, and return a new elements FixedArray object. Label |bailout|
// is followed for allocation failure.
void PossiblyGrowElementsCapacity(ParameterMode mode, ElementsKind kind,
Node* array, Node* length,
Variable* var_elements, Node* growth,
Label* bailout);
// Allocation site manipulation
void InitializeAllocationMemento(Node* base_allocation,
Node* base_allocation_size,
Node* allocation_site);
Node* TryTaggedToFloat64(Node* value, Label* if_valueisnotnumber);
Node* TruncateTaggedToFloat64(Node* context, Node* value);
Node* TruncateTaggedToWord32(Node* context, Node* value);
void TaggedToWord32OrBigInt(Node* context, Node* value, Label* if_number,
Variable* var_word32, Label* if_bigint,
Variable* var_bigint);
void TaggedToWord32OrBigIntWithFeedback(
Node* context, Node* value, Label* if_number, Variable* var_word32,
Label* if_bigint, Variable* var_bigint, Variable* var_feedback);
// Truncate the floating point value of a HeapNumber to an Int32.
Node* TruncateHeapNumberValueToWord32(Node* object);
// Conversions.
TNode<Number> ChangeFloat64ToTagged(SloppyTNode<Float64T> value);
TNode<Number> ChangeInt32ToTagged(SloppyTNode<Int32T> value);
TNode<Number> ChangeUint32ToTagged(SloppyTNode<Uint32T> value);
TNode<Float64T> ChangeNumberToFloat64(SloppyTNode<Number> value);
TNode<UintPtrT> ChangeNonnegativeNumberToUintPtr(TNode<Number> value);
void TaggedToNumeric(Node* context, Node* value, Label* done,
Variable* var_numeric);
void TaggedToNumericWithFeedback(Node* context, Node* value, Label* done,
Variable* var_numeric,
Variable* var_feedback);
Node* TimesPointerSize(Node* value);
// Type conversions.
// Throws a TypeError for {method_name} if {value} is not coercible to Object,
// or returns the {value} converted to a String otherwise.
TNode<String> ToThisString(Node* context, Node* value,
char const* method_name);
// Throws a TypeError for {method_name} if {value} is neither of the given
// {primitive_type} nor a JSValue wrapping a value of {primitive_type}, or
// returns the {value} (or wrapped value) otherwise.
Node* ToThisValue(Node* context, Node* value, PrimitiveType primitive_type,
char const* method_name);
// Throws a TypeError for {method_name} if {value} is not of the given
// instance type. Returns {value}'s map.
Node* ThrowIfNotInstanceType(Node* context, Node* value,
InstanceType instance_type,
char const* method_name);
// Throws a TypeError for {method_name} if {value} is not a JSReceiver.
// Returns the {value}'s map.
Node* ThrowIfNotJSReceiver(Node* context, Node* value,
MessageTemplate::Template msg_template,
const char* method_name = nullptr);
void ThrowRangeError(Node* context, MessageTemplate::Template message,
Node* arg0 = nullptr, Node* arg1 = nullptr,
Node* arg2 = nullptr);
void ThrowTypeError(Node* context, MessageTemplate::Template message,
char const* arg0 = nullptr, char const* arg1 = nullptr);
void ThrowTypeError(Node* context, MessageTemplate::Template message,
Node* arg0, Node* arg1 = nullptr, Node* arg2 = nullptr);
// Type checks.
// Check whether the map is for an object with special properties, such as a
// JSProxy or an object with interceptors.
TNode<BoolT> InstanceTypeEqual(SloppyTNode<Int32T> instance_type, int type);
Node* IsAccessorInfo(Node* object);
Node* IsAccessorPair(Node* object);
Node* IsAllocationSite(Node* object);
Node* IsAnyHeapNumber(Node* object);
Node* IsNoElementsProtectorCellInvalid();
Node* IsBigIntInstanceType(Node* instance_type);
Node* IsBigInt(Node* object);
Node* IsBoolean(Node* object);
Node* IsCallableMap(Node* map);
Node* IsCallable(Node* object);
Node* IsCell(Node* object);
Node* IsCode(Node* object);
Node* IsConsStringInstanceType(Node* instance_type);
Node* IsConstructorMap(Node* map);
Node* IsConstructor(Node* object);
Node* IsDeprecatedMap(Node* map);
Node* IsDictionary(Node* object);
Node* IsExtensibleMap(Node* map);
Node* IsExternalStringInstanceType(Node* instance_type);
TNode<BoolT> IsFastJSArray(SloppyTNode<Object> object,
SloppyTNode<Context> context);
TNode<BoolT> IsFastJSArrayWithNoCustomIteration(
TNode<Object> object, TNode<Context> context,
TNode<Context> native_context);
Node* IsFeedbackCell(Node* object);
Node* IsFeedbackVector(Node* object);
Node* IsFixedArray(Node* object);
Node* IsFixedArraySubclass(Node* object);
Node* IsFixedArrayWithKind(Node* object, ElementsKind kind);
Node* IsFixedArrayWithKindOrEmpty(Node* object, ElementsKind kind);
Node* IsFixedDoubleArray(Node* object);
Node* IsFixedTypedArray(Node* object);
Node* IsFunctionWithPrototypeSlotMap(Node* map);
Node* IsHashTable(Node* object);
Node* IsHeapNumber(Node* object);
Node* IsIndirectStringInstanceType(Node* instance_type);
Node* IsJSArrayBuffer(Node* object);
Node* IsJSArrayInstanceType(Node* instance_type);
Node* IsJSArrayMap(Node* object);
Node* IsJSArray(Node* object);
Node* IsJSArrayIterator(Node* object);
Node* IsJSAsyncGeneratorObject(Node* object);
Node* IsJSFunctionInstanceType(Node* instance_type);
Node* IsJSFunctionMap(Node* object);
Node* IsJSFunction(Node* object);
Node* IsJSGeneratorObject(Node* object);
Node* IsJSGlobalProxyInstanceType(Node* instance_type);
Node* IsJSGlobalProxy(Node* object);
Node* IsJSObjectInstanceType(Node* instance_type);
Node* IsJSObjectMap(Node* map);
Node* IsJSObject(Node* object);
Node* IsJSPromiseMap(Node* map);
Node* IsJSPromise(Node* object);
Node* IsJSProxy(Node* object);
Node* IsJSReceiverInstanceType(Node* instance_type);
Node* IsJSReceiverMap(Node* map);
Node* IsJSReceiver(Node* object);
Node* IsJSRegExp(Node* object);
Node* IsJSTypedArray(Node* object);
Node* IsJSValueInstanceType(Node* instance_type);
Node* IsJSValueMap(Node* map);
Node* IsJSValue(Node* object);
Node* IsMap(Node* object);
Node* IsMutableHeapNumber(Node* object);
Node* IsName(Node* object);
Node* IsNativeContext(Node* object);
Node* IsNullOrJSReceiver(Node* object);
Node* IsNullOrUndefined(Node* object);
Node* IsNumberDictionary(Node* object);
Node* IsOneByteStringInstanceType(Node* instance_type);
Node* IsPrimitiveInstanceType(Node* instance_type);
Node* IsPrivateSymbol(Node* object);
Node* IsPromiseCapability(Node* object);
Node* IsPropertyArray(Node* object);
Node* IsPropertyCell(Node* object);
Node* IsPrototypeInitialArrayPrototype(Node* context, Node* map);
TNode<BoolT> IsPrototypeTypedArrayPrototype(SloppyTNode<Context> context,
SloppyTNode<Map> map);
Node* IsSequentialStringInstanceType(Node* instance_type);
Node* IsShortExternalStringInstanceType(Node* instance_type);
Node* IsSpecialReceiverInstanceType(Node* instance_type);
Node* IsSpecialReceiverMap(Node* map);
Node* IsStringInstanceType(Node* instance_type);
Node* IsString(Node* object);
Node* IsSymbolInstanceType(Node* instance_type);
Node* IsSymbol(Node* object);
Node* IsUndetectableMap(Node* map);
Node* IsWeakCell(Node* object);
Node* IsZeroOrFixedArray(Node* object);
inline Node* IsSharedFunctionInfo(Node* object) {
return IsSharedFunctionInfoMap(LoadMap(object));
}
Node* IsPromiseResolveProtectorCellInvalid();
Node* IsPromiseThenProtectorCellInvalid();
Node* IsSpeciesProtectorCellInvalid();
// True iff |object| is a Smi or a HeapNumber.
Node* IsNumber(Node* object);
// True iff |object| is a Smi or a HeapNumber or a BigInt.
Node* IsNumeric(Node* object);
// True iff |number| is either a Smi, or a HeapNumber whose value is not
// within Smi range.
Node* IsNumberNormalized(Node* number);
Node* IsNumberPositive(Node* number);
// True iff {number} is a positive number and a valid array index in the range
// [0, 2^32-1).
Node* IsNumberArrayIndex(Node* number);
// ElementsKind helpers:
Node* IsFastElementsKind(Node* elements_kind);
Node* IsFastSmiOrTaggedElementsKind(Node* elements_kind);
Node* IsHoleyFastElementsKind(Node* elements_kind);
Node* IsElementsKindGreaterThan(Node* target_kind,
ElementsKind reference_kind);
Node* FixedArraySizeDoesntFitInNewSpace(
Node* element_count, int base_size = FixedArray::kHeaderSize,
ParameterMode mode = INTPTR_PARAMETERS);
// String helpers.
// Load a character from a String (might flatten a ConsString).
TNode<Int32T> StringCharCodeAt(SloppyTNode<String> string,
SloppyTNode<IntPtrT> index);
// Return the single character string with only {code}.
TNode<String> StringFromCharCode(TNode<Int32T> code);
// Return a new string object which holds a substring containing the range
// [from,to[ of string. |from| and |to| are expected to be tagged.
TNode<String> SubString(TNode<String> string, TNode<IntPtrT> from,
TNode<IntPtrT> to);
// Return a new string object produced by concatenating |first| with |second|.
TNode<String> StringAdd(Node* context, TNode<String> first,
TNode<String> second, AllocationFlags flags = kNone);
// Check if |string| is an indirect (thin or flat cons) string type that can
// be dereferenced by DerefIndirectString.
void BranchIfCanDerefIndirectString(Node* string, Node* instance_type,
Label* can_deref, Label* cannot_deref);
// Unpack an indirect (thin or flat cons) string type.
void DerefIndirectString(Variable* var_string, Node* instance_type);
// Check if |var_string| has an indirect (thin or flat cons) string type,
// and unpack it if so.
void MaybeDerefIndirectString(Variable* var_string, Node* instance_type,
Label* did_deref, Label* cannot_deref);
// Check if |var_left| or |var_right| has an indirect (thin or flat cons)
// string type, and unpack it/them if so. Fall through if nothing was done.
void MaybeDerefIndirectStrings(Variable* var_left, Node* left_instance_type,
Variable* var_right, Node* right_instance_type,
Label* did_something);
TNode<String> StringFromCodePoint(TNode<Int32T> codepoint,
UnicodeEncoding encoding);
// Type conversion helpers.
enum class BigIntHandling { kConvertToNumber, kThrow };
// Convert a String to a Number.
TNode<Number> StringToNumber(TNode<String> input);
// Convert a Number to a String.
TNode<String> NumberToString(TNode<Number> input);
// Convert an object to a name.
Node* ToName(Node* context, Node* input);
// Convert a Non-Number object to a Number.
TNode<Number> NonNumberToNumber(
SloppyTNode<Context> context, SloppyTNode<HeapObject> input,
BigIntHandling bigint_handling = BigIntHandling::kThrow);
// Convert a Non-Number object to a Numeric.
TNode<Numeric> NonNumberToNumeric(SloppyTNode<Context> context,
SloppyTNode<HeapObject> input);
// Convert any object to a Number.
// Conforms to ES#sec-tonumber if {bigint_handling} == kThrow.
// With {bigint_handling} == kConvertToNumber, matches behavior of
// tc39.github.io/proposal-bigint/#sec-number-constructor-number-value.
TNode<Number> ToNumber(
SloppyTNode<Context> context, SloppyTNode<Object> input,
BigIntHandling bigint_handling = BigIntHandling::kThrow);
TNode<Number> ToNumber_Inline(SloppyTNode<Context> context,
SloppyTNode<Object> input);
// Try to convert an object to a BigInt. Throws on failure (e.g. for Numbers).
// https://tc39.github.io/proposal-bigint/#sec-to-bigint
TNode<BigInt> ToBigInt(SloppyTNode<Context> context,
SloppyTNode<Object> input);
// Converts |input| to one of 2^32 integer values in the range 0 through
// 2^32-1, inclusive.
// ES#sec-touint32
TNode<Number> ToUint32(SloppyTNode<Context> context,
SloppyTNode<Object> input);
// Convert any object to a String.
TNode<String> ToString(SloppyTNode<Context> context,
SloppyTNode<Object> input);
TNode<String> ToString_Inline(SloppyTNode<Context> context,
SloppyTNode<Object> input);
// Convert any object to a Primitive.
Node* JSReceiverToPrimitive(Node* context, Node* input);
TNode<JSReceiver> ToObject(SloppyTNode<Context> context,
SloppyTNode<Object> input);
enum ToIntegerTruncationMode {
kNoTruncation,
kTruncateMinusZero,
};
// ES6 7.1.17 ToIndex, but jumps to range_error if the result is not a Smi.
TNode<Smi> ToSmiIndex(TNode<Object> input, TNode<Context> context,
Label* range_error);
// ES6 7.1.15 ToLength, but jumps to range_error if the result is not a Smi.
TNode<Smi> ToSmiLength(TNode<Object> input, TNode<Context> context,
Label* range_error);
// ES6 7.1.15 ToLength, but with inlined fast path.
TNode<Number> ToLength_Inline(SloppyTNode<Context> context,
SloppyTNode<Object> input);
// ES6 7.1.4 ToInteger ( argument )
TNode<Number> ToInteger_Inline(TNode<Context> context, TNode<Object> input,
ToIntegerTruncationMode mode = kNoTruncation);
TNode<Number> ToInteger(SloppyTNode<Context> context,
SloppyTNode<Object> input,
ToIntegerTruncationMode mode = kNoTruncation);
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |BitField| in |word32|. Returns result as an uint32 node.
template <typename BitField>
TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32) {
return DecodeWord32(word32, BitField::kShift, BitField::kMask);
}
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |BitField| in |word|. Returns result as a word-size node.
template <typename BitField>
TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word) {
return DecodeWord(word, BitField::kShift, BitField::kMask);
}
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |BitField| in |word32|. Returns result as a word-size node.
template <typename BitField>
TNode<UintPtrT> DecodeWordFromWord32(SloppyTNode<Word32T> word32) {
return DecodeWord<BitField>(ChangeUint32ToWord(word32));
}
// Returns a node that contains a decoded (unsigned!) value of a bit
// field |BitField| in |word|. Returns result as an uint32 node.
template <typename BitField>
TNode<Uint32T> DecodeWord32FromWord(SloppyTNode<WordT> word) {
return UncheckedCast<Uint32T>(
TruncateIntPtrToInt32(Signed(DecodeWord<BitField>(word))));
}
// Decodes an unsigned (!) value from |word32| to an uint32 node.
TNode<Uint32T> DecodeWord32(SloppyTNode<Word32T> word32, uint32_t shift,
uint32_t mask);
// Decodes an unsigned (!) value from |word| to a word-size node.
TNode<UintPtrT> DecodeWord(SloppyTNode<WordT> word, uint32_t shift,
uint32_t mask);
// Returns a node that contains the updated values of a |BitField|.
template <typename BitField>
Node* UpdateWord(Node* word, Node* value) {
return UpdateWord(word, value, BitField::kShift, BitField::kMask);
}
// Returns a node that contains the updated {value} inside {word} starting
// at {shift} and fitting in {mask}.
Node* UpdateWord(Node* word, Node* value, uint32_t shift, uint32_t mask);
// Returns true if any of the |T|'s bits in given |word32| are set.
template <typename T>
TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32) {
return IsSetWord32(word32, T::kMask);
}
// Returns true if any of the mask's bits in given |word32| are set.
TNode<BoolT> IsSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
return Word32NotEqual(Word32And(word32, Int32Constant(mask)),
Int32Constant(0));
}
// Returns true if none of the mask's bits in given |word32| are set.
TNode<BoolT> IsNotSetWord32(SloppyTNode<Word32T> word32, uint32_t mask) {
return Word32Equal(Word32And(word32, Int32Constant(mask)),
Int32Constant(0));
}
// Returns true if any of the |T|'s bits in given |word| are set.
template <typename T>
Node* IsSetWord(Node* word) {
return IsSetWord(word, T::kMask);
}
// Returns true if any of the mask's bits in given |word| are set.
Node* IsSetWord(Node* word, uint32_t mask) {
return WordNotEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
}
// Returns true if any of the mask's bit are set in the given Smi.
// Smi-encoding of the mask is performed implicitly!
Node* IsSetSmi(Node* smi, int untagged_mask) {
intptr_t mask_word = bit_cast<intptr_t>(Smi::FromInt(untagged_mask));
return WordNotEqual(
WordAnd(BitcastTaggedToWord(smi), IntPtrConstant(mask_word)),
IntPtrConstant(0));
}
// Returns true if all of the |T|'s bits in given |word32| are clear.
template <typename T>
Node* IsClearWord32(Node* word32) {
return IsClearWord32(word32, T::kMask);
}
// Returns true if all of the mask's bits in given |word32| are clear.
Node* IsClearWord32(Node* word32, uint32_t mask) {
return Word32Equal(Word32And(word32, Int32Constant(mask)),
Int32Constant(0));
}
// Returns true if all of the |T|'s bits in given |word| are clear.
template <typename T>
Node* IsClearWord(Node* word) {
return IsClearWord(word, T::kMask);
}
// Returns true if all of the mask's bits in given |word| are clear.
Node* IsClearWord(Node* word, uint32_t mask) {
return WordEqual(WordAnd(word, IntPtrConstant(mask)), IntPtrConstant(0));
}
void SetCounter(StatsCounter* counter, int value);
void IncrementCounter(StatsCounter* counter, int delta);
void DecrementCounter(StatsCounter* counter, int delta);
void Increment(Variable* variable, int value = 1,
ParameterMode mode = INTPTR_PARAMETERS);
void Decrement(Variable* variable, int value = 1,
ParameterMode mode = INTPTR_PARAMETERS) {
Increment(variable, -value, mode);
}
// Generates "if (false) goto label" code. Useful for marking a label as
// "live" to avoid assertion failures during graph building. In the resulting
// code this check will be eliminated.
void Use(Label* label);
// Various building blocks for stubs doing property lookups.
// |if_notinternalized| is optional; |if_bailout| will be used by default.
void TryToName(Node* key, Label* if_keyisindex, Variable* var_index,
Label* if_keyisunique, Variable* var_unique, Label* if_bailout,
Label* if_notinternalized = nullptr);
// Performs a hash computation and string table lookup for the given string,
// and jumps to:
// - |if_index| if the string is an array index like "123"; |var_index|
// will contain the intptr representation of that index.
// - |if_internalized| if the string exists in the string table; the
// internalized version will be in |var_internalized|.
// - |if_not_internalized| if the string is not in the string table (but
// does not add it).
// - |if_bailout| for unsupported cases (e.g. uncachable array index).
void TryInternalizeString(Node* string, Label* if_index, Variable* var_index,
Label* if_internalized, Variable* var_internalized,
Label* if_not_internalized, Label* if_bailout);
// Calculates array index for given dictionary entry and entry field.
// See Dictionary::EntryToIndex().
template <typename Dictionary>
Node* EntryToIndex(Node* entry, int field_index);
template <typename Dictionary>
Node* EntryToIndex(Node* entry) {
return EntryToIndex<Dictionary>(entry, Dictionary::kEntryKeyIndex);
}
// Loads the details for the entry with the given key_index.
// Returns an untagged int32.
template <class ContainerType>
Node* LoadDetailsByKeyIndex(Node* container, Node* key_index) {
const int kKeyToDetailsOffset =
(ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
kPointerSize;
return LoadAndUntagToWord32FixedArrayElement(container, key_index,
kKeyToDetailsOffset);
}
// Loads the value for the entry with the given key_index.
// Returns a tagged value.
template <class ContainerType>
Node* LoadValueByKeyIndex(Node* container, Node* key_index) {
const int kKeyToValueOffset =
(ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
kPointerSize;
return LoadFixedArrayElement(container, key_index, kKeyToValueOffset);
}
// Stores the details for the entry with the given key_index.
// |details| must be a Smi.
template <class ContainerType>
void StoreDetailsByKeyIndex(Node* container, Node* key_index, Node* details) {
const int kKeyToDetailsOffset =
(ContainerType::kEntryDetailsIndex - ContainerType::kEntryKeyIndex) *
kPointerSize;
StoreFixedArrayElement(container, key_index, details, SKIP_WRITE_BARRIER,
kKeyToDetailsOffset);
}
// Stores the value for the entry with the given key_index.
template <class ContainerType>
void StoreValueByKeyIndex(
Node* container, Node* key_index, Node* value,
WriteBarrierMode write_barrier = UPDATE_WRITE_BARRIER) {
const int kKeyToValueOffset =
(ContainerType::kEntryValueIndex - ContainerType::kEntryKeyIndex) *
kPointerSize;
StoreFixedArrayElement(container, key_index, value, write_barrier,
kKeyToValueOffset);
}
// Calculate a valid size for the a hash table.
TNode<IntPtrT> HashTableComputeCapacity(
SloppyTNode<IntPtrT> at_least_space_for);
template <class Dictionary>
Node* GetNumberOfElements(Node* dictionary) {
return LoadFixedArrayElement(dictionary,
Dictionary::kNumberOfElementsIndex);
}
template <class Dictionary>
void SetNumberOfElements(Node* dictionary, Node* num_elements_smi) {
StoreFixedArrayElement(dictionary, Dictionary::kNumberOfElementsIndex,
num_elements_smi, SKIP_WRITE_BARRIER);
}
template <class Dictionary>
Node* GetNumberOfDeletedElements(Node* dictionary) {
return LoadFixedArrayElement(dictionary,
Dictionary::kNumberOfDeletedElementsIndex);
}
template <class Dictionary>
void SetNumberOfDeletedElements(Node* dictionary, Node* num_deleted_smi) {
StoreFixedArrayElement(dictionary,
Dictionary::kNumberOfDeletedElementsIndex,
num_deleted_smi, SKIP_WRITE_BARRIER);
}
template <class Dictionary>
Node* GetCapacity(Node* dictionary) {
return LoadFixedArrayElement(dictionary, Dictionary::kCapacityIndex);
}
template <class Dictionary>
Node* GetNextEnumerationIndex(Node* dictionary);
template <class Dictionary>
void SetNextEnumerationIndex(Node* dictionary, Node* next_enum_index_smi);
// Looks up an entry in a NameDictionaryBase successor. If the entry is found
// control goes to {if_found} and {var_name_index} contains an index of the
// key field of the entry found. If the key is not found control goes to
// {if_not_found}.
static const int kInlinedDictionaryProbes = 4;
enum LookupMode { kFindExisting, kFindInsertionIndex };
template <typename Dictionary>
Node* LoadName(Node* key);
template <typename Dictionary>
void NameDictionaryLookup(Node* dictionary, Node* unique_name,
Label* if_found, Variable* var_name_index,
Label* if_not_found,
int inlined_probes = kInlinedDictionaryProbes,
LookupMode mode = kFindExisting);
Node* ComputeIntegerHash(Node* key);
Node* ComputeIntegerHash(Node* key, Node* seed);
void NumberDictionaryLookup(Node* dictionary, Node* intptr_index,
Label* if_found, Variable* var_entry,
Label* if_not_found);
template <class Dictionary>
void FindInsertionEntry(Node* dictionary, Node* key, Variable* var_key_index);
template <class Dictionary>
void InsertEntry(Node* dictionary, Node* key, Node* value, Node* index,
Node* enum_index);
template <class Dictionary>
void Add(Node* dictionary, Node* key, Node* value, Label* bailout);
// Tries to check if {object} has own {unique_name} property.
void TryHasOwnProperty(Node* object, Node* map, Node* instance_type,
Node* unique_name, Label* if_found,
Label* if_not_found, Label* if_bailout);
// Operating mode for TryGetOwnProperty and CallGetterIfAccessor
// kReturnAccessorPair is used when we're only getting the property descriptor
enum GetOwnPropertyMode { kCallJSGetter, kReturnAccessorPair };
// Tries to get {object}'s own {unique_name} property value. If the property
// is an accessor then it also calls a getter. If the property is a double
// field it re-wraps value in an immutable heap number.
void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
Node* instance_type, Node* unique_name,
Label* if_found, Variable* var_value,
Label* if_not_found, Label* if_bailout);
void TryGetOwnProperty(Node* context, Node* receiver, Node* object, Node* map,
Node* instance_type, Node* unique_name,
Label* if_found, Variable* var_value,
Variable* var_details, Variable* var_raw_value,
Label* if_not_found, Label* if_bailout,
GetOwnPropertyMode mode);
TNode<Object> GetProperty(SloppyTNode<Context> context,
SloppyTNode<Object> receiver, Handle<Name> name) {
return GetProperty(context, receiver, HeapConstant(name));
}
TNode<Object> GetProperty(SloppyTNode<Context> context,
SloppyTNode<Object> receiver,
SloppyTNode<Object> name) {
return UncheckedCast<Object>(
CallStub(CodeFactory::GetProperty(isolate()), context, receiver, name));
}
Node* GetMethod(Node* context, Node* object, Handle<Name> name,
Label* if_null_or_undefined);
template <class... TArgs>
TNode<Object> CallBuiltin(Builtins::Name id, SloppyTNode<Context> context,
TArgs... args) {
DCHECK_IMPLIES(Builtins::KindOf(id) == Builtins::TFJ,
!Builtins::IsLazy(id));
return UncheckedCast<Object>(
CallStub(Builtins::CallableFor(isolate(), id), context, args...));
}
template <class... TArgs>
TNode<Object> TailCallBuiltin(Builtins::Name id, SloppyTNode<Context> context,
TArgs... args) {
DCHECK_IMPLIES(Builtins::KindOf(id) == Builtins::TFJ,
!Builtins::IsLazy(id));
return UncheckedCast<Object>(
TailCallStub(Builtins::CallableFor(isolate(), id), context, args...));
}
void LoadPropertyFromFastObject(Node* object, Node* map, Node* descriptors,
Node* name_index, Variable* var_details,
Variable* var_value);
void LoadPropertyFromFastObject(Node* object, Node* map, Node* descriptors,
Node* name_index, Node* details,
Variable* var_value);
void LoadPropertyFromNameDictionary(Node* dictionary, Node* entry,
Variable* var_details,
Variable* var_value);
void LoadPropertyFromGlobalDictionary(Node* dictionary, Node* entry,
Variable* var_details,
Variable* var_value, Label* if_deleted);
// Generic property lookup generator. If the {object} is fast and
// {unique_name} property is found then the control goes to {if_found_fast}
// label and {var_meta_storage} and {var_name_index} will contain
// DescriptorArray and an index of the descriptor's name respectively.
// If the {object} is slow or global then the control goes to {if_found_dict}
// or {if_found_global} and the {var_meta_storage} and {var_name_index} will
// contain a dictionary and an index of the key field of the found entry.
// If property is not found or given lookup is not supported then
// the control goes to {if_not_found} or {if_bailout} respectively.
//
// Note: this code does not check if the global dictionary points to deleted
// entry! This has to be done by the caller.
void TryLookupProperty(Node* object, Node* map, Node* instance_type,
Node* unique_name, Label* if_found_fast,
Label* if_found_dict, Label* if_found_global,
Variable* var_meta_storage, Variable* var_name_index,
Label* if_not_found, Label* if_bailout);
// This method jumps to if_found if the element is known to exist. To
// if_absent if it's known to not exist. To if_not_found if the prototype
// chain needs to be checked. And if_bailout if the lookup is unsupported.
void TryLookupElement(Node* object, Node* map, Node* instance_type,
Node* intptr_index, Label* if_found, Label* if_absent,
Label* if_not_found, Label* if_bailout);
// This is a type of a lookup in holder generator function. In case of a
// property lookup the {key} is guaranteed to be an unique name and in case of
// element lookup the key is an Int32 index.
typedef std::function<void(Node* receiver, Node* holder, Node* map,
Node* instance_type, Node* key, Label* next_holder,
Label* if_bailout)>
LookupInHolder;
// For integer indexed exotic cases, check if the given string cannot be a
// special index. If we are not sure that the given string is not a special
// index with a simple check, return False. Note that "False" return value
// does not mean that the name_string is a special index in the current
// implementation.
void BranchIfMaybeSpecialIndex(TNode<String> name_string,
Label* if_maybe_special_index,
Label* if_not_special_index);
// Generic property prototype chain lookup generator.
// For properties it generates lookup using given {lookup_property_in_holder}
// and for elements it uses {lookup_element_in_holder}.
// Upon reaching the end of prototype chain the control goes to {if_end}.
// If it can't handle the case {receiver}/{key} case then the control goes
// to {if_bailout}.
// If {if_proxy} is nullptr, proxies go to if_bailout.
void TryPrototypeChainLookup(Node* receiver, Node* key,
const LookupInHolder& lookup_property_in_holder,
const LookupInHolder& lookup_element_in_holder,
Label* if_end, Label* if_bailout,
Label* if_proxy = nullptr);
// Instanceof helpers.
// Returns true if {object} has {prototype} somewhere in it's prototype
// chain, otherwise false is returned. Might cause arbitrary side effects
// due to [[GetPrototypeOf]] invocations.
Node* HasInPrototypeChain(Node* context, Node* object, Node* prototype);
// ES6 section 7.3.19 OrdinaryHasInstance (C, O)
Node* OrdinaryHasInstance(Node* context, Node* callable, Node* object);
// Load type feedback vector from the stub caller's frame.
Node* LoadFeedbackVectorForStub();
// Load type feedback vector for the given closure.
Node* LoadFeedbackVector(Node* closure);
// Update the type feedback vector.
void UpdateFeedback(Node* feedback, Node* feedback_vector, Node* slot_id);
// Report that there was a feedback update, performing any tasks that should
// be done after a feedback update.
void ReportFeedbackUpdate(SloppyTNode<FeedbackVector> feedback_vector,
SloppyTNode<IntPtrT> slot_id, const char* reason);
// Combine the new feedback with the existing_feedback. Do nothing if
// existing_feedback is nullptr.
void CombineFeedback(Variable* existing_feedback, int feedback);
void CombineFeedback(Variable* existing_feedback, Node* feedback);
// Overwrite the existing feedback with new_feedback. Do nothing if
// existing_feedback is nullptr.
void OverwriteFeedback(Variable* existing_feedback, int new_feedback);
// Check if a property name might require protector invalidation when it is
// used for a property store or deletion.
void CheckForAssociatedProtector(Node* name, Label* if_protector);
Node* LoadReceiverMap(Node* receiver);
// Emits keyed sloppy arguments load. Returns either the loaded value.
Node* LoadKeyedSloppyArguments(Node* receiver, Node* key, Label* bailout) {
return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout);
}
// Emits keyed sloppy arguments store.
void StoreKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
Label* bailout) {
DCHECK_NOT_NULL(value);
EmitKeyedSloppyArguments(receiver, key, value, bailout);
}
// Loads script context from the script context table.
TNode<Context> LoadScriptContext(TNode<Context> context,
TNode<IntPtrT> context_index);
Node* Int32ToUint8Clamped(Node* int32_value);
Node* Float64ToUint8Clamped(Node* float64_value);
Node* PrepareValueForWriteToTypedArray(TNode<Object> input,
ElementsKind elements_kind,
TNode<Context> context);
// Store value to an elements array with given elements kind.
void StoreElement(Node* elements, ElementsKind kind, Node* index, Node* value,
ParameterMode mode);
void EmitBigTypedArrayElementStore(TNode<JSTypedArray> object,
TNode<FixedTypedArrayBase> elements,
TNode<IntPtrT> intptr_key,
TNode<Object> value,
TNode<Context> context,
Label* opt_if_neutered);
void EmitElementStore(Node* object, Node* key, Node* value, bool is_jsarray,
ElementsKind elements_kind,
KeyedAccessStoreMode store_mode, Label* bailout,
Node* context);
Node* CheckForCapacityGrow(Node* object, Node* elements, ElementsKind kind,
KeyedAccessStoreMode store_mode, Node* length,
Node* key, ParameterMode mode, bool is_js_array,
Label* bailout);
Node* CopyElementsOnWrite(Node* object, Node* elements, ElementsKind kind,
Node* length, ParameterMode mode, Label* bailout);
void TransitionElementsKind(Node* object, Node* map, ElementsKind from_kind,
ElementsKind to_kind, bool is_jsarray,
Label* bailout);
void TrapAllocationMemento(Node* object, Label* memento_found);
Node* PageFromAddress(Node* address);
// Create a new weak cell with a specified value and install it into a
// feedback vector.
Node* CreateWeakCellInFeedbackVector(Node* feedback_vector, Node* slot,
Node* value);
// Create a new AllocationSite and install it into a feedback vector.
Node* CreateAllocationSiteInFeedbackVector(Node* feedback_vector, Node* slot);
enum class IndexAdvanceMode { kPre, kPost };
typedef std::function<void(Node* index)> FastLoopBody;
Node* BuildFastLoop(const VariableList& var_list, Node* start_index,
Node* end_index, const FastLoopBody& body, int increment,
ParameterMode parameter_mode,
IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre);
Node* BuildFastLoop(Node* start_index, Node* end_index,
const FastLoopBody& body, int increment,
ParameterMode parameter_mode,
IndexAdvanceMode advance_mode = IndexAdvanceMode::kPre) {
return BuildFastLoop(VariableList(0, zone()), start_index, end_index, body,
increment, parameter_mode, advance_mode);
}
enum class ForEachDirection { kForward, kReverse };
typedef std::function<void(Node* fixed_array, Node* offset)>
FastFixedArrayForEachBody;
void BuildFastFixedArrayForEach(
const CodeStubAssembler::VariableList& vars, Node* fixed_array,
ElementsKind kind, Node* first_element_inclusive,
Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
ParameterMode mode = INTPTR_PARAMETERS,
ForEachDirection direction = ForEachDirection::kReverse);
void BuildFastFixedArrayForEach(
Node* fixed_array, ElementsKind kind, Node* first_element_inclusive,
Node* last_element_exclusive, const FastFixedArrayForEachBody& body,
ParameterMode mode = INTPTR_PARAMETERS,
ForEachDirection direction = ForEachDirection::kReverse) {
CodeStubAssembler::VariableList list(0, zone());
BuildFastFixedArrayForEach(list, fixed_array, kind, first_element_inclusive,
last_element_exclusive, body, mode, direction);
}
Node* GetArrayAllocationSize(Node* element_count, ElementsKind kind,
ParameterMode mode, int header_size) {
return ElementOffsetFromIndex(element_count, kind, mode, header_size);
}
Node* GetFixedArrayAllocationSize(Node* element_count, ElementsKind kind,
ParameterMode mode) {
return GetArrayAllocationSize(element_count, kind, mode,
FixedArray::kHeaderSize);
}
Node* GetPropertyArrayAllocationSize(Node* element_count,
ParameterMode mode) {
return GetArrayAllocationSize(element_count, PACKED_ELEMENTS, mode,
PropertyArray::kHeaderSize);
}
void GotoIfFixedArraySizeDoesntFitInNewSpace(Node* element_count,
Label* doesnt_fit, int base_size,
ParameterMode mode);
void InitializeFieldsWithRoot(Node* object, Node* start_offset,
Node* end_offset, Heap::RootListIndex root);
Node* RelationalComparison(Operation op, Node* left, Node* right,
Node* context,
Variable* var_type_feedback = nullptr);
void BranchIfNumberRelationalComparison(Operation op, Node* left, Node* right,
Label* if_true, Label* if_false);
void BranchIfAccessorPair(Node* value, Label* if_accessor_pair,
Label* if_not_accessor_pair) {
GotoIf(TaggedIsSmi(value), if_not_accessor_pair);
Branch(IsAccessorPair(value), if_accessor_pair, if_not_accessor_pair);
}
void GotoIfNumberGreaterThanOrEqual(Node* left, Node* right, Label* if_false);
Node* Equal(Node* lhs, Node* rhs, Node* context,
Variable* var_type_feedback = nullptr);
Node* StrictEqual(Node* lhs, Node* rhs,
Variable* var_type_feedback = nullptr);
// ECMA#sec-samevalue
// Similar to StrictEqual except that NaNs are treated as equal and minus zero
// differs from positive zero.
void BranchIfSameValue(Node* lhs, Node* rhs, Label* if_true, Label* if_false);
enum HasPropertyLookupMode { kHasProperty, kForInHasProperty };
TNode<Oddball> HasProperty(SloppyTNode<HeapObject> object,
SloppyTNode<Name> key,
SloppyTNode<Context> context,
HasPropertyLookupMode mode);
Node* Typeof(Node* value);
Node* GetSuperConstructor(Node* value, Node* context);
Node* SpeciesConstructor(Node* context, Node* object,
Node* default_constructor);
Node* InstanceOf(Node* object, Node* callable, Node* context);
// Debug helpers
Node* IsDebugActive();
// TypedArray/ArrayBuffer helpers
Node* IsDetachedBuffer(Node* buffer);
Node* ElementOffsetFromIndex(Node* index, ElementsKind kind,
ParameterMode mode, int base_size = 0);
Node* AllocateFunctionWithMapAndContext(Node* map, Node* shared_info,
Node* context);
// Promise helpers
Node* IsPromiseHookEnabledOrDebugIsActive();
// Helpers for StackFrame markers.
Node* MarkerIsFrameType(Node* marker_or_function,
StackFrame::Type frame_type);
Node* MarkerIsNotFrameType(Node* marker_or_function,
StackFrame::Type frame_type);
// for..in helpers
void CheckPrototypeEnumCache(Node* receiver, Node* receiver_map,
Label* if_fast, Label* if_slow);
Node* CheckEnumCache(Node* receiver, Label* if_empty, Label* if_runtime);
// Support for printf-style debugging
void Print(const char* s);
void Print(const char* prefix, Node* tagged_value);
inline void Print(SloppyTNode<Object> tagged_value) {
return Print(nullptr, tagged_value);
}
template <class... TArgs>
Node* MakeTypeError(MessageTemplate::Template message, Node* context,
TArgs... args) {
STATIC_ASSERT(sizeof...(TArgs) <= 3);
Node* const make_type_error = LoadContextElement(
LoadNativeContext(context), Context::MAKE_TYPE_ERROR_INDEX);
return CallJS(CodeFactory::Call(isolate()), context, make_type_error,
UndefinedConstant(), SmiConstant(message), args...);
}
void Abort(AbortReason reason) {
CallRuntime(Runtime::kAbort, NoContextConstant(), SmiConstant(reason));
Unreachable();
}
void PerformStackCheck(Node* context);
protected:
void DescriptorLookup(Node* unique_name, Node* descriptors, Node* bitfield3,
Label* if_found, Variable* var_name_index,
Label* if_not_found);
void DescriptorLookupLinear(Node* unique_name, Node* descriptors, Node* nof,
Label* if_found, Variable* var_name_index,
Label* if_not_found);
void DescriptorLookupBinary(Node* unique_name, Node* descriptors, Node* nof,
Label* if_found, Variable* var_name_index,
Label* if_not_found);
Node* DescriptorNumberToIndex(SloppyTNode<Uint32T> descriptor_number);
// Implements DescriptorArray::ToKeyIndex.
// Returns an untagged IntPtr.
Node* DescriptorArrayToKeyIndex(Node* descriptor_number);
// Implements DescriptorArray::GetKey.
Node* DescriptorArrayGetKey(Node* descriptors, Node* descriptor_number);
// Implements DescriptorArray::GetKey.
TNode<Uint32T> DescriptorArrayGetDetails(TNode<DescriptorArray> descriptors,
TNode<Uint32T> descriptor_number);
Node* CallGetterIfAccessor(Node* value, Node* details, Node* context,
Node* receiver, Label* if_bailout,
GetOwnPropertyMode mode = kCallJSGetter);
TNode<IntPtrT> TryToIntptr(Node* key, Label* miss);
void BranchIfPrototypesHaveNoElements(Node* receiver_map,
Label* definitely_no_elements,
Label* possibly_elements);
void InitializeFunctionContext(Node* native_context, Node* context,
int slots);
void AssertIsStrongHeapObject(SloppyTNode<HeapObject> object);
private:
friend class CodeStubArguments;
void HandleBreakOnNode();
Node* AllocateRawDoubleAligned(Node* size_in_bytes, AllocationFlags flags,
Node* top_address, Node* limit_address);
Node* AllocateRawUnaligned(Node* size_in_bytes, AllocationFlags flags,
Node* top_adddress, Node* limit_address);
Node* AllocateRaw(Node* size_in_bytes, AllocationFlags flags,
Node* top_address, Node* limit_address);
// Allocate and return a JSArray of given total size in bytes with header
// fields initialized.
Node* AllocateUninitializedJSArray(Node* array_map, Node* length,
Node* allocation_site,
Node* size_in_bytes);
Node* SmiShiftBitsConstant();
// Emits keyed sloppy arguments load if the |value| is nullptr or store
// otherwise. Returns either the loaded value or |value|.
Node* EmitKeyedSloppyArguments(Node* receiver, Node* key, Node* value,
Label* bailout);
TNode<String> AllocateSlicedString(Heap::RootListIndex map_root_index,
TNode<Smi> length, TNode<String> parent,
TNode<Smi> offset);
TNode<String> AllocateConsString(Heap::RootListIndex map_root_index,
TNode<Smi> length, TNode<String> first,
TNode<String> second, AllocationFlags flags);
// Implements DescriptorArray::number_of_entries.
// Returns an untagged int32.
Node* DescriptorArrayNumberOfEntries(Node* descriptors);
// Implements DescriptorArray::GetSortedKeyIndex.
// Returns an untagged int32.
Node* DescriptorArrayGetSortedKeyIndex(Node* descriptors,
Node* descriptor_number);
Node* CollectFeedbackForString(Node* instance_type);
void GenerateEqual_Same(Node* value, Label* if_equal, Label* if_notequal,
Variable* var_type_feedback = nullptr);
TNode<String> AllocAndCopyStringCharacters(Node* from,
Node* from_instance_type,
TNode<IntPtrT> from_index,
TNode<Smi> character_count);
static const int kElementLoopUnrollThreshold = 8;
// {convert_bigint} is only meaningful when {mode} == kToNumber.
Node* NonNumberToNumberOrNumeric(
Node* context, Node* input, Object::Conversion mode,
BigIntHandling bigint_handling = BigIntHandling::kThrow);
void TaggedToNumeric(Node* context, Node* value, Label* done,
Variable* var_numeric, Variable* var_feedback);
template <Object::Conversion conversion>
void TaggedToWord32OrBigIntImpl(Node* context, Node* value, Label* if_number,
Variable* var_word32,
Label* if_bigint = nullptr,
Variable* var_bigint = nullptr,
Variable* var_feedback = nullptr);
};
class CodeStubArguments {
public:
typedef compiler::Node Node;
template <class T>
using TNode = compiler::TNode<T>;
template <class T>
using SloppyTNode = compiler::SloppyTNode<T>;
enum ReceiverMode { kHasReceiver, kNoReceiver };
// |argc| is an intptr value which specifies the number of arguments passed
// to the builtin excluding the receiver. The arguments will include a
// receiver iff |receiver_mode| is kHasReceiver.
CodeStubArguments(CodeStubAssembler* assembler, Node* argc,
ReceiverMode receiver_mode = ReceiverMode::kHasReceiver)
: CodeStubArguments(assembler, argc, nullptr,
CodeStubAssembler::INTPTR_PARAMETERS, receiver_mode) {
}
// |argc| is either a smi or intptr depending on |param_mode|. The arguments
// include a receiver iff |receiver_mode| is kHasReceiver.
CodeStubArguments(CodeStubAssembler* assembler, Node* argc, Node* fp,
CodeStubAssembler::ParameterMode param_mode,
ReceiverMode receiver_mode = ReceiverMode::kHasReceiver);
TNode<Object> GetReceiver() const;
TNode<RawPtr<Object>> AtIndexPtr(
Node* index, CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS) const;
// |index| is zero-based and does not include the receiver
TNode<Object> AtIndex(Node* index,
CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS) const;
TNode<Object> AtIndex(int index) const;
TNode<Object> GetOptionalArgumentValue(int index) {
return GetOptionalArgumentValue(index, assembler_->UndefinedConstant());
}
TNode<Object> GetOptionalArgumentValue(int index,
SloppyTNode<Object> default_value);
Node* GetLength(CodeStubAssembler::ParameterMode mode) const {
DCHECK_EQ(mode, argc_mode_);
return argc_;
}
typedef std::function<void(Node* arg)> ForEachBodyFunction;
// Iteration doesn't include the receiver. |first| and |last| are zero-based.
void ForEach(const ForEachBodyFunction& body, Node* first = nullptr,
Node* last = nullptr, CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS) {
CodeStubAssembler::VariableList list(0, assembler_->zone());
ForEach(list, body, first, last);
}
// Iteration doesn't include the receiver. |first| and |last| are zero-based.
void ForEach(const CodeStubAssembler::VariableList& vars,
const ForEachBodyFunction& body, Node* first = nullptr,
Node* last = nullptr, CodeStubAssembler::ParameterMode mode =
CodeStubAssembler::INTPTR_PARAMETERS);
void PopAndReturn(Node* value);
private:
Node* GetArguments();
CodeStubAssembler* assembler_;
CodeStubAssembler::ParameterMode argc_mode_;
ReceiverMode receiver_mode_;
Node* argc_;
TNode<RawPtr<Object>> arguments_;
Node* fp_;
};
class ToDirectStringAssembler : public CodeStubAssembler {
private:
enum StringPointerKind { PTR_TO_DATA, PTR_TO_STRING };
public:
enum Flag {
kDontUnpackSlicedStrings = 1 << 0,
};
typedef base::Flags<Flag> Flags;
ToDirectStringAssembler(compiler::CodeAssemblerState* state, Node* string,
Flags flags = Flags());
// Converts flat cons, thin, and sliced strings and returns the direct
// string. The result can be either a sequential or external string.
// Jumps to if_bailout if the string if the string is indirect and cannot
// be unpacked.
TNode<String> TryToDirect(Label* if_bailout);
// Returns a pointer to the beginning of the string data.
// Jumps to if_bailout if the external string cannot be unpacked.
Node* PointerToData(Label* if_bailout) {
return TryToSequential(PTR_TO_DATA, if_bailout);
}
// Returns a pointer that, offset-wise, looks like a String.
// Jumps to if_bailout if the external string cannot be unpacked.
Node* PointerToString(Label* if_bailout) {
return TryToSequential(PTR_TO_STRING, if_bailout);
}
Node* string() { return var_string_.value(); }
Node* instance_type() { return var_instance_type_.value(); }
TNode<IntPtrT> offset() {
return UncheckedCast<IntPtrT>(var_offset_.value());
}
Node* is_external() { return var_is_external_.value(); }
private:
Node* TryToSequential(StringPointerKind ptr_kind, Label* if_bailout);
Variable var_string_;
Variable var_instance_type_;
Variable var_offset_;
Variable var_is_external_;
const Flags flags_;
};
#define CSA_CHECK(csa, x) \
(csa)->Check( \
[&]() -> compiler::Node* { \
return base::implicit_cast<compiler::SloppyTNode<Word32T>>(x); \
}, \
#x, __FILE__, __LINE__)
#ifdef DEBUG
// Add stringified versions to the given values, except the first. That is,
// transform
// x, a, b, c, d, e, f
// to
// a, "a", b, "b", c, "c", d, "d", e, "e", f, "f"
//
// __VA_ARGS__ is ignored to allow the caller to pass through too many
// parameters, and the first element is ignored to support having no extra
// values without empty __VA_ARGS__ (which cause all sorts of problems with
// extra commas).
#define CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(_, v1, v2, v3, v4, v5, ...) \
v1, #v1, v2, #v2, v3, #v3, v4, #v4, v5, #v5
// Stringify the given variable number of arguments. The arguments are trimmed
// to 5 if there are too many, and padded with nullptr if there are not enough.
#define CSA_ASSERT_STRINGIFY_EXTRA_VALUES(...) \
CSA_ASSERT_STRINGIFY_EXTRA_VALUES_5(__VA_ARGS__, nullptr, nullptr, nullptr, \
nullptr, nullptr)
#define CSA_ASSERT_GET_FIRST(x, ...) (x)
#define CSA_ASSERT_GET_FIRST_STR(x, ...) #x
// CSA_ASSERT(csa, <condition>, <extra values to print...>)
// We have to jump through some hoops to allow <extra values to print...> to be
// empty.
#define CSA_ASSERT(csa, ...) \
(csa)->Assert( \
[&]() -> compiler::Node* { \
return base::implicit_cast<compiler::SloppyTNode<Word32T>>( \
EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__))); \
}, \
EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, __LINE__, \
CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
// CSA_ASSERT_BRANCH(csa, [](Label* ok, Label* not_ok) {...},
// <extra values to print...>)
#define CSA_ASSERT_BRANCH(csa, ...) \
(csa)->Assert(EXPAND(CSA_ASSERT_GET_FIRST(__VA_ARGS__)), \
EXPAND(CSA_ASSERT_GET_FIRST_STR(__VA_ARGS__)), __FILE__, \
__LINE__, CSA_ASSERT_STRINGIFY_EXTRA_VALUES(__VA_ARGS__))
#define CSA_ASSERT_JS_ARGC_OP(csa, Op, op, expected) \
(csa)->Assert( \
[&]() -> compiler::Node* { \
compiler::Node* const argc = \
(csa)->Parameter(Descriptor::kActualArgumentsCount); \
return (csa)->Op(argc, (csa)->Int32Constant(expected)); \
}, \
"argc " #op " " #expected, __FILE__, __LINE__, \
SmiFromInt32((csa)->Parameter(Descriptor::kActualArgumentsCount)), \
"argc")
#define CSA_ASSERT_JS_ARGC_EQ(csa, expected) \
CSA_ASSERT_JS_ARGC_OP(csa, Word32Equal, ==, expected)
#define CSA_DEBUG_INFO(name) \
{ #name, __FILE__, __LINE__ }
#define BIND(label) Bind(label, CSA_DEBUG_INFO(label))
#define VARIABLE(name, ...) \
Variable name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
#define VARIABLE_CONSTRUCTOR(name, ...) \
name(this, CSA_DEBUG_INFO(name), __VA_ARGS__)
#define TYPED_VARIABLE_DEF(type, name, ...) \
TVariable<type> name(CSA_DEBUG_INFO(name), __VA_ARGS__)
#else // DEBUG
#define CSA_ASSERT(csa, ...) ((void)0)
#define CSA_ASSERT_BRANCH(csa, ...) ((void)0)
#define CSA_ASSERT_JS_ARGC_EQ(csa, expected) ((void)0)
#define BIND(label) Bind(label)
#define VARIABLE(name, ...) Variable name(this, __VA_ARGS__)
#define VARIABLE_CONSTRUCTOR(name, ...) name(this, __VA_ARGS__)
#define TYPED_VARIABLE_DEF(type, name, ...) TVariable<type> name(__VA_ARGS__)
#endif // DEBUG
#define TVARIABLE(...) EXPAND(TYPED_VARIABLE_DEF(__VA_ARGS__, this))
#ifdef ENABLE_SLOW_DCHECKS
#define CSA_SLOW_ASSERT(csa, ...) \
if (FLAG_enable_slow_asserts) { \
CSA_ASSERT(csa, __VA_ARGS__); \
}
#else
#define CSA_SLOW_ASSERT(csa, ...) ((void)0)
#endif
DEFINE_OPERATORS_FOR_FLAGS(CodeStubAssembler::AllocationFlags);
} // namespace internal
} // namespace v8
#endif // V8_CODE_STUB_ASSEMBLER_H_