|  | // Copyright 2009 the V8 project authors. All rights reserved. | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | //       notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | //       copyright notice, this list of conditions and the following | 
|  | //       disclaimer in the documentation and/or other materials provided | 
|  | //       with the distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | //       contributors may be used to endorse or promote products derived | 
|  | //       from this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | // Flags: --allow-natives-syntax | 
|  |  | 
|  | // Test fast div and mod. | 
|  |  | 
|  | function divmod(div_func, mod_func, x, y) { | 
|  | var div_answer = (div_func)(x); | 
|  | assertEquals(x / y, div_answer, x + "/" + y); | 
|  | var mod_answer = (mod_func)(x); | 
|  | assertEquals(x % y, mod_answer, x + "%" + y); | 
|  | var minus_div_answer = (div_func)(-x); | 
|  | assertEquals(-x / y, minus_div_answer, "-" + x + "/" + y); | 
|  | var minus_mod_answer = (mod_func)(-x); | 
|  | assertEquals(-x % y, minus_mod_answer, "-" + x + "%" + y); | 
|  | } | 
|  |  | 
|  |  | 
|  | function run_tests_for(divisor) { | 
|  | print("(function(left) { return left / " + divisor + "; })"); | 
|  | var div_func = this.eval("(function(left) { return left / " + divisor + "; })"); | 
|  | var mod_func = this.eval("(function(left) { return left % " + divisor + "; })"); | 
|  | var exp; | 
|  | // Strange number test. | 
|  | divmod(div_func, mod_func, 0, divisor); | 
|  | divmod(div_func, mod_func, 1 / 0, divisor); | 
|  | // Floating point number test. | 
|  | for (exp = -1024; exp <= 1024; exp += 8) { | 
|  | divmod(div_func, mod_func, Math.pow(2, exp), divisor); | 
|  | divmod(div_func, mod_func, 0.9999999 * Math.pow(2, exp), divisor); | 
|  | divmod(div_func, mod_func, 1.0000001 * Math.pow(2, exp), divisor); | 
|  | } | 
|  | // Integer number test. | 
|  | for (exp = 0; exp <= 32; exp++) { | 
|  | divmod(div_func, mod_func, 1 << exp, divisor); | 
|  | divmod(div_func, mod_func, (1 << exp) + 1, divisor); | 
|  | divmod(div_func, mod_func, (1 << exp) - 1, divisor); | 
|  | } | 
|  | divmod(div_func, mod_func, Math.floor(0x1fffffff / 3), divisor); | 
|  | divmod(div_func, mod_func, Math.floor(-0x20000000 / 3), divisor); | 
|  | } | 
|  |  | 
|  |  | 
|  | var divisors = [ | 
|  | 0, | 
|  | 1, | 
|  | 2, | 
|  | 3, | 
|  | 4, | 
|  | 5, | 
|  | 6, | 
|  | 7, | 
|  | 8, | 
|  | 9, | 
|  | 10, | 
|  | 0x1000000, | 
|  | 0x40000000, | 
|  | 12, | 
|  | 60, | 
|  | 100, | 
|  | 1000 * 60 * 60 * 24]; | 
|  |  | 
|  | for (var i = 0; i < divisors.length; i++) { | 
|  | run_tests_for(divisors[i]); | 
|  | } | 
|  |  | 
|  | // Test extreme corner cases of modulo. | 
|  |  | 
|  | // Computes the modulo by slow but lossless operations. | 
|  | function compute_mod(dividend, divisor) { | 
|  | // Return NaN if either operand is NaN, if divisor is 0 or | 
|  | // dividend is an infinity. Return dividend if divisor is an infinity. | 
|  | if (isNaN(dividend) || isNaN(divisor) || divisor == 0) { return NaN; } | 
|  | var sign = 1; | 
|  | if (dividend < 0) { dividend = -dividend; sign = -1; } | 
|  | if (dividend == Infinity) { return NaN; } | 
|  | if (divisor < 0) { divisor = -divisor; } | 
|  | if (divisor == Infinity) { return sign * dividend; } | 
|  | function rec_mod(a, b) { | 
|  | // Subtracts maximal possible multiplum of b from a. | 
|  | if (a >= b) { | 
|  | a = rec_mod(a, 2 * b); | 
|  | if (a >= b) { a -= b; } | 
|  | } | 
|  | return a; | 
|  | } | 
|  | return sign * rec_mod(dividend, divisor); | 
|  | } | 
|  |  | 
|  | (function () { | 
|  | var large_non_smi = 1234567891234.12245; | 
|  | var small_non_smi = 43.2367243; | 
|  | var repeating_decimal = 0.3; | 
|  | var finite_decimal = 0.5; | 
|  | var smi = 43; | 
|  | var power_of_two = 64; | 
|  | var min_normal = Number.MIN_VALUE * Math.pow(2, 52); | 
|  | var max_denormal = Number.MIN_VALUE * (Math.pow(2, 52) - 1); | 
|  |  | 
|  | // All combinations of NaN, Infinity, normal, denormal and zero. | 
|  | var example_numbers = [ | 
|  | NaN, | 
|  | 0, | 
|  |  | 
|  | // Due to a bug in fmod(), modulos involving denormals | 
|  | // return the wrong result for glibc <= 2.16. | 
|  | // Details: http://sourceware.org/bugzilla/show_bug.cgi?id=14048 | 
|  |  | 
|  | Number.MIN_VALUE, | 
|  | 3 * Number.MIN_VALUE, | 
|  | max_denormal, | 
|  |  | 
|  | min_normal, | 
|  | repeating_decimal, | 
|  | finite_decimal, | 
|  | smi, | 
|  | power_of_two, | 
|  | small_non_smi, | 
|  | large_non_smi, | 
|  | Number.MAX_VALUE, | 
|  | Infinity | 
|  | ]; | 
|  |  | 
|  | function doTest(a, b) { | 
|  | var exp = compute_mod(a, b); | 
|  | var act = a % b; | 
|  | assertEquals(exp, act, a + " % " + b); | 
|  | } | 
|  |  | 
|  | for (var i = 0; i < example_numbers.length; i++) { | 
|  | for (var j = 0; j < example_numbers.length; j++) { | 
|  | var a = example_numbers[i]; | 
|  | var b = example_numbers[j]; | 
|  | doTest(a,b); | 
|  | doTest(-a,b); | 
|  | doTest(a,-b); | 
|  | doTest(-a,-b); | 
|  | } | 
|  | } | 
|  | })(); | 
|  |  | 
|  |  | 
|  | (function () { | 
|  | // Edge cases | 
|  | var zero = 0; | 
|  | var minsmi32 = -0x40000000; | 
|  | var minsmi64 = -0x80000000; | 
|  | var somenum = 3532; | 
|  | assertEquals(-0, zero / -1, "0 / -1"); | 
|  | assertEquals(1, minsmi32 / -0x40000000, "minsmi/minsmi-32"); | 
|  | assertEquals(1, minsmi64 / -0x80000000, "minsmi/minsmi-64"); | 
|  | assertEquals(somenum, somenum % -0x40000000, "%minsmi-32"); | 
|  | assertEquals(somenum, somenum % -0x80000000, "%minsmi-64"); | 
|  | })(); | 
|  |  | 
|  |  | 
|  | // Side-effect-free expressions containing bit operations use | 
|  | // an optimized compiler with int32 values.   Ensure that modulus | 
|  | // produces negative zeros correctly. | 
|  | function negative_zero_modulus_test() { | 
|  | var x = 4; | 
|  | var y = -4; | 
|  | x = x + x - x; | 
|  | y = y + y - y; | 
|  | var z = (y | y | y | y) % x; | 
|  | assertEquals(-1 / 0, 1 / z); | 
|  | z = (x | x | x | x) % x; | 
|  | assertEquals(1 / 0, 1 / z); | 
|  | z = (y | y | y | y) % y; | 
|  | assertEquals(-1 / 0, 1 / z); | 
|  | z = (x | x | x | x) % y; | 
|  | assertEquals(1 / 0, 1 / z); | 
|  | } | 
|  |  | 
|  | negative_zero_modulus_test(); | 
|  |  | 
|  |  | 
|  | function lithium_integer_mod() { | 
|  | var left_operands = [ | 
|  | 0, | 
|  | 305419896,  // 0x12345678 | 
|  | ]; | 
|  |  | 
|  | // Test the standard lithium code for modulo opeartions. | 
|  | var mod_func; | 
|  | for (var i = 0; i < left_operands.length; i++) { | 
|  | for (var j = 0; j < divisors.length; j++) { | 
|  | mod_func = this.eval("(function(left) { return left % " + divisors[j]+ "; })"); | 
|  | assertEquals((mod_func)(left_operands[i]), left_operands[i] % divisors[j]); | 
|  | assertEquals((mod_func)(-left_operands[i]), -left_operands[i] % divisors[j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | var results_powers_of_two = [ | 
|  | // 0 | 
|  | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], | 
|  | // 305419896 == 0x12345678 | 
|  | [0, 0, 0, 8, 24, 56, 120, 120, 120, 632, 1656, 1656, 5752, 5752, 22136, 22136, 22136, 22136, 284280, 284280, 1332856, 3430008, 3430008, 3430008, 3430008, 36984440, 36984440, 36984440, 305419896, 305419896, 305419896], | 
|  | ]; | 
|  |  | 
|  | // Test the lithium code for modulo operations with a variable power of two | 
|  | // right hand side operand. | 
|  | for (var i = 0; i < left_operands.length; i++) { | 
|  | for (var j = 0; j < 31; j++) { | 
|  | assertEquals(results_powers_of_two[i][j], left_operands[i] % (2 << j)); | 
|  | assertEquals(results_powers_of_two[i][j], left_operands[i] % -(2 << j)); | 
|  | assertEquals(-results_powers_of_two[i][j], -left_operands[i] % (2 << j)); | 
|  | assertEquals(-results_powers_of_two[i][j], -left_operands[i] % -(2 << j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test the lithium code for modulo operations with a constant power of two | 
|  | // right hand side operand. | 
|  | for (var i = 0; i < left_operands.length; i++) { | 
|  | // With positive left hand side operand. | 
|  | assertEquals(results_powers_of_two[i][0], left_operands[i] % -(2 << 0)); | 
|  | assertEquals(results_powers_of_two[i][1], left_operands[i] % (2 << 1)); | 
|  | assertEquals(results_powers_of_two[i][2], left_operands[i] % -(2 << 2)); | 
|  | assertEquals(results_powers_of_two[i][3], left_operands[i] % (2 << 3)); | 
|  | assertEquals(results_powers_of_two[i][4], left_operands[i] % -(2 << 4)); | 
|  | assertEquals(results_powers_of_two[i][5], left_operands[i] % (2 << 5)); | 
|  | assertEquals(results_powers_of_two[i][6], left_operands[i] % -(2 << 6)); | 
|  | assertEquals(results_powers_of_two[i][7], left_operands[i] % (2 << 7)); | 
|  | assertEquals(results_powers_of_two[i][8], left_operands[i] % -(2 << 8)); | 
|  | assertEquals(results_powers_of_two[i][9], left_operands[i] % (2 << 9)); | 
|  | assertEquals(results_powers_of_two[i][10], left_operands[i] % -(2 << 10)); | 
|  | assertEquals(results_powers_of_two[i][11], left_operands[i] % (2 << 11)); | 
|  | assertEquals(results_powers_of_two[i][12], left_operands[i] % -(2 << 12)); | 
|  | assertEquals(results_powers_of_two[i][13], left_operands[i] % (2 << 13)); | 
|  | assertEquals(results_powers_of_two[i][14], left_operands[i] % -(2 << 14)); | 
|  | assertEquals(results_powers_of_two[i][15], left_operands[i] % (2 << 15)); | 
|  | assertEquals(results_powers_of_two[i][16], left_operands[i] % -(2 << 16)); | 
|  | assertEquals(results_powers_of_two[i][17], left_operands[i] % (2 << 17)); | 
|  | assertEquals(results_powers_of_two[i][18], left_operands[i] % -(2 << 18)); | 
|  | assertEquals(results_powers_of_two[i][19], left_operands[i] % (2 << 19)); | 
|  | assertEquals(results_powers_of_two[i][20], left_operands[i] % -(2 << 20)); | 
|  | assertEquals(results_powers_of_two[i][21], left_operands[i] % (2 << 21)); | 
|  | assertEquals(results_powers_of_two[i][22], left_operands[i] % -(2 << 22)); | 
|  | assertEquals(results_powers_of_two[i][23], left_operands[i] % (2 << 23)); | 
|  | assertEquals(results_powers_of_two[i][24], left_operands[i] % -(2 << 24)); | 
|  | assertEquals(results_powers_of_two[i][25], left_operands[i] % (2 << 25)); | 
|  | assertEquals(results_powers_of_two[i][26], left_operands[i] % -(2 << 26)); | 
|  | assertEquals(results_powers_of_two[i][27], left_operands[i] % (2 << 27)); | 
|  | assertEquals(results_powers_of_two[i][28], left_operands[i] % -(2 << 28)); | 
|  | assertEquals(results_powers_of_two[i][29], left_operands[i] % (2 << 29)); | 
|  | assertEquals(results_powers_of_two[i][30], left_operands[i] % -(2 << 30)); | 
|  | // With negative left hand side operand. | 
|  | assertEquals(-results_powers_of_two[i][0], -left_operands[i] % -(2 << 0)); | 
|  | assertEquals(-results_powers_of_two[i][1], -left_operands[i] % (2 << 1)); | 
|  | assertEquals(-results_powers_of_two[i][2], -left_operands[i] % -(2 << 2)); | 
|  | assertEquals(-results_powers_of_two[i][3], -left_operands[i] % (2 << 3)); | 
|  | assertEquals(-results_powers_of_two[i][4], -left_operands[i] % -(2 << 4)); | 
|  | assertEquals(-results_powers_of_two[i][5], -left_operands[i] % (2 << 5)); | 
|  | assertEquals(-results_powers_of_two[i][6], -left_operands[i] % -(2 << 6)); | 
|  | assertEquals(-results_powers_of_two[i][7], -left_operands[i] % (2 << 7)); | 
|  | assertEquals(-results_powers_of_two[i][8], -left_operands[i] % -(2 << 8)); | 
|  | assertEquals(-results_powers_of_two[i][9], -left_operands[i] % (2 << 9)); | 
|  | assertEquals(-results_powers_of_two[i][10], -left_operands[i] % -(2 << 10)); | 
|  | assertEquals(-results_powers_of_two[i][11], -left_operands[i] % (2 << 11)); | 
|  | assertEquals(-results_powers_of_two[i][12], -left_operands[i] % -(2 << 12)); | 
|  | assertEquals(-results_powers_of_two[i][13], -left_operands[i] % (2 << 13)); | 
|  | assertEquals(-results_powers_of_two[i][14], -left_operands[i] % -(2 << 14)); | 
|  | assertEquals(-results_powers_of_two[i][15], -left_operands[i] % (2 << 15)); | 
|  | assertEquals(-results_powers_of_two[i][16], -left_operands[i] % -(2 << 16)); | 
|  | assertEquals(-results_powers_of_two[i][17], -left_operands[i] % (2 << 17)); | 
|  | assertEquals(-results_powers_of_two[i][18], -left_operands[i] % -(2 << 18)); | 
|  | assertEquals(-results_powers_of_two[i][19], -left_operands[i] % (2 << 19)); | 
|  | assertEquals(-results_powers_of_two[i][20], -left_operands[i] % -(2 << 20)); | 
|  | assertEquals(-results_powers_of_two[i][21], -left_operands[i] % (2 << 21)); | 
|  | assertEquals(-results_powers_of_two[i][22], -left_operands[i] % -(2 << 22)); | 
|  | assertEquals(-results_powers_of_two[i][23], -left_operands[i] % (2 << 23)); | 
|  | assertEquals(-results_powers_of_two[i][24], -left_operands[i] % -(2 << 24)); | 
|  | assertEquals(-results_powers_of_two[i][25], -left_operands[i] % (2 << 25)); | 
|  | assertEquals(-results_powers_of_two[i][26], -left_operands[i] % -(2 << 26)); | 
|  | assertEquals(-results_powers_of_two[i][27], -left_operands[i] % (2 << 27)); | 
|  | assertEquals(-results_powers_of_two[i][28], -left_operands[i] % -(2 << 28)); | 
|  | assertEquals(-results_powers_of_two[i][29], -left_operands[i] % (2 << 29)); | 
|  | assertEquals(-results_powers_of_two[i][30], -left_operands[i] % -(2 << 30)); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | lithium_integer_mod(); | 
|  | %OptimizeFunctionOnNextCall(lithium_integer_mod) | 
|  | lithium_integer_mod(); |