|  | // Copyright 2009 the V8 project authors. All rights reserved. | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | //       notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | //       copyright notice, this list of conditions and the following | 
|  | //       disclaimer in the documentation and/or other materials provided | 
|  | //       with the distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | //       contributors may be used to endorse or promote products derived | 
|  | //       from this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | // This benchmark is based on a JavaScript log processing module used | 
|  | // by the V8 profiler to generate execution time profiles for runs of | 
|  | // JavaScript applications, and it effectively measures how fast the | 
|  | // JavaScript engine is at allocating nodes and reclaiming the memory | 
|  | // used for old nodes. Because of the way splay trees work, the engine | 
|  | // also has to deal with a lot of changes to the large tree object | 
|  | // graph. | 
|  |  | 
|  | var Splay = new BenchmarkSuite('Splay', 81491, [ | 
|  | new Benchmark("Splay", SplayRun, SplaySetup, SplayTearDown) | 
|  | ]); | 
|  |  | 
|  |  | 
|  | // Configuration. | 
|  | var kSplayTreeSize = 8000; | 
|  | var kSplayTreeModifications = 80; | 
|  | var kSplayTreePayloadDepth = 5; | 
|  |  | 
|  | var splayTree = null; | 
|  |  | 
|  |  | 
|  | function GeneratePayloadTree(depth, tag) { | 
|  | if (depth == 0) { | 
|  | return { | 
|  | array  : [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], | 
|  | string : 'String for key ' + tag + ' in leaf node' | 
|  | }; | 
|  | } else { | 
|  | return { | 
|  | left:  GeneratePayloadTree(depth - 1, tag), | 
|  | right: GeneratePayloadTree(depth - 1, tag) | 
|  | }; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | function GenerateKey() { | 
|  | // The benchmark framework guarantees that Math.random is | 
|  | // deterministic; see base.js. | 
|  | return Math.random(); | 
|  | } | 
|  |  | 
|  |  | 
|  | function InsertNewNode() { | 
|  | // Insert new node with a unique key. | 
|  | var key; | 
|  | do { | 
|  | key = GenerateKey(); | 
|  | } while (splayTree.find(key) != null); | 
|  | var payload = GeneratePayloadTree(kSplayTreePayloadDepth, String(key)); | 
|  | splayTree.insert(key, payload); | 
|  | return key; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | function SplaySetup() { | 
|  | splayTree = new SplayTree(); | 
|  | for (var i = 0; i < kSplayTreeSize; i++) InsertNewNode(); | 
|  | } | 
|  |  | 
|  |  | 
|  | function SplayTearDown() { | 
|  | // Allow the garbage collector to reclaim the memory | 
|  | // used by the splay tree no matter how we exit the | 
|  | // tear down function. | 
|  | var keys = splayTree.exportKeys(); | 
|  | splayTree = null; | 
|  |  | 
|  | // Verify that the splay tree has the right size. | 
|  | var length = keys.length; | 
|  | if (length != kSplayTreeSize) { | 
|  | throw new Error("Splay tree has wrong size"); | 
|  | } | 
|  |  | 
|  | // Verify that the splay tree has sorted, unique keys. | 
|  | for (var i = 0; i < length - 1; i++) { | 
|  | if (keys[i] >= keys[i + 1]) { | 
|  | throw new Error("Splay tree not sorted"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | function SplayRun() { | 
|  | // Replace a few nodes in the splay tree. | 
|  | for (var i = 0; i < kSplayTreeModifications; i++) { | 
|  | var key = InsertNewNode(); | 
|  | var greatest = splayTree.findGreatestLessThan(key); | 
|  | if (greatest == null) splayTree.remove(key); | 
|  | else splayTree.remove(greatest.key); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Constructs a Splay tree.  A splay tree is a self-balancing binary | 
|  | * search tree with the additional property that recently accessed | 
|  | * elements are quick to access again. It performs basic operations | 
|  | * such as insertion, look-up and removal in O(log(n)) amortized time. | 
|  | * | 
|  | * @constructor | 
|  | */ | 
|  | function SplayTree() { | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Pointer to the root node of the tree. | 
|  | * | 
|  | * @type {SplayTree.Node} | 
|  | * @private | 
|  | */ | 
|  | SplayTree.prototype.root_ = null; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * @return {boolean} Whether the tree is empty. | 
|  | */ | 
|  | SplayTree.prototype.isEmpty = function() { | 
|  | return !this.root_; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Inserts a node into the tree with the specified key and value if | 
|  | * the tree does not already contain a node with the specified key. If | 
|  | * the value is inserted, it becomes the root of the tree. | 
|  | * | 
|  | * @param {number} key Key to insert into the tree. | 
|  | * @param {*} value Value to insert into the tree. | 
|  | */ | 
|  | SplayTree.prototype.insert = function(key, value) { | 
|  | if (this.isEmpty()) { | 
|  | this.root_ = new SplayTree.Node(key, value); | 
|  | return; | 
|  | } | 
|  | // Splay on the key to move the last node on the search path for | 
|  | // the key to the root of the tree. | 
|  | this.splay_(key); | 
|  | if (this.root_.key == key) { | 
|  | return; | 
|  | } | 
|  | var node = new SplayTree.Node(key, value); | 
|  | if (key > this.root_.key) { | 
|  | node.left = this.root_; | 
|  | node.right = this.root_.right; | 
|  | this.root_.right = null; | 
|  | } else { | 
|  | node.right = this.root_; | 
|  | node.left = this.root_.left; | 
|  | this.root_.left = null; | 
|  | } | 
|  | this.root_ = node; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Removes a node with the specified key from the tree if the tree | 
|  | * contains a node with this key. The removed node is returned. If the | 
|  | * key is not found, an exception is thrown. | 
|  | * | 
|  | * @param {number} key Key to find and remove from the tree. | 
|  | * @return {SplayTree.Node} The removed node. | 
|  | */ | 
|  | SplayTree.prototype.remove = function(key) { | 
|  | if (this.isEmpty()) { | 
|  | throw Error('Key not found: ' + key); | 
|  | } | 
|  | this.splay_(key); | 
|  | if (this.root_.key != key) { | 
|  | throw Error('Key not found: ' + key); | 
|  | } | 
|  | var removed = this.root_; | 
|  | if (!this.root_.left) { | 
|  | this.root_ = this.root_.right; | 
|  | } else { | 
|  | var right = this.root_.right; | 
|  | this.root_ = this.root_.left; | 
|  | // Splay to make sure that the new root has an empty right child. | 
|  | this.splay_(key); | 
|  | // Insert the original right child as the right child of the new | 
|  | // root. | 
|  | this.root_.right = right; | 
|  | } | 
|  | return removed; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Returns the node having the specified key or null if the tree doesn't contain | 
|  | * a node with the specified key. | 
|  | * | 
|  | * @param {number} key Key to find in the tree. | 
|  | * @return {SplayTree.Node} Node having the specified key. | 
|  | */ | 
|  | SplayTree.prototype.find = function(key) { | 
|  | if (this.isEmpty()) { | 
|  | return null; | 
|  | } | 
|  | this.splay_(key); | 
|  | return this.root_.key == key ? this.root_ : null; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * @return {SplayTree.Node} Node having the maximum key value. | 
|  | */ | 
|  | SplayTree.prototype.findMax = function(opt_startNode) { | 
|  | if (this.isEmpty()) { | 
|  | return null; | 
|  | } | 
|  | var current = opt_startNode || this.root_; | 
|  | while (current.right) { | 
|  | current = current.right; | 
|  | } | 
|  | return current; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * @return {SplayTree.Node} Node having the maximum key value that | 
|  | *     is less than the specified key value. | 
|  | */ | 
|  | SplayTree.prototype.findGreatestLessThan = function(key) { | 
|  | if (this.isEmpty()) { | 
|  | return null; | 
|  | } | 
|  | // Splay on the key to move the node with the given key or the last | 
|  | // node on the search path to the top of the tree. | 
|  | this.splay_(key); | 
|  | // Now the result is either the root node or the greatest node in | 
|  | // the left subtree. | 
|  | if (this.root_.key < key) { | 
|  | return this.root_; | 
|  | } else if (this.root_.left) { | 
|  | return this.findMax(this.root_.left); | 
|  | } else { | 
|  | return null; | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * @return {Array<*>} An array containing all the keys of tree's nodes. | 
|  | */ | 
|  | SplayTree.prototype.exportKeys = function() { | 
|  | var result = []; | 
|  | if (!this.isEmpty()) { | 
|  | this.root_.traverse_(function(node) { result.push(node.key); }); | 
|  | } | 
|  | return result; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Perform the splay operation for the given key. Moves the node with | 
|  | * the given key to the top of the tree.  If no node has the given | 
|  | * key, the last node on the search path is moved to the top of the | 
|  | * tree. This is the simplified top-down splaying algorithm from: | 
|  | * "Self-adjusting Binary Search Trees" by Sleator and Tarjan | 
|  | * | 
|  | * @param {number} key Key to splay the tree on. | 
|  | * @private | 
|  | */ | 
|  | SplayTree.prototype.splay_ = function(key) { | 
|  | if (this.isEmpty()) { | 
|  | return; | 
|  | } | 
|  | // Create a dummy node.  The use of the dummy node is a bit | 
|  | // counter-intuitive: The right child of the dummy node will hold | 
|  | // the L tree of the algorithm.  The left child of the dummy node | 
|  | // will hold the R tree of the algorithm.  Using a dummy node, left | 
|  | // and right will always be nodes and we avoid special cases. | 
|  | var dummy, left, right; | 
|  | dummy = left = right = new SplayTree.Node(null, null); | 
|  | var current = this.root_; | 
|  | while (true) { | 
|  | if (key < current.key) { | 
|  | if (!current.left) { | 
|  | break; | 
|  | } | 
|  | if (key < current.left.key) { | 
|  | // Rotate right. | 
|  | var tmp = current.left; | 
|  | current.left = tmp.right; | 
|  | tmp.right = current; | 
|  | current = tmp; | 
|  | if (!current.left) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Link right. | 
|  | right.left = current; | 
|  | right = current; | 
|  | current = current.left; | 
|  | } else if (key > current.key) { | 
|  | if (!current.right) { | 
|  | break; | 
|  | } | 
|  | if (key > current.right.key) { | 
|  | // Rotate left. | 
|  | var tmp = current.right; | 
|  | current.right = tmp.left; | 
|  | tmp.left = current; | 
|  | current = tmp; | 
|  | if (!current.right) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Link left. | 
|  | left.right = current; | 
|  | left = current; | 
|  | current = current.right; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Assemble. | 
|  | left.right = current.left; | 
|  | right.left = current.right; | 
|  | current.left = dummy.right; | 
|  | current.right = dummy.left; | 
|  | this.root_ = current; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Constructs a Splay tree node. | 
|  | * | 
|  | * @param {number} key Key. | 
|  | * @param {*} value Value. | 
|  | */ | 
|  | SplayTree.Node = function(key, value) { | 
|  | this.key = key; | 
|  | this.value = value; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * @type {SplayTree.Node} | 
|  | */ | 
|  | SplayTree.Node.prototype.left = null; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * @type {SplayTree.Node} | 
|  | */ | 
|  | SplayTree.Node.prototype.right = null; | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Performs an ordered traversal of the subtree starting at | 
|  | * this SplayTree.Node. | 
|  | * | 
|  | * @param {function(SplayTree.Node)} f Visitor function. | 
|  | * @private | 
|  | */ | 
|  | SplayTree.Node.prototype.traverse_ = function(f) { | 
|  | var current = this; | 
|  | while (current) { | 
|  | var left = current.left; | 
|  | if (left) left.traverse_(f); | 
|  | f(current); | 
|  | current = current.right; | 
|  | } | 
|  | }; |