| // Copyright 2013 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/v8.h" |
| |
| #if V8_TARGET_ARCH_ARM64 |
| |
| #include "src/code-stubs.h" |
| #include "src/cpu-profiler.h" |
| #include "src/log.h" |
| #include "src/macro-assembler.h" |
| #include "src/regexp-macro-assembler.h" |
| #include "src/regexp-stack.h" |
| #include "src/unicode.h" |
| |
| #include "src/arm64/regexp-macro-assembler-arm64.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #ifndef V8_INTERPRETED_REGEXP |
| /* |
| * This assembler uses the following register assignment convention: |
| * - w19 : Used to temporarely store a value before a call to C code. |
| * See CheckNotBackReferenceIgnoreCase. |
| * - x20 : Pointer to the current code object (Code*), |
| * it includes the heap object tag. |
| * - w21 : Current position in input, as negative offset from |
| * the end of the string. Please notice that this is |
| * the byte offset, not the character offset! |
| * - w22 : Currently loaded character. Must be loaded using |
| * LoadCurrentCharacter before using any of the dispatch methods. |
| * - x23 : Points to tip of backtrack stack. |
| * - w24 : Position of the first character minus one: non_position_value. |
| * Used to initialize capture registers. |
| * - x25 : Address at the end of the input string: input_end. |
| * Points to byte after last character in input. |
| * - x26 : Address at the start of the input string: input_start. |
| * - w27 : Where to start in the input string. |
| * - x28 : Output array pointer. |
| * - x29/fp : Frame pointer. Used to access arguments, local variables and |
| * RegExp registers. |
| * - x16/x17 : IP registers, used by assembler. Very volatile. |
| * - csp : Points to tip of C stack. |
| * |
| * - x0-x7 : Used as a cache to store 32 bit capture registers. These |
| * registers need to be retained every time a call to C code |
| * is done. |
| * |
| * The remaining registers are free for computations. |
| * Each call to a public method should retain this convention. |
| * |
| * The stack will have the following structure: |
| * |
| * Location Name Description |
| * (as referred to in |
| * the code) |
| * |
| * - fp[104] isolate Address of the current isolate. |
| * - fp[96] return_address Secondary link/return address |
| * used by an exit frame if this is a |
| * native call. |
| * ^^^ csp when called ^^^ |
| * - fp[88] lr Return from the RegExp code. |
| * - fp[80] r29 Old frame pointer (CalleeSaved). |
| * - fp[0..72] r19-r28 Backup of CalleeSaved registers. |
| * - fp[-8] direct_call 1 => Direct call from JavaScript code. |
| * 0 => Call through the runtime system. |
| * - fp[-16] stack_base High end of the memory area to use as |
| * the backtracking stack. |
| * - fp[-24] output_size Output may fit multiple sets of matches. |
| * - fp[-32] input Handle containing the input string. |
| * - fp[-40] success_counter |
| * ^^^^^^^^^^^^^ From here and downwards we store 32 bit values ^^^^^^^^^^^^^ |
| * - fp[-44] register N Capture registers initialized with |
| * - fp[-48] register N + 1 non_position_value. |
| * ... The first kNumCachedRegisters (N) registers |
| * ... are cached in x0 to x7. |
| * ... Only positions must be stored in the first |
| * - ... num_saved_registers_ registers. |
| * - ... |
| * - register N + num_registers - 1 |
| * ^^^^^^^^^ csp ^^^^^^^^^ |
| * |
| * The first num_saved_registers_ registers are initialized to point to |
| * "character -1" in the string (i.e., char_size() bytes before the first |
| * character of the string). The remaining registers start out as garbage. |
| * |
| * The data up to the return address must be placed there by the calling |
| * code and the remaining arguments are passed in registers, e.g. by calling the |
| * code entry as cast to a function with the signature: |
| * int (*match)(String* input, |
| * int start_offset, |
| * Address input_start, |
| * Address input_end, |
| * int* output, |
| * int output_size, |
| * Address stack_base, |
| * bool direct_call = false, |
| * Address secondary_return_address, // Only used by native call. |
| * Isolate* isolate) |
| * The call is performed by NativeRegExpMacroAssembler::Execute() |
| * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro |
| * in arm64/simulator-arm64.h. |
| * When calling as a non-direct call (i.e., from C++ code), the return address |
| * area is overwritten with the LR register by the RegExp code. When doing a |
| * direct call from generated code, the return address is placed there by |
| * the calling code, as in a normal exit frame. |
| */ |
| |
| #define __ ACCESS_MASM(masm_) |
| |
| RegExpMacroAssemblerARM64::RegExpMacroAssemblerARM64(Isolate* isolate, |
| Zone* zone, Mode mode, |
| int registers_to_save) |
| : NativeRegExpMacroAssembler(isolate, zone), |
| masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)), |
| mode_(mode), |
| num_registers_(registers_to_save), |
| num_saved_registers_(registers_to_save), |
| entry_label_(), |
| start_label_(), |
| success_label_(), |
| backtrack_label_(), |
| exit_label_() { |
| __ SetStackPointer(csp); |
| DCHECK_EQ(0, registers_to_save % 2); |
| // We can cache at most 16 W registers in x0-x7. |
| STATIC_ASSERT(kNumCachedRegisters <= 16); |
| STATIC_ASSERT((kNumCachedRegisters % 2) == 0); |
| __ B(&entry_label_); // We'll write the entry code later. |
| __ Bind(&start_label_); // And then continue from here. |
| } |
| |
| |
| RegExpMacroAssemblerARM64::~RegExpMacroAssemblerARM64() { |
| delete masm_; |
| // Unuse labels in case we throw away the assembler without calling GetCode. |
| entry_label_.Unuse(); |
| start_label_.Unuse(); |
| success_label_.Unuse(); |
| backtrack_label_.Unuse(); |
| exit_label_.Unuse(); |
| check_preempt_label_.Unuse(); |
| stack_overflow_label_.Unuse(); |
| } |
| |
| int RegExpMacroAssemblerARM64::stack_limit_slack() { |
| return RegExpStack::kStackLimitSlack; |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::AdvanceCurrentPosition(int by) { |
| if (by != 0) { |
| __ Add(current_input_offset(), |
| current_input_offset(), by * char_size()); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::AdvanceRegister(int reg, int by) { |
| DCHECK((reg >= 0) && (reg < num_registers_)); |
| if (by != 0) { |
| Register to_advance; |
| RegisterState register_state = GetRegisterState(reg); |
| switch (register_state) { |
| case STACKED: |
| __ Ldr(w10, register_location(reg)); |
| __ Add(w10, w10, by); |
| __ Str(w10, register_location(reg)); |
| break; |
| case CACHED_LSW: |
| to_advance = GetCachedRegister(reg); |
| __ Add(to_advance, to_advance, by); |
| break; |
| case CACHED_MSW: |
| to_advance = GetCachedRegister(reg); |
| __ Add(to_advance, to_advance, |
| static_cast<int64_t>(by) << kWRegSizeInBits); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::Backtrack() { |
| CheckPreemption(); |
| Pop(w10); |
| __ Add(x10, code_pointer(), Operand(w10, UXTW)); |
| __ Br(x10); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::Bind(Label* label) { |
| __ Bind(label); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckCharacter(uint32_t c, Label* on_equal) { |
| CompareAndBranchOrBacktrack(current_character(), c, eq, on_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckCharacterGT(uc16 limit, |
| Label* on_greater) { |
| CompareAndBranchOrBacktrack(current_character(), limit, hi, on_greater); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckAtStart(Label* on_at_start) { |
| Label not_at_start; |
| // Did we start the match at the start of the input string? |
| CompareAndBranchOrBacktrack(start_offset(), 0, ne, ¬_at_start); |
| // If we did, are we still at the start of the input string? |
| __ Add(x10, input_end(), Operand(current_input_offset(), SXTW)); |
| __ Cmp(x10, input_start()); |
| BranchOrBacktrack(eq, on_at_start); |
| __ Bind(¬_at_start); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckNotAtStart(Label* on_not_at_start) { |
| // Did we start the match at the start of the input string? |
| CompareAndBranchOrBacktrack(start_offset(), 0, ne, on_not_at_start); |
| // If we did, are we still at the start of the input string? |
| __ Add(x10, input_end(), Operand(current_input_offset(), SXTW)); |
| __ Cmp(x10, input_start()); |
| BranchOrBacktrack(ne, on_not_at_start); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckCharacterLT(uc16 limit, Label* on_less) { |
| CompareAndBranchOrBacktrack(current_character(), limit, lo, on_less); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckCharacters(Vector<const uc16> str, |
| int cp_offset, |
| Label* on_failure, |
| bool check_end_of_string) { |
| // This method is only ever called from the cctests. |
| |
| if (check_end_of_string) { |
| // Is last character of required match inside string. |
| CheckPosition(cp_offset + str.length() - 1, on_failure); |
| } |
| |
| Register characters_address = x11; |
| |
| __ Add(characters_address, |
| input_end(), |
| Operand(current_input_offset(), SXTW)); |
| if (cp_offset != 0) { |
| __ Add(characters_address, characters_address, cp_offset * char_size()); |
| } |
| |
| for (int i = 0; i < str.length(); i++) { |
| if (mode_ == LATIN1) { |
| __ Ldrb(w10, MemOperand(characters_address, 1, PostIndex)); |
| DCHECK(str[i] <= String::kMaxOneByteCharCode); |
| } else { |
| __ Ldrh(w10, MemOperand(characters_address, 2, PostIndex)); |
| } |
| CompareAndBranchOrBacktrack(w10, str[i], ne, on_failure); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckGreedyLoop(Label* on_equal) { |
| __ Ldr(w10, MemOperand(backtrack_stackpointer())); |
| __ Cmp(current_input_offset(), w10); |
| __ Cset(x11, eq); |
| __ Add(backtrack_stackpointer(), |
| backtrack_stackpointer(), Operand(x11, LSL, kWRegSizeLog2)); |
| BranchOrBacktrack(eq, on_equal); |
| } |
| |
| void RegExpMacroAssemblerARM64::CheckNotBackReferenceIgnoreCase( |
| int start_reg, |
| Label* on_no_match) { |
| Label fallthrough; |
| |
| Register capture_start_offset = w10; |
| // Save the capture length in a callee-saved register so it will |
| // be preserved if we call a C helper. |
| Register capture_length = w19; |
| DCHECK(kCalleeSaved.IncludesAliasOf(capture_length)); |
| |
| // Find length of back-referenced capture. |
| DCHECK((start_reg % 2) == 0); |
| if (start_reg < kNumCachedRegisters) { |
| __ Mov(capture_start_offset.X(), GetCachedRegister(start_reg)); |
| __ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits); |
| } else { |
| __ Ldp(w11, capture_start_offset, capture_location(start_reg, x10)); |
| } |
| __ Sub(capture_length, w11, capture_start_offset); // Length to check. |
| // Succeed on empty capture (including no capture). |
| __ Cbz(capture_length, &fallthrough); |
| |
| // Check that there are enough characters left in the input. |
| __ Cmn(capture_length, current_input_offset()); |
| BranchOrBacktrack(gt, on_no_match); |
| |
| if (mode_ == LATIN1) { |
| Label success; |
| Label fail; |
| Label loop_check; |
| |
| Register capture_start_address = x12; |
| Register capture_end_addresss = x13; |
| Register current_position_address = x14; |
| |
| __ Add(capture_start_address, |
| input_end(), |
| Operand(capture_start_offset, SXTW)); |
| __ Add(capture_end_addresss, |
| capture_start_address, |
| Operand(capture_length, SXTW)); |
| __ Add(current_position_address, |
| input_end(), |
| Operand(current_input_offset(), SXTW)); |
| |
| Label loop; |
| __ Bind(&loop); |
| __ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex)); |
| __ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex)); |
| __ Cmp(w10, w11); |
| __ B(eq, &loop_check); |
| |
| // Mismatch, try case-insensitive match (converting letters to lower-case). |
| __ Orr(w10, w10, 0x20); // Convert capture character to lower-case. |
| __ Orr(w11, w11, 0x20); // Also convert input character. |
| __ Cmp(w11, w10); |
| __ B(ne, &fail); |
| __ Sub(w10, w10, 'a'); |
| __ Cmp(w10, 'z' - 'a'); // Is w10 a lowercase letter? |
| __ B(ls, &loop_check); // In range 'a'-'z'. |
| // Latin-1: Check for values in range [224,254] but not 247. |
| __ Sub(w10, w10, 224 - 'a'); |
| __ Cmp(w10, 254 - 224); |
| __ Ccmp(w10, 247 - 224, ZFlag, ls); // Check for 247. |
| __ B(eq, &fail); // Weren't Latin-1 letters. |
| |
| __ Bind(&loop_check); |
| __ Cmp(capture_start_address, capture_end_addresss); |
| __ B(lt, &loop); |
| __ B(&success); |
| |
| __ Bind(&fail); |
| BranchOrBacktrack(al, on_no_match); |
| |
| __ Bind(&success); |
| // Compute new value of character position after the matched part. |
| __ Sub(current_input_offset().X(), current_position_address, input_end()); |
| if (masm_->emit_debug_code()) { |
| __ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW)); |
| __ Ccmp(current_input_offset(), 0, NoFlag, eq); |
| // The current input offset should be <= 0, and fit in a W register. |
| __ Check(le, kOffsetOutOfRange); |
| } |
| } else { |
| DCHECK(mode_ == UC16); |
| int argument_count = 4; |
| |
| // The cached registers need to be retained. |
| CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7); |
| DCHECK((cached_registers.Count() * 2) == kNumCachedRegisters); |
| __ PushCPURegList(cached_registers); |
| |
| // Put arguments into arguments registers. |
| // Parameters are |
| // x0: Address byte_offset1 - Address captured substring's start. |
| // x1: Address byte_offset2 - Address of current character position. |
| // w2: size_t byte_length - length of capture in bytes(!) |
| // x3: Isolate* isolate |
| |
| // Address of start of capture. |
| __ Add(x0, input_end(), Operand(capture_start_offset, SXTW)); |
| // Length of capture. |
| __ Mov(w2, capture_length); |
| // Address of current input position. |
| __ Add(x1, input_end(), Operand(current_input_offset(), SXTW)); |
| // Isolate. |
| __ Mov(x3, ExternalReference::isolate_address(isolate())); |
| |
| { |
| AllowExternalCallThatCantCauseGC scope(masm_); |
| ExternalReference function = |
| ExternalReference::re_case_insensitive_compare_uc16(isolate()); |
| __ CallCFunction(function, argument_count); |
| } |
| |
| // Check if function returned non-zero for success or zero for failure. |
| // x0 is one of the registers used as a cache so it must be tested before |
| // the cache is restored. |
| __ Cmp(x0, 0); |
| __ PopCPURegList(cached_registers); |
| BranchOrBacktrack(eq, on_no_match); |
| |
| // On success, increment position by length of capture. |
| __ Add(current_input_offset(), current_input_offset(), capture_length); |
| } |
| |
| __ Bind(&fallthrough); |
| } |
| |
| void RegExpMacroAssemblerARM64::CheckNotBackReference( |
| int start_reg, |
| Label* on_no_match) { |
| Label fallthrough; |
| |
| Register capture_start_address = x12; |
| Register capture_end_address = x13; |
| Register current_position_address = x14; |
| Register capture_length = w15; |
| |
| // Find length of back-referenced capture. |
| DCHECK((start_reg % 2) == 0); |
| if (start_reg < kNumCachedRegisters) { |
| __ Mov(x10, GetCachedRegister(start_reg)); |
| __ Lsr(x11, GetCachedRegister(start_reg), kWRegSizeInBits); |
| } else { |
| __ Ldp(w11, w10, capture_location(start_reg, x10)); |
| } |
| __ Sub(capture_length, w11, w10); // Length to check. |
| // Succeed on empty capture (including no capture). |
| __ Cbz(capture_length, &fallthrough); |
| |
| // Check that there are enough characters left in the input. |
| __ Cmn(capture_length, current_input_offset()); |
| BranchOrBacktrack(gt, on_no_match); |
| |
| // Compute pointers to match string and capture string |
| __ Add(capture_start_address, input_end(), Operand(w10, SXTW)); |
| __ Add(capture_end_address, |
| capture_start_address, |
| Operand(capture_length, SXTW)); |
| __ Add(current_position_address, |
| input_end(), |
| Operand(current_input_offset(), SXTW)); |
| |
| Label loop; |
| __ Bind(&loop); |
| if (mode_ == LATIN1) { |
| __ Ldrb(w10, MemOperand(capture_start_address, 1, PostIndex)); |
| __ Ldrb(w11, MemOperand(current_position_address, 1, PostIndex)); |
| } else { |
| DCHECK(mode_ == UC16); |
| __ Ldrh(w10, MemOperand(capture_start_address, 2, PostIndex)); |
| __ Ldrh(w11, MemOperand(current_position_address, 2, PostIndex)); |
| } |
| __ Cmp(w10, w11); |
| BranchOrBacktrack(ne, on_no_match); |
| __ Cmp(capture_start_address, capture_end_address); |
| __ B(lt, &loop); |
| |
| // Move current character position to position after match. |
| __ Sub(current_input_offset().X(), current_position_address, input_end()); |
| if (masm_->emit_debug_code()) { |
| __ Cmp(current_input_offset().X(), Operand(current_input_offset(), SXTW)); |
| __ Ccmp(current_input_offset(), 0, NoFlag, eq); |
| // The current input offset should be <= 0, and fit in a W register. |
| __ Check(le, kOffsetOutOfRange); |
| } |
| __ Bind(&fallthrough); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckNotCharacter(unsigned c, |
| Label* on_not_equal) { |
| CompareAndBranchOrBacktrack(current_character(), c, ne, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckCharacterAfterAnd(uint32_t c, |
| uint32_t mask, |
| Label* on_equal) { |
| __ And(w10, current_character(), mask); |
| CompareAndBranchOrBacktrack(w10, c, eq, on_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckNotCharacterAfterAnd(unsigned c, |
| unsigned mask, |
| Label* on_not_equal) { |
| __ And(w10, current_character(), mask); |
| CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckNotCharacterAfterMinusAnd( |
| uc16 c, |
| uc16 minus, |
| uc16 mask, |
| Label* on_not_equal) { |
| DCHECK(minus < String::kMaxUtf16CodeUnit); |
| __ Sub(w10, current_character(), minus); |
| __ And(w10, w10, mask); |
| CompareAndBranchOrBacktrack(w10, c, ne, on_not_equal); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckCharacterInRange( |
| uc16 from, |
| uc16 to, |
| Label* on_in_range) { |
| __ Sub(w10, current_character(), from); |
| // Unsigned lower-or-same condition. |
| CompareAndBranchOrBacktrack(w10, to - from, ls, on_in_range); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckCharacterNotInRange( |
| uc16 from, |
| uc16 to, |
| Label* on_not_in_range) { |
| __ Sub(w10, current_character(), from); |
| // Unsigned higher condition. |
| CompareAndBranchOrBacktrack(w10, to - from, hi, on_not_in_range); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckBitInTable( |
| Handle<ByteArray> table, |
| Label* on_bit_set) { |
| __ Mov(x11, Operand(table)); |
| if ((mode_ != LATIN1) || (kTableMask != String::kMaxOneByteCharCode)) { |
| __ And(w10, current_character(), kTableMask); |
| __ Add(w10, w10, ByteArray::kHeaderSize - kHeapObjectTag); |
| } else { |
| __ Add(w10, current_character(), ByteArray::kHeaderSize - kHeapObjectTag); |
| } |
| __ Ldrb(w11, MemOperand(x11, w10, UXTW)); |
| CompareAndBranchOrBacktrack(w11, 0, ne, on_bit_set); |
| } |
| |
| |
| bool RegExpMacroAssemblerARM64::CheckSpecialCharacterClass(uc16 type, |
| Label* on_no_match) { |
| // Range checks (c in min..max) are generally implemented by an unsigned |
| // (c - min) <= (max - min) check |
| switch (type) { |
| case 's': |
| // Match space-characters |
| if (mode_ == LATIN1) { |
| // One byte space characters are '\t'..'\r', ' ' and \u00a0. |
| Label success; |
| // Check for ' ' or 0x00a0. |
| __ Cmp(current_character(), ' '); |
| __ Ccmp(current_character(), 0x00a0, ZFlag, ne); |
| __ B(eq, &success); |
| // Check range 0x09..0x0d. |
| __ Sub(w10, current_character(), '\t'); |
| CompareAndBranchOrBacktrack(w10, '\r' - '\t', hi, on_no_match); |
| __ Bind(&success); |
| return true; |
| } |
| return false; |
| case 'S': |
| // The emitted code for generic character classes is good enough. |
| return false; |
| case 'd': |
| // Match ASCII digits ('0'..'9'). |
| __ Sub(w10, current_character(), '0'); |
| CompareAndBranchOrBacktrack(w10, '9' - '0', hi, on_no_match); |
| return true; |
| case 'D': |
| // Match ASCII non-digits. |
| __ Sub(w10, current_character(), '0'); |
| CompareAndBranchOrBacktrack(w10, '9' - '0', ls, on_no_match); |
| return true; |
| case '.': { |
| // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029) |
| // Here we emit the conditional branch only once at the end to make branch |
| // prediction more efficient, even though we could branch out of here |
| // as soon as a character matches. |
| __ Cmp(current_character(), 0x0a); |
| __ Ccmp(current_character(), 0x0d, ZFlag, ne); |
| if (mode_ == UC16) { |
| __ Sub(w10, current_character(), 0x2028); |
| // If the Z flag was set we clear the flags to force a branch. |
| __ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne); |
| // ls -> !((C==1) && (Z==0)) |
| BranchOrBacktrack(ls, on_no_match); |
| } else { |
| BranchOrBacktrack(eq, on_no_match); |
| } |
| return true; |
| } |
| case 'n': { |
| // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029) |
| // We have to check all 4 newline characters before emitting |
| // the conditional branch. |
| __ Cmp(current_character(), 0x0a); |
| __ Ccmp(current_character(), 0x0d, ZFlag, ne); |
| if (mode_ == UC16) { |
| __ Sub(w10, current_character(), 0x2028); |
| // If the Z flag was set we clear the flags to force a fall-through. |
| __ Ccmp(w10, 0x2029 - 0x2028, NoFlag, ne); |
| // hi -> (C==1) && (Z==0) |
| BranchOrBacktrack(hi, on_no_match); |
| } else { |
| BranchOrBacktrack(ne, on_no_match); |
| } |
| return true; |
| } |
| case 'w': { |
| if (mode_ != LATIN1) { |
| // Table is 256 entries, so all Latin1 characters can be tested. |
| CompareAndBranchOrBacktrack(current_character(), 'z', hi, on_no_match); |
| } |
| ExternalReference map = ExternalReference::re_word_character_map(); |
| __ Mov(x10, map); |
| __ Ldrb(w10, MemOperand(x10, current_character(), UXTW)); |
| CompareAndBranchOrBacktrack(w10, 0, eq, on_no_match); |
| return true; |
| } |
| case 'W': { |
| Label done; |
| if (mode_ != LATIN1) { |
| // Table is 256 entries, so all Latin1 characters can be tested. |
| __ Cmp(current_character(), 'z'); |
| __ B(hi, &done); |
| } |
| ExternalReference map = ExternalReference::re_word_character_map(); |
| __ Mov(x10, map); |
| __ Ldrb(w10, MemOperand(x10, current_character(), UXTW)); |
| CompareAndBranchOrBacktrack(w10, 0, ne, on_no_match); |
| __ Bind(&done); |
| return true; |
| } |
| case '*': |
| // Match any character. |
| return true; |
| // No custom implementation (yet): s(UC16), S(UC16). |
| default: |
| return false; |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::Fail() { |
| __ Mov(w0, FAILURE); |
| __ B(&exit_label_); |
| } |
| |
| |
| Handle<HeapObject> RegExpMacroAssemblerARM64::GetCode(Handle<String> source) { |
| Label return_w0; |
| // Finalize code - write the entry point code now we know how many |
| // registers we need. |
| |
| // Entry code: |
| __ Bind(&entry_label_); |
| |
| // Arguments on entry: |
| // x0: String* input |
| // x1: int start_offset |
| // x2: byte* input_start |
| // x3: byte* input_end |
| // x4: int* output array |
| // x5: int output array size |
| // x6: Address stack_base |
| // x7: int direct_call |
| |
| // The stack pointer should be csp on entry. |
| // csp[8]: address of the current isolate |
| // csp[0]: secondary link/return address used by native call |
| |
| // Tell the system that we have a stack frame. Because the type is MANUAL, no |
| // code is generated. |
| FrameScope scope(masm_, StackFrame::MANUAL); |
| |
| // Push registers on the stack, only push the argument registers that we need. |
| CPURegList argument_registers(x0, x5, x6, x7); |
| |
| CPURegList registers_to_retain = kCalleeSaved; |
| DCHECK(kCalleeSaved.Count() == 11); |
| registers_to_retain.Combine(lr); |
| |
| DCHECK(csp.Is(__ StackPointer())); |
| __ PushCPURegList(registers_to_retain); |
| __ PushCPURegList(argument_registers); |
| |
| // Set frame pointer in place. |
| __ Add(frame_pointer(), csp, argument_registers.Count() * kPointerSize); |
| |
| // Initialize callee-saved registers. |
| __ Mov(start_offset(), w1); |
| __ Mov(input_start(), x2); |
| __ Mov(input_end(), x3); |
| __ Mov(output_array(), x4); |
| |
| // Set the number of registers we will need to allocate, that is: |
| // - success_counter (X register) |
| // - (num_registers_ - kNumCachedRegisters) (W registers) |
| int num_wreg_to_allocate = num_registers_ - kNumCachedRegisters; |
| // Do not allocate registers on the stack if they can all be cached. |
| if (num_wreg_to_allocate < 0) { num_wreg_to_allocate = 0; } |
| // Make room for the success_counter. |
| num_wreg_to_allocate += 2; |
| |
| // Make sure the stack alignment will be respected. |
| int alignment = masm_->ActivationFrameAlignment(); |
| DCHECK_EQ(alignment % 16, 0); |
| int align_mask = (alignment / kWRegSize) - 1; |
| num_wreg_to_allocate = (num_wreg_to_allocate + align_mask) & ~align_mask; |
| |
| // Check if we have space on the stack. |
| Label stack_limit_hit; |
| Label stack_ok; |
| |
| ExternalReference stack_limit = |
| ExternalReference::address_of_stack_limit(isolate()); |
| __ Mov(x10, stack_limit); |
| __ Ldr(x10, MemOperand(x10)); |
| __ Subs(x10, csp, x10); |
| |
| // Handle it if the stack pointer is already below the stack limit. |
| __ B(ls, &stack_limit_hit); |
| |
| // Check if there is room for the variable number of registers above |
| // the stack limit. |
| __ Cmp(x10, num_wreg_to_allocate * kWRegSize); |
| __ B(hs, &stack_ok); |
| |
| // Exit with OutOfMemory exception. There is not enough space on the stack |
| // for our working registers. |
| __ Mov(w0, EXCEPTION); |
| __ B(&return_w0); |
| |
| __ Bind(&stack_limit_hit); |
| CallCheckStackGuardState(x10); |
| // If returned value is non-zero, we exit with the returned value as result. |
| __ Cbnz(w0, &return_w0); |
| |
| __ Bind(&stack_ok); |
| |
| // Allocate space on stack. |
| __ Claim(num_wreg_to_allocate, kWRegSize); |
| |
| // Initialize success_counter with 0. |
| __ Str(wzr, MemOperand(frame_pointer(), kSuccessCounter)); |
| |
| // Find negative length (offset of start relative to end). |
| __ Sub(x10, input_start(), input_end()); |
| if (masm_->emit_debug_code()) { |
| // Check that the input string length is < 2^30. |
| __ Neg(x11, x10); |
| __ Cmp(x11, (1<<30) - 1); |
| __ Check(ls, kInputStringTooLong); |
| } |
| __ Mov(current_input_offset(), w10); |
| |
| // The non-position value is used as a clearing value for the |
| // capture registers, it corresponds to the position of the first character |
| // minus one. |
| __ Sub(non_position_value(), current_input_offset(), char_size()); |
| __ Sub(non_position_value(), non_position_value(), |
| Operand(start_offset(), LSL, (mode_ == UC16) ? 1 : 0)); |
| // We can store this value twice in an X register for initializing |
| // on-stack registers later. |
| __ Orr(twice_non_position_value(), |
| non_position_value().X(), |
| Operand(non_position_value().X(), LSL, kWRegSizeInBits)); |
| |
| // Initialize code pointer register. |
| __ Mov(code_pointer(), Operand(masm_->CodeObject())); |
| |
| Label load_char_start_regexp, start_regexp; |
| // Load newline if index is at start, previous character otherwise. |
| __ Cbnz(start_offset(), &load_char_start_regexp); |
| __ Mov(current_character(), '\n'); |
| __ B(&start_regexp); |
| |
| // Global regexp restarts matching here. |
| __ Bind(&load_char_start_regexp); |
| // Load previous char as initial value of current character register. |
| LoadCurrentCharacterUnchecked(-1, 1); |
| __ Bind(&start_regexp); |
| // Initialize on-stack registers. |
| if (num_saved_registers_ > 0) { |
| ClearRegisters(0, num_saved_registers_ - 1); |
| } |
| |
| // Initialize backtrack stack pointer. |
| __ Ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackBase)); |
| |
| // Execute |
| __ B(&start_label_); |
| |
| if (backtrack_label_.is_linked()) { |
| __ Bind(&backtrack_label_); |
| Backtrack(); |
| } |
| |
| if (success_label_.is_linked()) { |
| Register first_capture_start = w15; |
| |
| // Save captures when successful. |
| __ Bind(&success_label_); |
| |
| if (num_saved_registers_ > 0) { |
| // V8 expects the output to be an int32_t array. |
| Register capture_start = w12; |
| Register capture_end = w13; |
| Register input_length = w14; |
| |
| // Copy captures to output. |
| |
| // Get string length. |
| __ Sub(x10, input_end(), input_start()); |
| if (masm_->emit_debug_code()) { |
| // Check that the input string length is < 2^30. |
| __ Cmp(x10, (1<<30) - 1); |
| __ Check(ls, kInputStringTooLong); |
| } |
| // input_start has a start_offset offset on entry. We need to include |
| // it when computing the length of the whole string. |
| if (mode_ == UC16) { |
| __ Add(input_length, start_offset(), Operand(w10, LSR, 1)); |
| } else { |
| __ Add(input_length, start_offset(), w10); |
| } |
| |
| // Copy the results to the output array from the cached registers first. |
| for (int i = 0; |
| (i < num_saved_registers_) && (i < kNumCachedRegisters); |
| i += 2) { |
| __ Mov(capture_start.X(), GetCachedRegister(i)); |
| __ Lsr(capture_end.X(), capture_start.X(), kWRegSizeInBits); |
| if ((i == 0) && global_with_zero_length_check()) { |
| // Keep capture start for the zero-length check later. |
| __ Mov(first_capture_start, capture_start); |
| } |
| // Offsets need to be relative to the start of the string. |
| if (mode_ == UC16) { |
| __ Add(capture_start, input_length, Operand(capture_start, ASR, 1)); |
| __ Add(capture_end, input_length, Operand(capture_end, ASR, 1)); |
| } else { |
| __ Add(capture_start, input_length, capture_start); |
| __ Add(capture_end, input_length, capture_end); |
| } |
| // The output pointer advances for a possible global match. |
| __ Stp(capture_start, |
| capture_end, |
| MemOperand(output_array(), kPointerSize, PostIndex)); |
| } |
| |
| // Only carry on if there are more than kNumCachedRegisters capture |
| // registers. |
| int num_registers_left_on_stack = |
| num_saved_registers_ - kNumCachedRegisters; |
| if (num_registers_left_on_stack > 0) { |
| Register base = x10; |
| // There are always an even number of capture registers. A couple of |
| // registers determine one match with two offsets. |
| DCHECK_EQ(0, num_registers_left_on_stack % 2); |
| __ Add(base, frame_pointer(), kFirstCaptureOnStack); |
| |
| // We can unroll the loop here, we should not unroll for less than 2 |
| // registers. |
| STATIC_ASSERT(kNumRegistersToUnroll > 2); |
| if (num_registers_left_on_stack <= kNumRegistersToUnroll) { |
| for (int i = 0; i < num_registers_left_on_stack / 2; i++) { |
| __ Ldp(capture_end, |
| capture_start, |
| MemOperand(base, -kPointerSize, PostIndex)); |
| if ((i == 0) && global_with_zero_length_check()) { |
| // Keep capture start for the zero-length check later. |
| __ Mov(first_capture_start, capture_start); |
| } |
| // Offsets need to be relative to the start of the string. |
| if (mode_ == UC16) { |
| __ Add(capture_start, |
| input_length, |
| Operand(capture_start, ASR, 1)); |
| __ Add(capture_end, input_length, Operand(capture_end, ASR, 1)); |
| } else { |
| __ Add(capture_start, input_length, capture_start); |
| __ Add(capture_end, input_length, capture_end); |
| } |
| // The output pointer advances for a possible global match. |
| __ Stp(capture_start, |
| capture_end, |
| MemOperand(output_array(), kPointerSize, PostIndex)); |
| } |
| } else { |
| Label loop, start; |
| __ Mov(x11, num_registers_left_on_stack); |
| |
| __ Ldp(capture_end, |
| capture_start, |
| MemOperand(base, -kPointerSize, PostIndex)); |
| if (global_with_zero_length_check()) { |
| __ Mov(first_capture_start, capture_start); |
| } |
| __ B(&start); |
| |
| __ Bind(&loop); |
| __ Ldp(capture_end, |
| capture_start, |
| MemOperand(base, -kPointerSize, PostIndex)); |
| __ Bind(&start); |
| if (mode_ == UC16) { |
| __ Add(capture_start, input_length, Operand(capture_start, ASR, 1)); |
| __ Add(capture_end, input_length, Operand(capture_end, ASR, 1)); |
| } else { |
| __ Add(capture_start, input_length, capture_start); |
| __ Add(capture_end, input_length, capture_end); |
| } |
| // The output pointer advances for a possible global match. |
| __ Stp(capture_start, |
| capture_end, |
| MemOperand(output_array(), kPointerSize, PostIndex)); |
| __ Sub(x11, x11, 2); |
| __ Cbnz(x11, &loop); |
| } |
| } |
| } |
| |
| if (global()) { |
| Register success_counter = w0; |
| Register output_size = x10; |
| // Restart matching if the regular expression is flagged as global. |
| |
| // Increment success counter. |
| __ Ldr(success_counter, MemOperand(frame_pointer(), kSuccessCounter)); |
| __ Add(success_counter, success_counter, 1); |
| __ Str(success_counter, MemOperand(frame_pointer(), kSuccessCounter)); |
| |
| // Capture results have been stored, so the number of remaining global |
| // output registers is reduced by the number of stored captures. |
| __ Ldr(output_size, MemOperand(frame_pointer(), kOutputSize)); |
| __ Sub(output_size, output_size, num_saved_registers_); |
| // Check whether we have enough room for another set of capture results. |
| __ Cmp(output_size, num_saved_registers_); |
| __ B(lt, &return_w0); |
| |
| // The output pointer is already set to the next field in the output |
| // array. |
| // Update output size on the frame before we restart matching. |
| __ Str(output_size, MemOperand(frame_pointer(), kOutputSize)); |
| |
| if (global_with_zero_length_check()) { |
| // Special case for zero-length matches. |
| __ Cmp(current_input_offset(), first_capture_start); |
| // Not a zero-length match, restart. |
| __ B(ne, &load_char_start_regexp); |
| // Offset from the end is zero if we already reached the end. |
| __ Cbz(current_input_offset(), &return_w0); |
| // Advance current position after a zero-length match. |
| __ Add(current_input_offset(), |
| current_input_offset(), |
| Operand((mode_ == UC16) ? 2 : 1)); |
| } |
| |
| __ B(&load_char_start_regexp); |
| } else { |
| __ Mov(w0, SUCCESS); |
| } |
| } |
| |
| if (exit_label_.is_linked()) { |
| // Exit and return w0 |
| __ Bind(&exit_label_); |
| if (global()) { |
| __ Ldr(w0, MemOperand(frame_pointer(), kSuccessCounter)); |
| } |
| } |
| |
| __ Bind(&return_w0); |
| |
| // Set stack pointer back to first register to retain |
| DCHECK(csp.Is(__ StackPointer())); |
| __ Mov(csp, fp); |
| __ AssertStackConsistency(); |
| |
| // Restore registers. |
| __ PopCPURegList(registers_to_retain); |
| |
| __ Ret(); |
| |
| Label exit_with_exception; |
| // Registers x0 to x7 are used to store the first captures, they need to be |
| // retained over calls to C++ code. |
| CPURegList cached_registers(CPURegister::kRegister, kXRegSizeInBits, 0, 7); |
| DCHECK((cached_registers.Count() * 2) == kNumCachedRegisters); |
| |
| if (check_preempt_label_.is_linked()) { |
| __ Bind(&check_preempt_label_); |
| SaveLinkRegister(); |
| // The cached registers need to be retained. |
| __ PushCPURegList(cached_registers); |
| CallCheckStackGuardState(x10); |
| // Returning from the regexp code restores the stack (csp <- fp) |
| // so we don't need to drop the link register from it before exiting. |
| __ Cbnz(w0, &return_w0); |
| // Reset the cached registers. |
| __ PopCPURegList(cached_registers); |
| RestoreLinkRegister(); |
| __ Ret(); |
| } |
| |
| if (stack_overflow_label_.is_linked()) { |
| __ Bind(&stack_overflow_label_); |
| SaveLinkRegister(); |
| // The cached registers need to be retained. |
| __ PushCPURegList(cached_registers); |
| // Call GrowStack(backtrack_stackpointer(), &stack_base) |
| __ Mov(x2, ExternalReference::isolate_address(isolate())); |
| __ Add(x1, frame_pointer(), kStackBase); |
| __ Mov(x0, backtrack_stackpointer()); |
| ExternalReference grow_stack = |
| ExternalReference::re_grow_stack(isolate()); |
| __ CallCFunction(grow_stack, 3); |
| // If return NULL, we have failed to grow the stack, and |
| // must exit with a stack-overflow exception. |
| // Returning from the regexp code restores the stack (csp <- fp) |
| // so we don't need to drop the link register from it before exiting. |
| __ Cbz(w0, &exit_with_exception); |
| // Otherwise use return value as new stack pointer. |
| __ Mov(backtrack_stackpointer(), x0); |
| // Reset the cached registers. |
| __ PopCPURegList(cached_registers); |
| RestoreLinkRegister(); |
| __ Ret(); |
| } |
| |
| if (exit_with_exception.is_linked()) { |
| __ Bind(&exit_with_exception); |
| __ Mov(w0, EXCEPTION); |
| __ B(&return_w0); |
| } |
| |
| CodeDesc code_desc; |
| masm_->GetCode(&code_desc); |
| Handle<Code> code = isolate()->factory()->NewCode( |
| code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject()); |
| PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source)); |
| return Handle<HeapObject>::cast(code); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::GoTo(Label* to) { |
| BranchOrBacktrack(al, to); |
| } |
| |
| void RegExpMacroAssemblerARM64::IfRegisterGE(int reg, int comparand, |
| Label* if_ge) { |
| Register to_compare = GetRegister(reg, w10); |
| CompareAndBranchOrBacktrack(to_compare, comparand, ge, if_ge); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::IfRegisterLT(int reg, int comparand, |
| Label* if_lt) { |
| Register to_compare = GetRegister(reg, w10); |
| CompareAndBranchOrBacktrack(to_compare, comparand, lt, if_lt); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::IfRegisterEqPos(int reg, Label* if_eq) { |
| Register to_compare = GetRegister(reg, w10); |
| __ Cmp(to_compare, current_input_offset()); |
| BranchOrBacktrack(eq, if_eq); |
| } |
| |
| RegExpMacroAssembler::IrregexpImplementation |
| RegExpMacroAssemblerARM64::Implementation() { |
| return kARM64Implementation; |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::LoadCurrentCharacter(int cp_offset, |
| Label* on_end_of_input, |
| bool check_bounds, |
| int characters) { |
| // TODO(pielan): Make sure long strings are caught before this, and not |
| // just asserted in debug mode. |
| DCHECK(cp_offset >= -1); // ^ and \b can look behind one character. |
| // Be sane! (And ensure that an int32_t can be used to index the string) |
| DCHECK(cp_offset < (1<<30)); |
| if (check_bounds) { |
| CheckPosition(cp_offset + characters - 1, on_end_of_input); |
| } |
| LoadCurrentCharacterUnchecked(cp_offset, characters); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::PopCurrentPosition() { |
| Pop(current_input_offset()); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::PopRegister(int register_index) { |
| Pop(w10); |
| StoreRegister(register_index, w10); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::PushBacktrack(Label* label) { |
| if (label->is_bound()) { |
| int target = label->pos(); |
| __ Mov(w10, target + Code::kHeaderSize - kHeapObjectTag); |
| } else { |
| __ Adr(x10, label, MacroAssembler::kAdrFar); |
| __ Sub(x10, x10, code_pointer()); |
| if (masm_->emit_debug_code()) { |
| __ Cmp(x10, kWRegMask); |
| // The code offset has to fit in a W register. |
| __ Check(ls, kOffsetOutOfRange); |
| } |
| } |
| Push(w10); |
| CheckStackLimit(); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::PushCurrentPosition() { |
| Push(current_input_offset()); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::PushRegister(int register_index, |
| StackCheckFlag check_stack_limit) { |
| Register to_push = GetRegister(register_index, w10); |
| Push(to_push); |
| if (check_stack_limit) CheckStackLimit(); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::ReadCurrentPositionFromRegister(int reg) { |
| Register cached_register; |
| RegisterState register_state = GetRegisterState(reg); |
| switch (register_state) { |
| case STACKED: |
| __ Ldr(current_input_offset(), register_location(reg)); |
| break; |
| case CACHED_LSW: |
| cached_register = GetCachedRegister(reg); |
| __ Mov(current_input_offset(), cached_register.W()); |
| break; |
| case CACHED_MSW: |
| cached_register = GetCachedRegister(reg); |
| __ Lsr(current_input_offset().X(), cached_register, kWRegSizeInBits); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::ReadStackPointerFromRegister(int reg) { |
| Register read_from = GetRegister(reg, w10); |
| __ Ldr(x11, MemOperand(frame_pointer(), kStackBase)); |
| __ Add(backtrack_stackpointer(), x11, Operand(read_from, SXTW)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::SetCurrentPositionFromEnd(int by) { |
| Label after_position; |
| __ Cmp(current_input_offset(), -by * char_size()); |
| __ B(ge, &after_position); |
| __ Mov(current_input_offset(), -by * char_size()); |
| // On RegExp code entry (where this operation is used), the character before |
| // the current position is expected to be already loaded. |
| // We have advanced the position, so it's safe to read backwards. |
| LoadCurrentCharacterUnchecked(-1, 1); |
| __ Bind(&after_position); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::SetRegister(int register_index, int to) { |
| DCHECK(register_index >= num_saved_registers_); // Reserved for positions! |
| Register set_to = wzr; |
| if (to != 0) { |
| set_to = w10; |
| __ Mov(set_to, to); |
| } |
| StoreRegister(register_index, set_to); |
| } |
| |
| |
| bool RegExpMacroAssemblerARM64::Succeed() { |
| __ B(&success_label_); |
| return global(); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::WriteCurrentPositionToRegister(int reg, |
| int cp_offset) { |
| Register position = current_input_offset(); |
| if (cp_offset != 0) { |
| position = w10; |
| __ Add(position, current_input_offset(), cp_offset * char_size()); |
| } |
| StoreRegister(reg, position); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::ClearRegisters(int reg_from, int reg_to) { |
| DCHECK(reg_from <= reg_to); |
| int num_registers = reg_to - reg_from + 1; |
| |
| // If the first capture register is cached in a hardware register but not |
| // aligned on a 64-bit one, we need to clear the first one specifically. |
| if ((reg_from < kNumCachedRegisters) && ((reg_from % 2) != 0)) { |
| StoreRegister(reg_from, non_position_value()); |
| num_registers--; |
| reg_from++; |
| } |
| |
| // Clear cached registers in pairs as far as possible. |
| while ((num_registers >= 2) && (reg_from < kNumCachedRegisters)) { |
| DCHECK(GetRegisterState(reg_from) == CACHED_LSW); |
| __ Mov(GetCachedRegister(reg_from), twice_non_position_value()); |
| reg_from += 2; |
| num_registers -= 2; |
| } |
| |
| if ((num_registers % 2) == 1) { |
| StoreRegister(reg_from, non_position_value()); |
| num_registers--; |
| reg_from++; |
| } |
| |
| if (num_registers > 0) { |
| // If there are some remaining registers, they are stored on the stack. |
| DCHECK(reg_from >= kNumCachedRegisters); |
| |
| // Move down the indexes of the registers on stack to get the correct offset |
| // in memory. |
| reg_from -= kNumCachedRegisters; |
| reg_to -= kNumCachedRegisters; |
| // We should not unroll the loop for less than 2 registers. |
| STATIC_ASSERT(kNumRegistersToUnroll > 2); |
| // We position the base pointer to (reg_from + 1). |
| int base_offset = kFirstRegisterOnStack - |
| kWRegSize - (kWRegSize * reg_from); |
| if (num_registers > kNumRegistersToUnroll) { |
| Register base = x10; |
| __ Add(base, frame_pointer(), base_offset); |
| |
| Label loop; |
| __ Mov(x11, num_registers); |
| __ Bind(&loop); |
| __ Str(twice_non_position_value(), |
| MemOperand(base, -kPointerSize, PostIndex)); |
| __ Sub(x11, x11, 2); |
| __ Cbnz(x11, &loop); |
| } else { |
| for (int i = reg_from; i <= reg_to; i += 2) { |
| __ Str(twice_non_position_value(), |
| MemOperand(frame_pointer(), base_offset)); |
| base_offset -= kWRegSize * 2; |
| } |
| } |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::WriteStackPointerToRegister(int reg) { |
| __ Ldr(x10, MemOperand(frame_pointer(), kStackBase)); |
| __ Sub(x10, backtrack_stackpointer(), x10); |
| if (masm_->emit_debug_code()) { |
| __ Cmp(x10, Operand(w10, SXTW)); |
| // The stack offset needs to fit in a W register. |
| __ Check(eq, kOffsetOutOfRange); |
| } |
| StoreRegister(reg, w10); |
| } |
| |
| |
| // Helper function for reading a value out of a stack frame. |
| template <typename T> |
| static T& frame_entry(Address re_frame, int frame_offset) { |
| return *reinterpret_cast<T*>(re_frame + frame_offset); |
| } |
| |
| |
| template <typename T> |
| static T* frame_entry_address(Address re_frame, int frame_offset) { |
| return reinterpret_cast<T*>(re_frame + frame_offset); |
| } |
| |
| |
| int RegExpMacroAssemblerARM64::CheckStackGuardState( |
| Address* return_address, Code* re_code, Address re_frame, int start_index, |
| const byte** input_start, const byte** input_end) { |
| return NativeRegExpMacroAssembler::CheckStackGuardState( |
| frame_entry<Isolate*>(re_frame, kIsolate), start_index, |
| frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code, |
| frame_entry_address<String*>(re_frame, kInput), input_start, input_end); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckPosition(int cp_offset, |
| Label* on_outside_input) { |
| CompareAndBranchOrBacktrack(current_input_offset(), |
| -cp_offset * char_size(), |
| ge, |
| on_outside_input); |
| } |
| |
| |
| bool RegExpMacroAssemblerARM64::CanReadUnaligned() { |
| // TODO(pielan): See whether or not we should disable unaligned accesses. |
| return !slow_safe(); |
| } |
| |
| |
| // Private methods: |
| |
| void RegExpMacroAssemblerARM64::CallCheckStackGuardState(Register scratch) { |
| // Allocate space on the stack to store the return address. The |
| // CheckStackGuardState C++ function will override it if the code |
| // moved. Allocate extra space for 2 arguments passed by pointers. |
| // AAPCS64 requires the stack to be 16 byte aligned. |
| int alignment = masm_->ActivationFrameAlignment(); |
| DCHECK_EQ(alignment % 16, 0); |
| int align_mask = (alignment / kXRegSize) - 1; |
| int xreg_to_claim = (3 + align_mask) & ~align_mask; |
| |
| DCHECK(csp.Is(__ StackPointer())); |
| __ Claim(xreg_to_claim); |
| |
| // CheckStackGuardState needs the end and start addresses of the input string. |
| __ Poke(input_end(), 2 * kPointerSize); |
| __ Add(x5, csp, 2 * kPointerSize); |
| __ Poke(input_start(), kPointerSize); |
| __ Add(x4, csp, kPointerSize); |
| |
| __ Mov(w3, start_offset()); |
| // RegExp code frame pointer. |
| __ Mov(x2, frame_pointer()); |
| // Code* of self. |
| __ Mov(x1, Operand(masm_->CodeObject())); |
| |
| // We need to pass a pointer to the return address as first argument. |
| // The DirectCEntry stub will place the return address on the stack before |
| // calling so the stack pointer will point to it. |
| __ Mov(x0, csp); |
| |
| ExternalReference check_stack_guard_state = |
| ExternalReference::re_check_stack_guard_state(isolate()); |
| __ Mov(scratch, check_stack_guard_state); |
| DirectCEntryStub stub(isolate()); |
| stub.GenerateCall(masm_, scratch); |
| |
| // The input string may have been moved in memory, we need to reload it. |
| __ Peek(input_start(), kPointerSize); |
| __ Peek(input_end(), 2 * kPointerSize); |
| |
| DCHECK(csp.Is(__ StackPointer())); |
| __ Drop(xreg_to_claim); |
| |
| // Reload the Code pointer. |
| __ Mov(code_pointer(), Operand(masm_->CodeObject())); |
| } |
| |
| void RegExpMacroAssemblerARM64::BranchOrBacktrack(Condition condition, |
| Label* to) { |
| if (condition == al) { // Unconditional. |
| if (to == NULL) { |
| Backtrack(); |
| return; |
| } |
| __ B(to); |
| return; |
| } |
| if (to == NULL) { |
| to = &backtrack_label_; |
| } |
| __ B(condition, to); |
| } |
| |
| void RegExpMacroAssemblerARM64::CompareAndBranchOrBacktrack(Register reg, |
| int immediate, |
| Condition condition, |
| Label* to) { |
| if ((immediate == 0) && ((condition == eq) || (condition == ne))) { |
| if (to == NULL) { |
| to = &backtrack_label_; |
| } |
| if (condition == eq) { |
| __ Cbz(reg, to); |
| } else { |
| __ Cbnz(reg, to); |
| } |
| } else { |
| __ Cmp(reg, immediate); |
| BranchOrBacktrack(condition, to); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckPreemption() { |
| // Check for preemption. |
| ExternalReference stack_limit = |
| ExternalReference::address_of_stack_limit(isolate()); |
| __ Mov(x10, stack_limit); |
| __ Ldr(x10, MemOperand(x10)); |
| DCHECK(csp.Is(__ StackPointer())); |
| __ Cmp(csp, x10); |
| CallIf(&check_preempt_label_, ls); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CheckStackLimit() { |
| ExternalReference stack_limit = |
| ExternalReference::address_of_regexp_stack_limit(isolate()); |
| __ Mov(x10, stack_limit); |
| __ Ldr(x10, MemOperand(x10)); |
| __ Cmp(backtrack_stackpointer(), x10); |
| CallIf(&stack_overflow_label_, ls); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::Push(Register source) { |
| DCHECK(source.Is32Bits()); |
| DCHECK(!source.is(backtrack_stackpointer())); |
| __ Str(source, |
| MemOperand(backtrack_stackpointer(), |
| -static_cast<int>(kWRegSize), |
| PreIndex)); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::Pop(Register target) { |
| DCHECK(target.Is32Bits()); |
| DCHECK(!target.is(backtrack_stackpointer())); |
| __ Ldr(target, |
| MemOperand(backtrack_stackpointer(), kWRegSize, PostIndex)); |
| } |
| |
| |
| Register RegExpMacroAssemblerARM64::GetCachedRegister(int register_index) { |
| DCHECK(register_index < kNumCachedRegisters); |
| return Register::Create(register_index / 2, kXRegSizeInBits); |
| } |
| |
| |
| Register RegExpMacroAssemblerARM64::GetRegister(int register_index, |
| Register maybe_result) { |
| DCHECK(maybe_result.Is32Bits()); |
| DCHECK(register_index >= 0); |
| if (num_registers_ <= register_index) { |
| num_registers_ = register_index + 1; |
| } |
| Register result; |
| RegisterState register_state = GetRegisterState(register_index); |
| switch (register_state) { |
| case STACKED: |
| __ Ldr(maybe_result, register_location(register_index)); |
| result = maybe_result; |
| break; |
| case CACHED_LSW: |
| result = GetCachedRegister(register_index).W(); |
| break; |
| case CACHED_MSW: |
| __ Lsr(maybe_result.X(), GetCachedRegister(register_index), |
| kWRegSizeInBits); |
| result = maybe_result; |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| DCHECK(result.Is32Bits()); |
| return result; |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::StoreRegister(int register_index, |
| Register source) { |
| DCHECK(source.Is32Bits()); |
| DCHECK(register_index >= 0); |
| if (num_registers_ <= register_index) { |
| num_registers_ = register_index + 1; |
| } |
| |
| Register cached_register; |
| RegisterState register_state = GetRegisterState(register_index); |
| switch (register_state) { |
| case STACKED: |
| __ Str(source, register_location(register_index)); |
| break; |
| case CACHED_LSW: |
| cached_register = GetCachedRegister(register_index); |
| if (!source.Is(cached_register.W())) { |
| __ Bfi(cached_register, source.X(), 0, kWRegSizeInBits); |
| } |
| break; |
| case CACHED_MSW: |
| cached_register = GetCachedRegister(register_index); |
| __ Bfi(cached_register, source.X(), kWRegSizeInBits, kWRegSizeInBits); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::CallIf(Label* to, Condition condition) { |
| Label skip_call; |
| if (condition != al) __ B(&skip_call, NegateCondition(condition)); |
| __ Bl(to); |
| __ Bind(&skip_call); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::RestoreLinkRegister() { |
| DCHECK(csp.Is(__ StackPointer())); |
| __ Pop(lr, xzr); |
| __ Add(lr, lr, Operand(masm_->CodeObject())); |
| } |
| |
| |
| void RegExpMacroAssemblerARM64::SaveLinkRegister() { |
| DCHECK(csp.Is(__ StackPointer())); |
| __ Sub(lr, lr, Operand(masm_->CodeObject())); |
| __ Push(xzr, lr); |
| } |
| |
| |
| MemOperand RegExpMacroAssemblerARM64::register_location(int register_index) { |
| DCHECK(register_index < (1<<30)); |
| DCHECK(register_index >= kNumCachedRegisters); |
| if (num_registers_ <= register_index) { |
| num_registers_ = register_index + 1; |
| } |
| register_index -= kNumCachedRegisters; |
| int offset = kFirstRegisterOnStack - register_index * kWRegSize; |
| return MemOperand(frame_pointer(), offset); |
| } |
| |
| MemOperand RegExpMacroAssemblerARM64::capture_location(int register_index, |
| Register scratch) { |
| DCHECK(register_index < (1<<30)); |
| DCHECK(register_index < num_saved_registers_); |
| DCHECK(register_index >= kNumCachedRegisters); |
| DCHECK_EQ(register_index % 2, 0); |
| register_index -= kNumCachedRegisters; |
| int offset = kFirstCaptureOnStack - register_index * kWRegSize; |
| // capture_location is used with Stp instructions to load/store 2 registers. |
| // The immediate field in the encoding is limited to 7 bits (signed). |
| if (is_int7(offset)) { |
| return MemOperand(frame_pointer(), offset); |
| } else { |
| __ Add(scratch, frame_pointer(), offset); |
| return MemOperand(scratch); |
| } |
| } |
| |
| void RegExpMacroAssemblerARM64::LoadCurrentCharacterUnchecked(int cp_offset, |
| int characters) { |
| Register offset = current_input_offset(); |
| |
| // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU |
| // and the operating system running on the target allow it. |
| // If unaligned load/stores are not supported then this function must only |
| // be used to load a single character at a time. |
| |
| // ARMv8 supports unaligned accesses but V8 or the kernel can decide to |
| // disable it. |
| // TODO(pielan): See whether or not we should disable unaligned accesses. |
| if (!CanReadUnaligned()) { |
| DCHECK(characters == 1); |
| } |
| |
| if (cp_offset != 0) { |
| if (masm_->emit_debug_code()) { |
| __ Mov(x10, cp_offset * char_size()); |
| __ Add(x10, x10, Operand(current_input_offset(), SXTW)); |
| __ Cmp(x10, Operand(w10, SXTW)); |
| // The offset needs to fit in a W register. |
| __ Check(eq, kOffsetOutOfRange); |
| } else { |
| __ Add(w10, current_input_offset(), cp_offset * char_size()); |
| } |
| offset = w10; |
| } |
| |
| if (mode_ == LATIN1) { |
| if (characters == 4) { |
| __ Ldr(current_character(), MemOperand(input_end(), offset, SXTW)); |
| } else if (characters == 2) { |
| __ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW)); |
| } else { |
| DCHECK(characters == 1); |
| __ Ldrb(current_character(), MemOperand(input_end(), offset, SXTW)); |
| } |
| } else { |
| DCHECK(mode_ == UC16); |
| if (characters == 2) { |
| __ Ldr(current_character(), MemOperand(input_end(), offset, SXTW)); |
| } else { |
| DCHECK(characters == 1); |
| __ Ldrh(current_character(), MemOperand(input_end(), offset, SXTW)); |
| } |
| } |
| } |
| |
| #endif // V8_INTERPRETED_REGEXP |
| |
| }} // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_ARM64 |