| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_S390 |
| |
| #include "src/codegen.h" |
| #include "src/debug/debug.h" |
| #include "src/deoptimizer.h" |
| #include "src/full-codegen/full-codegen.h" |
| #include "src/runtime/runtime.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, |
| ExitFrameType exit_frame_type) { |
| // ----------- S t a t e ------------- |
| // -- r2 : number of arguments excluding receiver |
| // -- r3 : target |
| // -- r5 : new.target |
| // -- sp[0] : last argument |
| // -- ... |
| // -- sp[4 * (argc - 1)] : first argument |
| // -- sp[4 * argc] : receiver |
| // ----------------------------------- |
| __ AssertFunction(r3); |
| |
| // Make sure we operate in the context of the called function (for example |
| // ConstructStubs implemented in C++ will be run in the context of the caller |
| // instead of the callee, due to the way that [[Construct]] is defined for |
| // ordinary functions). |
| __ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset)); |
| |
| // JumpToExternalReference expects r2 to contain the number of arguments |
| // including the receiver and the extra arguments. |
| const int num_extra_args = 3; |
| __ AddP(r2, r2, Operand(num_extra_args + 1)); |
| |
| // Insert extra arguments. |
| __ SmiTag(r2); |
| __ Push(r2, r3, r5); |
| __ SmiUntag(r2); |
| |
| __ JumpToExternalReference(ExternalReference(address, masm->isolate()), |
| exit_frame_type == BUILTIN_EXIT); |
| } |
| |
| // Load the built-in InternalArray function from the current context. |
| static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, |
| Register result) { |
| // Load the InternalArray function from the current native context. |
| __ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result); |
| } |
| |
| // Load the built-in Array function from the current context. |
| static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { |
| // Load the Array function from the current native context. |
| __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result); |
| } |
| |
| void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : number of arguments |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| Label generic_array_code, one_or_more_arguments, two_or_more_arguments; |
| |
| // Get the InternalArray function. |
| GenerateLoadInternalArrayFunction(masm, r3); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin InternalArray functions should be maps. |
| __ LoadP(r4, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ TestIfSmi(r4); |
| __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction, cr0); |
| __ CompareObjectType(r4, r5, r6, MAP_TYPE); |
| __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction); |
| } |
| |
| // Run the native code for the InternalArray function called as a normal |
| // function. |
| // tail call a stub |
| InternalArrayConstructorStub stub(masm->isolate()); |
| __ TailCallStub(&stub); |
| } |
| |
| void Builtins::Generate_ArrayCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : number of arguments |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| Label generic_array_code, one_or_more_arguments, two_or_more_arguments; |
| |
| // Get the Array function. |
| GenerateLoadArrayFunction(masm, r3); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin Array functions should be maps. |
| __ LoadP(r4, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ TestIfSmi(r4); |
| __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0); |
| __ CompareObjectType(r4, r5, r6, MAP_TYPE); |
| __ Assert(eq, kUnexpectedInitialMapForArrayFunction); |
| } |
| |
| __ LoadRR(r5, r3); |
| // Run the native code for the Array function called as a normal function. |
| // tail call a stub |
| __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); |
| ArrayConstructorStub stub(masm->isolate()); |
| __ TailCallStub(&stub); |
| } |
| |
| // static |
| void Builtins::Generate_NumberConstructor(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : number of arguments |
| // -- r3 : constructor function |
| // -- cp : context |
| // -- lr : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| |
| // 1. Load the first argument into r2. |
| Label no_arguments; |
| { |
| __ LoadRR(r4, r2); // Store argc in r4. |
| __ CmpP(r2, Operand::Zero()); |
| __ beq(&no_arguments); |
| __ SubP(r2, r2, Operand(1)); |
| __ ShiftLeftP(r2, r2, Operand(kPointerSizeLog2)); |
| __ LoadP(r2, MemOperand(sp, r2)); |
| } |
| |
| // 2a. Convert the first argument to a number. |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ SmiTag(r4); |
| __ EnterBuiltinFrame(cp, r3, r4); |
| __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); |
| __ LeaveBuiltinFrame(cp, r3, r4); |
| __ SmiUntag(r4); |
| } |
| |
| { |
| // Drop all arguments including the receiver. |
| __ Drop(r4); |
| __ Ret(1); |
| } |
| |
| // 2b. No arguments, return +0. |
| __ bind(&no_arguments); |
| __ LoadSmiLiteral(r2, Smi::kZero); |
| __ Ret(1); |
| } |
| |
| // static |
| void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : number of arguments |
| // -- r3 : constructor function |
| // -- r5 : new target |
| // -- lr : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| |
| // 1. Make sure we operate in the context of the called function. |
| __ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset)); |
| |
| // 2. Load the first argument into r4. |
| { |
| Label no_arguments, done; |
| __ LoadRR(r8, r2); // Store argc in r8. |
| __ CmpP(r2, Operand::Zero()); |
| __ beq(&no_arguments); |
| __ SubP(r2, r2, Operand(1)); |
| __ ShiftLeftP(r4, r2, Operand(kPointerSizeLog2)); |
| __ LoadP(r4, MemOperand(sp, r4)); |
| __ b(&done); |
| __ bind(&no_arguments); |
| __ LoadSmiLiteral(r4, Smi::kZero); |
| __ bind(&done); |
| } |
| |
| // 3. Make sure r4 is a number. |
| { |
| Label done_convert; |
| __ JumpIfSmi(r4, &done_convert); |
| __ CompareObjectType(r4, r6, r6, HEAP_NUMBER_TYPE); |
| __ beq(&done_convert); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ SmiTag(r8); |
| __ EnterBuiltinFrame(cp, r3, r8); |
| __ Push(r5); |
| __ LoadRR(r2, r4); |
| __ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); |
| __ LoadRR(r4, r2); |
| __ Pop(r5); |
| __ LeaveBuiltinFrame(cp, r3, r8); |
| __ SmiUntag(r8); |
| } |
| __ bind(&done_convert); |
| } |
| |
| // 4. Check if new target and constructor differ. |
| Label drop_frame_and_ret, new_object; |
| __ CmpP(r3, r5); |
| __ bne(&new_object); |
| |
| // 5. Allocate a JSValue wrapper for the number. |
| __ AllocateJSValue(r2, r3, r4, r6, r7, &new_object); |
| __ b(&drop_frame_and_ret); |
| |
| // 6. Fallback to the runtime to create new object. |
| __ bind(&new_object); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ SmiTag(r8); |
| __ EnterBuiltinFrame(cp, r3, r8); |
| __ Push(r4); // first argument |
| __ Call(CodeFactory::FastNewObject(masm->isolate()).code(), |
| RelocInfo::CODE_TARGET); |
| __ Pop(r4); |
| __ LeaveBuiltinFrame(cp, r3, r8); |
| __ SmiUntag(r8); |
| } |
| __ StoreP(r4, FieldMemOperand(r2, JSValue::kValueOffset), r0); |
| |
| __ bind(&drop_frame_and_ret); |
| { |
| __ Drop(r8); |
| __ Ret(1); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_StringConstructor(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : number of arguments |
| // -- r3 : constructor function |
| // -- cp : context |
| // -- lr : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| // 1. Load the first argument into r2. |
| Label no_arguments; |
| { |
| __ LoadRR(r4, r2); // Store argc in r4 |
| __ CmpP(r2, Operand::Zero()); |
| __ beq(&no_arguments); |
| __ SubP(r2, r2, Operand(1)); |
| __ ShiftLeftP(r2, r2, Operand(kPointerSizeLog2)); |
| __ LoadP(r2, MemOperand(sp, r2)); |
| } |
| |
| // 2a. At least one argument, return r2 if it's a string, otherwise |
| // dispatch to appropriate conversion. |
| Label drop_frame_and_ret, to_string, symbol_descriptive_string; |
| { |
| __ JumpIfSmi(r2, &to_string); |
| STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE); |
| __ CompareObjectType(r2, r5, r5, FIRST_NONSTRING_TYPE); |
| __ bgt(&to_string); |
| __ beq(&symbol_descriptive_string); |
| __ b(&drop_frame_and_ret); |
| } |
| |
| // 2b. No arguments, return the empty string (and pop the receiver). |
| __ bind(&no_arguments); |
| { |
| __ LoadRoot(r2, Heap::kempty_stringRootIndex); |
| __ Ret(1); |
| } |
| |
| // 3a. Convert r2 to a string. |
| __ bind(&to_string); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ SmiTag(r4); |
| __ EnterBuiltinFrame(cp, r3, r4); |
| __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET); |
| __ LeaveBuiltinFrame(cp, r3, r4); |
| __ SmiUntag(r4); |
| } |
| __ b(&drop_frame_and_ret); |
| // 3b. Convert symbol in r2 to a string. |
| __ bind(&symbol_descriptive_string); |
| { |
| __ Drop(r4); |
| __ Drop(1); |
| __ Push(r2); |
| __ TailCallRuntime(Runtime::kSymbolDescriptiveString); |
| } |
| |
| __ bind(&drop_frame_and_ret); |
| { |
| __ Drop(r4); |
| __ Ret(1); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : number of arguments |
| // -- r3 : constructor function |
| // -- r5 : new target |
| // -- cp : context |
| // -- lr : return address |
| // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| |
| // 1. Make sure we operate in the context of the called function. |
| __ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset)); |
| |
| // 2. Load the first argument into r4. |
| { |
| Label no_arguments, done; |
| __ LoadRR(r8, r2); // Store argc in r8. |
| __ CmpP(r2, Operand::Zero()); |
| __ beq(&no_arguments); |
| __ SubP(r2, r2, Operand(1)); |
| __ ShiftLeftP(r4, r2, Operand(kPointerSizeLog2)); |
| __ LoadP(r4, MemOperand(sp, r4)); |
| __ b(&done); |
| __ bind(&no_arguments); |
| __ LoadRoot(r4, Heap::kempty_stringRootIndex); |
| __ bind(&done); |
| } |
| |
| // 3. Make sure r4 is a string. |
| { |
| Label convert, done_convert; |
| __ JumpIfSmi(r4, &convert); |
| __ CompareObjectType(r4, r6, r6, FIRST_NONSTRING_TYPE); |
| __ blt(&done_convert); |
| __ bind(&convert); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ SmiTag(r8); |
| __ EnterBuiltinFrame(cp, r3, r8); |
| __ Push(r5); |
| __ LoadRR(r2, r4); |
| __ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET); |
| __ LoadRR(r4, r2); |
| __ Pop(r5); |
| __ LeaveBuiltinFrame(cp, r3, r8); |
| __ SmiUntag(r8); |
| } |
| __ bind(&done_convert); |
| } |
| |
| // 4. Check if new target and constructor differ. |
| Label drop_frame_and_ret, new_object; |
| __ CmpP(r3, r5); |
| __ bne(&new_object); |
| |
| // 5. Allocate a JSValue wrapper for the string. |
| __ AllocateJSValue(r2, r3, r4, r6, r7, &new_object); |
| __ b(&drop_frame_and_ret); |
| |
| // 6. Fallback to the runtime to create new object. |
| __ bind(&new_object); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ SmiTag(r8); |
| __ EnterBuiltinFrame(cp, r3, r8); |
| __ Push(r4); // first argument |
| __ Call(CodeFactory::FastNewObject(masm->isolate()).code(), |
| RelocInfo::CODE_TARGET); |
| __ Pop(r4); |
| __ LeaveBuiltinFrame(cp, r3, r8); |
| __ SmiUntag(r8); |
| } |
| __ StoreP(r4, FieldMemOperand(r2, JSValue::kValueOffset), r0); |
| |
| __ bind(&drop_frame_and_ret); |
| { |
| __ Drop(r8); |
| __ Ret(1); |
| } |
| } |
| |
| static void GenerateTailCallToSharedCode(MacroAssembler* masm) { |
| __ LoadP(ip, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadP(ip, FieldMemOperand(ip, SharedFunctionInfo::kCodeOffset)); |
| __ AddP(ip, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ JumpToJSEntry(ip); |
| } |
| |
| static void GenerateTailCallToReturnedCode(MacroAssembler* masm, |
| Runtime::FunctionId function_id) { |
| // ----------- S t a t e ------------- |
| // -- r2 : argument count (preserved for callee) |
| // -- r3 : target function (preserved for callee) |
| // -- r5 : new target (preserved for callee) |
| // ----------------------------------- |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| // Push the number of arguments to the callee. |
| // Push a copy of the target function and the new target. |
| // Push function as parameter to the runtime call. |
| __ SmiTag(r2); |
| __ Push(r2, r3, r5, r3); |
| |
| __ CallRuntime(function_id, 1); |
| __ LoadRR(r4, r2); |
| |
| // Restore target function and new target. |
| __ Pop(r2, r3, r5); |
| __ SmiUntag(r2); |
| } |
| __ AddP(ip, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ JumpToJSEntry(ip); |
| } |
| |
| void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { |
| // Checking whether the queued function is ready for install is optional, |
| // since we come across interrupts and stack checks elsewhere. However, |
| // not checking may delay installing ready functions, and always checking |
| // would be quite expensive. A good compromise is to first check against |
| // stack limit as a cue for an interrupt signal. |
| Label ok; |
| __ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex)); |
| __ bge(&ok, Label::kNear); |
| |
| GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode); |
| |
| __ bind(&ok); |
| GenerateTailCallToSharedCode(masm); |
| } |
| |
| namespace { |
| |
| void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, |
| bool create_implicit_receiver, |
| bool disallow_non_object_return) { |
| Label post_instantiation_deopt_entry; |
| // ----------- S t a t e ------------- |
| // -- r2 : number of arguments |
| // -- r3 : constructor function |
| // -- r5 : new target |
| // -- cp : context |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| Isolate* isolate = masm->isolate(); |
| |
| // Enter a construct frame. |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); |
| |
| // Preserve the incoming parameters on the stack. |
| |
| if (!create_implicit_receiver) { |
| __ SmiTag(r6, r2); |
| __ LoadAndTestP(r6, r6); |
| __ Push(cp, r6); |
| __ PushRoot(Heap::kTheHoleValueRootIndex); |
| } else { |
| __ SmiTag(r2); |
| __ Push(cp, r2); |
| |
| // Allocate the new receiver object. |
| __ Push(r3, r5); |
| __ Call(CodeFactory::FastNewObject(masm->isolate()).code(), |
| RelocInfo::CODE_TARGET); |
| __ LoadRR(r6, r2); |
| __ Pop(r3, r5); |
| |
| // ----------- S t a t e ------------- |
| // -- r3: constructor function |
| // -- r5: new target |
| // -- r6: newly allocated object |
| // ----------------------------------- |
| |
| // Retrieve smi-tagged arguments count from the stack. |
| __ LoadP(r2, MemOperand(sp)); |
| __ SmiUntag(r2); |
| __ LoadAndTestP(r2, r2); |
| |
| // Push the allocated receiver to the stack. We need two copies |
| // because we may have to return the original one and the calling |
| // conventions dictate that the called function pops the receiver. |
| __ Push(r6, r6); |
| } |
| |
| // Deoptimizer re-enters stub code here. |
| __ bind(&post_instantiation_deopt_entry); |
| |
| // Set up pointer to last argument. |
| __ la(r4, MemOperand(fp, StandardFrameConstants::kCallerSPOffset)); |
| |
| // Copy arguments and receiver to the expression stack. |
| // r2: number of arguments |
| // r3: constructor function |
| // r4: address of last argument (caller sp) |
| // r5: new target |
| // cr0: condition indicating whether r2 is zero |
| // sp[0]: receiver |
| // sp[1]: receiver |
| // sp[2]: number of arguments (smi-tagged) |
| Label loop, no_args; |
| __ beq(&no_args); |
| __ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2)); |
| __ SubP(sp, sp, ip); |
| __ LoadRR(r1, r2); |
| __ bind(&loop); |
| __ lay(ip, MemOperand(ip, -kPointerSize)); |
| __ LoadP(r0, MemOperand(ip, r4)); |
| __ StoreP(r0, MemOperand(ip, sp)); |
| __ BranchOnCount(r1, &loop); |
| __ bind(&no_args); |
| |
| // Call the function. |
| // r2: number of arguments |
| // r3: constructor function |
| // r5: new target |
| |
| ParameterCount actual(r2); |
| __ InvokeFunction(r3, r5, actual, CALL_FUNCTION, |
| CheckDebugStepCallWrapper()); |
| |
| // Store offset of return address for deoptimizer. |
| if (create_implicit_receiver && !disallow_non_object_return && |
| !is_api_function) { |
| masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( |
| masm->pc_offset()); |
| } |
| |
| // Restore context from the frame. |
| // r2: result |
| // sp[0]: receiver |
| // sp[1]: number of arguments (smi-tagged) |
| __ LoadP(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| |
| if (create_implicit_receiver) { |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, return_value, do_throw; |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| // r2: result |
| // sp[0]: receiver |
| // sp[1]: new.target |
| // sp[2]: number of arguments (smi-tagged) |
| // If the result is undefined, we jump out to using the implicit |
| // receiver, otherwise we do a smi check and fall through to |
| // check if the return value is a valid receiver. |
| if (disallow_non_object_return) { |
| __ CompareRoot(r2, Heap::kUndefinedValueRootIndex); |
| __ beq(&use_receiver); |
| __ JumpIfSmi(r2, &do_throw); |
| } else { |
| __ JumpIfSmi(r2, &use_receiver); |
| } |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. |
| __ CompareObjectType(r2, r3, r5, FIRST_JS_RECEIVER_TYPE); |
| __ bge(&return_value); |
| |
| if (disallow_non_object_return) { |
| __ bind(&do_throw); |
| __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); |
| } |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ LoadP(r2, MemOperand(sp)); |
| |
| // Remove receiver from the stack, remove caller arguments, and |
| // return. |
| __ bind(&return_value); |
| // r2: result |
| // sp[0]: receiver (newly allocated object) |
| // sp[1]: number of arguments (smi-tagged) |
| __ LoadP(r3, MemOperand(sp, 1 * kPointerSize)); |
| } else { |
| __ LoadP(r3, MemOperand(sp)); |
| } |
| |
| // Leave construct frame. |
| } |
| |
| // ES6 9.2.2. Step 13+ |
| // For derived class constructors, throw a TypeError here if the result |
| // is not a JSReceiver. For the base constructor, we've already checked |
| // the result, so we omit the check. |
| if (disallow_non_object_return && !create_implicit_receiver) { |
| Label do_throw, dont_throw; |
| __ JumpIfSmi(r2, &do_throw); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CompareObjectType(r2, r5, r5, FIRST_JS_RECEIVER_TYPE); |
| __ bge(&dont_throw); |
| __ bind(&do_throw); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); |
| } |
| __ bind(&dont_throw); |
| } |
| |
| __ SmiToPtrArrayOffset(r3, r3); |
| __ AddP(sp, sp, r3); |
| __ AddP(sp, sp, Operand(kPointerSize)); |
| if (create_implicit_receiver) { |
| __ IncrementCounter(isolate->counters()->constructed_objects(), 1, r3, r4); |
| } |
| __ Ret(); |
| |
| // Store offset of trampoline address for deoptimizer. This is the bailout |
| // point after the receiver instantiation but before the function invocation. |
| // We need to restore some registers in order to continue the above code. |
| if (create_implicit_receiver && !disallow_non_object_return && |
| !is_api_function) { |
| masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // ----------- S t a t e ------------- |
| // -- r2 : newly allocated object |
| // -- sp[0] : constructor function |
| // ----------------------------------- |
| |
| __ pop(r3); |
| __ Push(r2, r2); |
| |
| // Retrieve smi-tagged arguments count from the stack. |
| __ LoadP(r2, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| __ SmiUntag(r2); |
| |
| // Retrieve the new target value from the stack. This was placed into the |
| // frame description in place of the receiver by the optimizing compiler. |
| __ la(r5, MemOperand(fp, StandardFrameConstants::kCallerSPOffset)); |
| __ ShiftLeftP(ip, r2, Operand(kPointerSizeLog2)); |
| __ LoadP(r5, MemOperand(r5, ip)); |
| |
| // Continue with constructor function invocation. |
| __ b(&post_instantiation_deopt_entry); |
| } |
| } |
| |
| } // namespace |
| |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, false, true, false); |
| } |
| |
| void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, true, false, false); |
| } |
| |
| void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, false, false, false); |
| } |
| |
| void Builtins::Generate_JSBuiltinsConstructStubForBase(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, false, true, true); |
| } |
| |
| void Builtins::Generate_JSBuiltinsConstructStubForDerived( |
| MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, false, false, true); |
| } |
| |
| // static |
| void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the value to pass to the generator |
| // -- r3 : the JSGeneratorObject to resume |
| // -- r4 : the resume mode (tagged) |
| // -- r5 : the SuspendFlags of the earlier suspend call (tagged) |
| // -- lr : return address |
| // ----------------------------------- |
| __ SmiUntag(r5); |
| __ AssertGeneratorObject(r3, r5); |
| |
| // Store input value into generator object. |
| Label async_await, done_store_input; |
| |
| __ AndP(r5, r5, |
| Operand(static_cast<int>(SuspendFlags::kAsyncGeneratorAwait))); |
| __ CmpP(r5, Operand(static_cast<int>(SuspendFlags::kAsyncGeneratorAwait))); |
| __ beq(&async_await); |
| |
| __ StoreP(r2, FieldMemOperand(r3, JSGeneratorObject::kInputOrDebugPosOffset), |
| r0); |
| __ RecordWriteField(r3, JSGeneratorObject::kInputOrDebugPosOffset, r2, r5, |
| kLRHasNotBeenSaved, kDontSaveFPRegs); |
| __ b(&done_store_input); |
| |
| __ bind(&async_await); |
| __ StoreP( |
| r2, |
| FieldMemOperand(r3, JSAsyncGeneratorObject::kAwaitInputOrDebugPosOffset), |
| r0); |
| __ RecordWriteField(r3, JSAsyncGeneratorObject::kAwaitInputOrDebugPosOffset, |
| r2, r5, kLRHasNotBeenSaved, kDontSaveFPRegs); |
| __ b(&done_store_input); |
| |
| __ bind(&done_store_input); |
| // `r5` no longer holds SuspendFlags |
| |
| // Store resume mode into generator object. |
| __ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kResumeModeOffset)); |
| |
| // Load suspended function and context. |
| __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset)); |
| __ LoadP(cp, FieldMemOperand(r6, JSFunction::kContextOffset)); |
| |
| // Flood function if we are stepping. |
| Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; |
| Label stepping_prepared; |
| ExternalReference debug_hook = |
| ExternalReference::debug_hook_on_function_call_address(masm->isolate()); |
| __ mov(ip, Operand(debug_hook)); |
| __ LoadB(ip, MemOperand(ip)); |
| __ CmpSmiLiteral(ip, Smi::kZero, r0); |
| __ bne(&prepare_step_in_if_stepping); |
| |
| // Flood function if we need to continue stepping in the suspended generator. |
| |
| ExternalReference debug_suspended_generator = |
| ExternalReference::debug_suspended_generator_address(masm->isolate()); |
| |
| __ mov(ip, Operand(debug_suspended_generator)); |
| __ LoadP(ip, MemOperand(ip)); |
| __ CmpP(ip, r3); |
| __ beq(&prepare_step_in_suspended_generator); |
| __ bind(&stepping_prepared); |
| |
| // Push receiver. |
| __ LoadP(ip, FieldMemOperand(r3, JSGeneratorObject::kReceiverOffset)); |
| __ Push(ip); |
| |
| // ----------- S t a t e ------------- |
| // -- r3 : the JSGeneratorObject to resume |
| // -- r4 : the resume mode (tagged) |
| // -- r6 : generator function |
| // -- cp : generator context |
| // -- lr : return address |
| // -- sp[0] : generator receiver |
| // ----------------------------------- |
| |
| // Push holes for arguments to generator function. Since the parser forced |
| // context allocation for any variables in generators, the actual argument |
| // values have already been copied into the context and these dummy values |
| // will never be used. |
| __ LoadP(r5, FieldMemOperand(r6, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadW( |
| r2, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset)); |
| { |
| Label loop, done_loop; |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| #if V8_TARGET_ARCH_S390X |
| __ CmpP(r2, Operand::Zero()); |
| __ beq(&done_loop); |
| #else |
| __ SmiUntag(r2); |
| __ LoadAndTestP(r2, r2); |
| __ beq(&done_loop); |
| #endif |
| __ LoadRR(r1, r2); |
| __ bind(&loop); |
| __ push(ip); |
| __ BranchOnCount(r1, &loop); |
| __ bind(&done_loop); |
| } |
| |
| // Underlying function needs to have bytecode available. |
| if (FLAG_debug_code) { |
| __ LoadP(r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset)); |
| __ CompareObjectType(r5, r5, r5, BYTECODE_ARRAY_TYPE); |
| __ Assert(eq, kMissingBytecodeArray); |
| } |
| |
| // Resume (Ignition/TurboFan) generator object. |
| { |
| // We abuse new.target both to indicate that this is a resume call and to |
| // pass in the generator object. In ordinary calls, new.target is always |
| // undefined because generator functions are non-constructable. |
| __ LoadRR(r5, r3); |
| __ LoadRR(r3, r6); |
| __ LoadP(ip, FieldMemOperand(r3, JSFunction::kCodeEntryOffset)); |
| __ JumpToJSEntry(ip); |
| } |
| |
| __ bind(&prepare_step_in_if_stepping); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r3, r4, r6); |
| __ CallRuntime(Runtime::kDebugOnFunctionCall); |
| __ Pop(r3, r4); |
| __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ b(&stepping_prepared); |
| |
| __ bind(&prepare_step_in_suspended_generator); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r3, r4); |
| __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); |
| __ Pop(r3, r4); |
| __ LoadP(r6, FieldMemOperand(r3, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ b(&stepping_prepared); |
| } |
| |
| void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ push(r3); |
| __ CallRuntime(Runtime::kThrowConstructedNonConstructable); |
| } |
| |
| enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt }; |
| |
| // Clobbers r4; preserves all other registers. |
| static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc, |
| IsTagged argc_is_tagged) { |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| Label okay; |
| __ LoadRoot(r4, Heap::kRealStackLimitRootIndex); |
| // Make r4 the space we have left. The stack might already be overflowed |
| // here which will cause r4 to become negative. |
| __ SubP(r4, sp, r4); |
| // Check if the arguments will overflow the stack. |
| if (argc_is_tagged == kArgcIsSmiTagged) { |
| __ SmiToPtrArrayOffset(r0, argc); |
| } else { |
| DCHECK(argc_is_tagged == kArgcIsUntaggedInt); |
| __ ShiftLeftP(r0, argc, Operand(kPointerSizeLog2)); |
| } |
| __ CmpP(r4, r0); |
| __ bgt(&okay); // Signed comparison. |
| |
| // Out of stack space. |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| |
| __ bind(&okay); |
| } |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| // Called from Generate_JS_Entry |
| // r2: new.target |
| // r3: function |
| // r4: receiver |
| // r5: argc |
| // r6: argv |
| // r0,r7-r9, cp may be clobbered |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| // Enter an internal frame. |
| { |
| // FrameScope ends up calling MacroAssembler::EnterFrame here |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Setup the context (we need to use the caller context from the isolate). |
| ExternalReference context_address(Isolate::kContextAddress, |
| masm->isolate()); |
| __ mov(cp, Operand(context_address)); |
| __ LoadP(cp, MemOperand(cp)); |
| |
| __ InitializeRootRegister(); |
| |
| // Push the function and the receiver onto the stack. |
| __ Push(r3, r4); |
| |
| // Check if we have enough stack space to push all arguments. |
| // Clobbers r4. |
| Generate_CheckStackOverflow(masm, r5, kArgcIsUntaggedInt); |
| |
| // Copy arguments to the stack in a loop from argv to sp. |
| // The arguments are actually placed in reverse order on sp |
| // compared to argv (i.e. arg1 is highest memory in sp). |
| // r3: function |
| // r5: argc |
| // r6: argv, i.e. points to first arg |
| // r7: scratch reg to hold scaled argc |
| // r8: scratch reg to hold arg handle |
| // r9: scratch reg to hold index into argv |
| Label argLoop, argExit; |
| intptr_t zero = 0; |
| __ ShiftLeftP(r7, r5, Operand(kPointerSizeLog2)); |
| __ SubRR(sp, r7); // Buy the stack frame to fit args |
| __ LoadImmP(r9, Operand(zero)); // Initialize argv index |
| __ bind(&argLoop); |
| __ CmpPH(r7, Operand(zero)); |
| __ beq(&argExit, Label::kNear); |
| __ lay(r7, MemOperand(r7, -kPointerSize)); |
| __ LoadP(r8, MemOperand(r9, r6)); // read next parameter |
| __ la(r9, MemOperand(r9, kPointerSize)); // r9++; |
| __ LoadP(r0, MemOperand(r8)); // dereference handle |
| __ StoreP(r0, MemOperand(r7, sp)); // push parameter |
| __ b(&argLoop); |
| __ bind(&argExit); |
| |
| // Setup new.target and argc. |
| __ LoadRR(r6, r2); |
| __ LoadRR(r2, r5); |
| __ LoadRR(r5, r6); |
| |
| // Initialize all JavaScript callee-saved registers, since they will be seen |
| // by the garbage collector as part of handlers. |
| __ LoadRoot(r6, Heap::kUndefinedValueRootIndex); |
| __ LoadRR(r7, r6); |
| __ LoadRR(r8, r6); |
| __ LoadRR(r9, r6); |
| |
| // Invoke the code. |
| Handle<Code> builtin = is_construct |
| ? masm->isolate()->builtins()->Construct() |
| : masm->isolate()->builtins()->Call(); |
| __ Call(builtin, RelocInfo::CODE_TARGET); |
| |
| // Exit the JS frame and remove the parameters (except function), and |
| // return. |
| } |
| __ b(r14); |
| |
| // r2: result |
| } |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { |
| Register args_count = scratch; |
| |
| // Get the arguments + receiver count. |
| __ LoadP(args_count, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ LoadlW(args_count, |
| FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); |
| |
| // Leave the frame (also dropping the register file). |
| __ LeaveFrame(StackFrame::JAVA_SCRIPT); |
| |
| __ AddP(sp, sp, args_count); |
| } |
| |
| // Generate code for entering a JS function with the interpreter. |
| // On entry to the function the receiver and arguments have been pushed on the |
| // stack left to right. The actual argument count matches the formal parameter |
| // count expected by the function. |
| // |
| // The live registers are: |
| // o r3: the JS function object being called. |
| // o r5: the new target |
| // o cp: our context |
| // o pp: the caller's constant pool pointer (if enabled) |
| // o fp: the caller's frame pointer |
| // o sp: stack pointer |
| // o lr: return address |
| // |
| // The function builds an interpreter frame. See InterpreterFrameConstants in |
| // frames.h for its layout. |
| void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // MANUAL indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done below). |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ PushStandardFrame(r3); |
| |
| // Get the bytecode array from the function object (or from the DebugInfo if |
| // it is present) and load it into kInterpreterBytecodeArrayRegister. |
| __ LoadP(r2, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); |
| Label array_done; |
| Register debug_info = r4; |
| DCHECK(!debug_info.is(r2)); |
| __ LoadP(debug_info, |
| FieldMemOperand(r2, SharedFunctionInfo::kDebugInfoOffset)); |
| // Load original bytecode array or the debug copy. |
| __ LoadP(kInterpreterBytecodeArrayRegister, |
| FieldMemOperand(r2, SharedFunctionInfo::kFunctionDataOffset)); |
| __ TestIfSmi(debug_info); |
| __ beq(&array_done); |
| __ LoadP(kInterpreterBytecodeArrayRegister, |
| FieldMemOperand(debug_info, DebugInfo::kDebugBytecodeArrayIndex)); |
| __ bind(&array_done); |
| |
| // Check whether we should continue to use the interpreter. |
| // TODO(rmcilroy) Remove self healing once liveedit only has to deal with |
| // Ignition bytecode. |
| Label switch_to_different_code_kind; |
| __ LoadP(r2, FieldMemOperand(r2, SharedFunctionInfo::kCodeOffset)); |
| __ CmpP(r2, Operand(masm->CodeObject())); // Self-reference to this code. |
| __ bne(&switch_to_different_code_kind); |
| |
| // Increment invocation count for the function. |
| __ LoadP(r6, FieldMemOperand(r3, JSFunction::kFeedbackVectorOffset)); |
| __ LoadP(r6, FieldMemOperand(r6, Cell::kValueOffset)); |
| __ LoadP(r1, FieldMemOperand( |
| r6, FeedbackVector::kInvocationCountIndex * kPointerSize + |
| FeedbackVector::kHeaderSize)); |
| __ AddSmiLiteral(r1, r1, Smi::FromInt(1), r0); |
| __ StoreP(r1, FieldMemOperand( |
| r6, FeedbackVector::kInvocationCountIndex * kPointerSize + |
| FeedbackVector::kHeaderSize)); |
| |
| // Check function data field is actually a BytecodeArray object. |
| if (FLAG_debug_code) { |
| __ TestIfSmi(kInterpreterBytecodeArrayRegister); |
| __ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| __ CompareObjectType(kInterpreterBytecodeArrayRegister, r2, no_reg, |
| BYTECODE_ARRAY_TYPE); |
| __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Reset code age. |
| __ mov(r1, Operand(BytecodeArray::kNoAgeBytecodeAge)); |
| __ StoreByte(r1, FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kBytecodeAgeOffset), |
| r0); |
| |
| // Load the initial bytecode offset. |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Push new.target, bytecode array and Smi tagged bytecode array offset. |
| __ SmiTag(r4, kInterpreterBytecodeOffsetRegister); |
| __ Push(r5, kInterpreterBytecodeArrayRegister, r4); |
| |
| // Allocate the local and temporary register file on the stack. |
| { |
| // Load frame size (word) from the BytecodeArray object. |
| __ LoadlW(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kFrameSizeOffset)); |
| |
| // Do a stack check to ensure we don't go over the limit. |
| Label ok; |
| __ SubP(r5, sp, r4); |
| __ LoadRoot(r0, Heap::kRealStackLimitRootIndex); |
| __ CmpLogicalP(r5, r0); |
| __ bge(&ok); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&ok); |
| |
| // If ok, push undefined as the initial value for all register file entries. |
| // TODO(rmcilroy): Consider doing more than one push per loop iteration. |
| Label loop, no_args; |
| __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); |
| __ ShiftRightP(r4, r4, Operand(kPointerSizeLog2)); |
| __ LoadAndTestP(r4, r4); |
| __ beq(&no_args); |
| __ LoadRR(r1, r4); |
| __ bind(&loop); |
| __ push(r5); |
| __ SubP(r1, Operand(1)); |
| __ bne(&loop); |
| __ bind(&no_args); |
| } |
| |
| // Load accumulator and dispatch table into registers. |
| __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); |
| __ mov(kInterpreterDispatchTableRegister, |
| Operand(ExternalReference::interpreter_dispatch_table_address( |
| masm->isolate()))); |
| |
| // Dispatch to the first bytecode handler for the function. |
| __ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| __ ShiftLeftP(ip, r3, Operand(kPointerSizeLog2)); |
| __ LoadP(ip, MemOperand(kInterpreterDispatchTableRegister, ip)); |
| __ Call(ip); |
| |
| masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); |
| |
| // The return value is in r2. |
| LeaveInterpreterFrame(masm, r4); |
| __ Ret(); |
| |
| // If the shared code is no longer this entry trampoline, then the underlying |
| // function has been switched to a different kind of code and we heal the |
| // closure by switching the code entry field over to the new code as well. |
| __ bind(&switch_to_different_code_kind); |
| __ LeaveFrame(StackFrame::JAVA_SCRIPT); |
| __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kCodeOffset)); |
| __ AddP(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ StoreP(r6, FieldMemOperand(r3, JSFunction::kCodeEntryOffset), r0); |
| __ RecordWriteCodeEntryField(r3, r6, r7); |
| __ JumpToJSEntry(r6); |
| } |
| |
| static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, |
| Register scratch, |
| Label* stack_overflow) { |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex); |
| // Make scratch the space we have left. The stack might already be overflowed |
| // here which will cause scratch to become negative. |
| __ SubP(scratch, sp, scratch); |
| // Check if the arguments will overflow the stack. |
| __ ShiftLeftP(r0, num_args, Operand(kPointerSizeLog2)); |
| __ CmpP(scratch, r0); |
| __ ble(stack_overflow); // Signed comparison. |
| } |
| |
| static void Generate_InterpreterPushArgs(MacroAssembler* masm, |
| Register num_args, Register index, |
| Register count, Register scratch) { |
| Label loop; |
| __ AddP(index, index, Operand(kPointerSize)); // Bias up for LoadPU |
| __ LoadRR(r0, count); |
| __ bind(&loop); |
| __ LoadP(scratch, MemOperand(index, -kPointerSize)); |
| __ lay(index, MemOperand(index, -kPointerSize)); |
| __ push(scratch); |
| __ SubP(r0, Operand(1)); |
| __ bne(&loop); |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenCallImpl( |
| MacroAssembler* masm, ConvertReceiverMode receiver_mode, |
| TailCallMode tail_call_mode, InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r4 : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // -- r3 : the target to call (can be any Object). |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| // Calculate number of arguments (AddP one for receiver). |
| __ AddP(r5, r2, Operand(1)); |
| Generate_StackOverflowCheck(masm, r5, ip, &stack_overflow); |
| |
| // Push "undefined" as the receiver arg if we need to. |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| __ LoadRR(r5, r2); // Argument count is correct. |
| } |
| |
| // Push the arguments. |
| Generate_InterpreterPushArgs(masm, r5, r4, r5, r6); |
| |
| // Call the target. |
| if (mode == InterpreterPushArgsMode::kJSFunction) { |
| __ Jump(masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny, |
| tail_call_mode), |
| RelocInfo::CODE_TARGET); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Jump(masm->isolate()->builtins()->CallWithSpread(), |
| RelocInfo::CODE_TARGET); |
| } else { |
| __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny, |
| tail_call_mode), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable Code. |
| __ bkpt(0); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenConstructImpl( |
| MacroAssembler* masm, InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r2 : argument count (not including receiver) |
| // -- r5 : new target |
| // -- r3 : constructor to call |
| // -- r4 : allocation site feedback if available, undefined otherwise. |
| // -- r6 : address of the first argument |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| // Push a slot for the receiver to be constructed. |
| __ LoadImmP(r0, Operand::Zero()); |
| __ push(r0); |
| |
| // Push the arguments (skip if none). |
| Label skip; |
| __ CmpP(r2, Operand::Zero()); |
| __ beq(&skip); |
| Generate_StackOverflowCheck(masm, r2, ip, &stack_overflow); |
| Generate_InterpreterPushArgs(masm, r2, r6, r2, r7); |
| __ bind(&skip); |
| |
| __ AssertUndefinedOrAllocationSite(r4, r7); |
| if (mode == InterpreterPushArgsMode::kJSFunction) { |
| __ AssertFunction(r3); |
| |
| // Tail call to the function-specific construct stub (still in the caller |
| // context at this point). |
| __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kConstructStubOffset)); |
| // Jump to the construct function. |
| __ AddP(ip, r6, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Jump(ip); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Call the constructor with r2, r3, and r5 unmodified. |
| __ Jump(masm->isolate()->builtins()->ConstructWithSpread(), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); |
| // Call the constructor with r2, r3, and r5 unmodified. |
| __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable Code. |
| __ bkpt(0); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenConstructArray( |
| MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : argument count (not including receiver) |
| // -- r3 : target to call verified to be Array function |
| // -- r4 : allocation site feedback if available, undefined otherwise. |
| // -- r5 : address of the first argument |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| // Push a slot for the receiver to be constructed. |
| __ LoadImmP(r0, Operand::Zero()); |
| __ push(r0); |
| |
| Generate_StackOverflowCheck(masm, r2, ip, &stack_overflow); |
| |
| // Push the arguments. r6, r8, r3 will be modified. |
| Generate_InterpreterPushArgs(masm, r6, r5, r2, r7); |
| |
| // Array constructor expects constructor in r5. It is same as r3 here. |
| __ LoadRR(r5, r3); |
| |
| ArrayConstructorStub stub(masm->isolate()); |
| __ TailCallStub(&stub); |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable Code. |
| __ bkpt(0); |
| } |
| } |
| |
| static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { |
| // Set the return address to the correct point in the interpreter entry |
| // trampoline. |
| Smi* interpreter_entry_return_pc_offset( |
| masm->isolate()->heap()->interpreter_entry_return_pc_offset()); |
| DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); |
| __ Move(r4, masm->isolate()->builtins()->InterpreterEntryTrampoline()); |
| __ AddP(r14, r4, Operand(interpreter_entry_return_pc_offset->value() + |
| Code::kHeaderSize - kHeapObjectTag)); |
| |
| // Initialize the dispatch table register. |
| __ mov(kInterpreterDispatchTableRegister, |
| Operand(ExternalReference::interpreter_dispatch_table_address( |
| masm->isolate()))); |
| |
| // Get the bytecode array pointer from the frame. |
| __ LoadP(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| |
| if (FLAG_debug_code) { |
| // Check function data field is actually a BytecodeArray object. |
| __ TestIfSmi(kInterpreterBytecodeArrayRegister); |
| __ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| __ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg, |
| BYTECODE_ARRAY_TYPE); |
| __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Get the target bytecode offset from the frame. |
| __ LoadP(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Dispatch to the target bytecode. |
| __ LoadlB(r3, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| __ ShiftLeftP(ip, r3, Operand(kPointerSizeLog2)); |
| __ LoadP(ip, MemOperand(kInterpreterDispatchTableRegister, ip)); |
| __ Jump(ip); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { |
| // Advance the current bytecode offset stored within the given interpreter |
| // stack frame. This simulates what all bytecode handlers do upon completion |
| // of the underlying operation. |
| __ LoadP(r3, MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ LoadP(r4, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ Push(kInterpreterAccumulatorRegister, r3, r4); |
| __ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset); |
| __ Move(r4, r2); // Result is the new bytecode offset. |
| __ Pop(kInterpreterAccumulatorRegister); |
| } |
| __ StoreP(r4, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| void Builtins::Generate_CompileLazy(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : argument count (preserved for callee) |
| // -- r5 : new target (preserved for callee) |
| // -- r3 : target function (preserved for callee) |
| // ----------------------------------- |
| // First lookup code, maybe we don't need to compile! |
| Label gotta_call_runtime; |
| Label try_shared; |
| Label loop_top, loop_bottom; |
| |
| Register closure = r3; |
| Register map = r8; |
| Register index = r4; |
| |
| // Do we have a valid feedback vector? |
| __ LoadP(index, FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset)); |
| __ LoadP(index, FieldMemOperand(index, Cell::kValueOffset)); |
| __ JumpIfRoot(index, Heap::kUndefinedValueRootIndex, &gotta_call_runtime); |
| |
| __ LoadP(map, |
| FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadP(map, |
| FieldMemOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset)); |
| __ LoadP(index, FieldMemOperand(map, FixedArray::kLengthOffset)); |
| __ CmpSmiLiteral(index, Smi::FromInt(2), r0); |
| __ blt(&try_shared); |
| |
| // Find literals. |
| // r9 : native context |
| // r4 : length / index |
| // r8 : optimized code map |
| // r5 : new target |
| // r3 : closure |
| Register native_context = r9; |
| __ LoadP(native_context, NativeContextMemOperand()); |
| |
| __ bind(&loop_top); |
| Register temp = r1; |
| Register array_pointer = r7; |
| |
| // Does the native context match? |
| __ SmiToPtrArrayOffset(array_pointer, index); |
| __ AddP(array_pointer, map, array_pointer); |
| __ LoadP(temp, FieldMemOperand(array_pointer, |
| SharedFunctionInfo::kOffsetToPreviousContext)); |
| __ LoadP(temp, FieldMemOperand(temp, WeakCell::kValueOffset)); |
| __ CmpP(temp, native_context); |
| __ bne(&loop_bottom, Label::kNear); |
| |
| // Code available? |
| Register entry = r6; |
| __ LoadP(entry, |
| FieldMemOperand(array_pointer, |
| SharedFunctionInfo::kOffsetToPreviousCachedCode)); |
| __ LoadP(entry, FieldMemOperand(entry, WeakCell::kValueOffset)); |
| __ JumpIfSmi(entry, &try_shared); |
| |
| // Found code. Get it into the closure and return. |
| // Store code entry in the closure. |
| __ AddP(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ StoreP(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset), r0); |
| __ RecordWriteCodeEntryField(closure, entry, r7); |
| |
| // Link the closure into the optimized function list. |
| // r6 : code entry |
| // r9: native context |
| // r3 : closure |
| __ LoadP( |
| r7, ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST)); |
| __ StoreP(r7, FieldMemOperand(closure, JSFunction::kNextFunctionLinkOffset), |
| r0); |
| __ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, r7, temp, |
| kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, |
| OMIT_SMI_CHECK); |
| const int function_list_offset = |
| Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST); |
| __ StoreP( |
| closure, |
| ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST), r0); |
| // Save closure before the write barrier. |
| __ LoadRR(r7, closure); |
| __ RecordWriteContextSlot(native_context, function_list_offset, r7, temp, |
| kLRHasNotBeenSaved, kDontSaveFPRegs); |
| __ JumpToJSEntry(entry); |
| |
| __ bind(&loop_bottom); |
| __ SubSmiLiteral(index, index, Smi::FromInt(SharedFunctionInfo::kEntryLength), |
| r0); |
| __ CmpSmiLiteral(index, Smi::FromInt(1), r0); |
| __ bgt(&loop_top); |
| |
| // We found no code. |
| __ b(&gotta_call_runtime); |
| |
| __ bind(&try_shared); |
| __ LoadP(entry, |
| FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| // Is the shared function marked for tier up? |
| __ LoadlB(temp, FieldMemOperand( |
| entry, SharedFunctionInfo::kMarkedForTierUpByteOffset)); |
| __ TestBit(temp, SharedFunctionInfo::kMarkedForTierUpBitWithinByte, r0); |
| __ bne(&gotta_call_runtime); |
| |
| // If SFI points to anything other than CompileLazy, install that. |
| __ LoadP(entry, FieldMemOperand(entry, SharedFunctionInfo::kCodeOffset)); |
| __ mov(r7, Operand(masm->CodeObject())); |
| __ CmpP(entry, r7); |
| __ beq(&gotta_call_runtime); |
| |
| // Install the SFI's code entry. |
| __ AddP(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ StoreP(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset), r0); |
| __ RecordWriteCodeEntryField(closure, entry, r7); |
| __ JumpToJSEntry(entry); |
| |
| __ bind(&gotta_call_runtime); |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); |
| } |
| |
| void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { |
| GenerateTailCallToReturnedCode(masm, |
| Runtime::kCompileOptimized_NotConcurrent); |
| } |
| |
| void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent); |
| } |
| |
| void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : argument count (preserved for callee) |
| // -- r3 : new target (preserved for callee) |
| // -- r5 : target function (preserved for callee) |
| // ----------------------------------- |
| Label failed; |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Preserve argument count for later compare. |
| __ Move(r6, r2); |
| // Push a copy of the target function and the new target. |
| __ SmiTag(r2); |
| // Push another copy as a parameter to the runtime call. |
| __ Push(r2, r3, r5, r3); |
| |
| // Copy arguments from caller (stdlib, foreign, heap). |
| Label args_done; |
| for (int j = 0; j < 4; ++j) { |
| Label over; |
| if (j < 3) { |
| __ CmpP(r6, Operand(j)); |
| __ b(ne, &over); |
| } |
| for (int i = j - 1; i >= 0; --i) { |
| __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + |
| i * kPointerSize)); |
| __ push(r6); |
| } |
| for (int i = 0; i < 3 - j; ++i) { |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| } |
| if (j < 3) { |
| __ jmp(&args_done); |
| __ bind(&over); |
| } |
| } |
| __ bind(&args_done); |
| |
| // Call runtime, on success unwind frame, and parent frame. |
| __ CallRuntime(Runtime::kInstantiateAsmJs, 4); |
| // A smi 0 is returned on failure, an object on success. |
| __ JumpIfSmi(r2, &failed); |
| |
| __ Drop(2); |
| __ pop(r6); |
| __ SmiUntag(r6); |
| scope.GenerateLeaveFrame(); |
| |
| __ AddP(r6, r6, Operand(1)); |
| __ Drop(r6); |
| __ Ret(); |
| |
| __ bind(&failed); |
| // Restore target function and new target. |
| __ Pop(r2, r3, r5); |
| __ SmiUntag(r2); |
| } |
| // On failure, tail call back to regular js. |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); |
| } |
| |
| static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { |
| // For now, we are relying on the fact that make_code_young doesn't do any |
| // garbage collection which allows us to save/restore the registers without |
| // worrying about which of them contain pointers. We also don't build an |
| // internal frame to make the code faster, since we shouldn't have to do stack |
| // crawls in MakeCodeYoung. This seems a bit fragile. |
| |
| // Point r2 at the start of the PlatformCodeAge sequence. |
| __ CleanseP(r14); |
| __ SubP(r14, Operand(kCodeAgingSequenceLength)); |
| __ LoadRR(r2, r14); |
| |
| __ pop(r14); |
| |
| // The following registers must be saved and restored when calling through to |
| // the runtime: |
| // r2 - contains return address (beginning of patch sequence) |
| // r3 - isolate |
| // r5 - new target |
| // lr - return address |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ MultiPush(r14.bit() | r2.bit() | r3.bit() | r5.bit() | fp.bit()); |
| __ PrepareCallCFunction(2, 0, r4); |
| __ mov(r3, Operand(ExternalReference::isolate_address(masm->isolate()))); |
| __ CallCFunction( |
| ExternalReference::get_make_code_young_function(masm->isolate()), 2); |
| __ MultiPop(r14.bit() | r2.bit() | r3.bit() | r5.bit() | fp.bit()); |
| __ LoadRR(ip, r2); |
| __ Jump(ip); |
| } |
| |
| #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ |
| void Builtins::Generate_Make##C##CodeYoungAgain(MacroAssembler* masm) { \ |
| GenerateMakeCodeYoungAgainCommon(masm); \ |
| } |
| CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) |
| #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR |
| |
| void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { |
| // For now, we are relying on the fact that make_code_young doesn't do any |
| // garbage collection which allows us to save/restore the registers without |
| // worrying about which of them contain pointers. We also don't build an |
| // internal frame to make the code faster, since we shouldn't have to do stack |
| // crawls in MakeCodeYoung. This seems a bit fragile. |
| |
| // Point r2 at the start of the PlatformCodeAge sequence. |
| __ CleanseP(r14); |
| __ SubP(r14, Operand(kCodeAgingSequenceLength)); |
| __ LoadRR(r2, r14); |
| |
| __ pop(r14); |
| |
| // The following registers must be saved and restored when calling through to |
| // the runtime: |
| // r2 - contains return address (beginning of patch sequence) |
| // r3 - isolate |
| // r5 - new target |
| // lr - return address |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ MultiPush(r14.bit() | r2.bit() | r3.bit() | r5.bit() | fp.bit()); |
| __ PrepareCallCFunction(2, 0, r4); |
| __ mov(r3, Operand(ExternalReference::isolate_address(masm->isolate()))); |
| __ CallCFunction( |
| ExternalReference::get_mark_code_as_executed_function(masm->isolate()), |
| 2); |
| __ MultiPop(r14.bit() | r2.bit() | r3.bit() | r5.bit() | fp.bit()); |
| __ LoadRR(ip, r2); |
| |
| // Perform prologue operations usually performed by the young code stub. |
| __ PushStandardFrame(r3); |
| |
| // Jump to point after the code-age stub. |
| __ AddP(r2, ip, Operand(kNoCodeAgeSequenceLength)); |
| __ Jump(r2); |
| } |
| |
| void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { |
| GenerateMakeCodeYoungAgainCommon(masm); |
| } |
| |
| void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) { |
| Generate_MarkCodeAsExecutedOnce(masm); |
| } |
| |
| static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, |
| SaveFPRegsMode save_doubles) { |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Preserve registers across notification, this is important for compiled |
| // stubs that tail call the runtime on deopts passing their parameters in |
| // registers. |
| __ MultiPush(kJSCallerSaved | kCalleeSaved); |
| // Pass the function and deoptimization type to the runtime system. |
| __ CallRuntime(Runtime::kNotifyStubFailure, save_doubles); |
| __ MultiPop(kJSCallerSaved | kCalleeSaved); |
| } |
| |
| __ la(sp, MemOperand(sp, kPointerSize)); // Ignore state |
| __ Ret(); // Jump to miss handler |
| } |
| |
| void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { |
| Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); |
| } |
| |
| void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { |
| Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); |
| } |
| |
| static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, |
| Deoptimizer::BailoutType type) { |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Pass the function and deoptimization type to the runtime system. |
| __ LoadSmiLiteral(r2, Smi::FromInt(static_cast<int>(type))); |
| __ push(r2); |
| __ CallRuntime(Runtime::kNotifyDeoptimized); |
| } |
| |
| // Get the full codegen state from the stack and untag it -> r8. |
| __ LoadP(r8, MemOperand(sp, 0 * kPointerSize)); |
| __ SmiUntag(r8); |
| // Switch on the state. |
| Label with_tos_register, unknown_state; |
| __ CmpP( |
| r8, |
| Operand(static_cast<intptr_t>(Deoptimizer::BailoutState::NO_REGISTERS))); |
| __ bne(&with_tos_register); |
| __ la(sp, MemOperand(sp, 1 * kPointerSize)); // Remove state. |
| __ Ret(); |
| |
| __ bind(&with_tos_register); |
| DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r2.code()); |
| __ LoadP(r2, MemOperand(sp, 1 * kPointerSize)); |
| __ CmpP( |
| r8, |
| Operand(static_cast<intptr_t>(Deoptimizer::BailoutState::TOS_REGISTER))); |
| __ bne(&unknown_state); |
| __ la(sp, MemOperand(sp, 2 * kPointerSize)); // Remove state. |
| __ Ret(); |
| |
| __ bind(&unknown_state); |
| __ stop("no cases left"); |
| } |
| |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); |
| } |
| |
| void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { |
| Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); |
| } |
| |
| void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { |
| Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); |
| } |
| |
| static void Generate_OnStackReplacementHelper(MacroAssembler* masm, |
| bool has_handler_frame) { |
| // Lookup the function in the JavaScript frame. |
| if (has_handler_frame) { |
| __ LoadP(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ LoadP(r2, MemOperand(r2, JavaScriptFrameConstants::kFunctionOffset)); |
| } else { |
| __ LoadP(r2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| } |
| |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Pass function as argument. |
| __ push(r2); |
| __ CallRuntime(Runtime::kCompileForOnStackReplacement); |
| } |
| |
| // If the code object is null, just return to the caller. |
| Label skip; |
| __ CmpSmiLiteral(r2, Smi::kZero, r0); |
| __ bne(&skip); |
| __ Ret(); |
| |
| __ bind(&skip); |
| |
| // Drop any potential handler frame that is be sitting on top of the actual |
| // JavaScript frame. This is the case then OSR is triggered from bytecode. |
| if (has_handler_frame) { |
| __ LeaveFrame(StackFrame::STUB); |
| } |
| |
| // Load deoptimization data from the code object. |
| // <deopt_data> = <code>[#deoptimization_data_offset] |
| __ LoadP(r3, FieldMemOperand(r2, Code::kDeoptimizationDataOffset)); |
| |
| // Load the OSR entrypoint offset from the deoptimization data. |
| // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] |
| __ LoadP( |
| r3, FieldMemOperand(r3, FixedArray::OffsetOfElementAt( |
| DeoptimizationInputData::kOsrPcOffsetIndex))); |
| __ SmiUntag(r3); |
| |
| // Compute the target address = code_obj + header_size + osr_offset |
| // <entry_addr> = <code_obj> + #header_size + <osr_offset> |
| __ AddP(r2, r3); |
| __ AddP(r0, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ LoadRR(r14, r0); |
| |
| // And "return" to the OSR entry point of the function. |
| __ Ret(); |
| } |
| |
| void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { |
| Generate_OnStackReplacementHelper(masm, false); |
| } |
| |
| void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { |
| Generate_OnStackReplacementHelper(masm, true); |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : argc |
| // -- sp[0] : argArray |
| // -- sp[4] : thisArg |
| // -- sp[8] : receiver |
| // ----------------------------------- |
| |
| // 1. Load receiver into r3, argArray into r2 (if present), remove all |
| // arguments from the stack (including the receiver), and push thisArg (if |
| // present) instead. |
| { |
| Label skip; |
| Register arg_size = r4; |
| Register new_sp = r5; |
| Register scratch = r6; |
| __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2)); |
| __ AddP(new_sp, sp, arg_size); |
| __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); |
| __ LoadRR(scratch, r2); |
| __ LoadP(r3, MemOperand(new_sp, 0)); // receiver |
| __ CmpP(arg_size, Operand(kPointerSize)); |
| __ blt(&skip); |
| __ LoadP(scratch, MemOperand(new_sp, 1 * -kPointerSize)); // thisArg |
| __ beq(&skip); |
| __ LoadP(r2, MemOperand(new_sp, 2 * -kPointerSize)); // argArray |
| __ bind(&skip); |
| __ LoadRR(sp, new_sp); |
| __ StoreP(scratch, MemOperand(sp, 0)); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r2 : argArray |
| // -- r3 : receiver |
| // -- sp[0] : thisArg |
| // ----------------------------------- |
| |
| // 2. Make sure the receiver is actually callable. |
| Label receiver_not_callable; |
| __ JumpIfSmi(r3, &receiver_not_callable); |
| __ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| __ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset)); |
| __ TestBit(r6, Map::kIsCallable); |
| __ beq(&receiver_not_callable); |
| |
| // 3. Tail call with no arguments if argArray is null or undefined. |
| Label no_arguments; |
| __ JumpIfRoot(r2, Heap::kNullValueRootIndex, &no_arguments); |
| __ JumpIfRoot(r2, Heap::kUndefinedValueRootIndex, &no_arguments); |
| |
| // 4a. Apply the receiver to the given argArray (passing undefined for |
| // new.target). |
| __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); |
| __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); |
| |
| // 4b. The argArray is either null or undefined, so we tail call without any |
| // arguments to the receiver. |
| __ bind(&no_arguments); |
| { |
| __ LoadImmP(r2, Operand::Zero()); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| |
| // 4c. The receiver is not callable, throw an appropriate TypeError. |
| __ bind(&receiver_not_callable); |
| { |
| __ StoreP(r3, MemOperand(sp, 0)); |
| __ TailCallRuntime(Runtime::kThrowApplyNonFunction); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { |
| // 1. Make sure we have at least one argument. |
| // r2: actual number of arguments |
| { |
| Label done; |
| __ CmpP(r2, Operand::Zero()); |
| __ bne(&done, Label::kNear); |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| __ AddP(r2, Operand(1)); |
| __ bind(&done); |
| } |
| |
| // r2: actual number of arguments |
| // 2. Get the callable to call (passed as receiver) from the stack. |
| __ ShiftLeftP(r4, r2, Operand(kPointerSizeLog2)); |
| __ LoadP(r3, MemOperand(sp, r4)); |
| |
| // 3. Shift arguments and return address one slot down on the stack |
| // (overwriting the original receiver). Adjust argument count to make |
| // the original first argument the new receiver. |
| // r2: actual number of arguments |
| // r3: callable |
| { |
| Label loop; |
| // Calculate the copy start address (destination). Copy end address is sp. |
| __ AddP(r4, sp, r4); |
| |
| __ bind(&loop); |
| __ LoadP(ip, MemOperand(r4, -kPointerSize)); |
| __ StoreP(ip, MemOperand(r4)); |
| __ SubP(r4, Operand(kPointerSize)); |
| __ CmpP(r4, sp); |
| __ bne(&loop); |
| // Adjust the actual number of arguments and remove the top element |
| // (which is a copy of the last argument). |
| __ SubP(r2, Operand(1)); |
| __ pop(); |
| } |
| |
| // 4. Call the callable. |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : argc |
| // -- sp[0] : argumentsList |
| // -- sp[4] : thisArgument |
| // -- sp[8] : target |
| // -- sp[12] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into r3 (if present), argumentsList into r2 (if present), |
| // remove all arguments from the stack (including the receiver), and push |
| // thisArgument (if present) instead. |
| { |
| Label skip; |
| Register arg_size = r4; |
| Register new_sp = r5; |
| Register scratch = r6; |
| __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2)); |
| __ AddP(new_sp, sp, arg_size); |
| __ LoadRoot(r3, Heap::kUndefinedValueRootIndex); |
| __ LoadRR(scratch, r3); |
| __ LoadRR(r2, r3); |
| __ CmpP(arg_size, Operand(kPointerSize)); |
| __ blt(&skip); |
| __ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize)); // target |
| __ beq(&skip); |
| __ LoadP(scratch, MemOperand(new_sp, 2 * -kPointerSize)); // thisArgument |
| __ CmpP(arg_size, Operand(2 * kPointerSize)); |
| __ beq(&skip); |
| __ LoadP(r2, MemOperand(new_sp, 3 * -kPointerSize)); // argumentsList |
| __ bind(&skip); |
| __ LoadRR(sp, new_sp); |
| __ StoreP(scratch, MemOperand(sp, 0)); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r2 : argumentsList |
| // -- r3 : target |
| // -- sp[0] : thisArgument |
| // ----------------------------------- |
| |
| // 2. Make sure the target is actually callable. |
| Label target_not_callable; |
| __ JumpIfSmi(r3, &target_not_callable); |
| __ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| __ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset)); |
| __ TestBit(r6, Map::kIsCallable); |
| __ beq(&target_not_callable); |
| |
| // 3a. Apply the target to the given argumentsList (passing undefined for |
| // new.target). |
| __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); |
| __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); |
| |
| // 3b. The target is not callable, throw an appropriate TypeError. |
| __ bind(&target_not_callable); |
| { |
| __ StoreP(r3, MemOperand(sp, 0)); |
| __ TailCallRuntime(Runtime::kThrowApplyNonFunction); |
| } |
| } |
| |
| void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : argc |
| // -- sp[0] : new.target (optional) |
| // -- sp[4] : argumentsList |
| // -- sp[8] : target |
| // -- sp[12] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into r3 (if present), argumentsList into r2 (if present), |
| // new.target into r5 (if present, otherwise use target), remove all |
| // arguments from the stack (including the receiver), and push thisArgument |
| // (if present) instead. |
| { |
| Label skip; |
| Register arg_size = r4; |
| Register new_sp = r6; |
| __ ShiftLeftP(arg_size, r2, Operand(kPointerSizeLog2)); |
| __ AddP(new_sp, sp, arg_size); |
| __ LoadRoot(r3, Heap::kUndefinedValueRootIndex); |
| __ LoadRR(r2, r3); |
| __ LoadRR(r5, r3); |
| __ StoreP(r3, MemOperand(new_sp, 0)); // receiver (undefined) |
| __ CmpP(arg_size, Operand(kPointerSize)); |
| __ blt(&skip); |
| __ LoadP(r3, MemOperand(new_sp, 1 * -kPointerSize)); // target |
| __ LoadRR(r5, r3); // new.target defaults to target |
| __ beq(&skip); |
| __ LoadP(r2, MemOperand(new_sp, 2 * -kPointerSize)); // argumentsList |
| __ CmpP(arg_size, Operand(2 * kPointerSize)); |
| __ beq(&skip); |
| __ LoadP(r5, MemOperand(new_sp, 3 * -kPointerSize)); // new.target |
| __ bind(&skip); |
| __ LoadRR(sp, new_sp); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r2 : argumentsList |
| // -- r5 : new.target |
| // -- r3 : target |
| // -- sp[0] : receiver (undefined) |
| // ----------------------------------- |
| |
| // 2. Make sure the target is actually a constructor. |
| Label target_not_constructor; |
| __ JumpIfSmi(r3, &target_not_constructor); |
| __ LoadP(r6, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| __ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset)); |
| __ TestBit(r6, Map::kIsConstructor); |
| __ beq(&target_not_constructor); |
| |
| // 3. Make sure the target is actually a constructor. |
| Label new_target_not_constructor; |
| __ JumpIfSmi(r5, &new_target_not_constructor); |
| __ LoadP(r6, FieldMemOperand(r5, HeapObject::kMapOffset)); |
| __ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset)); |
| __ TestBit(r6, Map::kIsConstructor); |
| __ beq(&new_target_not_constructor); |
| |
| // 4a. Construct the target with the given new.target and argumentsList. |
| __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); |
| |
| // 4b. The target is not a constructor, throw an appropriate TypeError. |
| __ bind(&target_not_constructor); |
| { |
| __ StoreP(r3, MemOperand(sp, 0)); |
| __ TailCallRuntime(Runtime::kThrowNotConstructor); |
| } |
| |
| // 4c. The new.target is not a constructor, throw an appropriate TypeError. |
| __ bind(&new_target_not_constructor); |
| { |
| __ StoreP(r5, MemOperand(sp, 0)); |
| __ TailCallRuntime(Runtime::kThrowNotConstructor); |
| } |
| } |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ SmiTag(r2); |
| __ Load(r6, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| // Stack updated as such: |
| // old SP ---> |
| // R14 Return Addr |
| // Old FP <--- New FP |
| // Argument Adapter SMI |
| // Function |
| // ArgC as SMI <--- New SP |
| __ lay(sp, MemOperand(sp, -5 * kPointerSize)); |
| |
| // Cleanse the top nibble of 31-bit pointers. |
| __ CleanseP(r14); |
| __ StoreP(r14, MemOperand(sp, 4 * kPointerSize)); |
| __ StoreP(fp, MemOperand(sp, 3 * kPointerSize)); |
| __ StoreP(r6, MemOperand(sp, 2 * kPointerSize)); |
| __ StoreP(r3, MemOperand(sp, 1 * kPointerSize)); |
| __ StoreP(r2, MemOperand(sp, 0 * kPointerSize)); |
| __ la(fp, MemOperand(sp, StandardFrameConstants::kFixedFrameSizeFromFp + |
| kPointerSize)); |
| } |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : result being passed through |
| // ----------------------------------- |
| // Get the number of arguments passed (as a smi), tear down the frame and |
| // then tear down the parameters. |
| __ LoadP(r3, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp + |
| kPointerSize))); |
| int stack_adjustment = kPointerSize; // adjust for receiver |
| __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment); |
| __ SmiToPtrArrayOffset(r3, r3); |
| __ lay(sp, MemOperand(sp, r3)); |
| } |
| |
| // static |
| void Builtins::Generate_Apply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : argumentsList |
| // -- r3 : target |
| // -- r5 : new.target (checked to be constructor or undefined) |
| // -- sp[0] : thisArgument |
| // ----------------------------------- |
| |
| // Create the list of arguments from the array-like argumentsList. |
| { |
| Label create_arguments, create_array, create_holey_array, create_runtime, |
| done_create; |
| __ JumpIfSmi(r2, &create_runtime); |
| |
| // Load the map of argumentsList into r4. |
| __ LoadP(r4, FieldMemOperand(r2, HeapObject::kMapOffset)); |
| |
| // Load native context into r6. |
| __ LoadP(r6, NativeContextMemOperand()); |
| |
| // Check if argumentsList is an (unmodified) arguments object. |
| __ LoadP(ip, ContextMemOperand(r6, Context::SLOPPY_ARGUMENTS_MAP_INDEX)); |
| __ CmpP(ip, r4); |
| __ beq(&create_arguments); |
| __ LoadP(ip, ContextMemOperand(r6, Context::STRICT_ARGUMENTS_MAP_INDEX)); |
| __ CmpP(ip, r4); |
| __ beq(&create_arguments); |
| |
| // Check if argumentsList is a fast JSArray. |
| __ CompareInstanceType(r4, ip, JS_ARRAY_TYPE); |
| __ beq(&create_array); |
| |
| // Ask the runtime to create the list (actually a FixedArray). |
| __ bind(&create_runtime); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r3, r5, r2); |
| __ CallRuntime(Runtime::kCreateListFromArrayLike); |
| __ Pop(r3, r5); |
| __ LoadP(r4, FieldMemOperand(r2, FixedArray::kLengthOffset)); |
| __ SmiUntag(r4); |
| } |
| __ b(&done_create); |
| |
| // Try to create the list from an arguments object. |
| __ bind(&create_arguments); |
| __ LoadP(r4, FieldMemOperand(r2, JSArgumentsObject::kLengthOffset)); |
| __ LoadP(r6, FieldMemOperand(r2, JSObject::kElementsOffset)); |
| __ LoadP(ip, FieldMemOperand(r6, FixedArray::kLengthOffset)); |
| __ CmpP(r4, ip); |
| __ bne(&create_runtime); |
| __ SmiUntag(r4); |
| __ LoadRR(r2, r6); |
| __ b(&done_create); |
| |
| // For holey JSArrays we need to check that the array prototype chain |
| // protector is intact and our prototype is the Array.prototype actually. |
| __ bind(&create_holey_array); |
| __ LoadP(r4, FieldMemOperand(r4, Map::kPrototypeOffset)); |
| __ LoadP(r6, ContextMemOperand(r6, Context::INITIAL_ARRAY_PROTOTYPE_INDEX)); |
| __ CmpP(r4, r6); |
| __ bne(&create_runtime); |
| __ LoadRoot(r6, Heap::kArrayProtectorRootIndex); |
| __ LoadP(r4, FieldMemOperand(r6, PropertyCell::kValueOffset)); |
| __ CmpSmiLiteral(r4, Smi::FromInt(Isolate::kProtectorValid), r0); |
| __ bne(&create_runtime); |
| __ LoadP(r4, FieldMemOperand(r2, JSArray::kLengthOffset)); |
| __ LoadP(r2, FieldMemOperand(r2, JSArray::kElementsOffset)); |
| __ SmiUntag(r4); |
| __ b(&done_create); |
| |
| // Try to create the list from a JSArray object. |
| // -- r4 and r6 must be preserved till bne create_holey_array. |
| __ bind(&create_array); |
| __ LoadlB(r7, FieldMemOperand(r4, Map::kBitField2Offset)); |
| __ DecodeField<Map::ElementsKindBits>(r7); |
| STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); |
| STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
| STATIC_ASSERT(FAST_ELEMENTS == 2); |
| STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); |
| __ CmpP(r7, Operand(FAST_HOLEY_ELEMENTS)); |
| __ bgt(&create_runtime); |
| // Only FAST_XXX after this point, FAST_HOLEY_XXX are odd values. |
| __ TestBit(r7, Map::kHasNonInstancePrototype, r0); |
| __ bne(&create_holey_array); |
| // FAST_SMI_ELEMENTS or FAST_ELEMENTS after this point. |
| __ LoadP(r4, FieldMemOperand(r2, JSArray::kLengthOffset)); |
| __ LoadP(r2, FieldMemOperand(r2, JSArray::kElementsOffset)); |
| __ SmiUntag(r4); |
| |
| __ bind(&done_create); |
| } |
| |
| // Check for stack overflow. |
| { |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label done; |
| __ LoadRoot(ip, Heap::kRealStackLimitRootIndex); |
| // Make ip the space we have left. The stack might already be overflowed |
| // here which will cause ip to become negative. |
| __ SubP(ip, sp, ip); |
| // Check if the arguments will overflow the stack. |
| __ ShiftLeftP(r0, r4, Operand(kPointerSizeLog2)); |
| __ CmpP(ip, r0); // Signed comparison. |
| __ bgt(&done); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&done); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r3 : target |
| // -- r2 : args (a FixedArray built from argumentsList) |
| // -- r4 : len (number of elements to push from args) |
| // -- r5 : new.target (checked to be constructor or undefined) |
| // -- sp[0] : thisArgument |
| // ----------------------------------- |
| |
| // Push arguments onto the stack (thisArgument is already on the stack). |
| { |
| __ LoadRoot(r8, Heap::kUndefinedValueRootIndex); |
| Label loop, no_args, skip; |
| __ CmpP(r4, Operand::Zero()); |
| __ beq(&no_args); |
| __ AddP(r2, r2, |
| Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize)); |
| __ LoadRR(r1, r4); |
| __ bind(&loop); |
| __ LoadP(ip, MemOperand(r2, kPointerSize)); |
| __ la(r2, MemOperand(r2, kPointerSize)); |
| __ CompareRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ bne(&skip, Label::kNear); |
| __ LoadRR(ip, r8); |
| __ bind(&skip); |
| __ push(ip); |
| __ BranchOnCount(r1, &loop); |
| __ bind(&no_args); |
| __ LoadRR(r2, r4); |
| } |
| |
| // Dispatch to Call or Construct depending on whether new.target is undefined. |
| { |
| __ CompareRoot(r5, Heap::kUndefinedValueRootIndex); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET, eq); |
| __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_CallForwardVarargs(MacroAssembler* masm, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- r3 : the target to call (can be any Object) |
| // -- r4 : start index (to support rest parameters) |
| // -- lr : return address. |
| // -- sp[0] : thisArgument |
| // ----------------------------------- |
| |
| // Check if we have an arguments adaptor frame below the function frame. |
| Label arguments_adaptor, arguments_done; |
| __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ LoadP(ip, MemOperand(r5, CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ CmpP(ip, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ beq(&arguments_adaptor); |
| { |
| __ LoadP(r2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ LoadP(r2, FieldMemOperand(r2, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadW(r2, FieldMemOperand( |
| r2, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ LoadRR(r5, fp); |
| } |
| __ b(&arguments_done); |
| __ bind(&arguments_adaptor); |
| { |
| // Load the length from the ArgumentsAdaptorFrame. |
| __ LoadP(r2, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| } |
| __ bind(&arguments_done); |
| |
| Label stack_empty, stack_done, stack_overflow; |
| __ SmiUntag(r2); |
| __ SubP(r2, r2, r4); |
| __ CmpP(r2, Operand::Zero()); |
| __ ble(&stack_empty); |
| { |
| // Check for stack overflow. |
| Generate_StackOverflowCheck(masm, r2, r4, &stack_overflow); |
| |
| // Forward the arguments from the caller frame. |
| { |
| Label loop; |
| __ AddP(r5, r5, Operand(kPointerSize)); |
| __ LoadRR(r4, r2); |
| __ bind(&loop); |
| { |
| __ ShiftLeftP(ip, r4, Operand(kPointerSizeLog2)); |
| __ LoadP(ip, MemOperand(r5, ip)); |
| __ push(ip); |
| __ SubP(r4, r4, Operand(1)); |
| __ CmpP(r4, Operand::Zero()); |
| __ bne(&loop); |
| } |
| } |
| } |
| __ b(&stack_done); |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&stack_empty); |
| { |
| // We just pass the receiver, which is already on the stack. |
| __ mov(r2, Operand::Zero()); |
| } |
| __ bind(&stack_done); |
| |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| namespace { |
| |
| // Drops top JavaScript frame and an arguments adaptor frame below it (if |
| // present) preserving all the arguments prepared for current call. |
| // Does nothing if debugger is currently active. |
| // ES6 14.6.3. PrepareForTailCall |
| // |
| // Stack structure for the function g() tail calling f(): |
| // |
| // ------- Caller frame: ------- |
| // | ... |
| // | g()'s arg M |
| // | ... |
| // | g()'s arg 1 |
| // | g()'s receiver arg |
| // | g()'s caller pc |
| // ------- g()'s frame: ------- |
| // | g()'s caller fp <- fp |
| // | g()'s context |
| // | function pointer: g |
| // | ------------------------- |
| // | ... |
| // | ... |
| // | f()'s arg N |
| // | ... |
| // | f()'s arg 1 |
| // | f()'s receiver arg <- sp (f()'s caller pc is not on the stack yet!) |
| // ---------------------- |
| // |
| void PrepareForTailCall(MacroAssembler* masm, Register args_reg, |
| Register scratch1, Register scratch2, |
| Register scratch3) { |
| DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3)); |
| Comment cmnt(masm, "[ PrepareForTailCall"); |
| |
| // Prepare for tail call only if ES2015 tail call elimination is active. |
| Label done; |
| ExternalReference is_tail_call_elimination_enabled = |
| ExternalReference::is_tail_call_elimination_enabled_address( |
| masm->isolate()); |
| __ mov(scratch1, Operand(is_tail_call_elimination_enabled)); |
| __ LoadlB(scratch1, MemOperand(scratch1)); |
| __ CmpP(scratch1, Operand::Zero()); |
| __ beq(&done); |
| |
| // Drop possible interpreter handler/stub frame. |
| { |
| Label no_interpreter_frame; |
| __ LoadP(scratch3, |
| MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ CmpP(scratch3, Operand(StackFrame::TypeToMarker(StackFrame::STUB))); |
| __ bne(&no_interpreter_frame); |
| __ LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ bind(&no_interpreter_frame); |
| } |
| |
| // Check if next frame is an arguments adaptor frame. |
| Register caller_args_count_reg = scratch1; |
| Label no_arguments_adaptor, formal_parameter_count_loaded; |
| __ LoadP(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ LoadP( |
| scratch3, |
| MemOperand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ CmpP(scratch3, |
| Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ bne(&no_arguments_adaptor); |
| |
| // Drop current frame and load arguments count from arguments adaptor frame. |
| __ LoadRR(fp, scratch2); |
| __ LoadP(caller_args_count_reg, |
| MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ SmiUntag(caller_args_count_reg); |
| __ b(&formal_parameter_count_loaded); |
| |
| __ bind(&no_arguments_adaptor); |
| // Load caller's formal parameter count |
| __ LoadP(scratch1, |
| MemOperand(fp, ArgumentsAdaptorFrameConstants::kFunctionOffset)); |
| __ LoadP(scratch1, |
| FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadW(caller_args_count_reg, |
| FieldMemOperand(scratch1, |
| SharedFunctionInfo::kFormalParameterCountOffset)); |
| #if !V8_TARGET_ARCH_S390X |
| __ SmiUntag(caller_args_count_reg); |
| #endif |
| |
| __ bind(&formal_parameter_count_loaded); |
| |
| ParameterCount callee_args_count(args_reg); |
| __ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2, |
| scratch3); |
| __ bind(&done); |
| } |
| } // namespace |
| |
| // static |
| void Builtins::Generate_CallFunction(MacroAssembler* masm, |
| ConvertReceiverMode mode, |
| TailCallMode tail_call_mode) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| __ AssertFunction(r3); |
| |
| // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) |
| // Check that the function is not a "classConstructor". |
| Label class_constructor; |
| __ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadlW(r5, FieldMemOperand(r4, SharedFunctionInfo::kCompilerHintsOffset)); |
| __ TestBitMask(r5, FunctionKind::kClassConstructor |
| << SharedFunctionInfo::kFunctionKindShift, |
| r0); |
| __ bne(&class_constructor); |
| |
| // Enter the context of the function; ToObject has to run in the function |
| // context, and we also need to take the global proxy from the function |
| // context in case of conversion. |
| __ LoadP(cp, FieldMemOperand(r3, JSFunction::kContextOffset)); |
| // We need to convert the receiver for non-native sloppy mode functions. |
| Label done_convert; |
| __ AndP(r0, r5, Operand((1 << SharedFunctionInfo::kStrictModeBit) | |
| (1 << SharedFunctionInfo::kNativeBit))); |
| __ bne(&done_convert); |
| { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : the function to call (checked to be a JSFunction) |
| // -- r4 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| if (mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(r5); |
| } else { |
| Label convert_to_object, convert_receiver; |
| __ ShiftLeftP(r5, r2, Operand(kPointerSizeLog2)); |
| __ LoadP(r5, MemOperand(sp, r5)); |
| __ JumpIfSmi(r5, &convert_to_object); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CompareObjectType(r5, r6, r6, FIRST_JS_RECEIVER_TYPE); |
| __ bge(&done_convert); |
| if (mode != ConvertReceiverMode::kNotNullOrUndefined) { |
| Label convert_global_proxy; |
| __ JumpIfRoot(r5, Heap::kUndefinedValueRootIndex, |
| &convert_global_proxy); |
| __ JumpIfNotRoot(r5, Heap::kNullValueRootIndex, &convert_to_object); |
| __ bind(&convert_global_proxy); |
| { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(r5); |
| } |
| __ b(&convert_receiver); |
| } |
| __ bind(&convert_to_object); |
| { |
| // Convert receiver using ToObject. |
| // TODO(bmeurer): Inline the allocation here to avoid building the frame |
| // in the fast case? (fall back to AllocateInNewSpace?) |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ SmiTag(r2); |
| __ Push(r2, r3); |
| __ LoadRR(r2, r5); |
| __ Push(cp); |
| __ Call(masm->isolate()->builtins()->ToObject(), |
| RelocInfo::CODE_TARGET); |
| __ Pop(cp); |
| __ LoadRR(r5, r2); |
| __ Pop(r2, r3); |
| __ SmiUntag(r2); |
| } |
| __ LoadP(r4, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); |
| __ bind(&convert_receiver); |
| } |
| __ ShiftLeftP(r6, r2, Operand(kPointerSizeLog2)); |
| __ StoreP(r5, MemOperand(sp, r6)); |
| } |
| __ bind(&done_convert); |
| |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : the function to call (checked to be a JSFunction) |
| // -- r4 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| if (tail_call_mode == TailCallMode::kAllow) { |
| PrepareForTailCall(masm, r2, r5, r6, r7); |
| } |
| |
| __ LoadW( |
| r4, FieldMemOperand(r4, SharedFunctionInfo::kFormalParameterCountOffset)); |
| #if !V8_TARGET_ARCH_S390X |
| __ SmiUntag(r4); |
| #endif |
| ParameterCount actual(r2); |
| ParameterCount expected(r4); |
| __ InvokeFunctionCode(r3, no_reg, expected, actual, JUMP_FUNCTION, |
| CheckDebugStepCallWrapper()); |
| |
| // The function is a "classConstructor", need to raise an exception. |
| __ bind(&class_constructor); |
| { |
| FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL); |
| __ push(r3); |
| __ CallRuntime(Runtime::kThrowConstructorNonCallableError); |
| } |
| } |
| |
| namespace { |
| |
| void Generate_PushBoundArguments(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : target (checked to be a JSBoundFunction) |
| // -- r5 : new.target (only in case of [[Construct]]) |
| // ----------------------------------- |
| |
| // Load [[BoundArguments]] into r4 and length of that into r6. |
| Label no_bound_arguments; |
| __ LoadP(r4, FieldMemOperand(r3, JSBoundFunction::kBoundArgumentsOffset)); |
| __ LoadP(r6, FieldMemOperand(r4, FixedArray::kLengthOffset)); |
| __ SmiUntag(r6); |
| __ LoadAndTestP(r6, r6); |
| __ beq(&no_bound_arguments); |
| { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : target (checked to be a JSBoundFunction) |
| // -- r4 : the [[BoundArguments]] (implemented as FixedArray) |
| // -- r5 : new.target (only in case of [[Construct]]) |
| // -- r6 : the number of [[BoundArguments]] |
| // ----------------------------------- |
| |
| // Reserve stack space for the [[BoundArguments]]. |
| { |
| Label done; |
| __ LoadRR(r8, sp); // preserve previous stack pointer |
| __ ShiftLeftP(r9, r6, Operand(kPointerSizeLog2)); |
| __ SubP(sp, sp, r9); |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack |
| // limit". |
| __ CompareRoot(sp, Heap::kRealStackLimitRootIndex); |
| __ bgt(&done); // Signed comparison. |
| // Restore the stack pointer. |
| __ LoadRR(sp, r8); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| } |
| __ bind(&done); |
| } |
| |
| // Relocate arguments down the stack. |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r8 : the previous stack pointer |
| // -- r9: the size of the [[BoundArguments]] |
| { |
| Label skip, loop; |
| __ LoadImmP(r7, Operand::Zero()); |
| __ CmpP(r2, Operand::Zero()); |
| __ beq(&skip); |
| __ LoadRR(r1, r2); |
| __ bind(&loop); |
| __ LoadP(r0, MemOperand(r8, r7)); |
| __ StoreP(r0, MemOperand(sp, r7)); |
| __ AddP(r7, r7, Operand(kPointerSize)); |
| __ BranchOnCount(r1, &loop); |
| __ bind(&skip); |
| } |
| |
| // Copy [[BoundArguments]] to the stack (below the arguments). |
| { |
| Label loop; |
| __ AddP(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ AddP(r4, r4, r9); |
| __ LoadRR(r1, r6); |
| __ bind(&loop); |
| __ LoadP(r0, MemOperand(r4, -kPointerSize)); |
| __ lay(r4, MemOperand(r4, -kPointerSize)); |
| __ StoreP(r0, MemOperand(sp, r7)); |
| __ AddP(r7, r7, Operand(kPointerSize)); |
| __ BranchOnCount(r1, &loop); |
| __ AddP(r2, r2, r6); |
| } |
| } |
| __ bind(&no_bound_arguments); |
| } |
| |
| } // namespace |
| |
| // static |
| void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm, |
| TailCallMode tail_call_mode) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : the function to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertBoundFunction(r3); |
| |
| if (tail_call_mode == TailCallMode::kAllow) { |
| PrepareForTailCall(masm, r2, r5, r6, r7); |
| } |
| |
| // Patch the receiver to [[BoundThis]]. |
| __ LoadP(ip, FieldMemOperand(r3, JSBoundFunction::kBoundThisOffset)); |
| __ ShiftLeftP(r1, r2, Operand(kPointerSizeLog2)); |
| __ StoreP(ip, MemOperand(sp, r1)); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Call the [[BoundTargetFunction]] via the Call builtin. |
| __ LoadP(r3, |
| FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ mov(ip, Operand(ExternalReference(Builtins::kCall_ReceiverIsAny, |
| masm->isolate()))); |
| __ LoadP(ip, MemOperand(ip)); |
| __ AddP(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ JumpToJSEntry(ip); |
| } |
| |
| // static |
| void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode, |
| TailCallMode tail_call_mode) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : the target to call (can be any Object). |
| // ----------------------------------- |
| |
| Label non_callable, non_function, non_smi; |
| __ JumpIfSmi(r3, &non_callable); |
| __ bind(&non_smi); |
| __ CompareObjectType(r3, r6, r7, JS_FUNCTION_TYPE); |
| __ Jump(masm->isolate()->builtins()->CallFunction(mode, tail_call_mode), |
| RelocInfo::CODE_TARGET, eq); |
| __ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE)); |
| __ Jump(masm->isolate()->builtins()->CallBoundFunction(tail_call_mode), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Check if target has a [[Call]] internal method. |
| __ LoadlB(r6, FieldMemOperand(r6, Map::kBitFieldOffset)); |
| __ TestBit(r6, Map::kIsCallable); |
| __ beq(&non_callable); |
| |
| __ CmpP(r7, Operand(JS_PROXY_TYPE)); |
| __ bne(&non_function); |
| |
| // 0. Prepare for tail call if necessary. |
| if (tail_call_mode == TailCallMode::kAllow) { |
| PrepareForTailCall(masm, r2, r5, r6, r7); |
| } |
| |
| // 1. Runtime fallback for Proxy [[Call]]. |
| __ Push(r3); |
| // Increase the arguments size to include the pushed function and the |
| // existing receiver on the stack. |
| __ AddP(r2, r2, Operand(2)); |
| // Tail-call to the runtime. |
| __ JumpToExternalReference( |
| ExternalReference(Runtime::kJSProxyCall, masm->isolate())); |
| |
| // 2. Call to something else, which might have a [[Call]] internal method (if |
| // not we raise an exception). |
| __ bind(&non_function); |
| // Overwrite the original receiver the (original) target. |
| __ ShiftLeftP(r7, r2, Operand(kPointerSizeLog2)); |
| __ StoreP(r3, MemOperand(sp, r7)); |
| // Let the "call_as_function_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r3); |
| __ Jump(masm->isolate()->builtins()->CallFunction( |
| ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode), |
| RelocInfo::CODE_TARGET); |
| |
| // 3. Call to something that is not callable. |
| __ bind(&non_callable); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r3); |
| __ CallRuntime(Runtime::kThrowCalledNonCallable); |
| } |
| } |
| |
| static void CheckSpreadAndPushToStack(MacroAssembler* masm) { |
| Register argc = r2; |
| Register constructor = r3; |
| Register new_target = r5; |
| |
| Register scratch = r4; |
| Register scratch2 = r8; |
| |
| Register spread = r6; |
| Register spread_map = r7; |
| Register spread_len = r7; |
| Label runtime_call, push_args; |
| __ LoadP(spread, MemOperand(sp, 0)); |
| __ JumpIfSmi(spread, &runtime_call); |
| __ LoadP(spread_map, FieldMemOperand(spread, HeapObject::kMapOffset)); |
| |
| // Check that the spread is an array. |
| __ CompareInstanceType(spread_map, scratch, JS_ARRAY_TYPE); |
| __ bne(&runtime_call); |
| |
| // Check that we have the original ArrayPrototype. |
| __ LoadP(scratch, FieldMemOperand(spread_map, Map::kPrototypeOffset)); |
| __ LoadP(scratch2, NativeContextMemOperand()); |
| __ LoadP(scratch2, |
| ContextMemOperand(scratch2, Context::INITIAL_ARRAY_PROTOTYPE_INDEX)); |
| __ CmpP(scratch, scratch2); |
| __ bne(&runtime_call); |
| |
| // Check that the ArrayPrototype hasn't been modified in a way that would |
| // affect iteration. |
| __ LoadRoot(scratch, Heap::kArrayIteratorProtectorRootIndex); |
| __ LoadP(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset)); |
| __ CmpSmiLiteral(scratch, Smi::FromInt(Isolate::kProtectorValid), r0); |
| __ bne(&runtime_call); |
| |
| // Check that the map of the initial array iterator hasn't changed. |
| __ LoadP(scratch2, NativeContextMemOperand()); |
| __ LoadP(scratch, |
| ContextMemOperand(scratch2, |
| Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_INDEX)); |
| __ LoadP(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
| __ LoadP(scratch2, |
| ContextMemOperand( |
| scratch2, Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_MAP_INDEX)); |
| __ CmpP(scratch, scratch2); |
| __ bne(&runtime_call); |
| |
| // For FastPacked kinds, iteration will have the same effect as simply |
| // accessing each property in order. |
| Label no_protector_check; |
| __ LoadlB(scratch, FieldMemOperand(spread_map, Map::kBitField2Offset)); |
| __ DecodeField<Map::ElementsKindBits>(scratch); |
| __ CmpP(scratch, Operand(FAST_HOLEY_ELEMENTS)); |
| __ bgt(&runtime_call); |
| // For non-FastHoley kinds, we can skip the protector check. |
| __ CmpP(scratch, Operand(FAST_SMI_ELEMENTS)); |
| __ beq(&no_protector_check); |
| __ CmpP(scratch, Operand(FAST_ELEMENTS)); |
| __ beq(&no_protector_check); |
| // Check the ArrayProtector cell. |
| __ LoadRoot(scratch, Heap::kArrayProtectorRootIndex); |
| __ LoadP(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset)); |
| __ CmpSmiLiteral(scratch, Smi::FromInt(Isolate::kProtectorValid), r0); |
| __ bne(&runtime_call); |
| |
| __ bind(&no_protector_check); |
| // Load the FixedArray backing store, but use the length from the array. |
| __ LoadP(spread_len, FieldMemOperand(spread, JSArray::kLengthOffset)); |
| __ SmiUntag(spread_len); |
| __ LoadP(spread, FieldMemOperand(spread, JSArray::kElementsOffset)); |
| __ b(&push_args); |
| |
| __ bind(&runtime_call); |
| { |
| // Call the builtin for the result of the spread. |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ SmiTag(argc); |
| __ Push(constructor, new_target, argc, spread); |
| __ CallRuntime(Runtime::kSpreadIterableFixed); |
| __ LoadRR(spread, r2); |
| __ Pop(constructor, new_target, argc); |
| __ SmiUntag(argc); |
| } |
| |
| { |
| // Calculate the new nargs including the result of the spread. |
| __ LoadP(spread_len, FieldMemOperand(spread, FixedArray::kLengthOffset)); |
| __ SmiUntag(spread_len); |
| |
| __ bind(&push_args); |
| // argc += spread_len - 1. Subtract 1 for the spread itself. |
| __ AddP(argc, argc, spread_len); |
| __ SubP(argc, argc, Operand(1)); |
| |
| // Pop the spread argument off the stack. |
| __ Pop(scratch); |
| } |
| |
| // Check for stack overflow. |
| { |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label done; |
| __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex); |
| // Make scratch the space we have left. The stack might already be |
| // overflowed here which will cause scratch to become negative. |
| __ SubP(scratch, sp, scratch); |
| // Check if the arguments will overflow the stack. |
| __ ShiftLeftP(r0, spread_len, Operand(kPointerSizeLog2)); |
| __ CmpP(scratch, r0); |
| __ bgt(&done); // Signed comparison. |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&done); |
| } |
| |
| // Put the evaluated spread onto the stack as additional arguments. |
| { |
| __ LoadImmP(scratch, Operand::Zero()); |
| Label done, push, loop; |
| __ bind(&loop); |
| __ CmpP(scratch, spread_len); |
| __ beq(&done); |
| __ ShiftLeftP(r0, scratch, Operand(kPointerSizeLog2)); |
| __ AddP(scratch2, spread, r0); |
| __ LoadP(scratch2, FieldMemOperand(scratch2, FixedArray::kHeaderSize)); |
| __ JumpIfNotRoot(scratch2, Heap::kTheHoleValueRootIndex, &push); |
| __ LoadRoot(scratch2, Heap::kUndefinedValueRootIndex); |
| __ bind(&push); |
| __ Push(scratch2); |
| __ AddP(scratch, scratch, Operand(1)); |
| __ b(&loop); |
| __ bind(&done); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_CallWithSpread(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : the constructor to call (can be any Object) |
| // ----------------------------------- |
| |
| // CheckSpreadAndPushToStack will push r5 to save it. |
| __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); |
| CheckSpreadAndPushToStack(masm); |
| __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny, |
| TailCallMode::kDisallow), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : the constructor to call (checked to be a JSFunction) |
| // -- r5 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertFunction(r3); |
| |
| // Calling convention for function specific ConstructStubs require |
| // r4 to contain either an AllocationSite or undefined. |
| __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); |
| |
| // Tail call to the function-specific construct stub (still in the caller |
| // context at this point). |
| __ LoadP(r6, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset)); |
| __ LoadP(r6, FieldMemOperand(r6, SharedFunctionInfo::kConstructStubOffset)); |
| __ AddP(ip, r6, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ JumpToJSEntry(ip); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : the function to call (checked to be a JSBoundFunction) |
| // -- r5 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertBoundFunction(r3); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Patch new.target to [[BoundTargetFunction]] if new.target equals target. |
| Label skip; |
| __ CmpP(r3, r5); |
| __ bne(&skip); |
| __ LoadP(r5, |
| FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ bind(&skip); |
| |
| // Construct the [[BoundTargetFunction]] via the Construct builtin. |
| __ LoadP(r3, |
| FieldMemOperand(r3, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ mov(ip, Operand(ExternalReference(Builtins::kConstruct, masm->isolate()))); |
| __ LoadP(ip, MemOperand(ip)); |
| __ AddP(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ JumpToJSEntry(ip); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructProxy(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : the constructor to call (checked to be a JSProxy) |
| // -- r5 : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // ----------------------------------- |
| |
| // Call into the Runtime for Proxy [[Construct]]. |
| __ Push(r3, r5); |
| // Include the pushed new_target, constructor and the receiver. |
| __ AddP(r2, r2, Operand(3)); |
| // Tail-call to the runtime. |
| __ JumpToExternalReference( |
| ExternalReference(Runtime::kJSProxyConstruct, masm->isolate())); |
| } |
| |
| // static |
| void Builtins::Generate_Construct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : the constructor to call (can be any Object) |
| // -- r5 : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // ----------------------------------- |
| |
| // Check if target is a Smi. |
| Label non_constructor; |
| __ JumpIfSmi(r3, &non_constructor); |
| |
| // Dispatch based on instance type. |
| __ CompareObjectType(r3, r6, r7, JS_FUNCTION_TYPE); |
| __ Jump(masm->isolate()->builtins()->ConstructFunction(), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Check if target has a [[Construct]] internal method. |
| __ LoadlB(r4, FieldMemOperand(r6, Map::kBitFieldOffset)); |
| __ TestBit(r4, Map::kIsConstructor); |
| __ beq(&non_constructor); |
| |
| // Only dispatch to bound functions after checking whether they are |
| // constructors. |
| __ CmpP(r7, Operand(JS_BOUND_FUNCTION_TYPE)); |
| __ Jump(masm->isolate()->builtins()->ConstructBoundFunction(), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Only dispatch to proxies after checking whether they are constructors. |
| __ CmpP(r7, Operand(JS_PROXY_TYPE)); |
| __ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET, |
| eq); |
| |
| // Called Construct on an exotic Object with a [[Construct]] internal method. |
| { |
| // Overwrite the original receiver with the (original) target. |
| __ ShiftLeftP(r7, r2, Operand(kPointerSizeLog2)); |
| __ StoreP(r3, MemOperand(sp, r7)); |
| // Let the "call_as_constructor_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r3); |
| __ Jump(masm->isolate()->builtins()->CallFunction(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Called Construct on an Object that doesn't have a [[Construct]] internal |
| // method. |
| __ bind(&non_constructor); |
| __ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ConstructWithSpread(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : the number of arguments (not including the receiver) |
| // -- r3 : the constructor to call (can be any Object) |
| // -- r5 : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // ----------------------------------- |
| |
| CheckSpreadAndPushToStack(masm); |
| __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : requested object size (untagged) |
| // -- lr : return address |
| // ----------------------------------- |
| __ SmiTag(r3); |
| __ Push(r3); |
| __ LoadSmiLiteral(cp, Smi::kZero); |
| __ TailCallRuntime(Runtime::kAllocateInNewSpace); |
| } |
| |
| // static |
| void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : requested object size (untagged) |
| // -- lr : return address |
| // ----------------------------------- |
| __ SmiTag(r3); |
| __ LoadSmiLiteral(r4, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE))); |
| __ Push(r3, r4); |
| __ LoadSmiLiteral(cp, Smi::kZero); |
| __ TailCallRuntime(Runtime::kAllocateInTargetSpace); |
| } |
| |
| // static |
| void Builtins::Generate_Abort(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r3 : message_id as Smi |
| // -- lr : return address |
| // ----------------------------------- |
| __ push(r3); |
| __ LoadSmiLiteral(cp, Smi::kZero); |
| __ TailCallRuntime(Runtime::kAbort); |
| } |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : actual number of arguments |
| // -- r3 : function (passed through to callee) |
| // -- r4 : expected number of arguments |
| // -- r5 : new target (passed through to callee) |
| // ----------------------------------- |
| |
| Label invoke, dont_adapt_arguments, stack_overflow; |
| |
| Label enough, too_few; |
| __ LoadP(ip, FieldMemOperand(r3, JSFunction::kCodeEntryOffset)); |
| __ CmpP(r2, r4); |
| __ blt(&too_few); |
| __ CmpP(r4, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); |
| __ beq(&dont_adapt_arguments); |
| |
| { // Enough parameters: actual >= expected |
| __ bind(&enough); |
| EnterArgumentsAdaptorFrame(masm); |
| Generate_StackOverflowCheck(masm, r4, r7, &stack_overflow); |
| |
| // Calculate copy start address into r2 and copy end address into r6. |
| // r2: actual number of arguments as a smi |
| // r3: function |
| // r4: expected number of arguments |
| // r5: new target (passed through to callee) |
| // ip: code entry to call |
| __ SmiToPtrArrayOffset(r2, r2); |
|
|