blob: eb8885e510e239c6abdc00079df46073c2546938 [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <algorithm>
#include "src/base/macros.h"
#include "src/base/v8-fallthrough.h"
#include "src/execution/isolate.h"
#include "src/wasm/function-body-decoder.h"
#include "src/wasm/wasm-module-builder.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes-inl.h"
#include "test/common/wasm/flag-utils.h"
#include "test/common/wasm/test-signatures.h"
#include "test/fuzzer/wasm-fuzzer-common.h"
namespace v8::internal::wasm::fuzzer {
namespace {
constexpr int kMaxArrays = 4;
constexpr int kMaxStructs = 4;
constexpr int kMaxStructFields = 4;
constexpr int kMaxFunctions = 4;
constexpr int kMaxGlobals = 64;
constexpr int kMaxParameters = 15;
constexpr int kMaxReturns = 15;
constexpr int kMaxExceptions = 4;
constexpr int kMaxTableSize = 32;
constexpr int kMaxTables = 4;
constexpr int kMaxArraySize = 20;
constexpr int kMaxPassiveDataSegments = 2;
constexpr uint32_t kMaxRecursionDepth = 64;
class DataRange {
// data_ is used for general random values for fuzzing.
base::Vector<const uint8_t> data_;
// The RNG is used for generating random values (i32.consts etc.) for which
// the quality of the input is less important.
base::RandomNumberGenerator rng_;
public:
explicit DataRange(base::Vector<const uint8_t> data, int64_t seed = -1)
: data_(data), rng_(seed == -1 ? get<int64_t>() : seed) {}
DataRange(const DataRange&) = delete;
DataRange& operator=(const DataRange&) = delete;
// Don't accidentally pass DataRange by value. This will reuse bytes and might
// lead to OOM because the end might not be reached.
// Define move constructor and move assignment, disallow copy constructor and
// copy assignment (below).
DataRange(DataRange&& other) V8_NOEXCEPT : data_(other.data_),
rng_(other.rng_) {
other.data_ = {};
}
DataRange& operator=(DataRange&& other) V8_NOEXCEPT {
data_ = other.data_;
rng_ = other.rng_;
other.data_ = {};
return *this;
}
size_t size() const { return data_.size(); }
DataRange split() {
// As we might split many times, only use 2 bytes if the data size is large.
uint16_t random_choice = data_.size() > std::numeric_limits<uint8_t>::max()
? get<uint16_t>()
: get<uint8_t>();
uint16_t num_bytes = random_choice % std::max(size_t{1}, data_.size());
int64_t new_seed = rng_.initial_seed() ^ rng_.NextInt64();
DataRange split(data_.SubVector(0, num_bytes), new_seed);
data_ += num_bytes;
return split;
}
template <typename T, size_t max_bytes = sizeof(T)>
T getPseudoRandom() {
static_assert(!std::is_same<T, bool>::value, "bool needs special handling");
static_assert(max_bytes <= sizeof(T));
// Special handling for signed integers: Calling getPseudoRandom<int32_t, 1>
// () should be equal to getPseudoRandom<int8_t>(). (The NextBytes() below
// does not achieve that due to depending on endianness and either never
// generating negative values or filling in the highest significant bits
// which would be unexpected).
if constexpr (std::is_integral_v<T> && std::is_signed_v<T>) {
switch (max_bytes) {
case 1:
return static_cast<int8_t>(getPseudoRandom<uint8_t>());
case 2:
return static_cast<int16_t>(getPseudoRandom<uint16_t>());
case 4:
return static_cast<int32_t>(getPseudoRandom<uint32_t>());
default:
return static_cast<T>(
getPseudoRandom<std::make_unsigned_t<T>, max_bytes>());
}
}
T result{};
rng_.NextBytes(&result, max_bytes);
return result;
}
template <typename T>
T get() {
// Bool needs special handling (see template specialization below).
static_assert(!std::is_same<T, bool>::value, "bool needs special handling");
// We want to support the case where we have less than sizeof(T) bytes
// remaining in the slice. We'll just use what we have, so we get a bit of
// randomness when there are still some bytes left. If size == 0, get<T>()
// returns the type's value-initialized value.
const size_t num_bytes = std::min(sizeof(T), data_.size());
T result{};
memcpy(&result, data_.begin(), num_bytes);
data_ += num_bytes;
return result;
}
};
// Explicit specialization must be defined outside of class body.
template <>
bool DataRange::get() {
// The general implementation above is not instantiable for bool, as that
// would cause undefinied behaviour when memcpy'ing random bytes to the
// bool. This can result in different observable side effects when invoking
// get<bool> between debug and release version, which eventually makes the
// code output different as well as raising various unrecoverable errors on
// runtime.
// Hence we specialize get<bool> to consume a full byte and use the least
// significant bit only (0 == false, 1 == true).
return get<uint8_t>() % 2;
}
enum NumericTypes { kIncludeNumericTypes, kExcludeNumericTypes };
enum PackedTypes { kIncludePackedTypes, kExcludePackedTypes };
enum Generics {
kAlwaysIncludeAllGenerics,
kExcludeSomeGenericsWhenTypeIsNonNullable
};
ValueType GetValueTypeHelper(DataRange* data, uint32_t num_nullable_types,
uint32_t num_non_nullable_types,
NumericTypes include_numeric_types,
PackedTypes include_packed_types,
Generics include_generics) {
std::vector<ValueType> types;
// Non wasm-gc types.
if (include_numeric_types == kIncludeNumericTypes) {
types.insert(types.end(),
{kWasmI32, kWasmI64, kWasmF32, kWasmF64, kWasmS128});
if (include_packed_types == kIncludePackedTypes) {
types.insert(types.end(), {kWasmI8, kWasmI16});
}
}
// Decide if the return type will be nullable or not.
const bool nullable = data->get<bool>();
types.insert(types.end(), {kWasmI31Ref, kWasmFuncRef});
if (nullable) {
types.insert(types.end(),
{kWasmNullRef, kWasmNullExternRef, kWasmNullFuncRef});
}
if (nullable || include_generics == kAlwaysIncludeAllGenerics) {
types.insert(types.end(), {kWasmStructRef, kWasmArrayRef, kWasmAnyRef,
kWasmEqRef, kWasmExternRef});
}
// The last index of user-defined types allowed is different based on the
// nullability of the output.
const uint32_t num_user_defined_types =
nullable ? num_nullable_types : num_non_nullable_types;
// Conceptually, user-defined types are added to the end of the list. Pick a
// random one among them.
uint32_t id = data->get<uint8_t>() % (types.size() + num_user_defined_types);
Nullability nullability = nullable ? kNullable : kNonNullable;
if (id >= types.size()) {
// Return user-defined type.
return ValueType::RefMaybeNull(id - static_cast<uint32_t>(types.size()),
nullability);
}
// If returning a reference type, fix its nullability according to {nullable}.
if (types[id].is_reference()) {
return ValueType::RefMaybeNull(types[id].heap_type(), nullability);
}
// Otherwise, just return the picked type.
return types[id];
}
ValueType GetValueType(DataRange* data, uint32_t num_types) {
return GetValueTypeHelper(data, num_types, num_types, kIncludeNumericTypes,
kExcludePackedTypes, kAlwaysIncludeAllGenerics);
}
void GeneratePassiveDataSegment(DataRange* range, WasmModuleBuilder* builder) {
int length = range->get<uint8_t>() % 65;
ZoneVector<uint8_t> data(length, builder->zone());
for (int i = 0; i < length; ++i) {
data[i] = range->getPseudoRandom<uint8_t>();
}
builder->AddPassiveDataSegment(data.data(),
static_cast<uint32_t>(data.size()));
}
uint32_t GenerateRefTypeElementSegment(DataRange* range,
WasmModuleBuilder* builder,
ValueType element_type) {
DCHECK(element_type.is_object_reference());
DCHECK(element_type.has_index());
WasmModuleBuilder::WasmElemSegment segment(
builder->zone(), element_type, false,
WasmInitExpr::RefNullConst(element_type.heap_representation()));
size_t element_count = range->get<uint8_t>() % 11;
for (size_t i = 0; i < element_count; ++i) {
segment.entries.emplace_back(
WasmModuleBuilder::WasmElemSegment::Entry::kRefNullEntry,
element_type.ref_index());
}
return builder->AddElementSegment(std::move(segment));
}
class WasmGenerator {
template <WasmOpcode Op, ValueKind... Args>
void op(DataRange* data) {
Generate<Args...>(data);
builder_->Emit(Op);
}
class V8_NODISCARD BlockScope {
public:
BlockScope(WasmGenerator* gen, WasmOpcode block_type,
base::Vector<const ValueType> param_types,
base::Vector<const ValueType> result_types,
base::Vector<const ValueType> br_types, bool emit_end = true)
: gen_(gen), emit_end_(emit_end) {
gen->blocks_.emplace_back(br_types.begin(), br_types.end());
gen->builder_->EmitByte(block_type);
if (param_types.size() == 0 && result_types.size() == 0) {
gen->builder_->EmitValueType(kWasmVoid);
return;
}
if (param_types.size() == 0 && result_types.size() == 1) {
gen->builder_->EmitValueType(result_types[0]);
return;
}
// Multi-value block.
Zone* zone = gen->builder_->builder()->zone();
FunctionSig::Builder builder(zone, result_types.size(),
param_types.size());
for (auto& type : param_types) {
DCHECK_NE(type, kWasmVoid);
builder.AddParam(type);
}
for (auto& type : result_types) {
DCHECK_NE(type, kWasmVoid);
builder.AddReturn(type);
}
FunctionSig* sig = builder.Build();
int sig_id = gen->builder_->builder()->AddSignature(
sig, v8_flags.wasm_final_types);
gen->builder_->EmitI32V(sig_id);
}
~BlockScope() {
if (emit_end_) gen_->builder_->Emit(kExprEnd);
gen_->blocks_.pop_back();
}
private:
WasmGenerator* const gen_;
bool emit_end_;
};
void block(base::Vector<const ValueType> param_types,
base::Vector<const ValueType> return_types, DataRange* data) {
BlockScope block_scope(this, kExprBlock, param_types, return_types,
return_types);
ConsumeAndGenerate(param_types, return_types, data);
}
template <ValueKind T>
void block(DataRange* data) {
block({}, base::VectorOf({ValueType::Primitive(T)}), data);
}
void loop(base::Vector<const ValueType> param_types,
base::Vector<const ValueType> return_types, DataRange* data) {
BlockScope block_scope(this, kExprLoop, param_types, return_types,
param_types);
ConsumeAndGenerate(param_types, return_types, data);
}
template <ValueKind T>
void loop(DataRange* data) {
loop({}, base::VectorOf({ValueType::Primitive(T)}), data);
}
enum IfType { kIf, kIfElse };
void if_(base::Vector<const ValueType> param_types,
base::Vector<const ValueType> return_types, IfType type,
DataRange* data) {
// One-armed "if" are only valid if the input and output types are the same.
DCHECK_IMPLIES(type == kIf, param_types == return_types);
Generate(kWasmI32, data);
BlockScope block_scope(this, kExprIf, param_types, return_types,
return_types);
ConsumeAndGenerate(param_types, return_types, data);
if (type == kIfElse) {
builder_->Emit(kExprElse);
ConsumeAndGenerate(param_types, return_types, data);
}
}
template <ValueKind T, IfType type>
void if_(DataRange* data) {
static_assert(T == kVoid || type == kIfElse,
"if without else cannot produce a value");
if_({},
T == kVoid ? base::Vector<ValueType>{}
: base::VectorOf({ValueType::Primitive(T)}),
type, data);
}
void try_block_helper(ValueType return_type, DataRange* data) {
bool has_catch_all = data->get<bool>();
uint8_t num_catch =
data->get<uint8_t>() % (builder_->builder()->NumExceptions() + 1);
bool is_delegate = num_catch == 0 && !has_catch_all && data->get<bool>();
// Allow one more target than there are enclosing try blocks, for delegating
// to the caller.
base::Vector<const ValueType> return_type_vec =
return_type.kind() == kVoid ? base::Vector<ValueType>{}
: base::VectorOf(&return_type, 1);
BlockScope block_scope(this, kExprTry, {}, return_type_vec, return_type_vec,
!is_delegate);
int control_depth = static_cast<int>(blocks_.size()) - 1;
Generate(return_type, data);
catch_blocks_.push_back(control_depth);
for (int i = 0; i < num_catch; ++i) {
const FunctionSig* exception_type =
builder_->builder()->GetExceptionType(i);
auto exception_type_vec =
base::VectorOf(exception_type->parameters().begin(),
exception_type->parameter_count());
builder_->EmitWithU32V(kExprCatch, i);
ConsumeAndGenerate(exception_type_vec, return_type_vec, data);
}
if (has_catch_all) {
builder_->Emit(kExprCatchAll);
Generate(return_type, data);
}
if (is_delegate) {
// The delegate target depth does not include the current try block,
// because 'delegate' closes this scope. However it is still in the
// {blocks_} list, so remove one to get the correct size.
int delegate_depth = data->get<uint8_t>() % (blocks_.size() - 1);
builder_->EmitWithU32V(kExprDelegate, delegate_depth);
}
catch_blocks_.pop_back();
}
template <ValueKind T>
void try_block(DataRange* data) {
try_block_helper(ValueType::Primitive(T), data);
}
void any_block(base::Vector<const ValueType> param_types,
base::Vector<const ValueType> return_types, DataRange* data) {
uint8_t block_type = data->get<uint8_t>() % 4;
switch (block_type) {
case 0:
block(param_types, return_types, data);
return;
case 1:
loop(param_types, return_types, data);
return;
case 2:
if (param_types == return_types) {
if_({}, {}, kIf, data);
return;
}
V8_FALLTHROUGH;
case 3:
if_(param_types, return_types, kIfElse, data);
return;
}
}
void br(DataRange* data) {
// There is always at least the block representing the function body.
DCHECK(!blocks_.empty());
const uint32_t target_block = data->get<uint8_t>() % blocks_.size();
const auto break_types = blocks_[target_block];
Generate(base::VectorOf(break_types), data);
builder_->EmitWithI32V(
kExprBr, static_cast<uint32_t>(blocks_.size()) - 1 - target_block);
}
template <ValueKind wanted_kind>
void br_if(DataRange* data) {
// There is always at least the block representing the function body.
DCHECK(!blocks_.empty());
const uint32_t target_block = data->get<uint8_t>() % blocks_.size();
const auto break_types = base::VectorOf(blocks_[target_block]);
Generate(break_types, data);
Generate(kWasmI32, data);
builder_->EmitWithI32V(
kExprBrIf, static_cast<uint32_t>(blocks_.size()) - 1 - target_block);
ConsumeAndGenerate(
break_types,
wanted_kind == kVoid
? base::Vector<ValueType>{}
: base::VectorOf({ValueType::Primitive(wanted_kind)}),
data);
}
template <ValueKind wanted_kind>
void br_on_null(DataRange* data) {
DCHECK(!blocks_.empty());
const uint32_t target_block = data->get<uint8_t>() % blocks_.size();
const auto break_types = base::VectorOf(blocks_[target_block]);
Generate(break_types, data);
GenerateRef(data);
builder_->EmitWithI32V(
kExprBrOnNull,
static_cast<uint32_t>(blocks_.size()) - 1 - target_block);
builder_->Emit(kExprDrop);
ConsumeAndGenerate(
break_types,
wanted_kind == kVoid
? base::Vector<ValueType>{}
: base::VectorOf({ValueType::Primitive(wanted_kind)}),
data);
}
template <ValueKind wanted_kind>
void br_on_non_null(DataRange* data) {
DCHECK(!blocks_.empty());
const uint32_t target_block = data->get<uint8_t>() % blocks_.size();
const auto break_types = base::VectorOf(blocks_[target_block]);
if (break_types.empty() ||
!break_types[break_types.size() - 1].is_reference()) {
// Invalid break_types for br_on_non_null.
Generate<wanted_kind>(data);
return;
}
Generate(break_types, data);
builder_->EmitWithI32V(
kExprBrOnNonNull,
static_cast<uint32_t>(blocks_.size()) - 1 - target_block);
ConsumeAndGenerate(
base::VectorOf(break_types.data(), break_types.size() - 1),
wanted_kind == kVoid
? base::Vector<ValueType>{}
: base::VectorOf({ValueType::Primitive(wanted_kind)}),
data);
}
void br_table(ValueType result_type, DataRange* data) {
const uint8_t block_count = 1 + data->get<uint8_t>() % 8;
// Generate the block entries.
uint16_t entry_bits =
block_count > 4 ? data->get<uint16_t>() : data->get<uint8_t>();
for (size_t i = 0; i < block_count; ++i) {
builder_->Emit(kExprBlock);
builder_->EmitValueType(result_type);
blocks_.emplace_back();
if (result_type != kWasmVoid) {
blocks_.back().push_back(result_type);
}
// There can be additional instructions in each block.
// Only generate it with a 25% chance as it's otherwise quite unlikely to
// have enough random bytes left for the br_table instruction.
if ((entry_bits & 3) == 3) {
Generate(kWasmVoid, data);
}
entry_bits >>= 2;
}
// Generate the br_table.
Generate(result_type, data);
Generate(kWasmI32, data);
builder_->Emit(kExprBrTable);
uint32_t entry_count = 1 + data->get<uint8_t>() % 8;
builder_->EmitU32V(entry_count);
for (size_t i = 0; i < entry_count + 1; ++i) {
builder_->EmitU32V(data->get<uint8_t>() % block_count);
}
// Generate the block ends.
uint8_t exit_bits = result_type == kWasmVoid ? 0 : data->get<uint8_t>();
for (size_t i = 0; i < block_count; ++i) {
if (exit_bits & 1) {
// Drop and generate new value.
builder_->Emit(kExprDrop);
Generate(result_type, data);
}
exit_bits >>= 1;
builder_->Emit(kExprEnd);
blocks_.pop_back();
}
}
template <ValueKind wanted_kind>
void br_table(DataRange* data) {
br_table(
wanted_kind == kVoid ? kWasmVoid : ValueType::Primitive(wanted_kind),
data);
}
void return_op(DataRange* data) {
auto returns = builder_->signature()->returns();
Generate(base::VectorOf(returns.begin(), returns.size()), data);
builder_->Emit(kExprReturn);
}
// TODO(eholk): make this function constexpr once gcc supports it
static uint8_t max_alignment(WasmOpcode memop) {
switch (memop) {
case kExprS128LoadMem:
case kExprS128StoreMem:
return 4;
case kExprI64LoadMem:
case kExprF64LoadMem:
case kExprI64StoreMem:
case kExprF64StoreMem:
case kExprI64AtomicStore:
case kExprI64AtomicLoad:
case kExprI64AtomicAdd:
case kExprI64AtomicSub:
case kExprI64AtomicAnd:
case kExprI64AtomicOr:
case kExprI64AtomicXor:
case kExprI64AtomicExchange:
case kExprI64AtomicCompareExchange:
case kExprS128Load8x8S:
case kExprS128Load8x8U:
case kExprS128Load16x4S:
case kExprS128Load16x4U:
case kExprS128Load32x2S:
case kExprS128Load32x2U:
case kExprS128Load64Splat:
case kExprS128Load64Zero:
return 3;
case kExprI32LoadMem:
case kExprI64LoadMem32S:
case kExprI64LoadMem32U:
case kExprF32LoadMem:
case kExprI32StoreMem:
case kExprI64StoreMem32:
case kExprF32StoreMem:
case kExprI32AtomicStore:
case kExprI64AtomicStore32U:
case kExprI32AtomicLoad:
case kExprI64AtomicLoad32U:
case kExprI32AtomicAdd:
case kExprI32AtomicSub:
case kExprI32AtomicAnd:
case kExprI32AtomicOr:
case kExprI32AtomicXor:
case kExprI32AtomicExchange:
case kExprI32AtomicCompareExchange:
case kExprI64AtomicAdd32U:
case kExprI64AtomicSub32U:
case kExprI64AtomicAnd32U:
case kExprI64AtomicOr32U:
case kExprI64AtomicXor32U:
case kExprI64AtomicExchange32U:
case kExprI64AtomicCompareExchange32U:
case kExprS128Load32Splat:
case kExprS128Load32Zero:
return 2;
case kExprI32LoadMem16S:
case kExprI32LoadMem16U:
case kExprI64LoadMem16S:
case kExprI64LoadMem16U:
case kExprI32StoreMem16:
case kExprI64StoreMem16:
case kExprI32AtomicStore16U:
case kExprI64AtomicStore16U:
case kExprI32AtomicLoad16U:
case kExprI64AtomicLoad16U:
case kExprI32AtomicAdd16U:
case kExprI32AtomicSub16U:
case kExprI32AtomicAnd16U:
case kExprI32AtomicOr16U:
case kExprI32AtomicXor16U:
case kExprI32AtomicExchange16U:
case kExprI32AtomicCompareExchange16U:
case kExprI64AtomicAdd16U:
case kExprI64AtomicSub16U:
case kExprI64AtomicAnd16U:
case kExprI64AtomicOr16U:
case kExprI64AtomicXor16U:
case kExprI64AtomicExchange16U:
case kExprI64AtomicCompareExchange16U:
case kExprS128Load16Splat:
return 1;
case kExprI32LoadMem8S:
case kExprI32LoadMem8U:
case kExprI64LoadMem8S:
case kExprI64LoadMem8U:
case kExprI32StoreMem8:
case kExprI64StoreMem8:
case kExprI32AtomicStore8U:
case kExprI64AtomicStore8U:
case kExprI32AtomicLoad8U:
case kExprI64AtomicLoad8U:
case kExprI32AtomicAdd8U:
case kExprI32AtomicSub8U:
case kExprI32AtomicAnd8U:
case kExprI32AtomicOr8U:
case kExprI32AtomicXor8U:
case kExprI32AtomicExchange8U:
case kExprI32AtomicCompareExchange8U:
case kExprI64AtomicAdd8U:
case kExprI64AtomicSub8U:
case kExprI64AtomicAnd8U:
case kExprI64AtomicOr8U:
case kExprI64AtomicXor8U:
case kExprI64AtomicExchange8U:
case kExprI64AtomicCompareExchange8U:
case kExprS128Load8Splat:
return 0;
default:
return 0;
}
}
template <WasmOpcode memory_op, ValueKind... arg_kinds>
void memop(DataRange* data) {
const uint8_t align =
data->getPseudoRandom<uint8_t>() % (max_alignment(memory_op) + 1);
uint32_t offset = data->get<uint16_t>();
// With a 1/256 chance generate potentially very large offsets.
if ((offset & 0xff) == 0xff) {
offset = data->getPseudoRandom<uint32_t>();
}
// Generate the index and the arguments, if any.
Generate<kI32, arg_kinds...>(data);
if (WasmOpcodes::IsPrefixOpcode(static_cast<WasmOpcode>(memory_op >> 8))) {
DCHECK(memory_op >> 8 == kAtomicPrefix || memory_op >> 8 == kSimdPrefix);
builder_->EmitWithPrefix(memory_op);
} else {
builder_->Emit(memory_op);
}
builder_->EmitU32V(align);
builder_->EmitU32V(offset);
}
template <WasmOpcode Op, ValueKind... Args>
void atomic_op(DataRange* data) {
const uint8_t align =
data->getPseudoRandom<uint8_t>() % (max_alignment(Op) + 1);
uint32_t offset = data->get<uint16_t>();
// With a 1/256 chance generate potentially very large offsets.
if ((offset & 0xff) == 0xff) {
offset = data->getPseudoRandom<uint32_t>();
}
Generate<Args...>(data);
builder_->EmitWithPrefix(Op);
builder_->EmitU32V(align);
builder_->EmitU32V(offset);
}
template <WasmOpcode Op, ValueKind... Args>
void op_with_prefix(DataRange* data) {
Generate<Args...>(data);
builder_->EmitWithPrefix(Op);
}
void simd_const(DataRange* data) {
builder_->EmitWithPrefix(kExprS128Const);
for (int i = 0; i < kSimd128Size; i++) {
builder_->EmitByte(data->getPseudoRandom<uint8_t>());
}
}
template <WasmOpcode Op, int lanes, ValueKind... Args>
void simd_lane_op(DataRange* data) {
Generate<Args...>(data);
builder_->EmitWithPrefix(Op);
builder_->EmitByte(data->get<uint8_t>() % lanes);
}
template <WasmOpcode Op, int lanes, ValueKind... Args>
void simd_lane_memop(DataRange* data) {
// Simd load/store instructions that have a lane immediate.
memop<Op, Args...>(data);
builder_->EmitByte(data->get<uint8_t>() % lanes);
}
void simd_shuffle(DataRange* data) {
Generate<kS128, kS128>(data);
builder_->EmitWithPrefix(kExprI8x16Shuffle);
for (int i = 0; i < kSimd128Size; i++) {
builder_->EmitByte(static_cast<uint8_t>(data->get<uint8_t>() % 32));
}
}
void drop(DataRange* data) {
Generate(GetValueType(data, static_cast<uint32_t>(functions_.size()) +
num_structs_ + num_arrays_),
data);
builder_->Emit(kExprDrop);
}
enum CallKind { kCallDirect, kCallIndirect, kCallRef };
template <ValueKind wanted_kind>
void call(DataRange* data) {
call(data, ValueType::Primitive(wanted_kind), kCallDirect);
}
template <ValueKind wanted_kind>
void call_indirect(DataRange* data) {
call(data, ValueType::Primitive(wanted_kind), kCallIndirect);
}
template <ValueKind wanted_kind>
void call_ref(DataRange* data) {
call(data, ValueType::Primitive(wanted_kind), kCallRef);
}
void Convert(ValueType src, ValueType dst) {
auto idx = [](ValueType t) -> int {
switch (t.kind()) {
case kI32:
return 0;
case kI64:
return 1;
case kF32:
return 2;
case kF64:
return 3;
default:
UNREACHABLE();
}
};
static constexpr WasmOpcode kConvertOpcodes[] = {
// {i32, i64, f32, f64} -> i32
kExprNop, kExprI32ConvertI64, kExprI32SConvertF32, kExprI32SConvertF64,
// {i32, i64, f32, f64} -> i64
kExprI64SConvertI32, kExprNop, kExprI64SConvertF32, kExprI64SConvertF64,
// {i32, i64, f32, f64} -> f32
kExprF32SConvertI32, kExprF32SConvertI64, kExprNop, kExprF32ConvertF64,
// {i32, i64, f32, f64} -> f64
kExprF64SConvertI32, kExprF64SConvertI64, kExprF64ConvertF32, kExprNop};
int arr_idx = idx(dst) << 2 | idx(src);
builder_->Emit(kConvertOpcodes[arr_idx]);
}
int choose_function_table_index(DataRange* data) {
int table_count = builder_->builder()->NumTables();
int start = data->get<uint8_t>() % table_count;
for (int i = 0; i < table_count; ++i) {
int index = (start + i) % table_count;
if (builder_->builder()->GetTableType(index).is_reference_to(
HeapType::kFunc)) {
return index;
}
}
FATAL("No funcref table found; table index 0 is expected to be funcref");
}
void call(DataRange* data, ValueType wanted_kind, CallKind call_kind) {
uint8_t random_byte = data->get<uint8_t>();
int func_index = random_byte % functions_.size();
uint32_t sig_index = functions_[func_index];
const FunctionSig* sig = builder_->builder()->GetSignature(sig_index);
// Generate arguments.
for (size_t i = 0; i < sig->parameter_count(); ++i) {
Generate(sig->GetParam(i), data);
}
// Emit call.
// If the return types of the callee happen to match the return types of the
// caller, generate a tail call.
bool use_return_call = random_byte > 127;
if (use_return_call &&
std::equal(sig->returns().begin(), sig->returns().end(),
builder_->signature()->returns().begin(),
builder_->signature()->returns().end())) {
if (call_kind == kCallDirect) {
builder_->EmitWithU32V(kExprReturnCall, func_index);
} else if (call_kind == kCallIndirect) {
// This will not trap because table[func_index] always contains function
// func_index.
builder_->EmitI32Const(func_index);
builder_->EmitWithU32V(kExprReturnCallIndirect, sig_index);
builder_->EmitByte(choose_function_table_index(data)); // Table index.
} else {
GenerateRef(HeapType(sig_index), data);
builder_->EmitWithU32V(kExprReturnCallRef, sig_index);
}
return;
} else {
if (call_kind == kCallDirect) {
builder_->EmitWithU32V(kExprCallFunction, func_index);
} else if (call_kind == kCallIndirect) {
// This will not trap because table[func_index] always contains function
// func_index.
builder_->EmitI32Const(func_index);
builder_->EmitWithU32V(kExprCallIndirect, sig_index);
builder_->EmitByte(choose_function_table_index(data)); // Table index.
} else {
GenerateRef(HeapType(sig_index), data);
builder_->EmitWithU32V(kExprCallRef, sig_index);
}
}
if (sig->return_count() == 0 && wanted_kind != kWasmVoid) {
// The call did not generate a value. Thus just generate it here.
Generate(wanted_kind, data);
return;
}
if (wanted_kind == kWasmVoid) {
// The call did generate values, but we did not want one.
for (size_t i = 0; i < sig->return_count(); ++i) {
builder_->Emit(kExprDrop);
}
return;
}
auto return_types =
base::VectorOf(sig->returns().begin(), sig->return_count());
auto wanted_types =
base::VectorOf(&wanted_kind, wanted_kind == kWasmVoid ? 0 : 1);
ConsumeAndGenerate(return_types, wanted_types, data);
}
struct Var {
uint32_t index;
ValueType type = kWasmVoid;
Var() = default;
Var(uint32_t index, ValueType type) : index(index), type(type) {}
bool is_valid() const { return type != kWasmVoid; }
};
Var GetRandomLocal(DataRange* data) {
uint32_t num_params =
static_cast<uint32_t>(builder_->signature()->parameter_count());
uint32_t num_locals = static_cast<uint32_t>(locals_.size());
if (num_params + num_locals == 0) return {};
uint32_t index = data->get<uint8_t>() % (num_params + num_locals);
ValueType type = index < num_params ? builder_->signature()->GetParam(index)
: locals_[index - num_params];
return {index, type};
}
constexpr static bool is_convertible_kind(ValueKind kind) {
return kind == kI32 || kind == kI64 || kind == kF32 || kind == kF64;
}
template <ValueKind wanted_kind>
void local_op(DataRange* data, WasmOpcode opcode) {
static_assert(wanted_kind == kVoid || is_convertible_kind(wanted_kind));
Var local = GetRandomLocal(data);
// If there are no locals and no parameters, just generate any value (if a
// value is needed), or do nothing.
if (!local.is_valid() || !is_convertible_kind(local.type.kind())) {
if (wanted_kind == kVoid) return;
return Generate<wanted_kind>(data);
}
if (opcode != kExprLocalGet) Generate(local.type, data);
builder_->EmitWithU32V(opcode, local.index);
if (wanted_kind != kVoid && local.type.kind() != wanted_kind) {
Convert(local.type, ValueType::Primitive(wanted_kind));
}
}
template <ValueKind wanted_kind>
void get_local(DataRange* data) {
static_assert(wanted_kind != kVoid, "illegal type");
local_op<wanted_kind>(data, kExprLocalGet);
}
void set_local(DataRange* data) { local_op<kVoid>(data, kExprLocalSet); }
template <ValueKind wanted_kind>
void tee_local(DataRange* data) {
local_op<wanted_kind>(data, kExprLocalTee);
}
template <size_t num_bytes>
void i32_const(DataRange* data) {
builder_->EmitI32Const(data->getPseudoRandom<int32_t, num_bytes>());
}
template <size_t num_bytes>
void i64_const(DataRange* data) {
builder_->EmitI64Const(data->getPseudoRandom<int64_t, num_bytes>());
}
Var GetRandomGlobal(DataRange* data, bool ensure_mutable) {
uint32_t index;
if (ensure_mutable) {
if (mutable_globals_.empty()) return {};
index = mutable_globals_[data->get<uint8_t>() % mutable_globals_.size()];
} else {
if (globals_.empty()) return {};
index = data->get<uint8_t>() % globals_.size();
}
ValueType type = globals_[index];
return {index, type};
}
template <ValueKind wanted_kind>
void global_op(DataRange* data) {
static_assert(wanted_kind == kVoid || is_convertible_kind(wanted_kind));
constexpr bool is_set = wanted_kind == kVoid;
Var global = GetRandomGlobal(data, is_set);
// If there are no globals, just generate any value (if a value is needed),
// or do nothing.
if (!global.is_valid() || !is_convertible_kind(global.type.kind())) {
if (wanted_kind == kVoid) return;
return Generate<wanted_kind>(data);
}
if (is_set) Generate(global.type, data);
builder_->EmitWithU32V(is_set ? kExprGlobalSet : kExprGlobalGet,
global.index);
if (!is_set && global.type.kind() != wanted_kind) {
Convert(global.type, ValueType::Primitive(wanted_kind));
}
}
template <ValueKind wanted_kind>
void get_global(DataRange* data) {
static_assert(wanted_kind != kVoid, "illegal type");
global_op<wanted_kind>(data);
}
template <ValueKind select_kind>
void select_with_type(DataRange* data) {
static_assert(select_kind != kVoid, "illegal kind for select");
Generate<select_kind, select_kind, kI32>(data);
// num_types is always 1.
uint8_t num_types = 1;
builder_->EmitWithU8U8(kExprSelectWithType, num_types,
ValueType::Primitive(select_kind).value_type_code());
}
void set_global(DataRange* data) { global_op<kVoid>(data); }
void throw_or_rethrow(DataRange* data) {
bool rethrow = data->get<bool>();
if (rethrow && !catch_blocks_.empty()) {
int control_depth = static_cast<int>(blocks_.size() - 1);
int catch_index =
data->get<uint8_t>() % static_cast<int>(catch_blocks_.size());
builder_->EmitWithU32V(kExprRethrow,
control_depth - catch_blocks_[catch_index]);
} else {
int tag = data->get<uint8_t>() % builder_->builder()->NumExceptions();
const FunctionSig* exception_sig =
builder_->builder()->GetExceptionType(tag);
base::Vector<const ValueType> exception_types(
exception_sig->parameters().begin(),
exception_sig->parameter_count());
Generate(exception_types, data);
builder_->EmitWithU32V(kExprThrow, tag);
}
}
template <ValueKind... Types>
void sequence(DataRange* data) {
Generate<Types...>(data);
}
void current_memory(DataRange* data) {
builder_->EmitWithU8(kExprMemorySize, 0);
}
void grow_memory(DataRange* data);
void ref_null(HeapType type, DataRange* data) {
builder_->EmitWithI32V(kExprRefNull, type.code());
}
bool get_local_ref(HeapType type, DataRange* data, Nullability nullable) {
Var local = GetRandomLocal(data);
// TODO(14034): Ideally we would check for subtyping here over type
// equality, but we don't have a module.
if (local.is_valid() && local.type.is_object_reference() &&
local.type.heap_type() == type &&
(local.type.is_nullable()
? nullable == kNullable // We check for nullability-subtyping
: locals_initialized_ // If the local is not nullable, we cannot
// use it during locals initialization
)) {
builder_->EmitWithU32V(kExprLocalGet, local.index);
return true;
}
return false;
}
bool new_object(HeapType type, DataRange* data, Nullability nullable) {
DCHECK(type.is_index());
uint32_t index = type.ref_index();
bool new_default = data->get<bool>();
if (builder_->builder()->IsStructType(index)) {
const StructType* struct_gen = builder_->builder()->GetStructType(index);
int field_count = struct_gen->field_count();
bool can_be_defaultable = std::all_of(
struct_gen->fields().begin(), struct_gen->fields().end(),
[](ValueType type) -> bool { return type.is_defaultable(); });
if (new_default && can_be_defaultable) {
builder_->EmitWithPrefix(kExprStructNewDefault);
builder_->EmitU32V(index);
} else {
for (int i = 0; i < field_count; i++) {
Generate(struct_gen->field(i).Unpacked(), data);
}
builder_->EmitWithPrefix(kExprStructNew);
builder_->EmitU32V(index);
}
} else if (builder_->builder()->IsArrayType(index)) {
ValueType element_type =
builder_->builder()->GetArrayType(index)->element_type();
bool can_be_defaultable = element_type.is_defaultable();
WasmOpcode array_new_op[] = {
kExprArrayNew, kExprArrayNewFixed,
kExprArrayNewData, kExprArrayNewElem,
kExprArrayNewDefault, // default op has to be at the end of the list.
};
size_t op_size = arraysize(array_new_op);
if (!can_be_defaultable) --op_size;
switch (array_new_op[data->get<uint8_t>() % op_size]) {
case kExprArrayNewElem:
case kExprArrayNewData: {
// This is more restrictive than it has to be.
// TODO(14034): Also support nonnullable and non-index reference
// types.
if (element_type.is_reference() && element_type.is_nullable() &&
element_type.has_index()) {
// Add a new element segment with the corresponding type.
uint32_t element_segment = GenerateRefTypeElementSegment(
data, builder_->builder(), element_type);
// Generate offset, length.
// TODO(14034): Change the distribution here to make it more likely
// that the numbers are in range.
Generate(base::VectorOf({kWasmI32, kWasmI32}), data);
// Generate array.new_elem instruction.
builder_->EmitWithPrefix(kExprArrayNewElem);
builder_->EmitU32V(index);
builder_->EmitU32V(element_segment);
break;
} else if (!element_type.is_reference()) {
// Lazily create a data segment if the module doesn't have one yet.
if (builder_->builder()->NumDataSegments() == 0) {
GeneratePassiveDataSegment(data, builder_->builder());
}
int data_index =
data->get<uint8_t>() % builder_->builder()->NumDataSegments();
// Generate offset, length.
Generate(base::VectorOf({kWasmI32, kWasmI32}), data);
builder_->EmitWithPrefix(kExprArrayNewData);
builder_->EmitU32V(index);
builder_->EmitU32V(data_index);
break;
}
V8_FALLTHROUGH; // To array.new.
}
case kExprArrayNew:
Generate(element_type.Unpacked(), data);
Generate(kWasmI32, data);
builder_->EmitI32Const(kMaxArraySize);
builder_->Emit(kExprI32RemS);
builder_->EmitWithPrefix(kExprArrayNew);
builder_->EmitU32V(index);
break;
case kExprArrayNewFixed: {
size_t element_count =
std::min(static_cast<size_t>(data->get<uint8_t>()), data->size());
for (size_t i = 0; i < element_count; ++i) {
Generate(element_type.Unpacked(), data);
}
builder_->EmitWithPrefix(kExprArrayNewFixed);
builder_->EmitU32V(index);
builder_->EmitU32V(static_cast<uint32_t>(element_count));
break;
}
case kExprArrayNewDefault:
Generate(kWasmI32, data);
builder_->EmitI32Const(kMaxArraySize);
builder_->Emit(kExprI32RemS);
builder_->EmitWithPrefix(kExprArrayNewDefault);
builder_->EmitU32V(index);
break;
default:
FATAL("Unimplemented opcode");
}
} else {
// Map the type index to a function index.
// TODO(11954. 7748): Once we have type canonicalization, choose a random
// function from among those matching the signature (consider function
// subtyping?).
uint32_t func_index = index - (num_arrays_ + num_structs_);
DCHECK_EQ(builder_->builder()->GetSignature(index),
builder_->builder()->GetFunction(func_index)->signature());
builder_->EmitWithU32V(kExprRefFunc, func_index);
}
return true;
}
template <ValueKind wanted_kind>
void table_op(std::vector<ValueType> types, DataRange* data,
WasmOpcode opcode) {
DCHECK(opcode == kExprTableSet || opcode == kExprTableSize ||
opcode == kExprTableGrow || opcode == kExprTableFill);
int num_tables = builder_->builder()->NumTables();
DCHECK_GT(num_tables, 0);
int index = data->get<uint8_t>() % num_tables;
for (size_t i = 0; i < types.size(); i++) {
// When passing the reftype by default kWasmFuncRef is used.
// Then the type is changed according to its table type.
if (types[i] == kWasmFuncRef) {
types[i] = builder_->builder()->GetTableType(index);
}
}
Generate(base::VectorOf(types), data);
if (opcode == kExprTableSet) {
builder_->Emit(opcode);
} else {
builder_->EmitWithPrefix(opcode);
}
builder_->EmitU32V(index);
}
bool table_get(HeapType type, DataRange* data, Nullability nullable) {
ValueType needed_type = ValueType::RefMaybeNull(type, nullable);
int table_count = builder_->builder()->NumTables();
ZoneVector<uint32_t> table(builder_->builder()->zone());
for (int i = 0; i < table_count; i++) {
if (builder_->builder()->GetTableType(i) == needed_type) {
table.push_back(i);
}
}
if (table.empty()) {
return false;
}
int index = data->get<uint8_t>() % static_cast<int>(table.size());
Generate(kWasmI32, data);
builder_->Emit(kExprTableGet);
builder_->EmitU32V(table[index]);
return true;
}
void table_set(DataRange* data) {
table_op<kVoid>({kWasmI32, kWasmFuncRef}, data, kExprTableSet);
}
void table_size(DataRange* data) { table_op<kI32>({}, data, kExprTableSize); }
void table_grow(DataRange* data) {
table_op<kI32>({kWasmFuncRef, kWasmI32}, data, kExprTableGrow);
}
void table_fill(DataRange* data) {
table_op<kVoid>({kWasmI32, kWasmFuncRef, kWasmI32}, data, kExprTableFill);
}
void table_copy(DataRange* data) {
ValueType needed_type = data->get<bool>() ? kWasmFuncRef : kWasmExternRef;
int table_count = builder_->builder()->NumTables();
ZoneVector<uint32_t> table(builder_->builder()->zone());
for (int i = 0; i < table_count; i++) {
if (builder_->builder()->GetTableType(i) == needed_type) {
table.push_back(i);
}
}
if (table.empty()) {
return;
}
int first_index = data->get<uint8_t>() % static_cast<int>(table.size());
int second_index = data->get<uint8_t>() % static_cast<int>(table.size());
Generate(kWasmI32, data);
Generate(kWasmI32, data);
Generate(kWasmI32, data);
builder_->EmitWithPrefix(kExprTableCopy);
builder_->EmitU32V(table[first_index]);
builder_->EmitU32V(table[second_index]);
}
bool array_get_helper(ValueType value_type, DataRange* data) {
WasmModuleBuilder* builder = builder_->builder();
ZoneVector<uint32_t> array_indices(builder->zone());
for (uint32_t i = num_structs_; i < num_arrays_ + num_structs_; i++) {
DCHECK(builder->IsArrayType(i));
if (builder->GetArrayType(i)->element_type().Unpacked() == value_type) {
array_indices.push_back(i);
}
}
if (!array_indices.empty()) {
int index = data->get<uint8_t>() % static_cast<int>(array_indices.size());
GenerateRef(HeapType(array_indices[index]), data, kNullable);
Generate(kWasmI32, data);
if (builder->GetArrayType(array_indices[index])
->element_type()
.is_packed()) {
builder_->EmitWithPrefix(data->get<bool>() ? kExprArrayGetS
: kExprArrayGetU);
} else {
builder_->EmitWithPrefix(kExprArrayGet);
}
builder_->EmitU32V(array_indices[index]);
return true;
}
return false;
}
template <ValueKind wanted_kind>
void array_get(DataRange* data) {
bool got_array_value =
array_get_helper(ValueType::Primitive(wanted_kind), data);
if (!got_array_value) {
Generate<wanted_kind>(data);
}
}
bool array_get_ref(HeapType type, DataRange* data, Nullability nullable) {
ValueType needed_type = ValueType::RefMaybeNull(type, nullable);
return array_get_helper(needed_type, data);
}
void i31_get(DataRange* data) {
GenerateRef(HeapType(HeapType::kI31), data);
if (data->get<bool>()) {
builder_->EmitWithPrefix(kExprI31GetS);
} else {
builder_->EmitWithPrefix(kExprI31GetU);
}
}
void array_len(DataRange* data) {
if (num_arrays_ == 0) {
Generate(kWasmI32, data);
return;
}
GenerateRef(HeapType(HeapType::kArray), data);
builder_->EmitWithPrefix(kExprArrayLen);
}
void array_copy(DataRange* data) {
if (num_arrays_ == 0) {
return;
}
// TODO(14034): The source element type only has to be a subtype of the
// destination element type. Currently this only generates copy from same
// typed arrays.
int array_index = (data->get<uint8_t>() % num_arrays_) + num_structs_;
DCHECK(builder_->builder()->IsArrayType(array_index));
GenerateRef(HeapType(array_index), data); // destination
Generate(kWasmI32, data); // destination index
GenerateRef(HeapType(array_index), data); // source
Generate(kWasmI32, data); // source index
Generate(kWasmI32, data); // length
builder_->EmitWithPrefix(kExprArrayCopy);
builder_->EmitU32V(array_index); // destination array type index
builder_->EmitU32V(array_index); // source array type index
}
void array_fill(DataRange* data) {
if (num_arrays_ == 0) {
return;
}
int array_index = (data->get<uint8_t>() % num_arrays_) + num_structs_;
DCHECK(builder_->builder()->IsArrayType(array_index));
ValueType element_type = builder_->builder()
->GetArrayType(array_index)
->element_type()
.Unpacked();
GenerateRef(HeapType(array_index), data); // array
Generate(kWasmI32, data); // offset
Generate(element_type, data); // value
Generate(kWasmI32, data); // length
builder_->EmitWithPrefix(kExprArrayFill);
builder_->EmitU32V(array_index);
}
void array_init_data(DataRange* data) {
if (num_arrays_ == 0) {
return;
}
int array_index = (data->get<uint8_t>() % num_arrays_) + num_structs_;
DCHECK(builder_->builder()->IsArrayType(array_index));
const ArrayType* array_type =
builder_->builder()->GetArrayType(array_index);
DCHECK(array_type->mutability());
ValueType element_type = array_type->element_type().Unpacked();
if (element_type.is_reference()) {
return;
}
if (builder_->builder()->NumDataSegments() == 0) {
GeneratePassiveDataSegment(data, builder_->builder());
}
int data_index =
data->get<uint8_t>() % builder_->builder()->NumDataSegments();
// Generate array, index, data_offset, length.
Generate(base::VectorOf({ValueType::RefNull(array_index), kWasmI32,
kWasmI32, kWasmI32}),
data);
builder_->EmitWithPrefix(kExprArrayInitData);
builder_->EmitU32V(array_index);
builder_->EmitU32V(data_index);
}
void array_init_elem(DataRange* data) {
if (num_arrays_ == 0) {
return;
}
int array_index = (data->get<uint8_t>() % num_arrays_) + num_structs_;
DCHECK(builder_->builder()->IsArrayType(array_index));
const ArrayType* array_type =
builder_->builder()->GetArrayType(array_index);
DCHECK(array_type->mutability());
ValueType element_type = array_type->element_type().Unpacked();
// This is more restrictive than it has to be.
// TODO(14034): Also support nonnullable and non-index reference
// types.
if (!element_type.is_reference() || element_type.is_non_nullable() ||
!element_type.has_index()) {
return;
}
// Add a new element segment with the corresponding type.
uint32_t element_segment =
GenerateRefTypeElementSegment(data, builder_->builder(), element_type);
// Generate array, index, elem_offset, length.
// TODO(14034): Change the distribution here to make it more likely
// that the numbers are in range.
Generate(base::VectorOf({ValueType::RefNull(array_index), kWasmI32,
kWasmI32, kWasmI32}),
data);
// Generate array.new_elem instruction.
builder_->EmitWithPrefix(kExprArrayInitElem);
builder_->EmitU32V(array_index);
builder_->EmitU32V(element_segment);
}
void array_set(DataRange* data) {
WasmModuleBuilder* builder = builder_->builder();
ZoneVector<uint32_t> array_indices(builder->zone());
for (uint32_t i = num_structs_; i < num_arrays_ + num_structs_; i++) {
DCHECK(builder->IsArrayType(i));
if (builder->GetArrayType(i)->mutability()) {
array_indices.push_back(i);
}
}
if (array_indices.empty()) {
return;
}
int index = data->get<uint8_t>() % static_cast<int>(array_indices.size());
GenerateRef(HeapType(array_indices[index]), data);
Generate(kWasmI32, data);
Generate(
builder->GetArrayType(array_indices[index])->element_type().Unpacked(),
data);
builder_->EmitWithPrefix(kExprArraySet);
builder_->EmitU32V(array_indices[index]);
}
bool struct_get_helper(ValueType value_type, DataRange* data) {
WasmModuleBuilder* builder = builder_->builder();
ZoneVector<uint32_t> field_index(builder->zone());
ZoneVector<uint32_t> struct_index(builder->zone());
for (uint32_t i = 0; i < num_structs_; i++) {
DCHECK(builder->IsStructType(i));
int field_count = builder->GetStructType(i)->field_count();
for (int index = 0; index < field_count; index++) {
// TODO(14034): This should be a subtype check!
if (builder->GetStructType(i)->field(index) == value_type) {
field_index.push_back(index);
struct_index.push_back(i);
}
}
}
if (!field_index.empty()) {
int index = data->get<uint8_t>() % static_cast<int>(field_index.size());
GenerateRef(HeapType(struct_index[index]), data, kNullable);
if (builder->GetStructType(struct_index[index])
->field(field_index[index])
.is_packed()) {
builder_->EmitWithPrefix(data->get<bool>() ? kExprStructGetS
: kExprStructGetU);
} else {
builder_->EmitWithPrefix(kExprStructGet);
}
builder_->EmitU32V(struct_index[index]);
builder_->EmitU32V(field_index[index]);
return true;
}
return false;
}
template <ValueKind wanted_kind>
void struct_get(DataRange* data) {
bool got_struct_value =
struct_get_helper(ValueType::Primitive(wanted_kind), data);
if (!got_struct_value) {
Generate<wanted_kind>(data);
}
}
bool struct_get_ref(HeapType type, DataRange* data, Nullability nullable) {
ValueType needed_type = ValueType::RefMaybeNull(type, nullable);
return struct_get_helper(needed_type, data);
}
bool ref_cast(HeapType type, DataRange* data, Nullability nullable) {
HeapType input_type = top_type(type);
GenerateRef(input_type, data);
builder_->EmitWithPrefix(nullable ? kExprRefCastNull : kExprRefCast);
builder_->EmitI32V(type.code());
return true; // It always produces the desired result type.
}
HeapType top_type(HeapType type) {
switch (type.representation()) {
case HeapType::kAny:
case HeapType::kEq:
case HeapType::kArray:
case HeapType::kStruct:
case HeapType::kI31:
case HeapType::kNone:
return HeapType(HeapType::kAny);
case HeapType::kExtern:
case HeapType::kNoExtern:
return HeapType(HeapType::kExtern);
case HeapType::kFunc:
case HeapType::kNoFunc:
return HeapType(HeapType::kFunc);
default:
DCHECK(type.is_index());
if (builder_->builder()->IsSignature(type.ref_index())) {
return HeapType(HeapType::kFunc);
}
DCHECK(builder_->builder()->IsStructType(type.ref_index()) ||
builder_->builder()->IsArrayType(type.ref_index()));
return HeapType(HeapType::kAny);
}
}
HeapType choose_sub_type(HeapType type, DataRange* data) {
switch (type.representation()) {
case HeapType::kAny: {
constexpr HeapType::Representation generic_types[] = {
HeapType::kAny, HeapType::kEq, HeapType::kArray,
HeapType::kStruct, HeapType::kI31, HeapType::kNone,
};
const int type_count = num_arrays_ + num_structs_;
const int choice =
data->get<uint8_t>() % (type_count + arraysize(generic_types));
return choice >= type_count
? HeapType(generic_types[choice - type_count])
: HeapType(choice);
}
case HeapType::kEq: {
constexpr HeapType::Representation generic_types[] = {
HeapType::kEq, HeapType::kArray, HeapType::kStruct,
HeapType::kI31, HeapType::kNone,
};
const int type_count = num_arrays_ + num_structs_;
const int choice =
data->get<uint8_t>() % (type_count + arraysize(generic_types));
return choice >= type_count
? HeapType(generic_types[choice - type_count])
: HeapType(choice);
}
case HeapType::kStruct: {
constexpr HeapType::Representation generic_types[] = {
HeapType::kStruct,
HeapType::kNone,
};
const int type_count = num_structs_;
const int choice =
data->get<uint8_t>() % (type_count + arraysize(generic_types));
return choice >= type_count
? HeapType(generic_types[choice - type_count])
: HeapType(choice);
}
case HeapType::kArray: {
constexpr HeapType::Representation generic_types[] = {
HeapType::kArray,
HeapType::kNone,
};
const int type_count = num_arrays_;
const int choice =
data->get<uint8_t>() % (type_count + arraysize(generic_types));
return choice >= type_count
? HeapType(generic_types[choice - type_count])
: HeapType(choice + num_structs_);
}
case HeapType::kFunc: {
constexpr HeapType::Representation generic_types[] = {
HeapType::kFunc, HeapType::kNoFunc};
const int type_count = static_cast<int>(functions_.size());
const int choice =
data->get<uint8_t>() % (type_count + arraysize(generic_types));
return choice >= type_count
? HeapType(generic_types[choice - type_count])
: HeapType(functions_[choice]);
}
case HeapType::kExtern:
return HeapType(data->get<bool>() ? HeapType::kExtern
: HeapType::kNoExtern);
default:
if (!type.is_index()) {
// No logic implemented to find a sub-type.
return type;
}
// Collect all (direct) sub types.
// TODO(14034): Also collect indirect sub types.
std::vector<uint32_t> subtypes;
uint32_t type_count = builder_->builder()->NumTypes();
for (uint32_t i = 0; i < type_count; ++i) {
if (builder_->builder()->GetSuperType(i) == type.ref_index()) {
subtypes.push_back(i);
}
}
return subtypes.empty()
? type // no downcast possible
: HeapType(subtypes[data->get<uint8_t>() % subtypes.size()]);
}
}
bool br_on_cast(HeapType type, DataRange* data, Nullability nullable) {
DCHECK(!blocks_.empty());
const uint32_t target_block = data->get<uint8_t>() % blocks_.size();
const uint32_t block_index =
static_cast<uint32_t>(blocks_.size()) - 1 - target_block;
const auto break_types = base::VectorOf(blocks_[target_block]);
if (break_types.empty()) {
return false;
}
ValueType break_type = break_types[break_types.size() - 1];
if (!break_type.is_reference()) {
return false;
}
Generate(base::VectorOf(break_types.data(), break_types.size() - 1), data);
if (data->get<bool>()) {
// br_on_cast
HeapType source_type = top_type(break_type.heap_type());
const bool source_is_nullable = data->get<bool>();
GenerateRef(source_type, data,
source_is_nullable ? kNullable : kNonNullable);
const bool target_is_nullable =
source_is_nullable && break_type.is_nullable() && data->get<bool>();
builder_->EmitWithPrefix(kExprBrOnCastGeneric);
builder_->EmitU32V(source_is_nullable + (target_is_nullable << 1));
builder_->EmitU32V(block_index);
builder_->EmitI32V(source_type.code()); // source type
builder_->EmitI32V(break_type.heap_type().code()); // target type
// Fallthrough: Generate the actually desired ref type.
ConsumeAndGenerate(break_types, {}, data);
GenerateRef(type, data, nullable);
} else {
// br_on_cast_fail
HeapType source_type = break_type.heap_type();
const bool source_is_nullable = data->get<bool>();
GenerateRef(source_type, data,
source_is_nullable ? kNullable : kNonNullable);
const bool target_is_nullable =
source_is_nullable &&
(!break_type.is_nullable() || data->get<bool>());
HeapType target_type = choose_sub_type(source_type, data);
builder_->EmitWithPrefix(kExprBrOnCastFailGeneric);
builder_->EmitU32V(source_is_nullable + (target_is_nullable << 1));
builder_->EmitU32V(block_index);
builder_->EmitI32V(source_type.code());
builder_->EmitI32V(target_type.code());
// Fallthrough: Generate the actually desired ref type.
ConsumeAndGenerate(break_types, {}, data);
GenerateRef(type, data, nullable);
}
return true;
}
bool extern_internalize(HeapType type, DataRange* data,
Nullability nullable) {
if (type.representation() != HeapType::kAny) {
return false;
}
GenerateRef(HeapType(HeapType::kExtern), data);
builder_->EmitWithPrefix(kExprExternInternalize);
if (nullable == kNonNullable) {
builder_->Emit(kExprRefAsNonNull);
}
return true;
}
bool ref_as_non_null(HeapType type, DataRange* data, Nullability nullable) {
GenerateRef(type, data, kNullable);
builder_->Emit(kExprRefAsNonNull);
return true;
}
void struct_set(DataRange* data) {
WasmModuleBuilder* builder = builder_->builder();
if (num_structs_ > 0) {
int struct_index = data->get<uint8_t>() % num_structs_;
DCHECK(builder->IsStructType(struct_index));
const StructType* struct_type = builder->GetStructType(struct_index);
ZoneVector<uint32_t> field_indices(builder->zone());
for (uint32_t i = 0; i < struct_type->field_count(); i++) {
if (struct_type->mutability(i)) {
field_indices.push_back(i);
}
}
if (field_indices.empty()) {
return;
}
int field_index =
field_indices[data->get<uint8_t>() % field_indices.size()];
GenerateRef(HeapType(struct_index), data);
Generate(struct_type->field(field_index).Unpacked(), data);
builder_->EmitWithPrefix(kExprStructSet);
builder_->EmitU32V(struct_index);
builder_->EmitU32V(field_index);
}
}
void ref_is_null(DataRange* data) {
GenerateRef(HeapType(HeapType::kAny), data);
builder_->Emit(kExprRefIsNull);
}
template <WasmOpcode opcode>
void ref_test(DataRange* data) {
GenerateRef(HeapType(HeapType::kAny), data);
constexpr int generic_types[] = {kAnyRefCode, kEqRefCode, kArrayRefCode,
kStructRefCode, kNoneCode, kI31RefCode};
int num_types = num_structs_ + num_arrays_;
int num_all_types = num_types + arraysize(generic_types);
int type_choice = data->get<uint8_t>() % num_all_types;
builder_->EmitWithPrefix(opcode);
if (type_choice < num_types) {
builder_->EmitU32V(type_choice);
} else {
builder_->EmitU32V(generic_types[type_choice - num_types]);
}
}
void ref_eq(DataRange* data) {
GenerateRef(HeapType(HeapType::kEq), data);
GenerateRef(HeapType(HeapType::kEq), data);
builder_->Emit(kExprRefEq);
}
using GenerateFn = void (WasmGenerator::*const)(DataRange*);
using GenerateFnWithHeap = bool (WasmGenerator::*const)(HeapType, DataRange*,
Nullability);
template <size_t N>
void GenerateOneOf(GenerateFn (&alternatives)[N], DataRange* data) {
static_assert(N < std::numeric_limits<uint8_t>::max(),
"Too many alternatives. Use a bigger type if needed.");
const auto which = data->get<uint8_t>();
GenerateFn alternate = alternatives[which % N];
(this->*alternate)(data);
}
// Returns true if it had succesfully generated the reference
// and false otherwise.
template <size_t N>
bool GenerateOneOf(GenerateFnWithHeap (&alternatives)[N], HeapType type,
DataRange* data, Nullability nullability) {
static_assert(N < std::numeric_limits<uint8_t>::max(),
"Too many alternatives. Use a bigger type if needed.");
int index = data->get<uint8_t>() % (N + 1);
if (nullability && index == N) {
ref_null(type, data);
return true;
}
for (int i = index; i < static_cast<int>(N); i++) {
if ((this->*alternatives[i])(type, data, nullability)) {
return true;
}
}
for (int i = 0; i < index; i++) {
if ((this->*alternatives[i])(type, data, nullability)) {
return true;
}
}
if (nullability == kNullable) {
ref_null(type, data);
return true;
}
return false;
}
struct GeneratorRecursionScope {
explicit GeneratorRecursionScope(WasmGenerator* gen) : gen(gen) {
++gen->recursion_depth;
DCHECK_LE(gen->recursion_depth, kMaxRecursionDepth);
}
~GeneratorRecursionScope() {
DCHECK_GT(gen->recursion_depth, 0);
--gen->recursion_depth;
}
WasmGenerator* gen;
};
public:
WasmGenerator(WasmFunctionBuilder* fn, const std::vector<uint32_t>& functions,
const std::vector<ValueType>& globals,
const std::vector<uint8_t>& mutable_globals,
uint32_t num_structs, uint32_t num_arrays, DataRange* data)
: builder_(fn),
functions_(functions),
globals_(globals),
mutable_globals_(mutable_globals),
num_structs_(num_structs),
num_arrays_(num_arrays),
locals_initialized_(false) {
const FunctionSig* sig = fn->signature();
blocks_.emplace_back();
for (size_t i = 0; i < sig->return_count(); ++i) {
blocks_.back().push_back(sig->GetReturn(i));
}
constexpr uint32_t kMaxLocals = 32;
locals_.resize(data->get<uint8_t>() % kMaxLocals);
uint32_t num_types =
static_cast<uint32_t>(functions_.size()) + num_structs_ + num_arrays_;
for (ValueType& local : locals_) {
local = GetValueType(data, num_types);
fn->AddLocal(local);
}
}
void Generate(ValueType type, DataRange* data);
template <ValueKind T>
void Generate(DataRange* data);
template <ValueKind T1, ValueKind T2, ValueKind... Ts>
void Generate(DataRange* data) {
// TODO(clemensb): Implement a more even split.
// TODO(mliedtke): Instead of splitting we should probably "reserve" amount
// x for the first part, any reserved but potentially unused random bytes
// should then carry over instead of throwing them away which heavily
// reduces the amount of actually used random input bytes.
auto first_data = data->split();
Generate<T1>(&first_data);
Generate<T2, Ts...>(data);
}
void GenerateRef(DataRange* data);
void GenerateRef(HeapType type, DataRange* data,
Nullability nullability = kNullable);
std::vector<ValueType> GenerateTypes(DataRange* data);
void Generate(base::Vector<const ValueType> types, DataRange* data);
void ConsumeAndGenerate(base::Vector<const ValueType> parameter_types,
base::Vector<const ValueType> return_types,
DataRange* data);
bool HasSimd() { return has_simd_; }
void InitializeNonDefaultableLocals(DataRange* data) {
for (uint32_t i = 0; i < locals_.size(); i++) {
if (!locals_[i].is_defaultable()) {
GenerateRef(locals_[i].heap_type(), data, kNonNullable);
builder_->EmitWithU32V(
kExprLocalSet, i + static_cast<uint32_t>(
builder_->signature()->parameter_count()));
}
}
locals_initialized_ = true;
}
private:
WasmFunctionBuilder* builder_;
std::vector<std::vector<ValueType>> blocks_;
const std::vector<uint32_t>& functions_;
std::vector<ValueType> locals_;
std::vector<ValueType> globals_;
std::vector<uint8_t> mutable_globals_; // indexes into {globals_}.
uint32_t recursion_depth = 0;
std::vector<int> catch_blocks_;
bool has_simd_;
uint32_t num_structs_;
uint32_t num_arrays_;
bool locals_initialized_;
bool recursion_limit_reached() {
return recursion_depth >= kMaxRecursionDepth;
}
};
template <>
void WasmGenerator::block<kVoid>(DataRange* data) {
block({}, {}, data);
}
template <>
void WasmGenerator::loop<kVoid>(DataRange* data) {
loop({}, {}, data);
}
template <>
void WasmGenerator::Generate<kVoid>(DataRange* data) {
GeneratorRecursionScope rec_scope(this);
if (recursion_limit_reached() || data->size() == 0) return;
constexpr GenerateFn alternatives[] = {
&WasmGenerator::sequence<kVoid, kVoid>,
&WasmGenerator::sequence<kVoid, kVoid, kVoid, kVoid>,
&WasmGenerator::sequence<kVoid, kVoid, kVoid, kVoid, kVoid, kVoid, kVoid,
kVoid>,
&WasmGenerator::block<kVoid>,
&WasmGenerator::loop<kVoid>,
&WasmGenerator::if_<kVoid, kIf>,
&WasmGenerator::if_<kVoid, kIfElse>,
&WasmGenerator::br,
&WasmGenerator::br_if<kVoid>,
&WasmGenerator::br_on_null<kVoid>,
&WasmGenerator::br_on_non_null<kVoid>,
&WasmGenerator::br_table<kVoid>,
&WasmGenerator::return_op,
&WasmGenerator::memop<kExprI32StoreMem, kI32>,
&WasmGenerator::memop<kExprI32StoreMem8, kI32>,
&WasmGenerator::memop<kExprI32StoreMem16, kI32>,
&WasmGenerator::memop<kExprI64StoreMem, kI64>,
&WasmGenerator::memop<kExprI64StoreMem8, kI64>,
&WasmGenerator::memop<kExprI64StoreMem16, kI64>,
&WasmGenerator::memop<kExprI64StoreMem32, kI64>,
&WasmGenerator::memop<kExprF32StoreMem, kF32>,
&WasmGenerator::memop<kExprF64StoreMem, kF64>,
&WasmGenerator::memop<kExprI32AtomicStore, kI32>,
&WasmGenerator::memop<kExprI32AtomicStore8U, kI32>,
&WasmGenerator::memop<kExprI32AtomicStore16U, kI32>,
&WasmGenerator::memop<kExprI64AtomicStore, kI64>,
&WasmGenerator::memop<kExprI64AtomicStore8U, kI64>,
&WasmGenerator::memop<kExprI64AtomicStore16U, kI64>,
&WasmGenerator::memop<kExprI64AtomicStore32U, kI64>,
&WasmGenerator::memop<kExprS128StoreMem, kS128>,
&WasmGenerator::simd_lane_memop<kExprS128Store8Lane, 16, kS128>,
&WasmGenerator::simd_lane_memop<kExprS128Store16Lane, 8, kS128>,
&WasmGenerator::simd_lane_memop<kExprS128Store32Lane, 4, kS128>,
&WasmGenerator::simd_lane_memop<kExprS128Store64Lane, 2, kS128>,
&WasmGenerator::drop,
&WasmGenerator::call<kVoid>,
&WasmGenerator::call_indirect<kVoid>,
&WasmGenerator::call_ref<kVoid>,
&WasmGenerator::set_local,
&WasmGenerator::set_global,
&WasmGenerator::throw_or_rethrow,
&WasmGenerator::try_block<kVoid>,
&WasmGenerator::struct_set,
&WasmGenerator::array_set,
&WasmGenerator::array_copy,
&WasmGenerator::array_fill,
&WasmGenerator::array_init_data,
&WasmGenerator::array_init_elem,
&WasmGenerator::table_set,
&WasmGenerator::table_fill,
&WasmGenerator::table_copy};
GenerateOneOf(alternatives, data);
}
template <>
void WasmGenerator::Generate<kI32>(DataRange* data) {
GeneratorRecursionScope rec_scope(this);
if (recursion_limit_reached() || data->size() <= 1) {
builder_->EmitI32Const(data->getPseudoRandom<uint32_t>());
return;
}
constexpr GenerateFn alternatives[] = {
&WasmGenerator::i32_const<1>,
&WasmGenerator::i32_const<2>,
&WasmGenerator::i32_const<3>,
&WasmGenerator::i32_const<4>,
&WasmGenerator::sequence<kI32, kVoid>,
&WasmGenerator::sequence<kVoid, kI32>,
&WasmGenerator::sequence<kVoid, kI32, kVoid>,
&WasmGenerator::op<kExprI32Eqz, kI32>,
&WasmGenerator::op<kExprI32Eq, kI32, kI32>,
&WasmGenerator::op<kExprI32Ne, kI32, kI32>,
&WasmGenerator::op<kExprI32LtS, kI32, kI32>,
&WasmGenerator::op<kExprI32LtU, kI32, kI32>,
&WasmGenerator::op<kExprI32GeS, kI32, kI32>,
&WasmGenerator::op<kExprI32GeU, kI32, kI32>,
&WasmGenerator::op<kExprI64Eqz, kI64>,
&WasmGenerator::op<kExprI64Eq, kI64, kI64>,
&WasmGenerator::op<kExprI64Ne, kI64, kI64>,
&WasmGenerator::op<kExprI64LtS, kI64, kI64>,
&WasmGenerator::op<kExprI64LtU, kI64, kI64>,
&WasmGenerator::op<kExprI64GeS, kI64, kI64>,
&WasmGenerator::op<kExprI64GeU, kI64, kI64>,
&WasmGenerator::op<kExprF32Eq, kF32, kF32>,
&WasmGenerator::op<kExprF32Ne, kF32, kF32>,
&WasmGenerator::op<kExprF32Lt, kF32, kF32>,
&WasmGenerator::op<kExprF32Ge, kF32, kF32>,
&WasmGenerator::op<kExprF64Eq, kF64, kF64>,
&WasmGenerator::op<kExprF64Ne, kF64, kF64>,
&WasmGenerator::op<kExprF64Lt, kF64, kF64>,
&WasmGenerator::op<kExprF64Ge, kF64, kF64>,
&WasmGenerator::op<kExprI32Add, kI32, kI32>,
&WasmGenerator::op<kExprI32Sub, kI32, kI32>,
&WasmGenerator::op<kExprI32Mul, kI32, kI32>,
&WasmGenerator::op<kExprI32DivS, kI32, kI32>,
&WasmGenerator::op<kExprI32DivU, kI32, kI32>,
&WasmGenerator::op<kExprI32RemS, kI32, kI32>,
&WasmGenerator::op<kExprI32RemU, kI32, kI32>,
&WasmGenerator::op<kExprI32And, kI32, kI32>,
&WasmGenerator::op<kExprI32Ior, kI32, kI32>,
&WasmGenerator::op<kExprI32Xor, kI32, kI32>,
&WasmGenerator::op<kExprI32Shl, kI32, kI32>,
&WasmGenerator::op<kExprI32ShrU, kI32, kI32>,
&WasmGenerator::op<kExprI32ShrS, kI32, kI32>,
&WasmGenerator::op<kExprI32Ror, kI32, kI32>,
&WasmGenerator::op<kExprI32Rol, kI32, kI32>,
&WasmGenerator::op<kExprI32Clz, kI32>,
&WasmGenerator::op<kExprI32Ctz, kI32>,
&WasmGenerator::op<kExprI32Popcnt, kI32>,
&WasmGenerator::op<kExprI32ConvertI64, kI64>,
&WasmGenerator::op<kExprI32SConvertF32, kF32>,
&WasmGenerator::op<kExprI32UConvertF32, kF32>,
&WasmGenerator::op<kExprI32SConvertF64, kF64>,
&WasmGenerator::op<kExprI32UConvertF64, kF64>,
&WasmGenerator::op<kExprI32ReinterpretF32, kF32>,
&WasmGenerator::op_with_prefix<kExprI32SConvertSatF32, kF32>,
&WasmGenerator::op_with_prefix<kExprI32UConvertSatF32, kF32>,
&WasmGenerator::op_with_prefix<kExprI32SConvertSatF64, kF64>,
&WasmGenerator::op_with_prefix<kExprI32UConvertSatF64, kF64>,
&WasmGenerator::block<kI32>,
&WasmGenerator::loop<kI32>,
&WasmGenerator::if_<kI32, kIfElse>,
&WasmGenerator::br_if<kI32>,
&WasmGenerator::br_on_null<kI32>,
&WasmGenerator::br_on_non_null<kI32>,
&WasmGenerator::br_table<kI32>,
&WasmGenerator::memop<kExprI32LoadMem>,
&WasmGenerator::memop<kExprI32LoadMem8S>,
&WasmGenerator::memop<kExprI32LoadMem8U>,
&WasmGenerator::memop<kExprI32LoadMem16S>,
&WasmGenerator::memop<kExprI32LoadMem16U>,
&WasmGenerator::memop<kExprI32AtomicLoad>,
&WasmGenerator::memop<kExprI32AtomicLoad8U>,
&WasmGenerator::memop<kExprI32AtomicLoad16U>,
&WasmGenerator::atomic_op<kExprI32AtomicAdd, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicSub, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicAnd, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicOr, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicXor, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicExchange, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicCompareExchange, kI32, kI32,
kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicAdd8U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicSub8U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicAnd8U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicOr8U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicXor8U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicExchange8U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicCompareExchange8U, kI32, kI32,
kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicAdd16U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicSub16U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicAnd16U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicOr16U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicXor16U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicExchange16U, kI32, kI32>,
&WasmGenerator::atomic_op<kExprI32AtomicCompareExchange16U, kI32, kI32,
kI32>,
&WasmGenerator::op_with_prefix<kExprV128AnyTrue, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16AllTrue, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16BitMask, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8AllTrue, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8BitMask, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4AllTrue, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4BitMask, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2AllTrue, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2BitMask, kS128>,
&WasmGenerator::simd_lane_op<kExprI8x16ExtractLaneS, 16, kS128>,
&WasmGenerator::simd_lane_op<kExprI8x16ExtractLaneU, 16, kS128>,
&WasmGenerator::simd_lane_op<kExprI16x8ExtractLaneS, 8, kS128>,
&WasmGenerator::simd_lane_op<kExprI16x8ExtractLaneU, 8, kS128>,
&WasmGenerator::simd_lane_op<kExprI32x4ExtractLane, 4, kS128>,
&WasmGenerator::current_memory,
&WasmGenerator::grow_memory,
&WasmGenerator::get_local<kI32>,
&WasmGenerator::tee_local<kI32>,
&WasmGenerator::get_global<kI32>,
&WasmGenerator::op<kExprSelect, kI32, kI32, kI32>,
&WasmGenerator::select_with_type<kI32>,
&WasmGenerator::call<kI32>,
&WasmGenerator::call_indirect<kI32>,
&WasmGenerator::call_ref<kI32>,
&WasmGenerator::try_block<kI32>,
&WasmGenerator::i31_get,
&WasmGenerator::struct_get<kI32>,
&WasmGenerator::array_get<kI32>,
&WasmGenerator::array_len,
&WasmGenerator::ref_is_null,
&WasmGenerator::ref_eq,
&WasmGenerator::ref_test<kExprRefTest>,
&WasmGenerator::ref_test<kExprRefTestNull>,
&WasmGenerator::table_size,
&WasmGenerator::table_grow};
GenerateOneOf(alternatives, data);
}
template <>
void WasmGenerator::Generate<kI64>(DataRange* data) {
GeneratorRecursionScope rec_scope(this);
if (recursion_limit_reached() || data->size() <= 1) {
builder_->EmitI64Const(data->getPseudoRandom<int64_t>());
return;
}
constexpr GenerateFn alternatives[] = {
&WasmGenerator::i64_const<1>,
&WasmGenerator::i64_const<2>,
&WasmGenerator::i64_const<3>,
&WasmGenerator::i64_const<4>,
&WasmGenerator::i64_const<5>,
&WasmGenerator::i64_const<6>,
&WasmGenerator::i64_const<7>,
&WasmGenerator::i64_const<8>,
&WasmGenerator::sequence<kI64, kVoid>,
&WasmGenerator::sequence<kVoid, kI64>,
&WasmGenerator::sequence<kVoid, kI64, kVoid>,
&WasmGenerator::op<kExprI64Add, kI64, kI64>,
&WasmGenerator::op<kExprI64Sub, kI64, kI64>,
&WasmGenerator::op<kExprI64Mul, kI64, kI64>,
&WasmGenerator::op<kExprI64DivS, kI64, kI64>,
&WasmGenerator::op<kExprI64DivU, kI64, kI64>,
&WasmGenerator::op<kExprI64RemS, kI64, kI64>,
&WasmGenerator::op<kExprI64RemU, kI64, kI64>,
&WasmGenerator::op<kExprI64And, kI64, kI64>,
&WasmGenerator::op<kExprI64Ior, kI64, kI64>,
&WasmGenerator::op<kExprI64Xor, kI64, kI64>,
&WasmGenerator::op<kExprI64Shl, kI64, kI64>,
&WasmGenerator::op<kExprI64ShrU, kI64, kI64>,
&WasmGenerator::op<kExprI64ShrS, kI64, kI64>,
&WasmGenerator::op<kExprI64Ror, kI64, kI64>,
&WasmGenerator::op<kExprI64Rol, kI64, kI64>,
&WasmGenerator::op<kExprI64Clz, kI64>,
&WasmGenerator::op<kExprI64Ctz, kI64>,
&WasmGenerator::op<kExprI64Popcnt, kI64>,
&WasmGenerator::op_with_prefix<kExprI64SConvertSatF32, kF32>,
&WasmGenerator::op_with_prefix<kExprI64UConvertSatF32, kF32>,
&WasmGenerator::op_with_prefix<kExprI64SConvertSatF64, kF64>,
&WasmGenerator::op_with_prefix<kExprI64UConvertSatF64, kF64>,
&WasmGenerator::block<kI64>,
&WasmGenerator::loop<kI64>,
&WasmGenerator::if_<kI64, kIfElse>,
&WasmGenerator::br_if<kI64>,
&WasmGenerator::br_on_null<kI64>,
&WasmGenerator::br_on_non_null<kI64>,
&WasmGenerator::br_table<kI64>,
&WasmGenerator::memop<kExprI64LoadMem>,
&WasmGenerator::memop<kExprI64LoadMem8S>,
&WasmGenerator::memop<kExprI64LoadMem8U>,
&WasmGenerator::memop<kExprI64LoadMem16S>,
&WasmGenerator::memop<kExprI64LoadMem16U>,
&WasmGenerator::memop<kExprI64LoadMem32S>,
&WasmGenerator::memop<kExprI64LoadMem32U>,
&WasmGenerator::memop<kExprI64AtomicLoad>,
&WasmGenerator::memop<kExprI64AtomicLoad8U>,
&WasmGenerator::memop<kExprI64AtomicLoad16U>,
&WasmGenerator::memop<kExprI64AtomicLoad32U>,
&WasmGenerator::atomic_op<kExprI64AtomicAdd, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicSub, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicAnd, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicOr, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicXor, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicExchange, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicCompareExchange, kI32, kI64,
kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicAdd8U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicSub8U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicAnd8U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicOr8U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicXor8U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicExchange8U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicCompareExchange8U, kI32, kI64,
kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicAdd16U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicSub16U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicAnd16U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicOr16U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicXor16U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicExchange16U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicCompareExchange16U, kI32, kI64,
kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicAdd32U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicSub32U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicAnd32U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicOr32U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicXor32U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicExchange32U, kI32, kI64>,
&WasmGenerator::atomic_op<kExprI64AtomicCompareExchange32U, kI32, kI64,
kI64>,
&WasmGenerator::simd_lane_op<kExprI64x2ExtractLane, 2, kS128>,
&WasmGenerator::get_local<kI64>,
&WasmGenerator::tee_local<kI64>,
&WasmGenerator::get_global<kI64>,
&WasmGenerator::op<kExprSelect, kI64, kI64, kI32>,
&WasmGenerator::select_with_type<kI64>,
&WasmGenerator::call<kI64>,
&WasmGenerator::call_indirect<kI64>,
&WasmGenerator::call_ref<kI64>,
&WasmGenerator::try_block<kI64>,
&WasmGenerator::struct_get<kI64>,
&WasmGenerator::array_get<kI64>};
GenerateOneOf(alternatives, data);
}
template <>
void WasmGenerator::Generate<kF32>(DataRange* data) {
GeneratorRecursionScope rec_scope(this);
if (recursion_limit_reached() || data->size() <= sizeof(float)) {
builder_->EmitF32Const(data->getPseudoRandom<float>());
return;
}
constexpr GenerateFn alternatives[] = {
&WasmGenerator::sequence<kF32, kVoid>,
&WasmGenerator::sequence<kVoid, kF32>,
&WasmGenerator::sequence<kVoid, kF32, kVoid>,
&WasmGenerator::op<kExprF32Abs, kF32>,
&WasmGenerator::op<kExprF32Neg, kF32>,
&WasmGenerator::op<kExprF32Ceil, kF32>,
&WasmGenerator::op<kExprF32Floor, kF32>,
&WasmGenerator::op<kExprF32Trunc, kF32>,
&WasmGenerator::op<kExprF32NearestInt, kF32>,
&WasmGenerator::op<kExprF32Sqrt, kF32>,
&WasmGenerator::op<kExprF32Add, kF32, kF32>,
&WasmGenerator::op<kExprF32Sub, kF32, kF32>,
&WasmGenerator::op<kExprF32Mul, kF32, kF32>,
&WasmGenerator::op<kExprF32Div, kF32, kF32>,
&WasmGenerator::op<kExprF32Min, kF32, kF32>,
&WasmGenerator::op<kExprF32Max, kF32, kF32>,
&WasmGenerator::op<kExprF32CopySign, kF32, kF32>,
&WasmGenerator::op<kExprF32SConvertI32, kI32>,
&WasmGenerator::op<kExprF32UConvertI32, kI32>,
&WasmGenerator::op<kExprF32SConvertI64, kI64>,
&WasmGenerator::op<kExprF32UConvertI64, kI64>,
&WasmGenerator::op<kExprF32ConvertF64, kF64>,
&WasmGenerator::op<kExprF32ReinterpretI32, kI32>,
&WasmGenerator::block<kF32>,
&WasmGenerator::loop<kF32>,
&WasmGenerator::if_<kF32, kIfElse>,
&WasmGenerator::br_if<kF32>,
&WasmGenerator::br_on_null<kF32>,
&WasmGenerator::br_on_non_null<kF32>,
&WasmGenerator::br_table<kF32>,
&WasmGenerator::memop<kExprF32LoadMem>,
&WasmGenerator::simd_lane_op<kExprF32x4ExtractLane, 4, kS128>,
&WasmGenerator::get_local<kF32>,
&WasmGenerator::tee_local<kF32>,
&WasmGenerator::get_global<kF32>,
&WasmGenerator::op<kExprSelect, kF32, kF32, kI32>,
&WasmGenerator::select_with_type<kF32>,
&WasmGenerator::call<kF32>,
&WasmGenerator::call_indirect<kF32>,
&WasmGenerator::call_ref<kF32>,
&WasmGenerator::try_block<kF32>,
&WasmGenerator::struct_get<kF32>,
&WasmGenerator::array_get<kF32>};
GenerateOneOf(alternatives, data);
}
template <>
void WasmGenerator::Generate<kF64>(DataRange* data) {
GeneratorRecursionScope rec_scope(this);
if (recursion_limit_reached() || data->size() <= sizeof(double)) {
builder_->EmitF64Const(data->getPseudoRandom<double>());
return;
}
constexpr GenerateFn alternatives[] = {
&WasmGenerator::sequence<kF64, kVoid>,
&WasmGenerator::sequence<kVoid, kF64>,
&WasmGenerator::sequence<kVoid, kF64, kVoid>,
&WasmGenerator::op<kExprF64Abs, kF64>,
&WasmGenerator::op<kExprF64Neg, kF64>,
&WasmGenerator::op<kExprF64Ceil, kF64>,
&WasmGenerator::op<kExprF64Floor, kF64>,
&WasmGenerator::op<kExprF64Trunc, kF64>,
&WasmGenerator::op<kExprF64NearestInt, kF64>,
&WasmGenerator::op<kExprF64Sqrt, kF64>,
&WasmGenerator::op<kExprF64Add, kF64, kF64>,
&WasmGenerator::op<kExprF64Sub, kF64, kF64>,
&WasmGenerator::op<kExprF64Mul, kF64, kF64>,
&WasmGenerator::op<kExprF64Div, kF64, kF64>,
&WasmGenerator::op<kExprF64Min, kF64, kF64>,
&WasmGenerator::op<kExprF64Max, kF64, kF64>,
&WasmGenerator::op<kExprF64CopySign, kF64, kF64>,
&WasmGenerator::op<kExprF64SConvertI32, kI32>,
&WasmGenerator::op<kExprF64UConvertI32, kI32>,
&WasmGenerator::op<kExprF64SConvertI64, kI64>,
&WasmGenerator::op<kExprF64UConvertI64, kI64>,
&WasmGenerator::op<kExprF64ConvertF32, kF32>,
&WasmGenerator::op<kExprF64ReinterpretI64, kI64>,
&WasmGenerator::block<kF64>,
&WasmGenerator::loop<kF64>,
&WasmGenerator::if_<kF64, kIfElse>,
&WasmGenerator::br_if<kF64>,
&WasmGenerator::br_on_null<kF64>,
&WasmGenerator::br_on_non_null<kF64>,
&WasmGenerator::br_table<kF64>,
&WasmGenerator::memop<kExprF64LoadMem>,
&WasmGenerator::simd_lane_op<kExprF64x2ExtractLane, 2, kS128>,
&WasmGenerator::get_local<kF64>,
&WasmGenerator::tee_local<kF64>,
&WasmGenerator::get_global<kF64>,
&WasmGenerator::op<kExprSelect, kF64, kF64, kI32>,
&WasmGenerator::select_with_type<kF64>,
&WasmGenerator::call<kF64>,
&WasmGenerator::call_indirect<kF64>,
&WasmGenerator::call_ref<kF64>,
&WasmGenerator::try_block<kF64>,
&WasmGenerator::struct_get<kF64>,
&WasmGenerator::array_get<kF64>};
GenerateOneOf(alternatives, data);
}
template <>
void WasmGenerator::Generate<kS128>(DataRange* data) {
GeneratorRecursionScope rec_scope(this);
has_simd_ = true;
if (recursion_limit_reached() || data->size() <= sizeof(int32_t)) {
// TODO(v8:8460): v128.const is not implemented yet, and we need a way to
// "bottom-out", so use a splat to generate this.
builder_->EmitI32Const(0);
builder_->EmitWithPrefix(kExprI8x16Splat);
return;
}
constexpr GenerateFn alternatives[] = {
&WasmGenerator::simd_const,
&WasmGenerator::simd_lane_op<kExprI8x16ReplaceLane, 16, kS128, kI32>,
&WasmGenerator::simd_lane_op<kExprI16x8ReplaceLane, 8, kS128, kI32>,
&WasmGenerator::simd_lane_op<kExprI32x4ReplaceLane, 4, kS128, kI32>,
&WasmGenerator::simd_lane_op<kExprI64x2ReplaceLane, 2, kS128, kI64>,
&WasmGenerator::simd_lane_op<kExprF32x4ReplaceLane, 4, kS128, kF32>,
&WasmGenerator::simd_lane_op<kExprF64x2ReplaceLane, 2, kS128, kF64>,
&WasmGenerator::op_with_prefix<kExprI8x16Splat, kI32>,
&WasmGenerator::op_with_prefix<kExprI8x16Eq, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16Ne, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16LtS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16LtU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16GtS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16GtU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16LeS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16LeU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16GeS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16GeU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16Abs, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16Neg, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16Shl, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI8x16ShrS, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI8x16ShrU, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI8x16Add, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16AddSatS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16AddSatU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16Sub, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16SubSatS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16SubSatU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16MinS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16MinU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16MaxS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16MaxU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16RoundingAverageU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16Popcnt, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8Splat, kI32>,
&WasmGenerator::op_with_prefix<kExprI16x8Eq, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8Ne, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8LtS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8LtU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8GtS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8GtU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8LeS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8LeU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8GeS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8GeU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8Abs, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8Neg, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8Shl, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI16x8ShrS, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI16x8ShrU, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI16x8Add, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8AddSatS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8AddSatU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8Sub, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8SubSatS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8SubSatU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8Mul, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8MinS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8MinU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8MaxS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8MaxU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8RoundingAverageU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8ExtMulLowI8x16S, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8ExtMulLowI8x16U, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8ExtMulHighI8x16S, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8ExtMulHighI8x16U, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8Q15MulRSatS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8ExtAddPairwiseI8x16S, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8ExtAddPairwiseI8x16U, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4Splat, kI32>,
&WasmGenerator::op_with_prefix<kExprI32x4Eq, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4Ne, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4LtS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4LtU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4GtS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4GtU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4LeS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4LeU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4GeS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4GeU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4Abs, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4Neg, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4Shl, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI32x4ShrS, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI32x4ShrU, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI32x4Add, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4Sub, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4Mul, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4MinS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4MinU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4MaxS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4MaxU, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4DotI16x8S, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4ExtMulLowI16x8S, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4ExtMulLowI16x8U, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4ExtMulHighI16x8S, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4ExtMulHighI16x8U, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4ExtAddPairwiseI16x8S, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4ExtAddPairwiseI16x8U, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2Splat, kI64>,
&WasmGenerator::op_with_prefix<kExprI64x2Eq, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2Ne, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2LtS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2GtS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2LeS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2GeS, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2Abs, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2Neg, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2Shl, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI64x2ShrS, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI64x2ShrU, kS128, kI32>,
&WasmGenerator::op_with_prefix<kExprI64x2Add, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2Sub, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2Mul, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2ExtMulLowI32x4S, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2ExtMulLowI32x4U, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2ExtMulHighI32x4S, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2ExtMulHighI32x4U, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Splat, kF32>,
&WasmGenerator::op_with_prefix<kExprF32x4Eq, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Ne, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Lt, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Gt, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Le, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Ge, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Abs, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Neg, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Sqrt, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Add, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Sub, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Mul, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Div, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Min, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Max, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Pmin, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Pmax, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Ceil, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Floor, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Trunc, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4NearestInt, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Splat, kF64>,
&WasmGenerator::op_with_prefix<kExprF64x2Eq, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Ne, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Lt, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Gt, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Le, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Ge, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Abs, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Neg, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Sqrt, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Add, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Sub, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Mul, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Div, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Min, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Max, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Pmin, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Pmax, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Ceil, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Floor, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Trunc, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2NearestInt, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2PromoteLowF32x4, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2ConvertLowI32x4S, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2ConvertLowI32x4U, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4DemoteF64x2Zero, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4TruncSatF64x2SZero, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4TruncSatF64x2UZero, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2SConvertI32x4Low, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2SConvertI32x4High, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2UConvertI32x4Low, kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2UConvertI32x4High, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4SConvertF32x4, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4UConvertF32x4, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4SConvertI32x4, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4UConvertI32x4, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16SConvertI16x8, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16UConvertI16x8, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8SConvertI32x4, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8UConvertI32x4, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8SConvertI8x16Low, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8SConvertI8x16High, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8UConvertI8x16Low, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8UConvertI8x16High, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4SConvertI16x8Low, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4SConvertI16x8High, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4UConvertI16x8Low, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4UConvertI16x8High, kS128>,
&WasmGenerator::op_with_prefix<kExprS128Not, kS128>,
&WasmGenerator::op_with_prefix<kExprS128And, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprS128AndNot, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprS128Or, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprS128Xor, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprS128Select, kS128, kS128, kS128>,
&WasmGenerator::simd_shuffle,
&WasmGenerator::op_with_prefix<kExprI8x16Swizzle, kS128, kS128>,
&WasmGenerator::memop<kExprS128LoadMem>,
&WasmGenerator::memop<kExprS128Load8x8S>,
&WasmGenerator::memop<kExprS128Load8x8U>,
&WasmGenerator::memop<kExprS128Load16x4S>,
&WasmGenerator::memop<kExprS128Load16x4U>,
&WasmGenerator::memop<kExprS128Load32x2S>,
&WasmGenerator::memop<kExprS128Load32x2U>,
&WasmGenerator::memop<kExprS128Load8Splat>,
&WasmGenerator::memop<kExprS128Load16Splat>,
&WasmGenerator::memop<kExprS128Load32Splat>,
&WasmGenerator::memop<kExprS128Load64Splat>,
&WasmGenerator::memop<kExprS128Load32Zero>,
&WasmGenerator::memop<kExprS128Load64Zero>,
&WasmGenerator::simd_lane_memop<kExprS128Load8Lane, 16, kS128>,
&WasmGenerator::simd_lane_memop<kExprS128Load16Lane, 8, kS128>,
&WasmGenerator::simd_lane_memop<kExprS128Load32Lane, 4, kS128>,
&WasmGenerator::simd_lane_memop<kExprS128Load64Lane, 2, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16RelaxedSwizzle, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI8x16RelaxedLaneSelect, kS128, kS128,
kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8RelaxedLaneSelect, kS128, kS128,
kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4RelaxedLaneSelect, kS128, kS128,
kS128>,
&WasmGenerator::op_with_prefix<kExprI64x2RelaxedLaneSelect, kS128, kS128,
kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Qfma, kS128, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4Qfms, kS128, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Qfma, kS128, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2Qfms, kS128, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4RelaxedMin, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF32x4RelaxedMax, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2RelaxedMin, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprF64x2RelaxedMax, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4RelaxedTruncF32x4S, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4RelaxedTruncF32x4U, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4RelaxedTruncF64x2SZero, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4RelaxedTruncF64x2UZero, kS128>,
&WasmGenerator::op_with_prefix<kExprI16x8DotI8x16I7x16S, kS128, kS128>,
&WasmGenerator::op_with_prefix<kExprI32x4DotI8x16I7x16AddS, kS128, kS128,
kS128>,
};
GenerateOneOf(alternatives, data);
}
void WasmGenerator::grow_memory(DataRange* data) {
Generate<kI32>(data);
builder_->EmitWithU8(kExprMemoryGrow, 0);
}
void WasmGenerator::Generate(ValueType type, DataRange* data) {
switch (type.kind()) {
case kVoid:
return Generate<kVoid>(data);
case kI32:
return Generate<kI32>(data);
case kI64:
return Generate<kI64>(data);
case kF32:
return Generate<kF32>(data);
case kF64:
return Generate<kF64>(data);
case kS128:
return Generate<kS128>(data);
case kRefNull:
return GenerateRef(type.heap_type(), data, kNullable);
case kRef:
return GenerateRef(type.heap_type(), data, kNonNullable);
default:
UNREACHABLE();
}
}
void WasmGenerator::GenerateRef(DataRange* data) {
constexpr HeapType::Representation top_types[] = {
HeapType::kAny,
HeapType::kFunc,
HeapType::kExtern,
};
HeapType::Representation type =
top_types[data->get<uint8_t>() % arraysize(top_types)];
GenerateRef(HeapType(type), data);
}
void WasmGenerator::GenerateRef(HeapType type, DataRange* data,
Nullability nullability) {
base::Optional<GeneratorRecursionScope> rec_scope;
if (nullability) {
rec_scope.emplace(this);
}
if (recursion_limit_reached() || data->size() == 0) {
if (nullability == kNullable) {
ref_null(type, data);
return;
}
// It is ok not to return here because the non-nullable types are not
// recursive by construction, so the depth is limited already.
}
constexpr GenerateFnWithHeap alternatives_indexed_type[] = {
&WasmGenerator::new_object, &WasmGenerator::get_local_ref,
&WasmGenerator::array_get_ref, &WasmGenerator::struct_get_ref,
&WasmGenerator::ref_cast, &WasmGenerator::ref_as_non_null,
&WasmGenerator::br_on_cast};
constexpr GenerateFnWithHeap alternatives_func_any[] = {
&WasmGenerator::table_get, &WasmGenerator::get_local_ref,
&WasmGenerator::array_get_ref, &WasmGenerator::struct_get_ref,
&WasmGenerator::ref_cast, &WasmGenerator::extern_internalize,
&WasmGenerator::ref_as_non_null, &WasmGenerator::br_on_cast};
constexpr GenerateFnWithHeap alternatives_other[] = {
&WasmGenerator::array_get_ref, &WasmGenerator::get_local_ref,
&WasmGenerator::struct_get_ref, &WasmGenerator::ref_cast,
&WasmGenerator::ref_as_non_null, &WasmGenerator::br_on_cast};
switch (type.representation()) {
// For abstract types, sometimes generate one of their subtypes.
case HeapType::kAny: {
// Weighed according to the types in the module:
// If there are D data types and F function types, the relative
// frequencies for dataref is D, for funcref F, and for i31ref and falling
// back to anyref 2.
const uint8_t num_data_types = num_structs_ + num_arrays_;
const uint8_t emit_i31ref = 2;
const uint8_t fallback_to_anyref = 2;
uint8_t random = data->get<uint8_t>() %
(num_data_types + emit_i31ref + fallback_to_anyref);
// We have to compute this first so in case GenerateOneOf fails
// we will continue to fall back on an alternative that is guaranteed
// to generate a value of the wanted type.
// In order to know which alternative to fall back to in case
// GenerateOneOf failed, the random variable is recomputed.
if (random >= num_data_types + emit_i31ref) {
if (GenerateOneOf(alternatives_func_any, type, data, nullability)) {
return;
}
random = data->get<uint8_t>() % (num_data_types + emit_i31ref);
}
if (random < num_structs_) {
GenerateRef(HeapType(HeapType::kStruct), data, nullability);
} else if (random < num_data_types) {
GenerateRef(HeapType(HeapType::kArray), data, nullability);
} else {
GenerateRef(HeapType(HeapType::kI31), data, nullability);
}
return;
}
case HeapType::kArray: {
constexpr uint8_t fallback_to_dataref = 1;
uint8_t random =
data->get<uint8_t>() % (num_arrays_ + fallback_to_dataref);
// Try generating one of the alternatives and continue to the rest of the
// methods in case it fails.
if (random >= num_arrays_) {
if (GenerateOneOf(alternatives_other, type, data, nullability)) return;
random = data->get<uint8_t>() % num_arrays_;
}
DCHECK(builder_->builder()->IsArrayType(random + num_structs_));
GenerateRef(HeapType(random + num_structs_), data, nullability);
return;
}
case HeapType::kStruct: {
constexpr uint8_t fallback_to_dataref = 2;
uint8_t random =
data->get<uint8_t>() % (num_structs_ + fallback_to_dataref);
// Try generating one of the alternatives
// and continue to the rest of the methods in case it fails.
if (random >= num_structs_) {
if (GenerateOneOf(alternatives_other, type, data, nullability)) {
return;
}
random = data->get<uint8_t>() % num_structs_;
}
DCHECK(builder_->builder()->IsStructType(random));
GenerateRef(HeapType(random), data, nullability);
return;
}
case HeapType::kEq: {
const uint8_t num_types = num_arrays_ + num_structs_;
const uint8_t emit_i31ref = 2;
constexpr uint8_t fallback_to_eqref = 1;
uint8_t random =
data->get<uint8_t>() % (num_types + emit_i31ref + fallback_to_eqref);
// Try generating one of the alternatives
// and continue to the rest of the methods in case it fails.
if (random >= num_types + emit_i31ref) {
if (GenerateOneOf(alternatives_other, type, data, nullability)) {
return;
}
random = data->get<uint8_t>() % (num_types + emit_i31ref);
}
if (random < num_types) {
GenerateRef(HeapType(random), data, nullability);
} else {
GenerateRef(HeapType(HeapType::kI31), data, nullability);
}
return;
}
case HeapType::kFunc: {
uint32_t random = data->get<uint8_t>() % (functions_.size() + 1);
/// Try generating one of the alternatives
// and continue to the rest of the methods in case it fails.
if (random >= functions_.size()) {
if (GenerateOneOf(alternatives_func_any, type, data, nullability)) {
return;
}
random = data->get<uint8_t>() % functions_.size();
}
uint32_t signature_index = functions_[random];
DCHECK(builder_->builder()->IsSignature(signature_index));
GenerateRef(HeapType(signature_index), data, nullability);
return;
}
case HeapType::kI31: {
// Try generating one of the alternatives
// and continue to the rest of the methods in case it fails.
if (data->get<bool>() &&
GenerateOneOf(alternatives_other, type, data, nullability)) {
return;
}
Generate(kWasmI32, data);
builder_->EmitWithPrefix(kExprI31New);
return;
}
case HeapType::kExtern:
if (data->get<bool>()) {
GenerateRef(HeapType(HeapType::kAny), data);
builder_->EmitWithPrefix(kExprExternExternalize);
if (nullability == kNonNullable) {
builder_->Emit(kExprRefAsNonNull);
}
return;
}
V8_FALLTHROUGH;
case HeapType::kNoExtern:
case HeapType::kNoFunc:
case HeapType::kNone:
ref_null(type, data);
if (nullability == kNonNullable) {
builder_->Emit(kExprRefAsNonNull);
}
return;
default:
// Indexed type.
DCHECK(type.is_index());
GenerateOneOf(alternatives_indexed_type, type, data, nullability);
return;
}
UNREACHABLE();
}
std::vector<ValueType> WasmGenerator::GenerateTypes(DataRange* data) {
std::vector<ValueType> types;
int num_params = int{data->get<uint8_t>()} % (kMaxParameters + 1);
for (int i = 0; i < num_params; ++i) {
types.push_back(GetValueType(
data,
num_structs_ + num_arrays_ + static_cast<uint32_t>(functions_.size())));
}
return types;
}
void WasmGenerator::Generate(base::Vector<const ValueType> types,
DataRange* data) {
// Maybe emit a multi-value block with the expected return type. Use a
// non-default value to indicate block generation to avoid recursion when we
// reach the end of the data.
bool generate_block = data->get<uint8_t>() % 32 == 1;
if (generate_block) {
GeneratorRecursionScope rec_scope(this);
if (!recursion_limit_reached()) {
const auto param_types = GenerateTypes(data);
Generate(base::VectorOf(param_types), data);
any_block(base::VectorOf(param_types), types, data);
return;
}
}
if (types.size() == 0) {
Generate(kWasmVoid, data);
return;
}
if (types.size() == 1) {
Generate(types[0], data);
return;
}
// Split the types in two halves and recursively generate each half.
// Each half is non empty to ensure termination.
size_t split_index = data->get<uint8_t>() % (types.size() - 1) + 1;
base::Vector<const ValueType> lower_half = types.SubVector(0, split_index);
base::Vector<const ValueType> upper_half =
types.SubVector(split_index, types.size());
DataRange first_range = data->split();
Generate(lower_half, &first_range);
Generate(upper_half, data);
}
// Emit code to match an arbitrary signature.
// TODO(11954): Add the missing reference type conversion/upcasting.
void WasmGenerator::ConsumeAndGenerate(
base::Vector<const ValueType> param_types,
base::Vector<const ValueType> return_types, DataRange* data) {
// This numeric conversion logic consists of picking exactly one
// index in the return values and dropping all the values that come
// before that index. Then we convert the value from that index to the
// wanted type. If we don't find any value we generate it.
auto primitive = [](ValueType t) -> bool {
switch (t.kind()) {
case kI32:
case kI64:
case kF32:
case kF64:
return true;
default:
return false;
}
};
if (return_types.size() == 0 || param_types.size() == 0 ||
!primitive(return_types[0])) {
for (unsigned i = 0; i < param_types.size(); i++) {
builder_->Emit(kExprDrop);
}
Generate(return_types, data);
return;
}
int bottom_primitives = 0;
while (static_cast<int>(param_types.size()) > bottom_primitives &&
primitive(param_types[bottom_primitives])) {
bottom_primitives++;
}
int return_index =
bottom_primitives > 0 ? (data->get<uint8_t>() % bottom_primitives) : -1;
for (int i = static_cast<int>(param_types.size() - 1); i > return_index;
--i) {
builder_->Emit(kExprDrop);
}
for (int i = return_index; i > 0; --i) {
Convert(param_types[i], param_types[i - 1]);
builder_->EmitI32Const(0);
builder_->Emit(kExprSelect);
}
DCHECK(!return_types.empty());
if (return_index >= 0) {
Convert(param_types[0], return_types[0]);
Generate(return_types + 1, data);
} else {
Generate(return_types, data);
}
}
enum SigKind { kFunctionSig, kExceptionSig };
FunctionSig* GenerateSig(Zone* zone, DataRange* data, SigKind sig_kind,
int num_types) {
// Generate enough parameters to spill some to the stack.
int num_params = int{data->get<uint8_t>()} % (kMaxParameters + 1);
int num_returns = sig_kind == kFunctionSig
? int{data->get<uint8_t>()} % (kMaxReturns + 1)
: 0;
FunctionSig::Builder builder(zone, num_returns, num_params);
for (int i = 0; i < num_returns; ++i) {
builder.AddReturn(GetValueType(data, num_types));
}
for (int i = 0; i < num_params; ++i) {
builder.AddParam(GetValueType(data, num_types));
}
return builder.Build();
}
WasmInitExpr GenerateInitExpr(Zone* zone, DataRange& range,
WasmModuleBuilder* builder, ValueType type,
int num_structs, int num_arrays,
uint32_t recursion_depth);
WasmInitExpr GenerateStructNewInitExpr(Zone* zone, DataRange& range,
WasmModuleBuilder* builder,
uint32_t index, int num_structs,
int num_arrays,
uint32_t recursion_depth) {
const StructType* struct_type = builder->GetStructType(index);
bool use_new_default =
std::all_of(struct_type->fields().begin(), struct_type->fields().end(),
[](ValueType type) { return type.is_defaultable(); }) &&
range.get<bool>();
if (use_new_default) {
return WasmInitExpr::StructNewDefault(index);
} else {
ZoneVector<WasmInitExpr>* elements =
zone->New<ZoneVector<WasmInitExpr>>(zone);
int field_count = struct_type->field_count();
for (int field_index = 0; field_index < field_count; field_index++) {
elements->push_back(GenerateInitExpr(
zone, range, builder, struct_type->field(field_index), num_structs,
num_arrays, recursion_depth + 1));
}
return WasmInitExpr::StructNew(index, elements);
}
}
WasmInitExpr GenerateArrayInitExpr(Zone* zone, DataRange& range,
WasmModuleBuilder* builder, uint32_t index,
int num_structs, int num_arrays,
uint32_t recursion_depth) {
constexpr int kMaxArrayLength = 20;
uint8_t choice = range.get<uint8_t>() % 3;
ValueType element_type = builder->GetArrayType(index)->element_type();
if (choice == 0) {
int element_count = range.get<uint8_t>() % kMaxArrayLength;
ZoneVector<WasmInitExpr>* elements =
zone->New<ZoneVector<WasmInitExpr>>(zone);
for (int i = 0; i < element_count; i++) {
elements->push_back(GenerateInitExpr(zone, range, builder, element_type,
num_structs, num_arrays,
recursion_depth + 1));
}
return WasmInitExpr::ArrayNewFixed(index, elements);
} else if (choice == 1 || !element_type.is_defaultable()) {
// TODO(14034): Add other int expressions to length (same below).
WasmInitExpr length = WasmInitExpr(range.get<uint8_t>() % kMaxArrayLength);
WasmInitExpr init =
GenerateInitExpr(zone, range, builder, element_type, num_structs,
num_arrays, recursion_depth + 1);
return WasmInitExpr::ArrayNew(zone, index, init, length);
} else {
WasmInitExpr length = WasmInitExpr(range.get<uint8_t>() % kMaxArrayLength);
return WasmInitExpr::ArrayNewDefault(zone, index, length);
}
}
// TODO(manoskouk): Add global.get.
WasmInitExpr GenerateInitExpr(Zone* zone, DataRange& range,
WasmModuleBuilder* builder, ValueType type,
int num_structs, int num_arrays,
uint32_t recursion_depth) {
switch (type.kind()) {
case kI8:
case kI16:
case kI32: {
if (range.size() == 0 || recursion_depth >= kMaxRecursionDepth) {
return WasmInitExpr(int32_t{0});
}
// 50% to generate a constant, 50% to generate a binary operator.
uint8_t choice = range.get<uint8_t>() % 6;
switch (choice) {
case 0:
case 1:
case 2:
return WasmInitExpr(range.get<int32_t>());
default:
WasmInitExpr::Operator op = choice == 3 ? WasmInitExpr::kI32Add
: choice == 4 ? WasmInitExpr::kI32Sub
: WasmInitExpr::kI32Mul;
return WasmInitExpr::Binop(
zone, op,
GenerateInitExpr(zone, range, builder, kWasmI32, num_structs,
num_arrays, recursion_depth + 1),
GenerateInitExpr(zone, range, builder, kWasmI32, num_structs,
num_arrays, recursion_depth + 1));
}
}
case kI64: {
if (range.size() == 0 || recursion_depth >= kMaxRecursionDepth) {
return WasmInitExpr(int64_t{0});
}
// 50% to generate a constant, 50% to generate a binary operator.
uint8_t choice = range.get<uint8_t>() % 6;
switch (choice) {
case 0:
case 1:
case 2:
return WasmInitExpr(range.get<int64_t>());
default:
WasmInitExpr::Operator op = choice == 3 ? WasmInitExpr::kI64Add
: choice == 4 ? WasmInitExpr::kI64Sub
: WasmInitExpr::kI64Mul;
return WasmInitExpr::Binop(
zone, op,
GenerateInitExpr(zone, range, builder, kWasmI64, num_structs,
num_arrays, recursion_depth + 1),
GenerateInitExpr(zone, range, builder, kWasmI64, num_structs,
num_arrays, recursion_depth + 1));
}
}
case kF32:
return WasmInitExpr(0.0f);
case kF64:
return WasmInitExpr(0.0);
case kS128: {
uint8_t s128_const[kSimd128Size] = {0};
return WasmInitExpr(s128_const);
}
case kRefNull: {
bool null_only = false;
switch (type.heap_representation()) {
case HeapType::kNone:
case HeapType::kNoFunc:
case HeapType::kNoExtern:
null_only = true;
break;
default:
break;
}
if (range.size() == 0 || recursion_depth >= kMaxRecursionDepth ||
null_only || (range.get<uint8_t>() % 4 == 0)) {
return WasmInitExpr::RefNullConst(type.heap_type().representation());
}
V8_FALLTHROUGH;
}
case kRef: {
switch (type.heap_representation()) {
case HeapType::kStruct: {
uint8_t index = range.get<uint8_t>() % num_structs;
return GenerateStructNewInitExpr(zone, range, builder, index,
num_structs, num_arrays,
recursion_depth);
}
case HeapType::kAny: {
// Do not use 0 as the determining value here, otherwise an exhausted
// {range} will generate an infinite recursion with the {kExtern}
// case.
if (recursion_depth < kMaxRecursionDepth && range.size() > 0 &&
range.get<uint8_t>() % 4 == 3) {
return WasmInitExpr::ExternInternalize(
zone,
GenerateInitExpr(zone, range, builder,
ValueType::RefMaybeNull(HeapType::kExtern,
type.nullability()),
num_structs, num_arrays, recursion_depth + 1));
}
V8_FALLTHROUGH;
}
case HeapType::kEq: {
uint8_t choice = range.get<uint8_t>() % 3;
HeapType::Representation subtype = choice == 0 ? HeapType::kStruct
: choice == 1 ? HeapType::kArray
: HeapType::kI31;
return GenerateInitExpr(
zone, range, builder,
ValueType::RefMaybeNull(subtype, type.nullability()), num_structs,
num_arrays, recursion_depth);
}
case HeapType::kFunc: {
uint32_t index = range.get<uint32_t>() % builder->NumFunctions();
return WasmInitExpr::RefFuncConst(index);
}
case HeapType::kExtern:
return WasmInitExpr::ExternExternalize(
zone,
GenerateInitExpr(
zone, range, builder,
ValueType::RefMaybeNull(HeapType::kAny, type.nullability()),
num_structs, num_arrays, recursion_depth + 1));
case HeapType::kI31:
return WasmInitExpr::I31New(
zone,
GenerateInitExpr(zone, range, builder, kWasmI32, num_structs,
num_arrays, recursion_depth + 1));
case HeapType::kArray: {
uint32_t index = range.get<uint32_t>() % num_arrays + num_structs;
return GenerateArrayInitExpr(zone, range, builder, index, num_structs,
num_arrays, recursion_depth);
}
case HeapType::kNone:
case HeapType::kNoFunc:
case HeapType::kNoExtern:
UNREACHABLE();
default: {
uint32_t index = type.ref_index();
if (builder->IsStructType(index)) {
return GenerateStructNewInitExpr(zone, range, builder, index,
num_structs, num_arrays,
recursion_depth);
} else if (builder->IsArrayType(index)) {
return GenerateArrayInitExpr(zone, range, builder, index,
num_structs, num_arrays,
recursion_depth);
} else {
DCHECK(builder->IsSignature(index));
// Transform from signature index to function index.
return WasmInitExpr::RefFuncConst(index -
(num_structs + num_arrays));
}
UNREACHABLE();
}
}
}
case kVoid:
case kRtt:
case kBottom:
UNREACHABLE();
}
}
} // namespace
class WasmCompileFuzzer : public WasmExecutionFuzzer {
bool GenerateModule(Isolate* isolate, Zone* zone,
base::Vector<const uint8_t> data,
ZoneBuffer* buffer) override {
TestSignatures sigs;
WasmModuleBuilder builder(zone);
// Split input data in two parts:
// - One for the "module" (types, globals, ..)
// - One for all the function bodies
// This prevents using a too large portion on the module resulting in
// uninteresting function bodies.
DataRange module_range(data);
DataRange functions_range = module_range.split();
std::vector<uint32_t> function_signatures;
// Add struct and array types first so that we get a chance to generate
// these types in function signatures.
// Currently, WasmGenerator assumes this order for struct/array/signature
// definitions.
static_assert(kMaxFunctions >= 1, "need min. 1 function");
uint8_t num_functions = 1 + (module_range.get<uint8_t>() % kMaxFunctions);
// We need at least one struct and one array in order to support
// WasmInitExpr for abstract types.
uint8_t num_structs = 1 + module_range.get<uint8_t>() % kMaxStructs;
uint8_t num_arrays = 1 + module_range.get<uint8_t>() % kMaxArrays;
uint16_t num_types = num_functions + num_structs + num_arrays;
// (Type_index -> end of explicit rec group).
std::map<uint8_t, uint8_t> explicit_rec_groups;
{
uint8_t current_type_index = 0;
while (current_type_index < num_types) {
// First, pick a random start for the next group. We allow it to be
// beyond the end of types (i.e., we add no further recursive groups).
uint8_t group_start =
module_range.get<uint8_t>() % (num_types - current_type_index + 1) +
current_type_index;
DCHECK_GE(group_start, current_type_index);
current_type_index = group_start;
if (group_start < num_types) {
// If we did not reach the end of the types, pick a random group size.
uint8_t group_size =
module_range.get<uint8_t>() % (num_types - group_start) + 1;
DCHECK_LE(group_start + group_size, num_types);
for (uint8_t i = group_start; i < group_start + group_size; i++) {
explicit_rec_groups.emplace(i, group_start + group_size - 1);
}
builder.AddRecursiveTypeGroup(group_start, group_size);
current_type_index += group_size;
}
}
}
uint8_t current_type_index = 0;
for (; current_type_index < num_structs; current_type_index++) {
auto rec_group = explicit_rec_groups.find(current_type_index);
uint8_t current_rec_group_end = rec_group != explicit_rec_groups.end()
? rec_group->second
: current_type_index;
uint32_t supertype = kNoSuperType;
uint8_t num_fields = module_range.get<uint8_t>() % (kMaxStructFields + 1);
if (current_type_index > 0 && module_range.get<bool>()) {
supertype = module_range.get<uint8_t>() % current_type_index;
num_fields += builder.GetStructType(supertype)->field_count();
}
StructType::Builder struct_builder(zone, num_fields);
// Add all fields from super type.
uint32_t field_index = 0;
if (supertype != kNoSuperType) {
const StructType* parent = builder.GetStructType(supertype);
for (; field_index < parent->field_count(); ++field_index) {
// TODO(14034): This could also be any sub type of the supertype's
// element type.
struct_builder.AddField(parent->field(field_index),
parent->mutability(field_index));
}
}
for (; field_index < num_fields; field_index++) {
// Notes:
// - We allow a type to only have non-nullable fields of types that
// are defined earlier. This way we avoid infinite non-nullable
// constructions. Also relevant for arrays and functions.
// - On the other hand, nullable fields can be picked up to the end of
// the current recursive group.
// - We exclude the non-nullable generic types arrayref, anyref,
// structref, eqref and externref from the fields of structs and
// arrays. This is so that GenerateInitExpr has a way to break a
// recursion between a struct/array field and those types
// ((ref extern) gets materialized through (ref any)).
ValueType type = GetValueTypeHelper(
&module_range, current_rec_group_end + 1, current_type_index,
kIncludeNumericTypes, kIncludePackedTypes,
kExcludeSomeGenericsWhenTypeIsNonNullable);
bool mutability = module_range.get<bool>();
struct_builder.AddField(type, mutability);
}
StructType* struct_fuz = struct_builder.Build();
builder.AddStructType(struct_fuz, false, supertype);
}
for (; current_type_index < num_structs + num_arrays;
current_type_index++) {
auto rec_group = explicit_rec_groups.find(current_type_index);
uint8_t current_rec_group_end = rec_group != explicit_rec_groups.end()
? rec_group->second
: current_type_index;
ValueType type = GetValueTypeHelper(
&module_range, current_rec_group_end + 1, current_type_index,
kIncludeNumericTypes, kIncludePackedTypes,
kExcludeSomeGenericsWhenTypeIsNonNullable);
uint32_t supertype = kNoSuperType;
if (current_type_index > num_structs && module_range.get<bool>()) {
supertype =
module_range.get<uint8_t>() % (current_type_index - num_structs) +
num_structs;
// TODO(14034): This could also be any sub type of the supertype's
// element type.
type = builder.GetArrayType(supertype)->element_type();
}
ArrayType* array_fuz = zone->New<ArrayType>(type, true);
builder.AddArrayType(array_fuz, false, supertype);
}
// We keep the signature for the first (main) function constant.
function_signatures.push_back(
builder.ForceAddSignature(sigs.i_iii(), v8_flags.wasm_final_types));
current_type_index++;
for (; current_type_index < num_types; current_type_index++) {
auto rec_group = explicit_rec_groups.find(current_type_index);
uint8_t current_rec_group_end = rec_group != explicit_rec_groups.end()
? rec_group->second
: current_type_index;
FunctionSig* sig = GenerateSig(zone, &module_range, kFunctionSig,
current_rec_group_end + 1);
uint32_t signature_index =
builder.ForceAddSignature(sig, v8_flags.wasm_final_types);
function_signatures.push_back(signature_index);
}
int num_exceptions = 1 + (module_range.get<uint8_t>() % kMaxExceptions);
for (int i = 0; i < num_exceptions; ++i) {
FunctionSig* sig =
GenerateSig(zone, &module_range, kExceptionSig, num_types);
builder.AddException(sig);
}
// Generate function declarations before tables. This will be needed once we
// have typed-function tables.
std::vector<WasmFunctionBuilder*> functions;
for (uint8_t i = 0; i < num_functions; i++) {
// If we are using wasm-gc, we cannot allow signature normalization
// performed by adding a function by {FunctionSig}, because we emit
// everything in one recursive group which blocks signature
// canonicalization.
// TODO(14034): Relax this when we implement proper recursive-group
// support.
functions.push_back(builder.AddFunction(function_signatures[i]));
}
int num_globals = module_range.get<uint8_t>() % (kMaxGlobals + 1);
std::vector<ValueType> globals;
std::vector<uint8_t> mutable_globals;
globals.reserve(num_globals);
mutable_globals.reserve(num_globals);
for (int i = 0; i < num_globals; ++i) {
ValueType type = GetValueType(&module_range, num_types);
// 1/8 of globals are immutable.
const bool mutability = (module_range.get<uint8_t>() % 8) != 0;
builder.AddGlobal(type, mutability,
GenerateInitExpr(zone, module_range, &builder, type,
num_structs, num_arrays, 0));
globals.push_back(type);
if (mutability) mutable_globals.push_back(static_cast<uint8_t>(i));
}
// Generate tables before function bodies, so they are available for table
// operations.
// Always generate at least one table for call_indirect.
int num_tables = module_range.get<uint8_t>() % kMaxTables + 1;
for (int i = 0; i < num_tables; i++) {
uint32_t min_size =
i == 0 ? num_functions : module_range.get<uint8_t>() % kMaxTableSize;
uint32_t max_size =
module_range.get<uint8_t>() % (kMaxTableSize - min_size) + min_size;
// Table 0 is always funcref. This guarantees that
// - call_indirect has at least one funcref table to work with,
// - we have a place to reference all functions in the program, so they
// count as "declared" for ref.func.
bool force_funcref = i == 0;
ValueType type =
force_funcref
? kWasmFuncRef
: GetValueTypeHelper(&module_range, num_types, num_types,
kExcludeNumericTypes, kExcludePackedTypes,
kAlwaysIncludeAllGenerics);
bool use_initializer = !type.is_defaultable() || module_range.get<bool>();
uint32_t table_index =
use_initializer
? builder.AddTable(
type, min_size, max_size,
GenerateInitExpr(zone, module_range, &builder, type,
num_structs, num_arrays, 0))
: builder.AddTable(type, min_size, max_size);
if (type.is_reference_to(HeapType::kFunc)) {
// For function tables, initialize them with functions from the program.
// Currently, the fuzzer assumes that every funcref/(ref func) table
// contains the functions in the program in the order they are defined.
// TODO(11954): Consider generalizing this.
WasmModuleBuilder::WasmElemSegment segment(zone, type, table_index,
WasmInitExpr(0));
for (int entry_index = 0; entry_index < static_cast<int>(min_size);
entry_index++) {
segment.entries.emplace_back(
WasmModuleBuilder::WasmElemSegment::Entry::kRefFuncEntry,
entry_index % num_functions);
}
builder.AddElementSegment(std::move(segment));
}
}
int num_data_segments =
module_range.get<uint8_t>() % kMaxPassiveDataSegments;
for (int i = 0; i < num_data_segments; i++) {
GeneratePassiveDataSegment(&module_range, &builder);
}
for (int i = 0; i < num_functions; ++i) {
WasmFunctionBuilder* f = functions[i];
// On the last function don't split the DataRange but just use the
// existing DataRange.
DataRange function_range = i != num_functions - 1
? functions_range.split()
: std::move(functions_range);
WasmGenerator gen(f, function_signatures, globals, mutable_globals,
num_structs, num_arrays, &function_range);
const FunctionSig* sig = f->signature();
base::Vector<const ValueType> return_types(sig->returns().begin(),
sig->return_count());
gen.InitializeNonDefaultableLocals(&function_range);
gen.Generate(return_types, &function_range);
if (!CheckHardwareSupportsSimd() && gen.HasSimd()) return false;
f->Emit(kExprEnd);
if (i == 0) builder.AddExport(base::CStrVector("main"), f);
}
builder.SetMaxMemorySize(32);
builder.WriteTo(buffer);
return true;
}
};
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
constexpr bool require_valid = true;
EXPERIMENTAL_FLAG_SCOPE(relaxed_simd);
WasmCompileFuzzer().FuzzWasmModule({data, size}, require_valid);
return 0;
}
} // namespace v8::internal::wasm::fuzzer