| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/v8.h" |
| |
| #if V8_TARGET_ARCH_MIPS64 |
| |
| #include "src/code-stubs.h" |
| #include "src/log.h" |
| #include "src/macro-assembler.h" |
| #include "src/regexp-macro-assembler.h" |
| #include "src/regexp-stack.h" |
| #include "src/unicode.h" |
| |
| #include "src/mips64/regexp-macro-assembler-mips64.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #ifndef V8_INTERPRETED_REGEXP |
| /* |
| * This assembler uses the following register assignment convention |
| * - t3 : Temporarily stores the index of capture start after a matching pass |
| * for a global regexp. |
| * - a5 : Pointer to current code object (Code*) including heap object tag. |
| * - a6 : Current position in input, as negative offset from end of string. |
| * Please notice that this is the byte offset, not the character offset! |
| * - a7 : Currently loaded character. Must be loaded using |
| * LoadCurrentCharacter before using any of the dispatch methods. |
| * - t0 : Points to tip of backtrack stack |
| * - t1 : Unused. |
| * - t2 : End of input (points to byte after last character in input). |
| * - fp : Frame pointer. Used to access arguments, local variables and |
| * RegExp registers. |
| * - sp : Points to tip of C stack. |
| * |
| * The remaining registers are free for computations. |
| * Each call to a public method should retain this convention. |
| * |
| * TODO(plind): O32 documented here with intent of having single 32/64 codebase |
| * in the future. |
| * |
| * The O32 stack will have the following structure: |
| * |
| * - fp[76] Isolate* isolate (address of the current isolate) |
| * - fp[72] direct_call (if 1, direct call from JavaScript code, |
| * if 0, call through the runtime system). |
| * - fp[68] stack_area_base (High end of the memory area to use as |
| * backtracking stack). |
| * - fp[64] capture array size (may fit multiple sets of matches) |
| * - fp[60] int* capture_array (int[num_saved_registers_], for output). |
| * - fp[44..59] MIPS O32 four argument slots |
| * - fp[40] secondary link/return address used by native call. |
| * --- sp when called --- |
| * - fp[36] return address (lr). |
| * - fp[32] old frame pointer (r11). |
| * - fp[0..31] backup of registers s0..s7. |
| * --- frame pointer ---- |
| * - fp[-4] end of input (address of end of string). |
| * - fp[-8] start of input (address of first character in string). |
| * - fp[-12] start index (character index of start). |
| * - fp[-16] void* input_string (location of a handle containing the string). |
| * - fp[-20] success counter (only for global regexps to count matches). |
| * - fp[-24] Offset of location before start of input (effectively character |
| * position -1). Used to initialize capture registers to a |
| * non-position. |
| * - fp[-28] At start (if 1, we are starting at the start of the |
| * string, otherwise 0) |
| * - fp[-32] register 0 (Only positions must be stored in the first |
| * - register 1 num_saved_registers_ registers) |
| * - ... |
| * - register num_registers-1 |
| * --- sp --- |
| * |
| * |
| * The N64 stack will have the following structure: |
| * |
| * - fp[88] Isolate* isolate (address of the current isolate) kIsolate |
| * - fp[80] secondary link/return address used by exit frame on native call. kSecondaryReturnAddress |
| kStackFrameHeader |
| * --- sp when called --- |
| * - fp[72] ra Return from RegExp code (ra). kReturnAddress |
| * - fp[64] s9, old-fp Old fp, callee saved(s9). |
| * - fp[0..63] s0..s7 Callee-saved registers s0..s7. |
| * --- frame pointer ---- |
| * - fp[-8] direct_call (1 = direct call from JS, 0 = from runtime) kDirectCall |
| * - fp[-16] stack_base (Top of backtracking stack). kStackHighEnd |
| * - fp[-24] capture array size (may fit multiple sets of matches) kNumOutputRegisters |
| * - fp[-32] int* capture_array (int[num_saved_registers_], for output). kRegisterOutput |
| * - fp[-40] end of input (address of end of string). kInputEnd |
| * - fp[-48] start of input (address of first character in string). kInputStart |
| * - fp[-56] start index (character index of start). kStartIndex |
| * - fp[-64] void* input_string (location of a handle containing the string). kInputString |
| * - fp[-72] success counter (only for global regexps to count matches). kSuccessfulCaptures |
| * - fp[-80] Offset of location before start of input (effectively character kInputStartMinusOne |
| * position -1). Used to initialize capture registers to a |
| * non-position. |
| * --------- The following output registers are 32-bit values. --------- |
| * - fp[-88] register 0 (Only positions must be stored in the first kRegisterZero |
| * - register 1 num_saved_registers_ registers) |
| * - ... |
| * - register num_registers-1 |
| * --- sp --- |
| * |
| * The first num_saved_registers_ registers are initialized to point to |
| * "character -1" in the string (i.e., char_size() bytes before the first |
| * character of the string). The remaining registers start out as garbage. |
| * |
| * The data up to the return address must be placed there by the calling |
| * code and the remaining arguments are passed in registers, e.g. by calling the |
| * code entry as cast to a function with the signature: |
| * int (*match)(String* input_string, |
| * int start_index, |
| * Address start, |
| * Address end, |
| * Address secondary_return_address, // Only used by native call. |
| * int* capture_output_array, |
| * byte* stack_area_base, |
| * bool direct_call = false, |
| * void* return_address, |
| * Isolate* isolate); |
| * The call is performed by NativeRegExpMacroAssembler::Execute() |
| * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro |
| * in mips/simulator-mips.h. |
| * When calling as a non-direct call (i.e., from C++ code), the return address |
| * area is overwritten with the ra register by the RegExp code. When doing a |
| * direct call from generated code, the return address is placed there by |
| * the calling code, as in a normal exit frame. |
| */ |
| |
| #define __ ACCESS_MASM(masm_) |
| |
| RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone, |
| Mode mode, |
| int registers_to_save) |
| : NativeRegExpMacroAssembler(isolate, zone), |
| masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)), |
| mode_(mode), |
| num_registers_(registers_to_save), |
| num_saved_registers_(registers_to_save), |
| entry_label_(), |
| start_label_(), |
| success_label_(), |
| backtrack_label_(), |
| exit_label_(), |
| internal_failure_label_() { |
| DCHECK_EQ(0, registers_to_save % 2); |
| __ jmp(&entry_label_); // We'll write the entry code later. |
| // If the code gets too big or corrupted, an internal exception will be |
| // raised, and we will exit right away. |
| __ bind(&internal_failure_label_); |
| __ li(v0, Operand(FAILURE)); |
| __ Ret(); |
| __ bind(&start_label_); // And then continue from here. |
| } |
| |
| |
| RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() { |
| delete masm_; |
| // Unuse labels in case we throw away the assembler without calling GetCode. |
| entry_label_.Unuse(); |
| start_label_.Unuse(); |
| success_label_.Unuse(); |
| backtrack_label_.Unuse(); |
| exit_label_.Unuse(); |
| check_preempt_label_.Unuse(); |
| stack_overflow_label_.Unuse(); |
| internal_failure_label_.Unuse(); |
| } |
| |
| |
| int RegExpMacroAssemblerMIPS::stack_limit_slack() { |
| return RegExpStack::kStackLimitSlack; |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) { |
| if (by != 0) { |
| __ Daddu(current_input_offset(), |
| current_input_offset(), Operand(by * char_size())); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) { |
| DCHECK(reg >= 0); |
| DCHECK(reg < num_registers_); |
| if (by != 0) { |
| __ ld(a0, register_location(reg)); |
| __ Daddu(a0, a0, Operand(by)); |
| __ sd(a0, register_location(reg)); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::Backtrack() { |
| CheckPreemption(); |
| // Pop Code* offset from backtrack stack, add Code* and jump to location. |
| Pop(a0); |
| __ Daddu(a0, a0, code_pointer()); |
| __ Jump(a0); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::Bind(Label* label) { |
| __ bind(label); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) { |
| BranchOrBacktrack(on_equal, eq, current_character(), Operand(c)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) { |
| BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) { |
| Label not_at_start; |
| // Did we start the match at the start of the string at all? |
| __ lw(a0, MemOperand(frame_pointer(), kStartIndex)); |
| BranchOrBacktrack(¬_at_start, ne, a0, Operand(zero_reg)); |
| |
| // If we did, are we still at the start of the input? |
| __ ld(a1, MemOperand(frame_pointer(), kInputStart)); |
| __ Daddu(a0, end_of_input_address(), Operand(current_input_offset())); |
| BranchOrBacktrack(on_at_start, eq, a0, Operand(a1)); |
| __ bind(¬_at_start); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckNotAtStart(Label* on_not_at_start) { |
| // Did we start the match at the start of the string at all? |
| __ lw(a0, MemOperand(frame_pointer(), kStartIndex)); |
| BranchOrBacktrack(on_not_at_start, ne, a0, Operand(zero_reg)); |
| // If we did, are we still at the start of the input? |
| __ ld(a1, MemOperand(frame_pointer(), kInputStart)); |
| __ Daddu(a0, end_of_input_address(), Operand(current_input_offset())); |
| BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) { |
| BranchOrBacktrack(on_less, lt, current_character(), Operand(limit)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) { |
| Label backtrack_non_equal; |
| __ lw(a0, MemOperand(backtrack_stackpointer(), 0)); |
| __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0)); |
| __ Daddu(backtrack_stackpointer(), |
| backtrack_stackpointer(), |
| Operand(kIntSize)); |
| __ bind(&backtrack_non_equal); |
| BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase( |
| int start_reg, |
| Label* on_no_match) { |
| Label fallthrough; |
| __ ld(a0, register_location(start_reg)); // Index of start of capture. |
| __ ld(a1, register_location(start_reg + 1)); // Index of end of capture. |
| __ Dsubu(a1, a1, a0); // Length of capture. |
| |
| // If length is zero, either the capture is empty or it is not participating. |
| // In either case succeed immediately. |
| __ Branch(&fallthrough, eq, a1, Operand(zero_reg)); |
| |
| __ Daddu(t1, a1, current_input_offset()); |
| // Check that there are enough characters left in the input. |
| BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg)); |
| |
| if (mode_ == LATIN1) { |
| Label success; |
| Label fail; |
| Label loop_check; |
| |
| // a0 - offset of start of capture. |
| // a1 - length of capture. |
| __ Daddu(a0, a0, Operand(end_of_input_address())); |
| __ Daddu(a2, end_of_input_address(), Operand(current_input_offset())); |
| __ Daddu(a1, a0, Operand(a1)); |
| |
| // a0 - Address of start of capture. |
| // a1 - Address of end of capture. |
| // a2 - Address of current input position. |
| |
| Label loop; |
| __ bind(&loop); |
| __ lbu(a3, MemOperand(a0, 0)); |
| __ daddiu(a0, a0, char_size()); |
| __ lbu(a4, MemOperand(a2, 0)); |
| __ daddiu(a2, a2, char_size()); |
| |
| __ Branch(&loop_check, eq, a4, Operand(a3)); |
| |
| // Mismatch, try case-insensitive match (converting letters to lower-case). |
| __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case. |
| __ Or(a4, a4, Operand(0x20)); // Also convert input character. |
| __ Branch(&fail, ne, a4, Operand(a3)); |
| __ Dsubu(a3, a3, Operand('a')); |
| __ Branch(&loop_check, ls, a3, Operand('z' - 'a')); |
| // Latin-1: Check for values in range [224,254] but not 247. |
| __ Dsubu(a3, a3, Operand(224 - 'a')); |
| // Weren't Latin-1 letters. |
| __ Branch(&fail, hi, a3, Operand(254 - 224)); |
| // Check for 247. |
| __ Branch(&fail, eq, a3, Operand(247 - 224)); |
| |
| __ bind(&loop_check); |
| __ Branch(&loop, lt, a0, Operand(a1)); |
| __ jmp(&success); |
| |
| __ bind(&fail); |
| GoTo(on_no_match); |
| |
| __ bind(&success); |
| // Compute new value of character position after the matched part. |
| __ Dsubu(current_input_offset(), a2, end_of_input_address()); |
| } else { |
| DCHECK(mode_ == UC16); |
| // Put regexp engine registers on stack. |
| RegList regexp_registers_to_retain = current_input_offset().bit() | |
| current_character().bit() | backtrack_stackpointer().bit(); |
| __ MultiPush(regexp_registers_to_retain); |
| |
| int argument_count = 4; |
| __ PrepareCallCFunction(argument_count, a2); |
| |
| // a0 - offset of start of capture. |
| // a1 - length of capture. |
| |
| // Put arguments into arguments registers. |
| // Parameters are |
| // a0: Address byte_offset1 - Address captured substring's start. |
| // a1: Address byte_offset2 - Address of current character position. |
| // a2: size_t byte_length - length of capture in bytes(!). |
| // a3: Isolate* isolate. |
| |
| // Address of start of capture. |
| __ Daddu(a0, a0, Operand(end_of_input_address())); |
| // Length of capture. |
| __ mov(a2, a1); |
| // Save length in callee-save register for use on return. |
| __ mov(s3, a1); |
| // Address of current input position. |
| __ Daddu(a1, current_input_offset(), Operand(end_of_input_address())); |
| // Isolate. |
| __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate()))); |
| |
| { |
| AllowExternalCallThatCantCauseGC scope(masm_); |
| ExternalReference function = |
| ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate()); |
| __ CallCFunction(function, argument_count); |
| } |
| |
| // Restore regexp engine registers. |
| __ MultiPop(regexp_registers_to_retain); |
| __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); |
| __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); |
| |
| // Check if function returned non-zero for success or zero for failure. |
| BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg)); |
| // On success, increment position by length of capture. |
| __ Daddu(current_input_offset(), current_input_offset(), Operand(s3)); |
| } |
| |
| __ bind(&fallthrough); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckNotBackReference( |
| int start_reg, |
| Label* on_no_match) { |
| Label fallthrough; |
| Label success; |
| |
| // Find length of back-referenced capture. |
| __ ld(a0, register_location(start_reg)); |
| __ ld(a1, register_location(start_reg + 1)); |
| __ Dsubu(a1, a1, a0); // Length to check. |
| // Succeed on empty capture (including no capture). |
| __ Branch(&fallthrough, eq, a1, Operand(zero_reg)); |
| |
| __ Daddu(t1, a1, current_input_offset()); |
| // Check that there are enough characters left in the input. |
| BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg)); |
| |
| // Compute pointers to match string and capture string. |
| __ Daddu(a0, a0, Operand(end_of_input_address())); |
| __ Daddu(a2, end_of_input_address(), Operand(current_input_offset())); |
| __ Daddu(a1, a1, Operand(a0)); |
| |
| Label loop; |
| __ bind(&loop); |
| if (mode_ == LATIN1) { |
| __ lbu(a3, MemOperand(a0, 0)); |
| __ daddiu(a0, a0, char_size()); |
| __ lbu(a4, MemOperand(a2, 0)); |
| __ daddiu(a2, a2, char_size()); |
| } else { |
| DCHECK(mode_ == UC16); |
| __ lhu(a3, MemOperand(a0, 0)); |
| __ daddiu(a0, a0, char_size()); |
| __ lhu(a4, MemOperand(a2, 0)); |
| __ daddiu(a2, a2, char_size()); |
| } |
| BranchOrBacktrack(on_no_match, ne, a3, Operand(a4)); |
| __ Branch(&loop, lt, a0, Operand(a1)); |
| |
| // Move current character position to position after match. |
| __ Dsubu(current_input_offset(), a2, end_of_input_address()); |
| __ bind(&fallthrough); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c, |
| Label* on_not_equal) { |
| BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c, |
| uint32_t mask, |
| Label* on_equal) { |
| __ And(a0, current_character(), Operand(mask)); |
| Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c); |
| BranchOrBacktrack(on_equal, eq, a0, rhs); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c, |
| uint32_t mask, |
| Label* on_not_equal) { |
| __ And(a0, current_character(), Operand(mask)); |
| Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c); |
| BranchOrBacktrack(on_not_equal, ne, a0, rhs); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd( |
| uc16 c, |
| uc16 minus, |
| uc16 mask, |
| Label* on_not_equal) { |
| DCHECK(minus < String::kMaxUtf16CodeUnit); |
| __ Dsubu(a0, current_character(), Operand(minus)); |
| __ And(a0, a0, Operand(mask)); |
| BranchOrBacktrack(on_not_equal, ne, a0, Operand(c)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckCharacterInRange( |
| uc16 from, |
| uc16 to, |
| Label* on_in_range) { |
| __ Dsubu(a0, current_character(), Operand(from)); |
| // Unsigned lower-or-same condition. |
| BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange( |
| uc16 from, |
| uc16 to, |
| Label* on_not_in_range) { |
| __ Dsubu(a0, current_character(), Operand(from)); |
| // Unsigned higher condition. |
| BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckBitInTable( |
| Handle<ByteArray> table, |
| Label* on_bit_set) { |
| __ li(a0, Operand(table)); |
| if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) { |
| __ And(a1, current_character(), Operand(kTableSize - 1)); |
| __ Daddu(a0, a0, a1); |
| } else { |
| __ Daddu(a0, a0, current_character()); |
| } |
| |
| __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize)); |
| BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg)); |
| } |
| |
| |
| bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type, |
| Label* on_no_match) { |
| // Range checks (c in min..max) are generally implemented by an unsigned |
| // (c - min) <= (max - min) check. |
| switch (type) { |
| case 's': |
| // Match space-characters. |
| if (mode_ == LATIN1) { |
| // One byte space characters are '\t'..'\r', ' ' and \u00a0. |
| Label success; |
| __ Branch(&success, eq, current_character(), Operand(' ')); |
| // Check range 0x09..0x0d. |
| __ Dsubu(a0, current_character(), Operand('\t')); |
| __ Branch(&success, ls, a0, Operand('\r' - '\t')); |
| // \u00a0 (NBSP). |
| BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t')); |
| __ bind(&success); |
| return true; |
| } |
| return false; |
| case 'S': |
| // The emitted code for generic character classes is good enough. |
| return false; |
| case 'd': |
| // Match Latin1 digits ('0'..'9'). |
| __ Dsubu(a0, current_character(), Operand('0')); |
| BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0')); |
| return true; |
| case 'D': |
| // Match non Latin1-digits. |
| __ Dsubu(a0, current_character(), Operand('0')); |
| BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0')); |
| return true; |
| case '.': { |
| // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029). |
| __ Xor(a0, current_character(), Operand(0x01)); |
| // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c. |
| __ Dsubu(a0, a0, Operand(0x0b)); |
| BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b)); |
| if (mode_ == UC16) { |
| // Compare original value to 0x2028 and 0x2029, using the already |
| // computed (current_char ^ 0x01 - 0x0b). I.e., check for |
| // 0x201d (0x2028 - 0x0b) or 0x201e. |
| __ Dsubu(a0, a0, Operand(0x2028 - 0x0b)); |
| BranchOrBacktrack(on_no_match, ls, a0, Operand(1)); |
| } |
| return true; |
| } |
| case 'n': { |
| // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029). |
| __ Xor(a0, current_character(), Operand(0x01)); |
| // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c. |
| __ Dsubu(a0, a0, Operand(0x0b)); |
| if (mode_ == LATIN1) { |
| BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b)); |
| } else { |
| Label done; |
| BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b)); |
| // Compare original value to 0x2028 and 0x2029, using the already |
| // computed (current_char ^ 0x01 - 0x0b). I.e., check for |
| // 0x201d (0x2028 - 0x0b) or 0x201e. |
| __ Dsubu(a0, a0, Operand(0x2028 - 0x0b)); |
| BranchOrBacktrack(on_no_match, hi, a0, Operand(1)); |
| __ bind(&done); |
| } |
| return true; |
| } |
| case 'w': { |
| if (mode_ != LATIN1) { |
| // Table is 256 entries, so all Latin1 characters can be tested. |
| BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z')); |
| } |
| ExternalReference map = ExternalReference::re_word_character_map(); |
| __ li(a0, Operand(map)); |
| __ Daddu(a0, a0, current_character()); |
| __ lbu(a0, MemOperand(a0, 0)); |
| BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg)); |
| return true; |
| } |
| case 'W': { |
| Label done; |
| if (mode_ != LATIN1) { |
| // Table is 256 entries, so all Latin1 characters can be tested. |
| __ Branch(&done, hi, current_character(), Operand('z')); |
| } |
| ExternalReference map = ExternalReference::re_word_character_map(); |
| __ li(a0, Operand(map)); |
| __ Daddu(a0, a0, current_character()); |
| __ lbu(a0, MemOperand(a0, 0)); |
| BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg)); |
| if (mode_ != LATIN1) { |
| __ bind(&done); |
| } |
| return true; |
| } |
| case '*': |
| // Match any character. |
| return true; |
| // No custom implementation (yet): s(UC16), S(UC16). |
| default: |
| return false; |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::Fail() { |
| __ li(v0, Operand(FAILURE)); |
| __ jmp(&exit_label_); |
| } |
| |
| |
| Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) { |
| Label return_v0; |
| if (masm_->has_exception()) { |
| // If the code gets corrupted due to long regular expressions and lack of |
| // space on trampolines, an internal exception flag is set. If this case |
| // is detected, we will jump into exit sequence right away. |
| __ bind_to(&entry_label_, internal_failure_label_.pos()); |
| } else { |
| // Finalize code - write the entry point code now we know how many |
| // registers we need. |
| |
| // Entry code: |
| __ bind(&entry_label_); |
| |
| // Tell the system that we have a stack frame. Because the type is MANUAL, |
| // no is generated. |
| FrameScope scope(masm_, StackFrame::MANUAL); |
| |
| // Actually emit code to start a new stack frame. |
| // Push arguments |
| // Save callee-save registers. |
| // Start new stack frame. |
| // Store link register in existing stack-cell. |
| // Order here should correspond to order of offset constants in header file. |
| // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs |
| // or dont save. |
| RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() | |
| s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit(); |
| RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit(); |
| |
| if (kMipsAbi == kN64) { |
| // TODO(plind): Should probably alias a4-a7, for clarity. |
| argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit(); |
| } |
| |
| __ MultiPush(argument_registers | registers_to_retain | ra.bit()); |
| // Set frame pointer in space for it if this is not a direct call |
| // from generated code. |
| // TODO(plind): this 8 is the # of argument regs, should have definition. |
| __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize)); |
| __ mov(a0, zero_reg); |
| __ push(a0); // Make room for success counter and initialize it to 0. |
| __ push(a0); // Make room for "position - 1" constant (value irrelevant). |
| |
| // Check if we have space on the stack for registers. |
| Label stack_limit_hit; |
| Label stack_ok; |
| |
| ExternalReference stack_limit = |
| ExternalReference::address_of_stack_limit(masm_->isolate()); |
| __ li(a0, Operand(stack_limit)); |
| __ ld(a0, MemOperand(a0)); |
| __ Dsubu(a0, sp, a0); |
| // Handle it if the stack pointer is already below the stack limit. |
| __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg)); |
| // Check if there is room for the variable number of registers above |
| // the stack limit. |
| __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize)); |
| // Exit with OutOfMemory exception. There is not enough space on the stack |
| // for our working registers. |
| __ li(v0, Operand(EXCEPTION)); |
| __ jmp(&return_v0); |
| |
| __ bind(&stack_limit_hit); |
| CallCheckStackGuardState(a0); |
| // If returned value is non-zero, we exit with the returned value as result. |
| __ Branch(&return_v0, ne, v0, Operand(zero_reg)); |
| |
| __ bind(&stack_ok); |
| // Allocate space on stack for registers. |
| __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize)); |
| // Load string end. |
| __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); |
| // Load input start. |
| __ ld(a0, MemOperand(frame_pointer(), kInputStart)); |
| // Find negative length (offset of start relative to end). |
| __ Dsubu(current_input_offset(), a0, end_of_input_address()); |
| // Set a0 to address of char before start of the input string |
| // (effectively string position -1). |
| __ ld(a1, MemOperand(frame_pointer(), kStartIndex)); |
| __ Dsubu(a0, current_input_offset(), Operand(char_size())); |
| __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0); |
| __ Dsubu(a0, a0, t1); |
| // Store this value in a local variable, for use when clearing |
| // position registers. |
| __ sd(a0, MemOperand(frame_pointer(), kInputStartMinusOne)); |
| |
| // Initialize code pointer register |
| __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); |
| |
| Label load_char_start_regexp, start_regexp; |
| // Load newline if index is at start, previous character otherwise. |
| __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg)); |
| __ li(current_character(), Operand('\n')); |
| __ jmp(&start_regexp); |
| |
| // Global regexp restarts matching here. |
| __ bind(&load_char_start_regexp); |
| // Load previous char as initial value of current character register. |
| LoadCurrentCharacterUnchecked(-1, 1); |
| __ bind(&start_regexp); |
| |
| // Initialize on-stack registers. |
| if (num_saved_registers_ > 0) { // Always is, if generated from a regexp. |
| // Fill saved registers with initial value = start offset - 1. |
| if (num_saved_registers_ > 8) { |
| // Address of register 0. |
| __ Daddu(a1, frame_pointer(), Operand(kRegisterZero)); |
| __ li(a2, Operand(num_saved_registers_)); |
| Label init_loop; |
| __ bind(&init_loop); |
| __ sd(a0, MemOperand(a1)); |
| __ Daddu(a1, a1, Operand(-kPointerSize)); |
| __ Dsubu(a2, a2, Operand(1)); |
| __ Branch(&init_loop, ne, a2, Operand(zero_reg)); |
| } else { |
| for (int i = 0; i < num_saved_registers_; i++) { |
| __ sd(a0, register_location(i)); |
| } |
| } |
| } |
| |
| // Initialize backtrack stack pointer. |
| __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd)); |
| |
| __ jmp(&start_label_); |
| |
| |
| // Exit code: |
| if (success_label_.is_linked()) { |
| // Save captures when successful. |
| __ bind(&success_label_); |
| if (num_saved_registers_ > 0) { |
| // Copy captures to output. |
| __ ld(a1, MemOperand(frame_pointer(), kInputStart)); |
| __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput)); |
| __ ld(a2, MemOperand(frame_pointer(), kStartIndex)); |
| __ Dsubu(a1, end_of_input_address(), a1); |
| // a1 is length of input in bytes. |
| if (mode_ == UC16) { |
| __ dsrl(a1, a1, 1); |
| } |
| // a1 is length of input in characters. |
| __ Daddu(a1, a1, Operand(a2)); |
| // a1 is length of string in characters. |
| |
| DCHECK_EQ(0, num_saved_registers_ % 2); |
| // Always an even number of capture registers. This allows us to |
| // unroll the loop once to add an operation between a load of a register |
| // and the following use of that register. |
| for (int i = 0; i < num_saved_registers_; i += 2) { |
| __ ld(a2, register_location(i)); |
| __ ld(a3, register_location(i + 1)); |
| if (i == 0 && global_with_zero_length_check()) { |
| // Keep capture start in a4 for the zero-length check later. |
| __ mov(t3, a2); |
| } |
| if (mode_ == UC16) { |
| __ dsra(a2, a2, 1); |
| __ Daddu(a2, a2, a1); |
| __ dsra(a3, a3, 1); |
| __ Daddu(a3, a3, a1); |
| } else { |
| __ Daddu(a2, a1, Operand(a2)); |
| __ Daddu(a3, a1, Operand(a3)); |
| } |
| // V8 expects the output to be an int32_t array. |
| __ sw(a2, MemOperand(a0)); |
| __ Daddu(a0, a0, kIntSize); |
| __ sw(a3, MemOperand(a0)); |
| __ Daddu(a0, a0, kIntSize); |
| } |
| } |
| |
| if (global()) { |
| // Restart matching if the regular expression is flagged as global. |
| __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures)); |
| __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters)); |
| __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput)); |
| // Increment success counter. |
| __ Daddu(a0, a0, 1); |
| __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures)); |
| // Capture results have been stored, so the number of remaining global |
| // output registers is reduced by the number of stored captures. |
| __ Dsubu(a1, a1, num_saved_registers_); |
| // Check whether we have enough room for another set of capture results. |
| __ mov(v0, a0); |
| __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_)); |
| |
| __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters)); |
| // Advance the location for output. |
| __ Daddu(a2, a2, num_saved_registers_ * kIntSize); |
| __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput)); |
| |
| // Prepare a0 to initialize registers with its value in the next run. |
| __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne)); |
| |
| if (global_with_zero_length_check()) { |
| // Special case for zero-length matches. |
| // t3: capture start index |
| // Not a zero-length match, restart. |
| __ Branch( |
| &load_char_start_regexp, ne, current_input_offset(), Operand(t3)); |
| // Offset from the end is zero if we already reached the end. |
| __ Branch(&exit_label_, eq, current_input_offset(), |
| Operand(zero_reg)); |
| // Advance current position after a zero-length match. |
| __ Daddu(current_input_offset(), |
| current_input_offset(), |
| Operand((mode_ == UC16) ? 2 : 1)); |
| } |
| |
| __ Branch(&load_char_start_regexp); |
| } else { |
| __ li(v0, Operand(SUCCESS)); |
| } |
| } |
| // Exit and return v0. |
| __ bind(&exit_label_); |
| if (global()) { |
| __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures)); |
| } |
| |
| __ bind(&return_v0); |
| // Skip sp past regexp registers and local variables.. |
| __ mov(sp, frame_pointer()); |
| // Restore registers s0..s7 and return (restoring ra to pc). |
| __ MultiPop(registers_to_retain | ra.bit()); |
| __ Ret(); |
| |
| // Backtrack code (branch target for conditional backtracks). |
| if (backtrack_label_.is_linked()) { |
| __ bind(&backtrack_label_); |
| Backtrack(); |
| } |
| |
| Label exit_with_exception; |
| |
| // Preempt-code. |
| if (check_preempt_label_.is_linked()) { |
| SafeCallTarget(&check_preempt_label_); |
| // Put regexp engine registers on stack. |
| RegList regexp_registers_to_retain = current_input_offset().bit() | |
| current_character().bit() | backtrack_stackpointer().bit(); |
| __ MultiPush(regexp_registers_to_retain); |
| CallCheckStackGuardState(a0); |
| __ MultiPop(regexp_registers_to_retain); |
| // If returning non-zero, we should end execution with the given |
| // result as return value. |
| __ Branch(&return_v0, ne, v0, Operand(zero_reg)); |
| |
| // String might have moved: Reload end of string from frame. |
| __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); |
| __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); |
| SafeReturn(); |
| } |
| |
| // Backtrack stack overflow code. |
| if (stack_overflow_label_.is_linked()) { |
| SafeCallTarget(&stack_overflow_label_); |
| // Reached if the backtrack-stack limit has been hit. |
| // Put regexp engine registers on stack first. |
| RegList regexp_registers = current_input_offset().bit() | |
| current_character().bit(); |
| __ MultiPush(regexp_registers); |
| Label grow_failed; |
| // Call GrowStack(backtrack_stackpointer(), &stack_base) |
| static const int num_arguments = 3; |
| __ PrepareCallCFunction(num_arguments, a0); |
| __ mov(a0, backtrack_stackpointer()); |
| __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd)); |
| __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate()))); |
| ExternalReference grow_stack = |
| ExternalReference::re_grow_stack(masm_->isolate()); |
| __ CallCFunction(grow_stack, num_arguments); |
| // Restore regexp registers. |
| __ MultiPop(regexp_registers); |
| // If return NULL, we have failed to grow the stack, and |
| // must exit with a stack-overflow exception. |
| __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg)); |
| // Otherwise use return value as new stack pointer. |
| __ mov(backtrack_stackpointer(), v0); |
| // Restore saved registers and continue. |
| __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); |
| __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); |
| SafeReturn(); |
| } |
| |
| if (exit_with_exception.is_linked()) { |
| // If any of the code above needed to exit with an exception. |
| __ bind(&exit_with_exception); |
| // Exit with Result EXCEPTION(-1) to signal thrown exception. |
| __ li(v0, Operand(EXCEPTION)); |
| __ jmp(&return_v0); |
| } |
| } |
| |
| CodeDesc code_desc; |
| masm_->GetCode(&code_desc); |
| Handle<Code> code = isolate()->factory()->NewCode( |
| code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject()); |
| LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source)); |
| return Handle<HeapObject>::cast(code); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::GoTo(Label* to) { |
| if (to == NULL) { |
| Backtrack(); |
| return; |
| } |
| __ jmp(to); |
| return; |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg, |
| int comparand, |
| Label* if_ge) { |
| __ ld(a0, register_location(reg)); |
| BranchOrBacktrack(if_ge, ge, a0, Operand(comparand)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg, |
| int comparand, |
| Label* if_lt) { |
| __ ld(a0, register_location(reg)); |
| BranchOrBacktrack(if_lt, lt, a0, Operand(comparand)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg, |
| Label* if_eq) { |
| __ ld(a0, register_location(reg)); |
| BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset())); |
| } |
| |
| |
| RegExpMacroAssembler::IrregexpImplementation |
| RegExpMacroAssemblerMIPS::Implementation() { |
| return kMIPSImplementation; |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset, |
| Label* on_end_of_input, |
| bool check_bounds, |
| int characters) { |
| DCHECK(cp_offset >= -1); // ^ and \b can look behind one character. |
| DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works). |
| if (check_bounds) { |
| CheckPosition(cp_offset + characters - 1, on_end_of_input); |
| } |
| LoadCurrentCharacterUnchecked(cp_offset, characters); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::PopCurrentPosition() { |
| Pop(current_input_offset()); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::PopRegister(int register_index) { |
| Pop(a0); |
| __ sd(a0, register_location(register_index)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) { |
| if (label->is_bound()) { |
| int target = label->pos(); |
| __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag)); |
| } else { |
| Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); |
| Label after_constant; |
| __ Branch(&after_constant); |
| int offset = masm_->pc_offset(); |
| int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag; |
| __ emit(0); |
| masm_->label_at_put(label, offset); |
| __ bind(&after_constant); |
| if (is_int16(cp_offset)) { |
| __ lwu(a0, MemOperand(code_pointer(), cp_offset)); |
| } else { |
| __ Daddu(a0, code_pointer(), cp_offset); |
| __ lwu(a0, MemOperand(a0, 0)); |
| } |
| } |
| Push(a0); |
| CheckStackLimit(); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::PushCurrentPosition() { |
| Push(current_input_offset()); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::PushRegister(int register_index, |
| StackCheckFlag check_stack_limit) { |
| __ ld(a0, register_location(register_index)); |
| Push(a0); |
| if (check_stack_limit) CheckStackLimit(); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) { |
| __ ld(current_input_offset(), register_location(reg)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) { |
| __ ld(backtrack_stackpointer(), register_location(reg)); |
| __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd)); |
| __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) { |
| Label after_position; |
| __ Branch(&after_position, |
| ge, |
| current_input_offset(), |
| Operand(-by * char_size())); |
| __ li(current_input_offset(), -by * char_size()); |
| // On RegExp code entry (where this operation is used), the character before |
| // the current position is expected to be already loaded. |
| // We have advanced the position, so it's safe to read backwards. |
| LoadCurrentCharacterUnchecked(-1, 1); |
| __ bind(&after_position); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) { |
| DCHECK(register_index >= num_saved_registers_); // Reserved for positions! |
| __ li(a0, Operand(to)); |
| __ sd(a0, register_location(register_index)); |
| } |
| |
| |
| bool RegExpMacroAssemblerMIPS::Succeed() { |
| __ jmp(&success_label_); |
| return global(); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg, |
| int cp_offset) { |
| if (cp_offset == 0) { |
| __ sd(current_input_offset(), register_location(reg)); |
| } else { |
| __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size())); |
| __ sd(a0, register_location(reg)); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) { |
| DCHECK(reg_from <= reg_to); |
| __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne)); |
| for (int reg = reg_from; reg <= reg_to; reg++) { |
| __ sd(a0, register_location(reg)); |
| } |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) { |
| __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd)); |
| __ Dsubu(a0, backtrack_stackpointer(), a1); |
| __ sd(a0, register_location(reg)); |
| } |
| |
| |
| bool RegExpMacroAssemblerMIPS::CanReadUnaligned() { |
| return false; |
| } |
| |
| |
| // Private methods: |
| |
| void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) { |
| int stack_alignment = base::OS::ActivationFrameAlignment(); |
| |
| // Align the stack pointer and save the original sp value on the stack. |
| __ mov(scratch, sp); |
| __ Dsubu(sp, sp, Operand(kPointerSize)); |
| DCHECK(base::bits::IsPowerOfTwo32(stack_alignment)); |
| __ And(sp, sp, Operand(-stack_alignment)); |
| __ sd(scratch, MemOperand(sp)); |
| |
| __ mov(a2, frame_pointer()); |
| // Code* of self. |
| __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE); |
| |
| // We need to make room for the return address on the stack. |
| DCHECK(IsAligned(stack_alignment, kPointerSize)); |
| __ Dsubu(sp, sp, Operand(stack_alignment)); |
| |
| // Stack pointer now points to cell where return address is to be written. |
| // Arguments are in registers, meaning we teat the return address as |
| // argument 5. Since DirectCEntryStub will handleallocating space for the C |
| // argument slots, we don't need to care about that here. This is how the |
| // stack will look (sp meaning the value of sp at this moment): |
| // [sp + 3] - empty slot if needed for alignment. |
| // [sp + 2] - saved sp. |
| // [sp + 1] - second word reserved for return value. |
| // [sp + 0] - first word reserved for return value. |
| |
| // a0 will point to the return address, placed by DirectCEntry. |
| __ mov(a0, sp); |
| |
| ExternalReference stack_guard_check = |
| ExternalReference::re_check_stack_guard_state(masm_->isolate()); |
| __ li(t9, Operand(stack_guard_check)); |
| DirectCEntryStub stub(isolate()); |
| stub.GenerateCall(masm_, t9); |
| |
| // DirectCEntryStub allocated space for the C argument slots so we have to |
| // drop them with the return address from the stack with loading saved sp. |
| // At this point stack must look: |
| // [sp + 7] - empty slot if needed for alignment. |
| // [sp + 6] - saved sp. |
| // [sp + 5] - second word reserved for return value. |
| // [sp + 4] - first word reserved for return value. |
| // [sp + 3] - C argument slot. |
| // [sp + 2] - C argument slot. |
| // [sp + 1] - C argument slot. |
| // [sp + 0] - C argument slot. |
| __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize)); |
| |
| __ li(code_pointer(), Operand(masm_->CodeObject())); |
| } |
| |
| |
| // Helper function for reading a value out of a stack frame. |
| template <typename T> |
| static T& frame_entry(Address re_frame, int frame_offset) { |
| return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset)); |
| } |
| |
| |
| template <typename T> |
| static T* frame_entry_address(Address re_frame, int frame_offset) { |
| return reinterpret_cast<T*>(re_frame + frame_offset); |
| } |
| |
| |
| int64 RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address, |
| Code* re_code, |
| Address re_frame) { |
| return NativeRegExpMacroAssembler::CheckStackGuardState( |
| frame_entry<Isolate*>(re_frame, kIsolate), |
| frame_entry<int>(re_frame, kStartIndex), |
| frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code, |
| frame_entry_address<String*>(re_frame, kInputString), |
| frame_entry_address<const byte*>(re_frame, kInputStart), |
| frame_entry_address<const byte*>(re_frame, kInputEnd)); |
| } |
| |
| |
| MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) { |
| DCHECK(register_index < (1<<30)); |
| if (num_registers_ <= register_index) { |
| num_registers_ = register_index + 1; |
| } |
| return MemOperand(frame_pointer(), |
| kRegisterZero - register_index * kPointerSize); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset, |
| Label* on_outside_input) { |
| BranchOrBacktrack(on_outside_input, |
| ge, |
| current_input_offset(), |
| Operand(-cp_offset * char_size())); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to, |
| Condition condition, |
| Register rs, |
| const Operand& rt) { |
| if (condition == al) { // Unconditional. |
| if (to == NULL) { |
| Backtrack(); |
| return; |
| } |
| __ jmp(to); |
| return; |
| } |
| if (to == NULL) { |
| __ Branch(&backtrack_label_, condition, rs, rt); |
| return; |
| } |
| __ Branch(to, condition, rs, rt); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::SafeCall(Label* to, |
| Condition cond, |
| Register rs, |
| const Operand& rt) { |
| __ BranchAndLink(to, cond, rs, rt); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::SafeReturn() { |
| __ pop(ra); |
| __ Daddu(t1, ra, Operand(masm_->CodeObject())); |
| __ Jump(t1); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) { |
| __ bind(name); |
| __ Dsubu(ra, ra, Operand(masm_->CodeObject())); |
| __ push(ra); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::Push(Register source) { |
| DCHECK(!source.is(backtrack_stackpointer())); |
| __ Daddu(backtrack_stackpointer(), |
| backtrack_stackpointer(), |
| Operand(-kIntSize)); |
| __ sw(source, MemOperand(backtrack_stackpointer())); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::Pop(Register target) { |
| DCHECK(!target.is(backtrack_stackpointer())); |
| __ lw(target, MemOperand(backtrack_stackpointer())); |
| __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckPreemption() { |
| // Check for preemption. |
| ExternalReference stack_limit = |
| ExternalReference::address_of_stack_limit(masm_->isolate()); |
| __ li(a0, Operand(stack_limit)); |
| __ ld(a0, MemOperand(a0)); |
| SafeCall(&check_preempt_label_, ls, sp, Operand(a0)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::CheckStackLimit() { |
| ExternalReference stack_limit = |
| ExternalReference::address_of_regexp_stack_limit(masm_->isolate()); |
| |
| __ li(a0, Operand(stack_limit)); |
| __ ld(a0, MemOperand(a0)); |
| SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0)); |
| } |
| |
| |
| void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset, |
| int characters) { |
| Register offset = current_input_offset(); |
| if (cp_offset != 0) { |
| // t3 is not being used to store the capture start index at this point. |
| __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size())); |
| offset = t3; |
| } |
| // We assume that we cannot do unaligned loads on MIPS, so this function |
| // must only be used to load a single character at a time. |
| DCHECK(characters == 1); |
| __ Daddu(t1, end_of_input_address(), Operand(offset)); |
| if (mode_ == LATIN1) { |
| __ lbu(current_character(), MemOperand(t1, 0)); |
| } else { |
| DCHECK(mode_ == UC16); |
| __ lhu(current_character(), MemOperand(t1, 0)); |
| } |
| } |
| |
| #undef __ |
| |
| #endif // V8_INTERPRETED_REGEXP |
| |
| }} // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_MIPS64 |