| // Copyright 2017 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/builtins/builtins-utils-gen.h" |
| #include "src/builtins/builtins.h" |
| #include "src/code-stub-assembler.h" |
| #include "src/ic/binary-op-assembler.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ----------------------------------------------------------------------------- |
| // ES6 section 20.1 Number Objects |
| |
| class NumberBuiltinsAssembler : public CodeStubAssembler { |
| public: |
| explicit NumberBuiltinsAssembler(compiler::CodeAssemblerState* state) |
| : CodeStubAssembler(state) {} |
| |
| protected: |
| template <typename Descriptor> |
| void BitwiseOp(std::function<Node*(Node* lhs, Node* rhs)> body, |
| Signedness signed_result = kSigned) { |
| Node* left = Parameter(Descriptor::kLeft); |
| Node* right = Parameter(Descriptor::kRight); |
| Node* context = Parameter(Descriptor::kContext); |
| |
| Node* lhs_value = TruncateTaggedToWord32(context, left); |
| Node* rhs_value = TruncateTaggedToWord32(context, right); |
| Node* value = body(lhs_value, rhs_value); |
| Node* result = signed_result == kSigned ? ChangeInt32ToTagged(value) |
| : ChangeUint32ToTagged(value); |
| Return(result); |
| } |
| |
| template <typename Descriptor> |
| void BitwiseShiftOp(std::function<Node*(Node* lhs, Node* shift_count)> body, |
| Signedness signed_result = kSigned) { |
| BitwiseOp<Descriptor>( |
| [=](Node* lhs, Node* rhs) { |
| Node* shift_count = Word32And(rhs, Int32Constant(0x1f)); |
| return body(lhs, shift_count); |
| }, |
| signed_result); |
| } |
| |
| template <typename Descriptor> |
| void RelationalComparisonBuiltin(RelationalComparisonMode mode) { |
| Node* lhs = Parameter(Descriptor::kLeft); |
| Node* rhs = Parameter(Descriptor::kRight); |
| Node* context = Parameter(Descriptor::kContext); |
| |
| Return(RelationalComparison(mode, lhs, rhs, context)); |
| } |
| }; |
| |
| // ES6 #sec-number.isfinite |
| TF_BUILTIN(NumberIsFinite, CodeStubAssembler) { |
| Node* number = Parameter(Descriptor::kNumber); |
| |
| Label return_true(this), return_false(this); |
| |
| // Check if {number} is a Smi. |
| GotoIf(TaggedIsSmi(number), &return_true); |
| |
| // Check if {number} is a HeapNumber. |
| GotoIfNot(IsHeapNumberMap(LoadMap(number)), &return_false); |
| |
| // Check if {number} contains a finite, non-NaN value. |
| Node* number_value = LoadHeapNumberValue(number); |
| BranchIfFloat64IsNaN(Float64Sub(number_value, number_value), &return_false, |
| &return_true); |
| |
| BIND(&return_true); |
| Return(BooleanConstant(true)); |
| |
| BIND(&return_false); |
| Return(BooleanConstant(false)); |
| } |
| |
| // ES6 #sec-number.isinteger |
| TF_BUILTIN(NumberIsInteger, CodeStubAssembler) { |
| Node* number = Parameter(Descriptor::kNumber); |
| |
| Label return_true(this), return_false(this); |
| |
| // Check if {number} is a Smi. |
| GotoIf(TaggedIsSmi(number), &return_true); |
| |
| // Check if {number} is a HeapNumber. |
| GotoIfNot(IsHeapNumberMap(LoadMap(number)), &return_false); |
| |
| // Load the actual value of {number}. |
| Node* number_value = LoadHeapNumberValue(number); |
| |
| // Truncate the value of {number} to an integer (or an infinity). |
| Node* integer = Float64Trunc(number_value); |
| |
| // Check if {number}s value matches the integer (ruling out the infinities). |
| Branch(Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)), |
| &return_true, &return_false); |
| |
| BIND(&return_true); |
| Return(BooleanConstant(true)); |
| |
| BIND(&return_false); |
| Return(BooleanConstant(false)); |
| } |
| |
| // ES6 #sec-number.isnan |
| TF_BUILTIN(NumberIsNaN, CodeStubAssembler) { |
| Node* number = Parameter(Descriptor::kNumber); |
| |
| Label return_true(this), return_false(this); |
| |
| // Check if {number} is a Smi. |
| GotoIf(TaggedIsSmi(number), &return_false); |
| |
| // Check if {number} is a HeapNumber. |
| GotoIfNot(IsHeapNumberMap(LoadMap(number)), &return_false); |
| |
| // Check if {number} contains a NaN value. |
| Node* number_value = LoadHeapNumberValue(number); |
| BranchIfFloat64IsNaN(number_value, &return_true, &return_false); |
| |
| BIND(&return_true); |
| Return(BooleanConstant(true)); |
| |
| BIND(&return_false); |
| Return(BooleanConstant(false)); |
| } |
| |
| // ES6 #sec-number.issafeinteger |
| TF_BUILTIN(NumberIsSafeInteger, CodeStubAssembler) { |
| Node* number = Parameter(Descriptor::kNumber); |
| |
| Label return_true(this), return_false(this); |
| |
| // Check if {number} is a Smi. |
| GotoIf(TaggedIsSmi(number), &return_true); |
| |
| // Check if {number} is a HeapNumber. |
| GotoIfNot(IsHeapNumberMap(LoadMap(number)), &return_false); |
| |
| // Load the actual value of {number}. |
| Node* number_value = LoadHeapNumberValue(number); |
| |
| // Truncate the value of {number} to an integer (or an infinity). |
| Node* integer = Float64Trunc(number_value); |
| |
| // Check if {number}s value matches the integer (ruling out the infinities). |
| GotoIfNot( |
| Float64Equal(Float64Sub(number_value, integer), Float64Constant(0.0)), |
| &return_false); |
| |
| // Check if the {integer} value is in safe integer range. |
| Branch(Float64LessThanOrEqual(Float64Abs(integer), |
| Float64Constant(kMaxSafeInteger)), |
| &return_true, &return_false); |
| |
| BIND(&return_true); |
| Return(BooleanConstant(true)); |
| |
| BIND(&return_false); |
| Return(BooleanConstant(false)); |
| } |
| |
| // ES6 #sec-number.parsefloat |
| TF_BUILTIN(NumberParseFloat, CodeStubAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| |
| // We might need to loop once for ToString conversion. |
| VARIABLE(var_input, MachineRepresentation::kTagged, |
| Parameter(Descriptor::kString)); |
| Label loop(this, &var_input); |
| Goto(&loop); |
| BIND(&loop); |
| { |
| // Load the current {input} value. |
| Node* input = var_input.value(); |
| |
| // Check if the {input} is a HeapObject or a Smi. |
| Label if_inputissmi(this), if_inputisnotsmi(this); |
| Branch(TaggedIsSmi(input), &if_inputissmi, &if_inputisnotsmi); |
| |
| BIND(&if_inputissmi); |
| { |
| // The {input} is already a Number, no need to do anything. |
| Return(input); |
| } |
| |
| BIND(&if_inputisnotsmi); |
| { |
| // The {input} is a HeapObject, check if it's already a String. |
| Label if_inputisstring(this), if_inputisnotstring(this); |
| Node* input_map = LoadMap(input); |
| Node* input_instance_type = LoadMapInstanceType(input_map); |
| Branch(IsStringInstanceType(input_instance_type), &if_inputisstring, |
| &if_inputisnotstring); |
| |
| BIND(&if_inputisstring); |
| { |
| // The {input} is already a String, check if {input} contains |
| // a cached array index. |
| Label if_inputcached(this), if_inputnotcached(this); |
| Node* input_hash = LoadNameHashField(input); |
| Node* input_bit = Word32And( |
| input_hash, Int32Constant(String::kContainsCachedArrayIndexMask)); |
| Branch(Word32Equal(input_bit, Int32Constant(0)), &if_inputcached, |
| &if_inputnotcached); |
| |
| BIND(&if_inputcached); |
| { |
| // Just return the {input}s cached array index. |
| Node* input_array_index = |
| DecodeWordFromWord32<String::ArrayIndexValueBits>(input_hash); |
| Return(SmiTag(input_array_index)); |
| } |
| |
| BIND(&if_inputnotcached); |
| { |
| // Need to fall back to the runtime to convert {input} to double. |
| Return(CallRuntime(Runtime::kStringParseFloat, context, input)); |
| } |
| } |
| |
| BIND(&if_inputisnotstring); |
| { |
| // The {input} is neither a String nor a Smi, check for HeapNumber. |
| Label if_inputisnumber(this), |
| if_inputisnotnumber(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(input_map), &if_inputisnumber, |
| &if_inputisnotnumber); |
| |
| BIND(&if_inputisnumber); |
| { |
| // The {input} is already a Number, take care of -0. |
| Label if_inputiszero(this), if_inputisnotzero(this); |
| Node* input_value = LoadHeapNumberValue(input); |
| Branch(Float64Equal(input_value, Float64Constant(0.0)), |
| &if_inputiszero, &if_inputisnotzero); |
| |
| BIND(&if_inputiszero); |
| Return(SmiConstant(0)); |
| |
| BIND(&if_inputisnotzero); |
| Return(input); |
| } |
| |
| BIND(&if_inputisnotnumber); |
| { |
| // Need to convert the {input} to String first. |
| // TODO(bmeurer): This could be more efficient if necessary. |
| Callable callable = CodeFactory::ToString(isolate()); |
| var_input.Bind(CallStub(callable, context, input)); |
| Goto(&loop); |
| } |
| } |
| } |
| } |
| } |
| |
| // ES6 #sec-number.parseint |
| TF_BUILTIN(NumberParseInt, CodeStubAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* input = Parameter(Descriptor::kString); |
| Node* radix = Parameter(Descriptor::kRadix); |
| |
| // Check if {radix} is treated as 10 (i.e. undefined, 0 or 10). |
| Label if_radix10(this), if_generic(this, Label::kDeferred); |
| GotoIf(WordEqual(radix, UndefinedConstant()), &if_radix10); |
| GotoIf(WordEqual(radix, SmiConstant(Smi::FromInt(10))), &if_radix10); |
| GotoIf(WordEqual(radix, SmiConstant(Smi::FromInt(0))), &if_radix10); |
| Goto(&if_generic); |
| |
| BIND(&if_radix10); |
| { |
| // Check if we can avoid the ToString conversion on {input}. |
| Label if_inputissmi(this), if_inputisheapnumber(this), |
| if_inputisstring(this); |
| GotoIf(TaggedIsSmi(input), &if_inputissmi); |
| Node* input_map = LoadMap(input); |
| GotoIf(IsHeapNumberMap(input_map), &if_inputisheapnumber); |
| Node* input_instance_type = LoadMapInstanceType(input_map); |
| Branch(IsStringInstanceType(input_instance_type), &if_inputisstring, |
| &if_generic); |
| |
| BIND(&if_inputissmi); |
| { |
| // Just return the {input}. |
| Return(input); |
| } |
| |
| BIND(&if_inputisheapnumber); |
| { |
| // Check if the {input} value is in Signed32 range. |
| Label if_inputissigned32(this); |
| Node* input_value = LoadHeapNumberValue(input); |
| Node* input_value32 = TruncateFloat64ToWord32(input_value); |
| GotoIf(Float64Equal(input_value, ChangeInt32ToFloat64(input_value32)), |
| &if_inputissigned32); |
| |
| // Check if the absolute {input} value is in the ]0.01,1e9[ range. |
| Node* input_value_abs = Float64Abs(input_value); |
| |
| GotoIfNot(Float64LessThan(input_value_abs, Float64Constant(1e9)), |
| &if_generic); |
| Branch(Float64LessThan(Float64Constant(0.01), input_value_abs), |
| &if_inputissigned32, &if_generic); |
| |
| // Return the truncated int32 value, and return the tagged result. |
| BIND(&if_inputissigned32); |
| Node* result = ChangeInt32ToTagged(input_value32); |
| Return(result); |
| } |
| |
| BIND(&if_inputisstring); |
| { |
| // Check if the String {input} has a cached array index. |
| Node* input_hash = LoadNameHashField(input); |
| Node* input_bit = Word32And( |
| input_hash, Int32Constant(String::kContainsCachedArrayIndexMask)); |
| GotoIf(Word32NotEqual(input_bit, Int32Constant(0)), &if_generic); |
| |
| // Return the cached array index as result. |
| Node* input_index = |
| DecodeWordFromWord32<String::ArrayIndexValueBits>(input_hash); |
| Node* result = SmiTag(input_index); |
| Return(result); |
| } |
| } |
| |
| BIND(&if_generic); |
| { |
| Node* result = CallRuntime(Runtime::kStringParseInt, context, input, radix); |
| Return(result); |
| } |
| } |
| |
| // ES6 #sec-number.prototype.valueof |
| TF_BUILTIN(NumberPrototypeValueOf, CodeStubAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* receiver = Parameter(Descriptor::kReceiver); |
| |
| Node* result = ToThisValue(context, receiver, PrimitiveType::kNumber, |
| "Number.prototype.valueOf"); |
| Return(result); |
| } |
| |
| TF_BUILTIN(Add, CodeStubAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* left = Parameter(Descriptor::kLeft); |
| Node* right = Parameter(Descriptor::kRight); |
| |
| // Shared entry for floating point addition. |
| Label do_fadd(this); |
| VARIABLE(var_fadd_lhs, MachineRepresentation::kFloat64); |
| VARIABLE(var_fadd_rhs, MachineRepresentation::kFloat64); |
| |
| // We might need to loop several times due to ToPrimitive, ToString and/or |
| // ToNumber conversions. |
| VARIABLE(var_lhs, MachineRepresentation::kTagged); |
| VARIABLE(var_rhs, MachineRepresentation::kTagged); |
| VARIABLE(var_result, MachineRepresentation::kTagged); |
| Variable* loop_vars[2] = {&var_lhs, &var_rhs}; |
| Label loop(this, 2, loop_vars), end(this), |
| string_add_convert_left(this, Label::kDeferred), |
| string_add_convert_right(this, Label::kDeferred); |
| var_lhs.Bind(left); |
| var_rhs.Bind(right); |
| Goto(&loop); |
| BIND(&loop); |
| { |
| // Load the current {lhs} and {rhs} values. |
| Node* lhs = var_lhs.value(); |
| Node* rhs = var_rhs.value(); |
| |
| // Check if the {lhs} is a Smi or a HeapObject. |
| Label if_lhsissmi(this), if_lhsisnotsmi(this); |
| Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); |
| |
| BIND(&if_lhsissmi); |
| { |
| // Check if the {rhs} is also a Smi. |
| Label if_rhsissmi(this), if_rhsisnotsmi(this); |
| Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); |
| |
| BIND(&if_rhsissmi); |
| { |
| // Try fast Smi addition first. |
| Node* pair = IntPtrAddWithOverflow(BitcastTaggedToWord(lhs), |
| BitcastTaggedToWord(rhs)); |
| Node* overflow = Projection(1, pair); |
| |
| // Check if the Smi additon overflowed. |
| Label if_overflow(this), if_notoverflow(this); |
| Branch(overflow, &if_overflow, &if_notoverflow); |
| |
| BIND(&if_overflow); |
| { |
| var_fadd_lhs.Bind(SmiToFloat64(lhs)); |
| var_fadd_rhs.Bind(SmiToFloat64(rhs)); |
| Goto(&do_fadd); |
| } |
| |
| BIND(&if_notoverflow); |
| var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair))); |
| Goto(&end); |
| } |
| |
| BIND(&if_rhsisnotsmi); |
| { |
| // Load the map of {rhs}. |
| Node* rhs_map = LoadMap(rhs); |
| |
| // Check if the {rhs} is a HeapNumber. |
| Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); |
| |
| BIND(&if_rhsisnumber); |
| { |
| var_fadd_lhs.Bind(SmiToFloat64(lhs)); |
| var_fadd_rhs.Bind(LoadHeapNumberValue(rhs)); |
| Goto(&do_fadd); |
| } |
| |
| BIND(&if_rhsisnotnumber); |
| { |
| // Load the instance type of {rhs}. |
| Node* rhs_instance_type = LoadMapInstanceType(rhs_map); |
| |
| // Check if the {rhs} is a String. |
| Label if_rhsisstring(this, Label::kDeferred), |
| if_rhsisnotstring(this, Label::kDeferred); |
| Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, |
| &if_rhsisnotstring); |
| |
| BIND(&if_rhsisstring); |
| { |
| var_lhs.Bind(lhs); |
| var_rhs.Bind(rhs); |
| Goto(&string_add_convert_left); |
| } |
| |
| BIND(&if_rhsisnotstring); |
| { |
| // Check if {rhs} is a JSReceiver. |
| Label if_rhsisreceiver(this, Label::kDeferred), |
| if_rhsisnotreceiver(this, Label::kDeferred); |
| Branch(IsJSReceiverInstanceType(rhs_instance_type), |
| &if_rhsisreceiver, &if_rhsisnotreceiver); |
| |
| BIND(&if_rhsisreceiver); |
| { |
| // Convert {rhs} to a primitive first passing no hint. |
| Callable callable = |
| CodeFactory::NonPrimitiveToPrimitive(isolate()); |
| var_rhs.Bind(CallStub(callable, context, rhs)); |
| Goto(&loop); |
| } |
| |
| BIND(&if_rhsisnotreceiver); |
| { |
| // Convert {rhs} to a Number first. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_rhs.Bind(CallStub(callable, context, rhs)); |
| Goto(&loop); |
| } |
| } |
| } |
| } |
| } |
| |
| BIND(&if_lhsisnotsmi); |
| { |
| // Load the map and instance type of {lhs}. |
| Node* lhs_instance_type = LoadInstanceType(lhs); |
| |
| // Check if {lhs} is a String. |
| Label if_lhsisstring(this), if_lhsisnotstring(this); |
| Branch(IsStringInstanceType(lhs_instance_type), &if_lhsisstring, |
| &if_lhsisnotstring); |
| |
| BIND(&if_lhsisstring); |
| { |
| var_lhs.Bind(lhs); |
| var_rhs.Bind(rhs); |
| Goto(&string_add_convert_right); |
| } |
| |
| BIND(&if_lhsisnotstring); |
| { |
| // Check if {rhs} is a Smi. |
| Label if_rhsissmi(this), if_rhsisnotsmi(this); |
| Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); |
| |
| BIND(&if_rhsissmi); |
| { |
| // Check if {lhs} is a Number. |
| Label if_lhsisnumber(this), if_lhsisnotnumber(this, Label::kDeferred); |
| Branch( |
| Word32Equal(lhs_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), |
| &if_lhsisnumber, &if_lhsisnotnumber); |
| |
| BIND(&if_lhsisnumber); |
| { |
| // The {lhs} is a HeapNumber, the {rhs} is a Smi, just add them. |
| var_fadd_lhs.Bind(LoadHeapNumberValue(lhs)); |
| var_fadd_rhs.Bind(SmiToFloat64(rhs)); |
| Goto(&do_fadd); |
| } |
| |
| BIND(&if_lhsisnotnumber); |
| { |
| // The {lhs} is neither a Number nor a String, and the {rhs} is a |
| // Smi. |
| Label if_lhsisreceiver(this, Label::kDeferred), |
| if_lhsisnotreceiver(this, Label::kDeferred); |
| Branch(IsJSReceiverInstanceType(lhs_instance_type), |
| &if_lhsisreceiver, &if_lhsisnotreceiver); |
| |
| BIND(&if_lhsisreceiver); |
| { |
| // Convert {lhs} to a primitive first passing no hint. |
| Callable callable = |
| CodeFactory::NonPrimitiveToPrimitive(isolate()); |
| var_lhs.Bind(CallStub(callable, context, lhs)); |
| Goto(&loop); |
| } |
| |
| BIND(&if_lhsisnotreceiver); |
| { |
| // Convert {lhs} to a Number first. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_lhs.Bind(CallStub(callable, context, lhs)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(&if_rhsisnotsmi); |
| { |
| // Load the instance type of {rhs}. |
| Node* rhs_instance_type = LoadInstanceType(rhs); |
| |
| // Check if {rhs} is a String. |
| Label if_rhsisstring(this), if_rhsisnotstring(this); |
| Branch(IsStringInstanceType(rhs_instance_type), &if_rhsisstring, |
| &if_rhsisnotstring); |
| |
| BIND(&if_rhsisstring); |
| { |
| var_lhs.Bind(lhs); |
| var_rhs.Bind(rhs); |
| Goto(&string_add_convert_left); |
| } |
| |
| BIND(&if_rhsisnotstring); |
| { |
| // Check if {lhs} is a HeapNumber. |
| Label if_lhsisnumber(this), if_lhsisnotnumber(this); |
| Branch( |
| Word32Equal(lhs_instance_type, Int32Constant(HEAP_NUMBER_TYPE)), |
| &if_lhsisnumber, &if_lhsisnotnumber); |
| |
| BIND(&if_lhsisnumber); |
| { |
| // Check if {rhs} is also a HeapNumber. |
| Label if_rhsisnumber(this), |
| if_rhsisnotnumber(this, Label::kDeferred); |
| Branch(Word32Equal(rhs_instance_type, |
| Int32Constant(HEAP_NUMBER_TYPE)), |
| &if_rhsisnumber, &if_rhsisnotnumber); |
| |
| BIND(&if_rhsisnumber); |
| { |
| // Perform a floating point addition. |
| var_fadd_lhs.Bind(LoadHeapNumberValue(lhs)); |
| var_fadd_rhs.Bind(LoadHeapNumberValue(rhs)); |
| Goto(&do_fadd); |
| } |
| |
| BIND(&if_rhsisnotnumber); |
| { |
| // Check if {rhs} is a JSReceiver. |
| Label if_rhsisreceiver(this, Label::kDeferred), |
| if_rhsisnotreceiver(this, Label::kDeferred); |
| Branch(IsJSReceiverInstanceType(rhs_instance_type), |
| &if_rhsisreceiver, &if_rhsisnotreceiver); |
| |
| BIND(&if_rhsisreceiver); |
| { |
| // Convert {rhs} to a primitive first passing no hint. |
| Callable callable = |
| CodeFactory::NonPrimitiveToPrimitive(isolate()); |
| var_rhs.Bind(CallStub(callable, context, rhs)); |
| Goto(&loop); |
| } |
| |
| BIND(&if_rhsisnotreceiver); |
| { |
| // Convert {rhs} to a Number first. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_rhs.Bind(CallStub(callable, context, rhs)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(&if_lhsisnotnumber); |
| { |
| // Check if {lhs} is a JSReceiver. |
| Label if_lhsisreceiver(this, Label::kDeferred), |
| if_lhsisnotreceiver(this); |
| Branch(IsJSReceiverInstanceType(lhs_instance_type), |
| &if_lhsisreceiver, &if_lhsisnotreceiver); |
| |
| BIND(&if_lhsisreceiver); |
| { |
| // Convert {lhs} to a primitive first passing no hint. |
| Callable callable = |
| CodeFactory::NonPrimitiveToPrimitive(isolate()); |
| var_lhs.Bind(CallStub(callable, context, lhs)); |
| Goto(&loop); |
| } |
| |
| BIND(&if_lhsisnotreceiver); |
| { |
| // Check if {rhs} is a JSReceiver. |
| Label if_rhsisreceiver(this, Label::kDeferred), |
| if_rhsisnotreceiver(this, Label::kDeferred); |
| Branch(IsJSReceiverInstanceType(rhs_instance_type), |
| &if_rhsisreceiver, &if_rhsisnotreceiver); |
| |
| BIND(&if_rhsisreceiver); |
| { |
| // Convert {rhs} to a primitive first passing no hint. |
| Callable callable = |
| CodeFactory::NonPrimitiveToPrimitive(isolate()); |
| var_rhs.Bind(CallStub(callable, context, rhs)); |
| Goto(&loop); |
| } |
| |
| BIND(&if_rhsisnotreceiver); |
| { |
| // Convert {lhs} to a Number first. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_lhs.Bind(CallStub(callable, context, lhs)); |
| Goto(&loop); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| BIND(&string_add_convert_left); |
| { |
| // Convert {lhs}, which is a Smi, to a String and concatenate the |
| // resulting string with the String {rhs}. |
| Callable callable = |
| CodeFactory::StringAdd(isolate(), STRING_ADD_CONVERT_LEFT, NOT_TENURED); |
| var_result.Bind( |
| CallStub(callable, context, var_lhs.value(), var_rhs.value())); |
| Goto(&end); |
| } |
| |
| BIND(&string_add_convert_right); |
| { |
| // Convert {lhs}, which is a Smi, to a String and concatenate the |
| // resulting string with the String {rhs}. |
| Callable callable = CodeFactory::StringAdd( |
| isolate(), STRING_ADD_CONVERT_RIGHT, NOT_TENURED); |
| var_result.Bind( |
| CallStub(callable, context, var_lhs.value(), var_rhs.value())); |
| Goto(&end); |
| } |
| |
| BIND(&do_fadd); |
| { |
| Node* lhs_value = var_fadd_lhs.value(); |
| Node* rhs_value = var_fadd_rhs.value(); |
| Node* value = Float64Add(lhs_value, rhs_value); |
| Node* result = AllocateHeapNumberWithValue(value); |
| var_result.Bind(result); |
| Goto(&end); |
| } |
| BIND(&end); |
| Return(var_result.value()); |
| } |
| |
| TF_BUILTIN(Subtract, CodeStubAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* left = Parameter(Descriptor::kLeft); |
| Node* right = Parameter(Descriptor::kRight); |
| |
| // Shared entry for floating point subtraction. |
| Label do_fsub(this), end(this); |
| VARIABLE(var_fsub_lhs, MachineRepresentation::kFloat64); |
| VARIABLE(var_fsub_rhs, MachineRepresentation::kFloat64); |
| |
| // We might need to loop several times due to ToPrimitive and/or ToNumber |
| // conversions. |
| VARIABLE(var_lhs, MachineRepresentation::kTagged); |
| VARIABLE(var_rhs, MachineRepresentation::kTagged); |
| VARIABLE(var_result, MachineRepresentation::kTagged); |
| Variable* loop_vars[2] = {&var_lhs, &var_rhs}; |
| Label loop(this, 2, loop_vars); |
| var_lhs.Bind(left); |
| var_rhs.Bind(right); |
| Goto(&loop); |
| BIND(&loop); |
| { |
| // Load the current {lhs} and {rhs} values. |
| Node* lhs = var_lhs.value(); |
| Node* rhs = var_rhs.value(); |
| |
| // Check if the {lhs} is a Smi or a HeapObject. |
| Label if_lhsissmi(this), if_lhsisnotsmi(this); |
| Branch(TaggedIsSmi(lhs), &if_lhsissmi, &if_lhsisnotsmi); |
| |
| BIND(&if_lhsissmi); |
| { |
| // Check if the {rhs} is also a Smi. |
| Label if_rhsissmi(this), if_rhsisnotsmi(this); |
| Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); |
| |
| BIND(&if_rhsissmi); |
| { |
| // Try a fast Smi subtraction first. |
| Node* pair = IntPtrSubWithOverflow(BitcastTaggedToWord(lhs), |
| BitcastTaggedToWord(rhs)); |
| Node* overflow = Projection(1, pair); |
| |
| // Check if the Smi subtraction overflowed. |
| Label if_overflow(this), if_notoverflow(this); |
| Branch(overflow, &if_overflow, &if_notoverflow); |
| |
| BIND(&if_overflow); |
| { |
| // The result doesn't fit into Smi range. |
| var_fsub_lhs.Bind(SmiToFloat64(lhs)); |
| var_fsub_rhs.Bind(SmiToFloat64(rhs)); |
| Goto(&do_fsub); |
| } |
| |
| BIND(&if_notoverflow); |
| var_result.Bind(BitcastWordToTaggedSigned(Projection(0, pair))); |
| Goto(&end); |
| } |
| |
| BIND(&if_rhsisnotsmi); |
| { |
| // Load the map of the {rhs}. |
| Node* rhs_map = LoadMap(rhs); |
| |
| // Check if {rhs} is a HeapNumber. |
| Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); |
| |
| BIND(&if_rhsisnumber); |
| { |
| // Perform a floating point subtraction. |
| var_fsub_lhs.Bind(SmiToFloat64(lhs)); |
| var_fsub_rhs.Bind(LoadHeapNumberValue(rhs)); |
| Goto(&do_fsub); |
| } |
| |
| BIND(&if_rhsisnotnumber); |
| { |
| // Convert the {rhs} to a Number first. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_rhs.Bind(CallStub(callable, context, rhs)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(&if_lhsisnotsmi); |
| { |
| // Load the map of the {lhs}. |
| Node* lhs_map = LoadMap(lhs); |
| |
| // Check if the {lhs} is a HeapNumber. |
| Label if_lhsisnumber(this), if_lhsisnotnumber(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(lhs_map), &if_lhsisnumber, &if_lhsisnotnumber); |
| |
| BIND(&if_lhsisnumber); |
| { |
| // Check if the {rhs} is a Smi. |
| Label if_rhsissmi(this), if_rhsisnotsmi(this); |
| Branch(TaggedIsSmi(rhs), &if_rhsissmi, &if_rhsisnotsmi); |
| |
| BIND(&if_rhsissmi); |
| { |
| // Perform a floating point subtraction. |
| var_fsub_lhs.Bind(LoadHeapNumberValue(lhs)); |
| var_fsub_rhs.Bind(SmiToFloat64(rhs)); |
| Goto(&do_fsub); |
| } |
| |
| BIND(&if_rhsisnotsmi); |
| { |
| // Load the map of the {rhs}. |
| Node* rhs_map = LoadMap(rhs); |
| |
| // Check if the {rhs} is a HeapNumber. |
| Label if_rhsisnumber(this), if_rhsisnotnumber(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(rhs_map), &if_rhsisnumber, &if_rhsisnotnumber); |
| |
| BIND(&if_rhsisnumber); |
| { |
| // Perform a floating point subtraction. |
| var_fsub_lhs.Bind(LoadHeapNumberValue(lhs)); |
| var_fsub_rhs.Bind(LoadHeapNumberValue(rhs)); |
| Goto(&do_fsub); |
| } |
| |
| BIND(&if_rhsisnotnumber); |
| { |
| // Convert the {rhs} to a Number first. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_rhs.Bind(CallStub(callable, context, rhs)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(&if_lhsisnotnumber); |
| { |
| // Convert the {lhs} to a Number first. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_lhs.Bind(CallStub(callable, context, lhs)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(&do_fsub); |
| { |
| Node* lhs_value = var_fsub_lhs.value(); |
| Node* rhs_value = var_fsub_rhs.value(); |
| Node* value = Float64Sub(lhs_value, rhs_value); |
| var_result.Bind(AllocateHeapNumberWithValue(value)); |
| Goto(&end); |
| } |
| BIND(&end); |
| Return(var_result.value()); |
| } |
| |
| TF_BUILTIN(Multiply, CodeStubAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* left = Parameter(Descriptor::kLeft); |
| Node* right = Parameter(Descriptor::kRight); |
| |
| // Shared entry point for floating point multiplication. |
| Label do_fmul(this), return_result(this); |
| VARIABLE(var_lhs_float64, MachineRepresentation::kFloat64); |
| VARIABLE(var_rhs_float64, MachineRepresentation::kFloat64); |
| |
| // We might need to loop one or two times due to ToNumber conversions. |
| VARIABLE(var_lhs, MachineRepresentation::kTagged); |
| VARIABLE(var_rhs, MachineRepresentation::kTagged); |
| VARIABLE(var_result, MachineRepresentation::kTagged); |
| Variable* loop_variables[] = {&var_lhs, &var_rhs}; |
| Label loop(this, 2, loop_variables); |
| var_lhs.Bind(left); |
| var_rhs.Bind(right); |
| Goto(&loop); |
| BIND(&loop); |
| { |
| Node* lhs = var_lhs.value(); |
| Node* rhs = var_rhs.value(); |
| |
| Label lhs_is_smi(this), lhs_is_not_smi(this); |
| Branch(TaggedIsSmi(lhs), &lhs_is_smi, &lhs_is_not_smi); |
| |
| BIND(&lhs_is_smi); |
| { |
| Label rhs_is_smi(this), rhs_is_not_smi(this); |
| Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi); |
| |
| BIND(&rhs_is_smi); |
| { |
| // Both {lhs} and {rhs} are Smis. The result is not necessarily a smi, |
| // in case of overflow. |
| var_result.Bind(SmiMul(lhs, rhs)); |
| Goto(&return_result); |
| } |
| |
| BIND(&rhs_is_not_smi); |
| { |
| Node* rhs_map = LoadMap(rhs); |
| |
| // Check if {rhs} is a HeapNumber. |
| Label rhs_is_number(this), rhs_is_not_number(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(rhs_map), &rhs_is_number, &rhs_is_not_number); |
| |
| BIND(&rhs_is_number); |
| { |
| // Convert {lhs} to a double and multiply it with the value of {rhs}. |
| var_lhs_float64.Bind(SmiToFloat64(lhs)); |
| var_rhs_float64.Bind(LoadHeapNumberValue(rhs)); |
| Goto(&do_fmul); |
| } |
| |
| BIND(&rhs_is_not_number); |
| { |
| // Multiplication is commutative, swap {lhs} with {rhs} and loop. |
| var_lhs.Bind(rhs); |
| var_rhs.Bind(lhs); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(&lhs_is_not_smi); |
| { |
| Node* lhs_map = LoadMap(lhs); |
| |
| // Check if {lhs} is a HeapNumber. |
| Label lhs_is_number(this), lhs_is_not_number(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(lhs_map), &lhs_is_number, &lhs_is_not_number); |
| |
| BIND(&lhs_is_number); |
| { |
| // Check if {rhs} is a Smi. |
| Label rhs_is_smi(this), rhs_is_not_smi(this); |
| Branch(TaggedIsSmi(rhs), &rhs_is_smi, &rhs_is_not_smi); |
| |
| BIND(&rhs_is_smi); |
| { |
| // Convert {rhs} to a double and multiply it with the value of {lhs}. |
| var_lhs_float64.Bind(LoadHeapNumberValue(lhs)); |
| var_rhs_float64.Bind(SmiToFloat64(rhs)); |
| Goto(&do_fmul); |
| } |
| |
| BIND(&rhs_is_not_smi); |
| { |
| Node* rhs_map = LoadMap(rhs); |
| |
| // Check if {rhs} is a HeapNumber. |
| Label rhs_is_number(this), rhs_is_not_number(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(rhs_map), &rhs_is_number, &rhs_is_not_number); |
| |
| BIND(&rhs_is_number); |
| { |
| // Both {lhs} and {rhs} are HeapNumbers. Load their values and |
| // multiply them. |
| var_lhs_float64.Bind(LoadHeapNumberValue(lhs)); |
| var_rhs_float64.Bind(LoadHeapNumberValue(rhs)); |
| Goto(&do_fmul); |
| } |
| |
| BIND(&rhs_is_not_number); |
| { |
| // Multiplication is commutative, swap {lhs} with {rhs} and loop. |
| var_lhs.Bind(rhs); |
| var_rhs.Bind(lhs); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(&lhs_is_not_number); |
| { |
| // Convert {lhs} to a Number and loop. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_lhs.Bind(CallStub(callable, context, lhs)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(&do_fmul); |
| { |
| Node* value = Float64Mul(var_lhs_float64.value(), var_rhs_float64.value()); |
| Node* result = AllocateHeapNumberWithValue(value); |
| var_result.Bind(result); |
| Goto(&return_result); |
| } |
| |
| BIND(&return_result); |
| Return(var_result.value()); |
| } |
| |
| TF_BUILTIN(Divide, CodeStubAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* left = Parameter(Descriptor::kLeft); |
| Node* right = Parameter(Descriptor::kRight); |
| |
| // Shared entry point for floating point division. |
| Label do_fdiv(this), end(this); |
| VARIABLE(var_dividend_float64, MachineRepresentation::kFloat64); |
| VARIABLE(var_divisor_float64, MachineRepresentation::kFloat64); |
| |
| // We might need to loop one or two times due to ToNumber conversions. |
| VARIABLE(var_dividend, MachineRepresentation::kTagged); |
| VARIABLE(var_divisor, MachineRepresentation::kTagged); |
| VARIABLE(var_result, MachineRepresentation::kTagged); |
| Variable* loop_variables[] = {&var_dividend, &var_divisor}; |
| Label loop(this, 2, loop_variables); |
| var_dividend.Bind(left); |
| var_divisor.Bind(right); |
| Goto(&loop); |
| BIND(&loop); |
| { |
| Node* dividend = var_dividend.value(); |
| Node* divisor = var_divisor.value(); |
| |
| Label dividend_is_smi(this), dividend_is_not_smi(this); |
| Branch(TaggedIsSmi(dividend), ÷nd_is_smi, ÷nd_is_not_smi); |
| |
| BIND(÷nd_is_smi); |
| { |
| Label divisor_is_smi(this), divisor_is_not_smi(this); |
| Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi); |
| |
| BIND(&divisor_is_smi); |
| { |
| Label bailout(this); |
| |
| // Do floating point division if {divisor} is zero. |
| GotoIf(SmiEqual(divisor, SmiConstant(0)), &bailout); |
| |
| // Do floating point division {dividend} is zero and {divisor} is |
| // negative. |
| Label dividend_is_zero(this), dividend_is_not_zero(this); |
| Branch(SmiEqual(dividend, SmiConstant(0)), ÷nd_is_zero, |
| ÷nd_is_not_zero); |
| |
| BIND(÷nd_is_zero); |
| { |
| GotoIf(SmiLessThan(divisor, SmiConstant(0)), &bailout); |
| Goto(÷nd_is_not_zero); |
| } |
| BIND(÷nd_is_not_zero); |
| |
| Node* untagged_divisor = SmiToWord32(divisor); |
| Node* untagged_dividend = SmiToWord32(dividend); |
| |
| // Do floating point division if {dividend} is kMinInt (or kMinInt - 1 |
| // if the Smi size is 31) and {divisor} is -1. |
| Label divisor_is_minus_one(this), divisor_is_not_minus_one(this); |
| Branch(Word32Equal(untagged_divisor, Int32Constant(-1)), |
| &divisor_is_minus_one, &divisor_is_not_minus_one); |
| |
| BIND(&divisor_is_minus_one); |
| { |
| GotoIf( |
| Word32Equal(untagged_dividend, |
| Int32Constant(kSmiValueSize == 32 ? kMinInt |
| : (kMinInt >> 1))), |
| &bailout); |
| Goto(&divisor_is_not_minus_one); |
| } |
| BIND(&divisor_is_not_minus_one); |
| |
| // TODO(epertoso): consider adding a machine instruction that returns |
| // both the result and the remainder. |
| Node* untagged_result = Int32Div(untagged_dividend, untagged_divisor); |
| Node* truncated = Int32Mul(untagged_result, untagged_divisor); |
| // Do floating point division if the remainder is not 0. |
| GotoIf(Word32NotEqual(untagged_dividend, truncated), &bailout); |
| var_result.Bind(SmiFromWord32(untagged_result)); |
| Goto(&end); |
| |
| // Bailout: convert {dividend} and {divisor} to double and do double |
| // division. |
| BIND(&bailout); |
| { |
| var_dividend_float64.Bind(SmiToFloat64(dividend)); |
| var_divisor_float64.Bind(SmiToFloat64(divisor)); |
| Goto(&do_fdiv); |
| } |
| } |
| |
| BIND(&divisor_is_not_smi); |
| { |
| Node* divisor_map = LoadMap(divisor); |
| |
| // Check if {divisor} is a HeapNumber. |
| Label divisor_is_number(this), |
| divisor_is_not_number(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(divisor_map), &divisor_is_number, |
| &divisor_is_not_number); |
| |
| BIND(&divisor_is_number); |
| { |
| // Convert {dividend} to a double and divide it with the value of |
| // {divisor}. |
| var_dividend_float64.Bind(SmiToFloat64(dividend)); |
| var_divisor_float64.Bind(LoadHeapNumberValue(divisor)); |
| Goto(&do_fdiv); |
| } |
| |
| BIND(&divisor_is_not_number); |
| { |
| // Convert {divisor} to a number and loop. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_divisor.Bind(CallStub(callable, context, divisor)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(÷nd_is_not_smi); |
| { |
| Node* dividend_map = LoadMap(dividend); |
| |
| // Check if {dividend} is a HeapNumber. |
| Label dividend_is_number(this), |
| dividend_is_not_number(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(dividend_map), ÷nd_is_number, |
| ÷nd_is_not_number); |
| |
| BIND(÷nd_is_number); |
| { |
| // Check if {divisor} is a Smi. |
| Label divisor_is_smi(this), divisor_is_not_smi(this); |
| Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi); |
| |
| BIND(&divisor_is_smi); |
| { |
| // Convert {divisor} to a double and use it for a floating point |
| // division. |
| var_dividend_float64.Bind(LoadHeapNumberValue(dividend)); |
| var_divisor_float64.Bind(SmiToFloat64(divisor)); |
| Goto(&do_fdiv); |
| } |
| |
| BIND(&divisor_is_not_smi); |
| { |
| Node* divisor_map = LoadMap(divisor); |
| |
| // Check if {divisor} is a HeapNumber. |
| Label divisor_is_number(this), |
| divisor_is_not_number(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(divisor_map), &divisor_is_number, |
| &divisor_is_not_number); |
| |
| BIND(&divisor_is_number); |
| { |
| // Both {dividend} and {divisor} are HeapNumbers. Load their values |
| // and divide them. |
| var_dividend_float64.Bind(LoadHeapNumberValue(dividend)); |
| var_divisor_float64.Bind(LoadHeapNumberValue(divisor)); |
| Goto(&do_fdiv); |
| } |
| |
| BIND(&divisor_is_not_number); |
| { |
| // Convert {divisor} to a number and loop. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_divisor.Bind(CallStub(callable, context, divisor)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(÷nd_is_not_number); |
| { |
| // Convert {dividend} to a Number and loop. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_dividend.Bind(CallStub(callable, context, dividend)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(&do_fdiv); |
| { |
| Node* value = |
| Float64Div(var_dividend_float64.value(), var_divisor_float64.value()); |
| var_result.Bind(AllocateHeapNumberWithValue(value)); |
| Goto(&end); |
| } |
| BIND(&end); |
| Return(var_result.value()); |
| } |
| |
| TF_BUILTIN(Modulus, CodeStubAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* left = Parameter(Descriptor::kLeft); |
| Node* right = Parameter(Descriptor::kRight); |
| |
| VARIABLE(var_result, MachineRepresentation::kTagged); |
| Label return_result(this, &var_result); |
| |
| // Shared entry point for floating point modulus. |
| Label do_fmod(this); |
| VARIABLE(var_dividend_float64, MachineRepresentation::kFloat64); |
| VARIABLE(var_divisor_float64, MachineRepresentation::kFloat64); |
| |
| // We might need to loop one or two times due to ToNumber conversions. |
| VARIABLE(var_dividend, MachineRepresentation::kTagged); |
| VARIABLE(var_divisor, MachineRepresentation::kTagged); |
| Variable* loop_variables[] = {&var_dividend, &var_divisor}; |
| Label loop(this, 2, loop_variables); |
| var_dividend.Bind(left); |
| var_divisor.Bind(right); |
| Goto(&loop); |
| BIND(&loop); |
| { |
| Node* dividend = var_dividend.value(); |
| Node* divisor = var_divisor.value(); |
| |
| Label dividend_is_smi(this), dividend_is_not_smi(this); |
| Branch(TaggedIsSmi(dividend), ÷nd_is_smi, ÷nd_is_not_smi); |
| |
| BIND(÷nd_is_smi); |
| { |
| Label dividend_is_not_zero(this); |
| Label divisor_is_smi(this), divisor_is_not_smi(this); |
| Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi); |
| |
| BIND(&divisor_is_smi); |
| { |
| // Compute the modulus of two Smis. |
| var_result.Bind(SmiMod(dividend, divisor)); |
| Goto(&return_result); |
| } |
| |
| BIND(&divisor_is_not_smi); |
| { |
| Node* divisor_map = LoadMap(divisor); |
| |
| // Check if {divisor} is a HeapNumber. |
| Label divisor_is_number(this), |
| divisor_is_not_number(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(divisor_map), &divisor_is_number, |
| &divisor_is_not_number); |
| |
| BIND(&divisor_is_number); |
| { |
| // Convert {dividend} to a double and compute its modulus with the |
| // value of {dividend}. |
| var_dividend_float64.Bind(SmiToFloat64(dividend)); |
| var_divisor_float64.Bind(LoadHeapNumberValue(divisor)); |
| Goto(&do_fmod); |
| } |
| |
| BIND(&divisor_is_not_number); |
| { |
| // Convert {divisor} to a number and loop. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_divisor.Bind(CallStub(callable, context, divisor)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(÷nd_is_not_smi); |
| { |
| Node* dividend_map = LoadMap(dividend); |
| |
| // Check if {dividend} is a HeapNumber. |
| Label dividend_is_number(this), |
| dividend_is_not_number(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(dividend_map), ÷nd_is_number, |
| ÷nd_is_not_number); |
| |
| BIND(÷nd_is_number); |
| { |
| // Check if {divisor} is a Smi. |
| Label divisor_is_smi(this), divisor_is_not_smi(this); |
| Branch(TaggedIsSmi(divisor), &divisor_is_smi, &divisor_is_not_smi); |
| |
| BIND(&divisor_is_smi); |
| { |
| // Convert {divisor} to a double and compute {dividend}'s modulus with |
| // it. |
| var_dividend_float64.Bind(LoadHeapNumberValue(dividend)); |
| var_divisor_float64.Bind(SmiToFloat64(divisor)); |
| Goto(&do_fmod); |
| } |
| |
| BIND(&divisor_is_not_smi); |
| { |
| Node* divisor_map = LoadMap(divisor); |
| |
| // Check if {divisor} is a HeapNumber. |
| Label divisor_is_number(this), |
| divisor_is_not_number(this, Label::kDeferred); |
| Branch(IsHeapNumberMap(divisor_map), &divisor_is_number, |
| &divisor_is_not_number); |
| |
| BIND(&divisor_is_number); |
| { |
| // Both {dividend} and {divisor} are HeapNumbers. Load their values |
| // and compute their modulus. |
| var_dividend_float64.Bind(LoadHeapNumberValue(dividend)); |
| var_divisor_float64.Bind(LoadHeapNumberValue(divisor)); |
| Goto(&do_fmod); |
| } |
| |
| BIND(&divisor_is_not_number); |
| { |
| // Convert {divisor} to a number and loop. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_divisor.Bind(CallStub(callable, context, divisor)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(÷nd_is_not_number); |
| { |
| // Convert {dividend} to a Number and loop. |
| Callable callable = CodeFactory::NonNumberToNumber(isolate()); |
| var_dividend.Bind(CallStub(callable, context, dividend)); |
| Goto(&loop); |
| } |
| } |
| } |
| |
| BIND(&do_fmod); |
| { |
| Node* value = |
| Float64Mod(var_dividend_float64.value(), var_divisor_float64.value()); |
| var_result.Bind(AllocateHeapNumberWithValue(value)); |
| Goto(&return_result); |
| } |
| |
| BIND(&return_result); |
| Return(var_result.value()); |
| } |
| |
| TF_BUILTIN(ShiftLeft, NumberBuiltinsAssembler) { |
| BitwiseShiftOp<Descriptor>([=](Node* lhs, Node* shift_count) { |
| return Word32Shl(lhs, shift_count); |
| }); |
| } |
| |
| TF_BUILTIN(ShiftRight, NumberBuiltinsAssembler) { |
| BitwiseShiftOp<Descriptor>([=](Node* lhs, Node* shift_count) { |
| return Word32Sar(lhs, shift_count); |
| }); |
| } |
| |
| TF_BUILTIN(ShiftRightLogical, NumberBuiltinsAssembler) { |
| BitwiseShiftOp<Descriptor>( |
| [=](Node* lhs, Node* shift_count) { return Word32Shr(lhs, shift_count); }, |
| kUnsigned); |
| } |
| |
| TF_BUILTIN(BitwiseAnd, NumberBuiltinsAssembler) { |
| BitwiseOp<Descriptor>( |
| [=](Node* lhs, Node* rhs) { return Word32And(lhs, rhs); }); |
| } |
| |
| TF_BUILTIN(BitwiseOr, NumberBuiltinsAssembler) { |
| BitwiseOp<Descriptor>( |
| [=](Node* lhs, Node* rhs) { return Word32Or(lhs, rhs); }); |
| } |
| |
| TF_BUILTIN(BitwiseXor, NumberBuiltinsAssembler) { |
| BitwiseOp<Descriptor>( |
| [=](Node* lhs, Node* rhs) { return Word32Xor(lhs, rhs); }); |
| } |
| |
| TF_BUILTIN(LessThan, NumberBuiltinsAssembler) { |
| RelationalComparisonBuiltin<Descriptor>(kLessThan); |
| } |
| |
| TF_BUILTIN(LessThanOrEqual, NumberBuiltinsAssembler) { |
| RelationalComparisonBuiltin<Descriptor>(kLessThanOrEqual); |
| } |
| |
| TF_BUILTIN(GreaterThan, NumberBuiltinsAssembler) { |
| RelationalComparisonBuiltin<Descriptor>(kGreaterThan); |
| } |
| |
| TF_BUILTIN(GreaterThanOrEqual, NumberBuiltinsAssembler) { |
| RelationalComparisonBuiltin<Descriptor>(kGreaterThanOrEqual); |
| } |
| |
| TF_BUILTIN(Equal, CodeStubAssembler) { |
| Node* lhs = Parameter(Descriptor::kLeft); |
| Node* rhs = Parameter(Descriptor::kRight); |
| Node* context = Parameter(Descriptor::kContext); |
| |
| Return(Equal(lhs, rhs, context)); |
| } |
| |
| TF_BUILTIN(StrictEqual, CodeStubAssembler) { |
| Node* lhs = Parameter(Descriptor::kLeft); |
| Node* rhs = Parameter(Descriptor::kRight); |
| |
| Return(StrictEqual(lhs, rhs)); |
| } |
| |
| TF_BUILTIN(AddWithFeedback, BinaryOpAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* left = Parameter(Descriptor::kLeft); |
| Node* right = Parameter(Descriptor::kRight); |
| Node* slot = Parameter(Descriptor::kSlot); |
| Node* vector = Parameter(Descriptor::kVector); |
| |
| Return(Generate_AddWithFeedback(context, left, right, |
| ChangeUint32ToWord(slot), vector)); |
| } |
| |
| TF_BUILTIN(SubtractWithFeedback, BinaryOpAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* left = Parameter(Descriptor::kLeft); |
| Node* right = Parameter(Descriptor::kRight); |
| Node* slot = Parameter(Descriptor::kSlot); |
| Node* vector = Parameter(Descriptor::kVector); |
| |
| Return(Generate_SubtractWithFeedback(context, left, right, |
| ChangeUint32ToWord(slot), vector)); |
| } |
| |
| TF_BUILTIN(MultiplyWithFeedback, BinaryOpAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* left = Parameter(Descriptor::kLeft); |
| Node* right = Parameter(Descriptor::kRight); |
| Node* slot = Parameter(Descriptor::kSlot); |
| Node* vector = Parameter(Descriptor::kVector); |
| |
| Return(Generate_MultiplyWithFeedback(context, left, right, |
| ChangeUint32ToWord(slot), vector)); |
| } |
| |
| TF_BUILTIN(DivideWithFeedback, BinaryOpAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* left = Parameter(Descriptor::kLeft); |
| Node* right = Parameter(Descriptor::kRight); |
| Node* slot = Parameter(Descriptor::kSlot); |
| Node* vector = Parameter(Descriptor::kVector); |
| |
| Return(Generate_DivideWithFeedback(context, left, right, |
| ChangeUint32ToWord(slot), vector)); |
| } |
| |
| TF_BUILTIN(ModulusWithFeedback, BinaryOpAssembler) { |
| Node* context = Parameter(Descriptor::kContext); |
| Node* left = Parameter(Descriptor::kLeft); |
| Node* right = Parameter(Descriptor::kRight); |
| Node* slot = Parameter(Descriptor::kSlot); |
| Node* vector = Parameter(Descriptor::kVector); |
| |
| Return(Generate_ModulusWithFeedback(context, left, right, |
| ChangeUint32ToWord(slot), vector)); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |